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Abstract
Heat load prediction is essential to discover blast furnace (BF) anomalies in time and take measures in advance to reduce
erosion in the ironmaking process. However, owing to the redundancy of the high dimensional data and the multi-granularity
features of the state monitoring data, the general prediction model is hard to accurately predict the heat load, especially the
rapid change caused by physical and chemical reactions. Therefore, this paper puts forward an attention-based one-dimension
convolution neural network (1DCNN) combined with a bidirectional long short-term memory (BiLSTM) network for heat
load prediction. Firstly, the two-stage data pre-processing realizes dimension reduction and key variable selection. Secondly,
fine-grained features are extracted by 1DCNN, and the BiLSTM extracts the coarse-grained features for prediction output.
Moreover, an attention branch is added to the 1DCNN to extract the critical fine-grained features when the heat load changes
rapidly. Finally, experiments are carried out with the actual industrial data from a BF ironmaking process. The efforts show
that the proposed prediction model presents better performances in the result of different metrics and has higher accuracy
than the traditional prediction algorithms.

Keywords Heat load · Blast furnace ironmaking · Attention mechanism · One-dimension convolutional neural network
(1DCNN) · Bidirectional long short-term memory (BiLSTM) network

Introduction

Blast furnace (BF) ironmaking is a typical process manu-
facturing with complex mechanisms and high energy con-
sumption (Pan et al. 2018), which is mainly composed of the
BF body and the auxiliary supporting systems (Wang et al.
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2015), as shown in Fig. 1. The feeding system is to feed
the raw materials to the top of the BF body, including iron
ore, coke, etc. The coal injection system continuously injects
pulverized coal into the BF body. The hot blast system con-
stantly supplies the BF body with high-temperature hot air
above 1000 degrees. The steel tapping system produces the
final iron and slag from the bottom of the BF body (Li et al.
2022). As iron ore and coke intermittently enter the top of
the BF body, hot air is continuously bubbled into the bottom
of the BF body, and the molten iron and slag intermittently
exit the bottom of the BF body (Li et al. 2021). In addition,
waste heat and gases are collected and treated by the top gas
treatment system and the top gas recovery turbine (TRT) sys-
tem. Therefore, it is crucial to ensure continuous and stable
production by monitoring the condition of the complex BF
ironmaking system in real-time and effectively.

TheBF heat load refers to the heat carried away by cooling
equipment per unit area of time (Zhou et al. 2017). It is a crit-
ical index for monitoring the BF body’s state. The total heat
load of the BF is composed of 7 parts: the furnace bottom,
furnace cylinder, furnace waist, furnace belly, the lower part
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Fig. 1 Blast furnace body and its auxiliary system. The BF body can be
roughly divided into five zones: throat, shaft, belly, bosh, and hearth,
and the auxiliary supporting systems mainly include the ore and coke
feeding system, the top gas treatment system and the top gas recovery
turbine (TRT) system, the pulverized coal injection system, the hot blast
system, and the steel tapping system

of the furnace body, the middle part of the furnace body, and
the upper part of the furnace body, that is, the total heat load
value is accumulated from the heat load of these seven parts.
However, the traditional method of measuring heat load by
heat transfer and water flow has significant hysteresis (Zhou
et al. 2018), and it is difficult to grasp the changing trend of
the heat load in time. Furthermore, in the actual ironmaking
process, when the temperature and pressure in the BF body
fluctuate violently, the heat load change will increase expo-
nentially in the short temporal (Semenov et al. 2017). But
the current heat load monitoring methods can not acquire
the rapid change in time (Wang et al. 2018a, 2018b). That is,
there are problems such as unmeasured, inaccurate, andmea-
surement delay. Once the heat load exceeds the controllable
range, it will bring in BF erosion and even cause accidents
(Kurunov et al. 2006). Therefore, it is essential to predict the
heat load and take cooling measures in time to ensure the
stability of the BF body.

In the existing literature, there is little research on the
heat load prediction of BF systems, and more attention is
paid to small-scale boiler systems such as utility boilers and
solar boilers (Xing et al. 2017). Traditional heat load predic-
tion methods are mainly based on mechanism analysis. Taler
et al., (2019) proposed a mathematical model of a super-
critical power boiler for simulating rapid changes in boiler
heat load. In addition, to solve the problem of boiler tube
failure caused by the heat load difference, Xu et al., (2000)
proposed aheat loadmonitoringmodel basedon thermal vari-
ables, thermal deviation theory, and flow deviation theory
of power plants. The above modeling and analysis meth-
ods have achieved excellent boiler analysis and optimization
scenarios. However, these methods mainly rely on empirical

knowledge and assumptions. Their performance is usually
demonstrated by post-inspection, which makes it challeng-
ing to obtain the state of the BF body in advance.

