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Abstract
Wire Arc Additive Manufacturing is a Direct Energy Deposition additive technology that uses the principle of wire welding to
deposit layers ofmaterial to create a finished component. This technology is finding an increasing interest in themanufacturing
industry, especially thanks the lowcost and the possibility to build large-scale components.Nowadays, the boosting to transition
into smart manufacturing systems and the increasingly computational resources allowed the development of intelligent
applications for smart production systems for both in situ inspection and process parameter control. This paper aims to
provide an review of applications developed using artificial intelligence techniques for Wire Arc Additive Manufacturing,
with particular focus on defect detection software modules, feedback generation for control system and innovative control
strategies as reinforcement learning to overcome problems related to model non-linearity and uncertainties.

Keywords Machine learning · Wire arc additive manufacturing · Intelligent manufacturing · Intelligent control · Deep
learning

Introduction

Wire Arc Additive Manufacturing (WAAM) is a largely
promising welding-based additive manufacturing process
due to its simplicity and high efficiency ofmetal transfer, near
to 90% (Dupont & Marder, 1995), but especially for its low
cost and possibility to build large size components (Williams,
2016) with a high deposition rate. A WAAM workstation
Fig. 1 consists of amotion platform, awelding equipment and
of a Weld Monitoring System (WMS). The WMS comprises
a data acquisition unit, processing unit and other relevant
associated sensors that can be used to acquire various weld-
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ing process parameters like voltage, current, weld pool image
etc, useful for various applications such as online quality
inspection, closed-loop control and system identification of
the process.

To identify the most discussed topic about this technology
we conducted a brief bibliometric analysis. Using the query
“ WAAM OR (Wire AND Arc AND Additive AND Manu-
facturing) ” to the Scopus website and limiting the research
to document writing in the english language, 1920 docu-
ments onWAAM can be founded. As reported in Fig. 2, even
more articles are published on this topic starting from 2010,
with an annual growth rate of 60% and 5337 total citations.
Moreover, in the last 4 years (2019–2022), 1417 articles were
produced so 73 % of the total production.

Furthermore, as reported in the histograms in Figs. 3 and 4
in which the top 6 keywords are obtained for the period from
2010 to 2022 and from 2020 to 2022 as results of clustering
activity, during the period between 2020 and 2022, the most
discussed topic is changed from mechanical proprieties and
post-processing, process parameters, defects, materials and
welding process to artificial intelligence, welding process,
process monitoring, defect monitoring and system control,
so for this reason even more attention has to be made in the
usage of artificial intelligence techniques.
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Fig. 1 Components for a WAAM workstation. A motion platform allows the welding torch motion on the path, and a welding equipment and
monitoring system allow for processing the data collected from the process and varying process parameters

Fig. 2 Trend of the published
articles from 2010 to 2022

Finally, using the following query (WAAM OR (wire AND
arc AND additive AND manufacturing) OR (arc AND weld-
ing) OR GTAW OR GMAW) AND (control OR monitoring
OR model) AND ((machine AND learning) OR (reinforce-
ment AND learning) OR (artificial AND intelligence) OR
(neural AND network)) and considering the articles produced

from 2012 to 2022, 424 documents are obtained, and the tree
of most used keywords, reported in Fig. 5, shown that the
principal used technique is the deep learning and the most
applications are related to bead geometry (30), defects mon-
itoring and quality control (19–28) and process control and
optimisation (28–19).
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Fig. 3 Most frequent keywords
used for the articles produced
from 2010 to 2022

Fig. 4 Most frequent keywords
used for the articles produced
from 2020 to 2022

Additional information about the conducted bibliometric
analysis is reported in the appendix of this work A. One of
the most discussed topics is related to defect detection since
it is particularly beneficial during anAdditiveManufacturing
process because the presence of a defect in the previous layers
affects the integrity of the subsequent ones. The on-line in
situ defect detection softwaremodules associated withWMS
have a crucial role in the newproduction paradigmof industry
4.0, since they overcome some of the challenges associated
to the currently used Non-destructive testing (NDT), e.g. an
ultrasonic test reported in Fig. 6, which requires experienced
observers and is time-consuming.