As an alternative method in recent years, automatic data-
driven prediction methods have been used to extract hidden
features from complex industrial data, mainly using machine
learning and neural network models to predict the heat load.
Dong et al., (2011) proposed a modified Takagi- Sugeno
-type neuro-fuzzy system, realizing the online identifica-
tion of thermal processes. In order to further improve the
accuracy of heat load prediction in time-varying and uncer-
tain environments, Xie, (2017) proposed a Back Propagation
Neural Netp-Markov-based prediction model. In addition,
scholars are also concerned with the simultaneous predic-
tion of multiple indicators. Yukun et al., (2011) proposed a
hybrid predictionmodel basedon the artificial neural network
(ANN),which realized the prediction of furnace temperature,
NOx emissions, and other variables simultaneously. For the
modeling and optimization of the heat load prediction, Zhao
andWang, (2009) proposed a hybrid model based on support
vector regression (SVR) and improved the center particle
swarm optimization (ICPSO) algorithm, which can improve
the accuracy of heat load prediction. Moreover, to enhance
the stability and robustness of heat load prediction, Hu et al.,
(2017) and Li et al., (2013) proposed ANN-based heat load
predictionmodels,which are based on generalized regression
neural network (GRNN) and fruit fly optimization algorithm
(FOA).

In conclusion, the data-driven methods represented by
the neural network models have been widely used in the
prediction model. Optimization methods are also employed
to improve the prediction model’s accuracy and robustness.
However, most of them can not accurately predict the heat
load due to the complicated and changeable characteristics of
the BF ironmaking process. The main reasons are as follows.
First of all, there are many variables related to the heat load,
including both temporal and non-temporal series variables,
which results in high dimensionality and redundancy in the
multiple data. Secondly, the diverse multi-granularity fea-
tures (Liao et al., 2018; Lv et al., 2021; Zhao et al., 2020) in
the state monitoring data. It mainly includes coarse-grained
features of different measurement objects, such as temper-
ature, pressure, load, etc. It also contains the fine-grained
features of the same measurement object at different posi-
tions, such as throat temperature, shaft temperature, belly
temperature, and temperature of other parts. The shallow
neural network model can not effectively extract these fea-
tures. Last but not least, most of the existing methods ignore
the characteristics of the rapid change of heat load in a short
period, resulting in insufficient accuracy of rapid change heat
load prediction.

Therefore, we propose a novel data-driven framework for
BF heat load prediction to address these three challenges
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Fig. 2 The framework of attention mechanism-based deep learning for heat load prediction

mentioned above, and an attention-based one-dimension
convolution neural network (1DCNN) combined with a bidi-
rectional long short-term memory (BiLSTM) network is
designed. The heat load prediction framework is shown in
Fig. 2 and consists of two main parts: two-stage data pre-
processing and the predictionmodel establishment. Themain
processes and contributions are shown as follows:

1. A two-stage data pre-processing model combining data
cleaning and mutual information-based feature selection
model is designed to solve multivariate BF ironmaking
data’s high dimensionality and redundancy, which real-
izes data dimension reduction and key variable selection.

2. We consider both coarse-grained and fine-grained fea-
tures in multivariate data to realize the output prediction.
We use the 1DCNN model to extract fine-grained fea-
tures, and the coarse-grained features are extracted by
the BiLSTM for prediction output under the designed
fusion training mechanism.

3. In order to extract the rapid change characteristics of heat
load caused by the violent oxidation–reduction reaction
in the BF body, an attention mechanism is added to the
1DCNNmodel to extract the local features of the promi-
nent fluctuation characteristics.

The rest of this article is organized as follows.
Section "Relatedworks" presents the relatedworks, followed
by the Two-stage data pre-processing in section "Two-stage
data pre-processing". In Section "Prediction model", the
composition and fusion strategy of the prediction model
is introduced. Then the validity and accuracy experiments
of the prediction model are evaluated in section "Industrial
data-based experiments", and in section "Conclusion", the
conclusion and future work are presented.

Related works

1DCNNmodel

Convolutional neural network (CNN) is a successful deep
learning architecture first proposed by (Lecun et al. 1998)
in artificial intelligence, which has strong feature extraction
ability and high robustness. It has been widely applied in the
fields of pattern recognition (Wang et al. 2020), image pro-
cessing (Zhang et al. 2020), and natural language processing
(Wang et al. 2021). However, the 1DCNNmodel ismore suit-
able for temporal series feature extraction (Eren et al. 2019).
The difference between the two models is that the 1DCNN
model only convolutes on one dimension, while the two
dimensions Convolutional neural network (2DCNN) model
is convoluted on two dimensions simultaneously, as shown
in Fig. 3. The brown box is the convolution kernel, which is
the detector for feature extraction, the direction of the arrow
is the direction of movement of the convolution kernel, and

1D Convolution Example

Feature Detector

2D Convolution Example

Feature Detector

Fig. 3 Difference between 2 and 1DCNN
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a one-way convolution kernel extracts the sequence features.
Because the direction of movement is one-dimensional, it
moves in one direction. It does not move back and forth as it
does inmultiple dimensions. Therefore, in the 1DCNN layer,
the input data is convoluted by the activation function before
flowing to the next layer refers to (1):

ht = σcnn(Wcnn ∗ xt + bcnn) (1)

where Wcnn represents the weight coefficient of the filter,
namely the convolution kernel;xt represents the t input sam-
ple data information; * represents the discrete convolution
operation between xt and Wcnn;bcnn is a bias parameter,
which is obtained mainly through learning the model during
training. σcnn(·) represents the activation function; ht repre-
sents the output data at the end of the convolution operation.

The convolution operation establishes a mapping rela-
tionship between the layers. However, after convolution, the
dimensionality of the data becomes higher and higher, and
the feature map does not change much. After several suc-
cessive convolutions, a large number of parameters will be
generated, which will greatly increase the difficulty of net-
work training and easily cause the phenomenonof overfitting.
Therefore, to further reduce the computational effort. Pooling
layers are used to reduce the dimensionality of the convolu-
tional features and reduce the risk of network overfitting. Its
calculation process refers to (2):

ht = down(ht−1) (2)

where ht−1 and ht represent the eigenvalues before and after
pooling, and down() represents the pooling function.

To obtain a larger receptive field, the 1DCNN model can
use a wider convolution kernel to get the eigenvalues of
the sequence more comprehensively and then realize feature
extraction by stacking convolution and pooling layers.

Attentionmechanism

The attention mechanism was proposed based on human
vision research, introduced in computer vision and natu-
ral language processing to optimize the existing models
and focus on the most practical information with limited
resources (Li et al. 2017). The attentionmechanism ismainly
divided into hard attention and soft attention (Zhong et al.
2018). The hard attention mechanism filters the area of inter-
est as input, effectively focusing on the target after removing
meaningless background data in the image recognition. But
the hard attention mechanisms are not fully applicable in
temporal series prediction for the direct limits input (Chen
et al. 2020).

Comparatively speaking, the soft attention mechanism
uses the weights trained by the neural network tomeasure the

global input features in space or channel, which can achieve
attentionon specific space areas or channels (Houet al. 2021).
At the same time, this method can also perform differential
operations in reverse computation. Therefore, it can use the
end-to-end learning method to train the attention network
directly.

In general, a key-value pair can be used to represent an
input message so that N input messages can be described as
(K , V ) = [(k1,v1), …,(ki,vi), …,(kN,vN)], where "keys" are
used to calculate the attention distributionαi and "values" are
used to calculate the aggregated information. The attention
mechanism is usually thought of as a soft addressing oper-
ation. Think of the input information as the content stored
in the memory. The elements consist of the address key and
the value. The value corresponding to each address key is
extracted from the content and then summed. The weight of
each value is first calculated using a similarity criterion, and
then the values are weighted and summed. Theweighted sum
is then applied to the values to obtain the final value, which
is the attention value.

Att((K , V ), q) = ∑N
i=1αivi

= ∑N
i=1

exp(s(ki , q))∑
j exp(s(k j , q))

vi

(3)

where s(ki , q) represents the attention score calculated based
on the dot product model, αi represents the result of the
numerical transformation of the attention score by the soft-
max function.

LSTMmodel

Long short-termmemory (LSTM)model is a variant of recur-
rent neural networks (RNN), composed of input, hidden, and
output layers (Tian et al. 2020). Based on the RNN model,
the LSTM model adds three gate structures: input gate, for-
getting gate, and output gate. However, the cell state is the
core of the LSTM model, and the cell state transmits rele-
vant information along with temporal series and updates the
state through the three gate structures. The typical structure
of the LSTM neural unit is shown in Fig. 4. The forgetting
gate selectively forgets the input of the previous node refers

σ σ σtanh
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xt
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Ct-1 Ct

ft it ot
ht
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~

Fig. 4 The basic unit of the LSTM
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to (4):

ft = σ(W f · [ht−1, xt ] + b f ) (4)

where ht−1 represents the hidden layer information of the
previous moment, xt represents the current input, σ(·) is the
sigmoid function, and W f and b f are training parameters.
The input gate selectively remembers the input at this stage,
and the result of the forgetting gate determines the cell state
update refers to (5):

⎧
⎪⎨

⎪⎩

it = σ
(
Wi · [

ht−1, xt
] + bi

)

C̃t = tanh(Wc · [
ht−1, xt

] + bc)
Ct = ft ∗ Ct−1 + it ∗ C̃t

(5)

where Ct−1 represents the cell state at the last moment, C̃t

represents the new candidate value vector, Ct represents the
current cell state, Wi , bi , Wc and bc are training parameters.

The output gate determines the output of the current state
refers to (6):

{
ot = σ

(
W0 · [

ht−1, xt
] + b0

)

ht = ot ∗ tanh(Ct )
(6)

where ot represents the operation result of the output gate,
W0 represents the weight, b0 represents the bias, tanh(·) is
the activation function, * represents the inner vector product.

Two-stage data pre-processing

In this section, data pre-processing is carried out for the prob-
lems in the real data set. The first stage is data cleaning,
and a feature selection model based on mutual information
is designed to select the key variables and reduce feature
dimensions in the second stage.