Since WAAM is a technological process based on weld-
ing, it is characterized by the same defects, such as porosity,
cracks, inclusions, sticking, and burn-through as reported in

Fig. 7, which depend on the choice of process parameters and
especially their variation during processing. Mathers (2002)

Furthermore, WAAM is also subjected to typical addi-
tive process defects such as porosity, delamination, residual
stresses, and deformation, which can be reduced by choosing
and controlling the interpass temperature (Ma et al., 2015),
which act as pre-heating of the next layer or other post-
processing techniques, as reported in a review article of Wu
(2018). For what concerns defect genesis, it is possible asses
that the supplied heat has a crucial role. By observing the
Eq.1, which describes the amount of heat source supplied
during the process, it is possible to identify the parameters
that are connected to heat generation, so with the presence
of defects in the components, such as the arc voltage drop,
the arc current and the welding speed.
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Fig. 5 Most used keywords for the articles from 2012 to 2022 in which are reported applications of artificial intelligence

Fig. 6 A typical ultrasonic test:
an ultrasound transducer
connected to a diagnostic
machine is passed over the
object being inspected

Q = Varc Iarc

W S
(1)

As described by Doodman Tipi and Pariz (2015), the arc
current (Iarc) depends on the arc length (la), which in turn
depends on Contact To Workpiece Distance (CTWD) and
stick-out (ls), as highlighted by the geometrical representa-
tion in Fig. 8. The stick-out (ls) depends on the Wire Feed
Speed (W F S) and the wire material and diameter (2rd).
Finally, thewhole presented parameters are also connected to
the arc drop voltage (Varc). This means that the controllable
variables of a WAAM process are:

• the rotational speed of the feeder unit, which leads to
Wire Feed Speed (W F S) through a gearbox

• the voltage of the welding machine (V )

• the height of the torch from components, namely Contact
To Workpiece Distance (CT W D)

• the welding speed (W S), which together with CTWD is
a control parameter associated with the motion platform

It is important to notice that the controllable parameters are
related to heat generation and sowith the presence of defects,
so the correct selection and control of process parameters is
crucial from a quality point of view.
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Fig. 7 Typical defects in a Gas
Metal Arc Welding process
(Madhvacharyula et al., 2022)

Fig. 8 Geometrical features that governing the Arc phenomena

Moreover, considering the work of Pires et al. (2006),
also the gas mix and flowrate have an impact also on the
final surface, as reported in Fig. 9, so it is another important
parameter to monitoring and control during the process.

Finally, it is demonstrated that also the interpass tem-
perature has a significant impact on the final quality of the
components, in terms of residual stress or final distortionWu
et al. (2006) and layer geometry Kozamernik et al. (2020).
For this reason, aWMSneed to be able tomonitor all of these
process parameters, using different sensors, with the aim of
speed-up the inspection phase and, simultaneously, creating
a feedback loop for the control system. Even if a relation-
ship between process parameters and defects exists, finding
a reliable correlation between them is not a trivial task, so
different advanced data-driven techniques can be used and
merged together to reach the goal, such as deep neural net-
works. Furthermore, these advanced techniques can be used

also with the aim to obtain data-driven models for Wire Arc
AdditiveManufacturing, with the twofold objective to create
(I) a model useful for simulations and control design (II) and
soft-sensor that help to estimate variables and create feedback
loop bypassing the necessity of the presence of additional
sensors and software modules to elaborate the information
making systems cheaper and smarter. These are themain rea-
sons why several researchers have become involved in bead
geometry modelling, process optimisation and optimal con-
trol as reported by the bibliometric analysis. Following the
idea proposed By Xu (2018), there are two types of parame-
ters to monitor:

• Process parameters, that depends directly by welding
machine and motion platform, such as arc current, arc
voltage, shielding gas flow rate, welding speed and wire
feed speed

• Part/environmental parameters, which are the parameters
associated to the part condition such as heat accumu-
lation, bead geometry, defects, which are essentially
consequences of process parameters and path planned.