Data cleaning

Some collected data have missing values in the BF ironmak-
ing process due to the abnormal collection equipment and
the high ambient temperature. The next-minute values filling
method (Deng & Wang 2017) fills in the missing values. In
addition, considering the dimensional differences between
the BF ironmaking temperature, feed rate, coal ratio, and
other variables, the collected BF ironmaking state variables
need to be standardized (Wang et al. 2019). Therefore, the
maximum and minimum normalization method is used to
standardize the related variables refers to (7):

xi
∗ = xi − xmin

xmax − xmin
(7)

where xi and xi ∗ are the variables before and after normaliza-
tion, xmax and xmin are themaximumandminimumvariables
before normalization respectively.Theoriginal data are quan-
tized to 0 and 1 through linearization.

Feature selection

BF ironmaking is a complicated industrial process with an
intense change of material and energy. The collected BF
ironmaking state data contain different variables, including
temporal and non-temporal series-related variables, such as
temperature, feed rate, coal ratio, coke ratio, etc. In addi-
tion, there are significant linear and nonlinear relationships
between some variables, and some of the variables with
multi-location measurement, resulting in a certain degree of
redundancy (Lv et al. 2020), so it is difficult to identify the
variables related to heat load accurately. Moreover, taking all
variables as inputs causes the complexity of model training
and reduces the model prediction’s response time. It is not
conducive to the requirement of real-time monitoring of the
BF body’s state. Therefore, the feature selection method (Xu
et al. 2020) needs to be used to identify the key variables
affecting the heat load and take these critical variables as the
input of the prediction model.

Mutual information is an index to measure the degree of
interdependence between two variables (Qin et al. 2020). It
can measure the relationships between BF ironmaking pro-
cess variables and heat load. The mutual information of the
continuous random variable refers to (8) and is used to ana-
lyze the nonlinear relationship between each variable and the
heat load.

Ic(Xi ; Y ) =
∫

Y

∫

Xi

p(xi , y)log

(
p(xi , y)

p(xi )p(y)

)

dxdy (8)

where p(xi , y) represents the joint probability density func-
tion of the current variable Xi and heat load Y , while p(xi )
and p(y) represents the edge probability density function of
the current variable Xi and heat load Y respectively. The non-
linear relationships between each variable and the heat load
are obtained through mutual information (Xu et al. 2022).
Then the key variables closely related to the heat load are
sorted in reverse order.

Predictionmodel

In this section, a heat load prediction model combining
an attention-based 1DCNN with a BiLSTM network is
designed. An attention branch is added to the standard
1DCNN network to extract fine-grained features of the local
rapid change heat load. Coarse-grained features of latent
temporal sequence are extracted by BiLSTM and realize
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multi-model fusion prediction under the full connection
layer.

Attention-1DCNN-based feature extraction

In the BF ironmaking process, the heat load changes sharply.
The features of long temporal series often contain more
information due to themulti-granularity features in short sub-
series, which influence the changing trend of actual heat load.
Therefore, the soft attention mechanism is employed in the
1DCNN model, weighing all input features one by one and
focusing on specific spaces and channels to extract signifi-
cant fine-grained features of temporal series. The structure of
the 1DCNN unit based on the attention mechanism is shown
in Fig. 5, which mainly includes three parts: temporal feature
extraction, parallel module, and feature fusion.

Temporal feature extractionDifferent segmentation scales
are designed for the 1DCNN model in the original temporal
series data, and an attentionmechanism is designed to extract
the multi-granularity features of temporal series data. Each
1DCNNmodule sets the input subsequence to s.Accordingly,
in the attention mechanismmodule, the input subsequence is
set to sa. In addition, by setting sa < s, the sensory field of
the attention mechanism is made to focus on the local area,
which can better grasp the process of rapid changes in heat
load compared to the sensory field of 1DCNN. Therefore, it

Fig. 5 The structure of attention mechanism-based 1DCNN model

can accurately obtain the salient features with sharp transi-
tions. The features extracted by the 1DCNN model and the
attentional mechanism are calculated to (9) and (10).

e = σ(Wattention · sa + Battention) (9)

x = σ(W1dcnn · s + B1dcnn) (10)

where Wattention and Battention denote the weight and bias
of the attention mechanism,W1dcnn and B1dcnn represent the
weight and bias of the 1DCNN model.

ParallelmoduleTheparallelmodule refers to adding apar-
allel soft attention branch to the standard 1DCNN to extract
trend features of significant changes in heat load. The atten-
tion branch is designed with a smaller input scale than the
1DCNN to focus on the perceptual field of the input, resulting
in complete access to temporal contextual information and
learning the importance of local sequence features. The atten-
tion module reduces the influence of non-important features
in the final model by enhancing the impact of critical tempo-
ral features in the finalmodel. This effectively responds to the
model’s inability to distinguish the variability in the impor-
tance of temporal features. Therefore, more abundant short
sequence features are extracted through multi-scale informa-
tion to prevent input scale deviation of the single-scalemodel,
which increases the corresponding matching features of the
prediction model.

Feature fusion The output features of the 1DCNNmodule
and the corresponding attention mechanism module output
significance features are fused by multiplying the feature
elements one by one in the existing literature (Hyndman &
Koehler 2006; Wang et al. 2017). Precisely, the importance
of the features extracted by the 1DCNN model is measured
by parameter λ. If the output features of 1DCNN are more
critical, the corresponding attention mechanism module is
closer to 0. Conversely, the less essential the output features
of 1DCNNare, the corresponding attentionmechanismmod-
ule is closer to 1. In general, the features extracted by the
default parallel module are equally important, i.e., λ = 0.5.
Therefore, parameter λ reflects the importance of features to
identify essential features accurately. The feature fusion of
the parallel module is shown in (11).

x̃ = λe · (1 − λ)x (11)

where e andx represent the attention feature and the convo-
lution feature in the parallel module respectively.
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Fig. 6 Structure of BiLSTM unit

BiLSTM-based prediction output

After feature extraction based on the attention mechanism,
features associated with changes in heat load trends are
obtained, and this feature information is used as input param-
eters for subsequent prediction models. BiLSTM predicts
the output based on the entire temporal series, including the
LSTM network in positive and negative directions (Ribeiro
et al. 2019). The training sequences are two different LSTM
networks. Both are connected to an output layer, which pro-
vides complete past and future context information for each
point in the input sequence of the output layer. The network
weights are updated during the training process through for-
ward and backpropagation of the output neurons (Wang et al.
2018a, 2018b; Zhang et al. 2018). The structure of the BiL-
STM neural unit is shown in Fig. 6.

In the structure of the bidirectional recurrent neural net-
work, the forward hiding state and the reverse hiding state
of the temporal step are set as ht and h

′
t respectively, and

the forward hiding state and the reverse hiding state can be
calculated respectively, refers to (12):

{
ht = σ(W · xt + W · ht−1 + bh)
h′
t = σ

(
W ′ · xt + W ′ · ht+1 + b′

h

) (12)

where xt and ht−1 represent state input and hidden layer out-
put at the hidden forward state, xt and ht+1 represent current
state input and hidden layer output at the reverse hiding state,
bh and b′

h represent bias at different levels. Furthermore, con-
nect the hidden states ht and h′

t in both directions to obtain
the whole hidden state Ht , and input it to the output layer.
The output layer calculates the output yt refers to (13):

yt = tanh(Ht · W + b) (13)

where tanh(·) is the activation function, W and b are the
model parameters of the output layer.

Joint trainingmechanism

The fusion output of the 1DCNN model and attention
mechanism is taken as the input of nodes in the BiL-
STM unit. BiLSTM performs serial modeling to realize the
fused prediction of features on the long-period and short-
period sequences, and the final heat load prediction result is
obtained. The fusion strategy can achieve the coarse-grained
features by considering the long-period coarse-grained fea-
tures in temporal series and the sharp changes in short-period
fine-grained features. Algorithm 1 gives the details of the
proposed attention-based deep learning method. Firstly, the
raw data set needs to be normalized to obtain a standard data
format for model training and testing. Amutual information-
based feature selection follows this. Each variable is com-
puted concerning the heat load to measure their correlation,
and parameters with correlation values greater than 0.3 are
retained. These two steps allow the key parameters that
affect the heat load and the attention mechanism-based heat
load prediction model to be further initialized. The feature
extraction and prediction modeling are achieved through
attention mechanism-based 1DCNN and BiLSTM models.
Then, BPNN is used to compute the gradient of parameters,
and theAdam algorithm is used to update the network param-
eters.
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Fig. 7 Schematic diagram of BF and heat load data collection system

Industrial data-based experiments

In this section, the actual industry data and the comparative
ablation experiments are introduced first, and then the fea-
ture selection experiment is analyzed. Finally, the validity of
the proposedmodel is examined by comparing the prediction
results of different models through experiments. The com-
parative prediction methods include Multi-Layer Perceptron
(MLP), LSTM, and 1DCNN-BiLSTMmodels in these exper-
iments, and these are the more practical and novel models in
the existing literature.

Data description and experiment setting

The proposed model has been validated by experiments on
the No.4 BF of a large iron and steel plant in Shanghai. The
BFhas a production capacity of 4million tons per year, equiv-
alent to a pig iron output of 10,000 tons per day, with themost
significant internal volume in operation inChina. Figure 7 is a
schematic diagram of this real BF ironmaking system and its
heat load data collection system (Li et al. 2021).We collected
26 features from the No. 4 BF in the company. After sifting
and eliminating some vacant or invalid data, we finally col-
lated 14 features as shown inTable 1. The sampling collection
frequency is one hour, including six months of production
data. Table 1 lists the multi-granularity features measured
directly, including fine-grained features of the same temper-
ature type but distributed in different parts and coarse-grained
features of varyingmeasurement objects. Based on the actual
ironmaking process data, the mutual information-based fea-
ture selection model is designed, and the statistical results of

the predictionmodel under each evaluationmetric are further
analyzed. Finally, the predicted and the actual heat load in
the next three days are compared and analyzed.

The accuracy of the predictionmodel is evaluated by com-
paring the predicted heat load with the actual data. We use
the macro averaging criterion to assess the proposed pre-
diction model. They are mean absolute error (MAE), root
means square error (RMSE), mean absolute percentage error
(MAPE), and maximum absolute error (MAX Error). The
four evaluation metrics are as follows:

MAE(y, ŷ) = 1

n

n∑

i=1

|yi − ŷi | (14)

RMSE(y, ŷ) =
√
√
√
√1

n

n∑

i=1

(yi − ŷi )2 (15)

MAPE(y, ŷ) = 100%

n

n∑

i=1

| yi − ŷi
yi

| (16)

MAXError(y, ŷ) = MAX(|yi − ŷi |) (17)

where, yi represents the actual data, ŷi represents the pre-
dicted heat load.

Ablation comparative experiments

Theattention-based1DCNN-BiLSTMproposed in this paper
was compared with the current mainstream deep learn-
ing methods and temporal-series models: MLP, LSTM, and
1DCNN-BiLSTM models. Then tenfold cross-validation of
the proposed attention-based 1DCNN-BiLSTM model is
performed. The optimal case of loss function evaluation
parameters is finally selected as the final model hyperparam-
eters, as shown in Table 2. we use parameter a to equalize the
length of 1DCNN and attention sequences lengths. We have
designed three alternative values for parameter a, which are
0.25, 0.5, 0.75. Finally, the parameter tests have revealed that
the best results are achieved when a = 0.25 identifies sharp
heat load changes. Thus, the sequence length CNN _s = 24
for 1DCNN feature extraction and the sequence lengthAtten-
tion _sa = 6 for feature extraction of the attention branch.
In the BF ironmaking process, timely and effective acqui-
sition of the heat load change trend is critical for taking
preventive measures in advance and ensuring the safety of
the BF body. In this case, the fast and stable convergence of
the prediction model is vital to the application deployment
of the algorithm. Therefore, the convergence speed of the
proposed model is evaluated and compared with the MLP,
LSTM, and 1DCNN-BiLSTM models. The comparison of
loss functions in the validation set is shown in Fig. 8. It
can be seen from the figure that the MLP model without
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Table 1 Input and output
variables using for the prediction
model

Variables Minimum Mean Maximum Units

1 Temperature

Throat 467.60 499.91 532.21 [oC]

Shaft 486.21 649.36 812.51 [oC]

Belly 1487.40 1518.46 1549.51 [oC]

Bosh 1623.25 1647.79 1672.32 [oC]

Hearth 1715.21 1856.78 1998.34 [oC]

2 Feeding speed 141.03 181.97 234.39 [m3/min]

3 Pulverized coal injection 58.71 61.33 63.51 [m3/min]

4 Blast capacity 6885.13 6982.23 7061.73 [m3/h]

5 Oxygen consumption 5947.81 7636.40 7983.07 [m3/h]

6 Humidity 12.08 16.87 20.10 [g/m3]

7 Blast temperature 1211.19 1226.83 1229.77 [oC]

8 CO use efficiency 48.67 51.28 52.97 [%]

9 Focal ratio 305.93 309.91 466.88 [m3/h]

10 Coal ratio 131.68 148.96 184.35 [m3/h]

11 Fuel ratio 473.30 491.60 684.99 [m3/h]

12 Fe content 7217.97 7458.14 7517.86 [m3/h]

13 FeO content 351.14 578.91 679.69 [m3/h]

14 Total heat load 9.28259 10.1392 11.46821 [GJ/h]

Table 2 Hyperparameters setting of the attention-based 1dcnn- bilstm
model

NO Hyperparameters description Value or method

1 CNN_filters_1 112

2 CNN _filters_2 64

3 CNN _kernel_size 2

4 CNN _padding 1

5 CNN _s 24

6 Attention _sa 6

7 BiLSTM_ neurons 20

8 BiLSTM_time_steps 3

9 BiLSTM_ features 14

10 Dropout 0.2

11 Dense_ neurons 1

12 Dense_ activation linear

13 Loss_function mse

14 Optimizer adam

temporal-series data processing ability has a slow conver-
gence speed during the training process. The LSTM and
1DCNN-BiLSTM temporal-series prediction models take
more time to achieve the final stable convergence under
the validation set. However, the proposed attention-based
1DCNN-BiLSTM algorithm has a faster convergence speed
than other prediction algorithms, which meets the require-
ments of real-time online prediction.

Fig. 8 The comparison of loss functions in validation set

Feature selection results

In this section, the feature selection method is applied by
referring to the technique in existing literature (Xu et al.
2020), andmutual information selects the critical influencing
factors. Finally, these key factors are then used as inputs to
the prediction model, providing necessary reliable data for
timely and accurate grasping of the changing trend of heat
load and elevating the prediction model’s response time.
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Fig. 9 The heat map of mutual information based relationships

By calculating the nonlinear correlation between variables
throughmutual information, the heatmap of the relationships
can be obtained, as shown in Fig. 9. However, based on the
description by Xu et al., (2020), if the correlation coefficient
between the two variables is less than 0.3, between the vari-
ables is weak and is usually considered irrelevant. Therefore,
we finally select the six key variables the correlation from the
14 input variables: 3-pulverized coal injection, 4-blast capac-
ity, 5-oxygen consumption, 6-humidity, 12-Fe content, and
13-FeO content.

Metrics evaluation of different algorithms

During the process of the statistical results, each model was
run 30 times separately, then recorded and drew a box plot
to reduce the contingency of a single prediction experiment.
The results are shown in Fig. 10. It can be seen from the
plot that the MLP model performs the worst in each eval-
uation indicator. The fluctuation of the predictive effect in
each metric is the most prominent. Compared with the MLP
model, the prediction results of the LSTM model decreased
in all indicators, indicating that the model with time-series
feature processing capability is more suitable for character-
izing the trend of heat load. However, further improvement
of the LSTM model by adding the 1DCNN model led to a
decrease in the mean value of each metric of the prediction
model. Still, the magnitude of the abnormal fluctuations of
each metric was greater than that of the LSTM model.

Further analysis of each index’s box plot result values is
shown in Table 3. Although the mean value of the improved
index decreased, the maximum and minimum values of the

Fig. 10 The performance of the four prediction algorithms in different
evaluation metrics

prediction results did not decrease. Still, they increased, indi-
cating that the improved 1DCNN-BiLSTM model could not
effectively extract the characteristics of rapid changes in the
process of heat load change. Finally, the attentionmechanism
is added to the 1DCNN-BiLSTM model to extract the short-
term fluctuation characteristics of heat load in a targeted
manner. The results of each index show that this improve-
ment is effective, significantly reducing the index error, and
the fluctuation of the index is decreased considerably.

Comparison of the heat load prediction results
of different algorithms

With the selected key variables as inputs and the heat load
as outputs over the next three days, the prediction results
of the different models are shown in Fig. 11. As shown in
Fig. 11a, The prediction results of the MLPmodel were rela-
tively accurate in the first 20 h. Still, the following prediction
errors became larger, especially from the highest point at the
20th hour to the lowest point at the 40th hour. It indicates
that the MLP model has some advantages in short-term time
series prediction, and the ability to extend the prediction to a
more extended period is insufficient. In Fig. 11b, The LSTM
model outperforms the MLP model in predicting the same
situation due to its time-series feature extraction andmemory
function. Although it is similar to the actual heat load vari-
ation trend, the results for the highest and lowest points of
heat load are not accurately predicted. The analysis of the real
data collected shows that the data related to the heat load has
multi-granularity features, i.e., both coarse and fine granular-
ity features. Therefore, a 1DCNN feature extraction module
is added to the LSTMmodel to enhance the feature extraction
ability. TheLSTM is changed to aBiLSTMmodel to enhance
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Table 3 Statistical results of the MLP, LSTM, 1DCNN- BiLSTM,Attention- 1DCNN- BiLSTM Prediction model

Evaluation indicators Prediction models Min 1st Q Median 3rd Q Max Interquartile Range

MAE MLP 195.54 227.20 254.31 262.27 314.37 35.07 118.83

LSTM 184.52 200.42 215.18 221.27 242.75 20.85 58.23

1DCNN-BiLSTM 178.60 199.12 210.36 231.10 263.74 31.99 85.15

Attention-1DCNN-BiLSTM 128.73 135.14 140.26 148.11 183.61 12.97 54.88

RMSE MLP 249.37 279.92 304.85 314.43 370.57 34.51 121.20

LSTM 227.52 243.48 258.07 263.66 286.09 20.18 58.58

1DCNN-BiLSTM 216.30 237.76 248.53 270.35 302.40 32.59 86.09

Attention-1DCNN-BiLSTM 164.95 174.74 180.70 189.44 226.47 14.70 61.52

MAPE MLP 0.020 0.023 0.026 0.026 0.032 0.004 0.012

LSTM 0.019 0.020 0.022 0.022 0.025 0.002 0.006

1DCNN-BiLSTM 0.018 0.020 0.021 0.023 0.027 0.003 0.009

Attention-1DCNN-BiLSTM 0.013 0.014 0.014 0.015 0.019 0.001 0.006

MAX Error MLP 579.21 640.59 675.68 699.82 810.81 59.23 231.60

LSTM 500.61 520.67 550.10 568.96 603.84 48.29 103.23

1DCNN-BiLSTM 489.16 532.17 549.12 582.91 647.26 50.74 158.11

Attention-1DCNN-BiLSTM 397.65 421.02 442.74 470.74 517.77 49.72 120.12

Fig. 11 The comparison between the predicted values and the real
values. a MLP; b LSTM; c 1DCNN-BiLSTM; and d Attention-
1DCNN-BiLSTM

the memory of temporal features. The improved 1DCNN-
BiLSTM model does not significantly improve heat load
trend prediction compared with the original LSTM model,
as shown in Fig. 11c. The maximum and minimum values
of heat load are not accurately predicted. The reason for this
may be that the addition of new functional modules simul-
taneously increases the complexity of the model, and the
model’s ability to sense extreme cases is insufficient, result-
ing in poor model prediction. Further attempts are made

to add an attention mechanism to the improved 1DCNN-
BiLSTM model. And the model is simplified by reducing
the feature extraction and temporal prediction layers so that
the model can focus more on learning heat load trends in
extreme cases. Sure enough, the above improvements led to
a significant improvement in the prediction accuracy of the
latest model, with great precision in both the prediction of
heat load extremes and the prediction of change trends, as
shown in Fig. 11d.

Statistical analysis of the heat load prediction
results of different algorithms

Further, we perform a statistical analysis of the prediction
results of different models. The scatter plots corresponding
to the four groups of prediction models are shown in Fig. 12.
The horizontal and vertical coordinates represent the actual
and predicted heat load. The red and blue dividing lines rep-
resent the prediction error value greater than or less than
± 0.03%, respectively. When the point falls between the two
lines, the prediction result is closer to the actual heat load, and
the error is considered acceptable in the engineering appli-
cation. It can be seen from Fig. 12a that only 47.89% of
the points in the MLP model fall within the acceptable error
range, while 49.3% of the points have error values greater
than 0.03%, and only 2.82% of the points have error values
less than 0.03%. From Fig. 12b, it can be seen that more
than 87.32% of the heat load prediction errors in the LSTM
model are within the interval [− 0.03%, + 0.0.3%], which is
a great improvement compared to theMLPmodel. As shown
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Fig. 12 Scatter plots of heat loadwith differentmodelsaMLP;bLSTM;
c 1DCNN-BiLSTM; and d Attention-1DCNN-BiLSTM

in Fig. 12c, the prediction results of the 1DCNN-BiLSTM
model were further counted. It was found that 78.87% of
the heat load predictions were within the acceptable error
range, significantly lower than the LSTM model. It shows
that the high model complexity causes a decrease in pre-
diction accuracy. Finally, from Fig. 12d, the attention-based
1DCNN-BiLSTM model was obtained by simplifying the
1DCNN-BiLSTM model and adding an attention mecha-
nism. Its prediction error within the acceptable range reaches
94.37%, with higher accuracy than MLP, LSTM, and other
advanced models. The prediction models we have proposed
above as well as the traditional LSTMmodels have achieved
good prediction accuracy. Although the complexity of the
LSTM model is lower than that of our proposed model, the
convergence speed and accuracy of our proposed model are
better. However, our proposedmodel ismore effective in con-
vergence speed and accuracy. This is because the complexity
of the original data is significantly reduced through a series
of dimensionality reductions and 1DCNN feature extraction
based on the attention mechanism. Then the BILSTMmodel
can learn the intrinsic mechanism of the parameters better.
This results in better performance than the LSTM model
alone.

The SOTA comparison tests

In order to verify the superiority of the proposed method in
the paper,we further carried out state-of-the-art (SOTA) com-
parison tests. Such as Temporal ConvolutionalNetwork (Kok
et al. 2020) (TCN), and the Transformer model (Acheam-
pong et al. 2021). The Attention-1DCNN-BiLSTM model
is compared with these two typical SOTA models. The pre-
dicted output of each model is compared with the true value

Fig. 13 Error frequency histogram of heat load with different models
a the first cycle; b the second cycle; c the third cycle; and d the fourth
cycle

to obtain the error comparison result at each moment, and
the error value of each moment is counted in 24 h, the heat
load was counted for four consecutive days, and the error
at each moment is counted, as shown in Fig. 13. From the
comparison chart, it can be seen that the TCN model and
Transformermodel do not performwell. Thismaybe because
TCNmodels are generally unidirectional in structure and fail
to accurately identify sudden heat loads with backward and
forward correlations. The Transformer model is not as good
as the RNN and CNNmodels in acquiring local information,
and the top gradient tends to disappear. Therefore, the atten-
tion mechanism network model designed in this paper for
the characteristics of rapid changes in heat load can achieve
better prediction results.

Conclusion

This research proposes an attention mechanism-based deep
learning for heat load prediction in the BF ironmaking pro-
cess. The main focus of this research is to offer a systematic
framework of data-driven methods for the BF heat load pre-
diction problem. Two parts are included, a two-stage data
pre-processing and a prediction model based on an atten-
tion mechanism. In particular, in the second part, we focus
on the lagging nature of traditional methods and the unpre-
dictability of trends when the heat load changes with sharp
fluctuations. An attentionmechanism is added to ensure real-
time heat load prediction and the identification of abnormal
fluctuations. Finally, the experiment results of different pre-
diction models show that the proposed prediction model can
accurately grasp the rapid change trend of heat load, and the
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accuracy of the prediction model achieves 94.37%, which is
higher than that of the comparison prediction models. How-
ever, there are still some deficiencies in this research. The
feature selection section provides a nonlinear correlational
relationship feature selection method based on mutual infor-
mation, whose thresholds are determined mainly based on
empirical values. Next, we also consider adaptive thresh-
old determinationmethods and correlational coupling effects
between variables. Besides, the impact of model complexity
on prediction performance is evident from the experimen-
tal part. In future research works, we will investigate other
models and work on the simplification methods of complex
models to achieve high prediction accuracy of simplemodels.
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