So a good WMS has to monitor both process and parts
parameters to estimate the final quality and to allow the
closed-loop control of all the important features of the pro-
cess. From a control perspective, the Wire Arc Additive
Manufacturing process, like welding, suffers from many dif-
ficult problems related to (i) its non-linear (Bingu & Cook,
1999) and (ii) stochastic behaviour, since not all physical
relationships are known, e.g. the effect of gasses on layer
geometry, and (iii) the necessity to have a controller able
to manage constraints on manipulate and state variables and
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Fig. 9 Effects of gases on bead geometry. Argon (a); argon+oxygen (b); CO2 (c); argon+CO2 (d); helium (e); argon+helium (f) (Pires et al., 2006)

(iv) their multivariable interactions (Xiong et al., 2014). In
practice, theWAAMsystem is a non-linear stochasticMIMO
system subjected to constraints on control variables and on
the state value, that are connected to defects, so even if tra-
ditional control design tools are still used, thanks to their
stability and performance proofs, more advanced techniques
had been additionally developed to reach higher perfor-
mance. In particular, nowadays even more attention is given
to data-driven controlmethods based on artificial intelligence
and machine learning. In this work, after a brief introduction
to deep learning techniques, a review of applications of arti-
ficial intelligence in monitor and control Wire Arc Additive
Manufacturing is presented. SinceWAAM is based on single
pass arc welding, they have many similarities in monitoring
and control methods, so some relevant wire welding applica-
tions will also be presented, as they can be easily extended to
WAAM.The paper is outlined as follows: since themost used
data-driven technique is deep learning, in Sect. Deep learn-
ing techniques a brief recap of these techniques is presented.
In Sect. Applications in Wire Arc Additive Manufacturing
monitoring the applications in process monitoring are pre-
sented for both defect monitoring and process parameters
monitoring. Finally, in Sect. Applications in Wire Arc Addi-
tiveManufacturing control applications in process parameter
control and optimisation are presented.

Deep learning techniques

In computer science, the researcher defines AI as the study
of intelligent agents, devices that perceive environments and
can take actions to reach goals. Bini (2018)Machine learning
is a subset of AI, and the typical workflow consists of col-
lecting data, extracting features from this data and labelling
data. Once the prior knowledge is ready, an optimization
algorithm [(Nesterov, 1983; Hinton et al., 2012; Kingma &
Ba, 2014)]might be used to allowmachines to learn from this
“experience” composed of correlation between features and
labels. In this framework, the goodness of “ground-truth” and
extracted features generated by computer scientists signifi-
cantly impact the final results. Inspired by biology, computer
scientists, mainly thanks to increasingly powerful computer
chips and microprocessors, created statistical models called
Artificial Neural Networks (ANNs) (Hopfield, 1988) that can

process data inputs as the human brain does. These models
can extract essential features directly from data in a self-way
manner, allowing scientists to focus on the raw data quality
and hyper-parameters tuning.

Artificial neural network

The core idea of a neural network (Fig. 10) is to find the
parameters θ of a function f that minimize a cost, once a
non linear combination of the inputs are made y = fθ (x).
The success of the method came from a universal approx-
imation theorem due to Cybenko (1989) and Hornik et al.
(1989) and from backpropagation (LeCun et al., 1988). The
basic structure of a neural network is the artificial neuron, a
function f of the inputs x = (x1...xn) weighted by a vector
of connection weights w = (w j,1...w j,n) and completed by
a bias b = (b1...b j ) and non linear function called activation
function �:

y j = �(w jn xn + b j ) (2)

The activation function � and the initialization algorithm
of the weights at the beginning of training are crucial ingre-
dients for neural networks (Pedamonti, 2018) and several
functions (Clevert et al., 2015) and initialization algorithms
(Glorot & Bengio, 2010) might be used.

Recurrent Neural Network

RecurrentNeuralNetworks (Fig. 11) are used to infer sequen-
tial data such as text or time series, and for this purpose, a
feedback loop is created into the networks’ inputs.

Elman (1990) and Jordan (1990) proposed this model for
the first time in 90’s and the difference was the feedback, the
hidden layer or the output. Respect to Eq. 2 another gate is
added to compute the output at time t:

yt
j = �(w jn x t

n + b j + wr
jn yt−1

j ) (3)

The matrix wr is composed by weights at layer k for the
memory of previous hidden/output layer. Even if RNN are
very powerful dynamic models used to menage sequential
data they falls to learn long time dependancies (Bengio et
al., 1994) due to the vanishing gradient problem (Hochreiter
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Fig. 10 A neuron is a
computational agent that gives
in output a linear combination of
the inputs passed in a non-linear
activation function

Fig. 11 Unrolled rappresetation
of a Recurrent Neural Network.
The hidden layer output at time t
is given as additional input at
the time t+1

et al., 2001), which has led to the development of other archi-
tectures as LongShort-TermMemory (LSTM) (Hochreiter&
Schmidhuber, 1997) or Gated Rrecurrent Unit (GRU) (Cho
et al., 2014) (Fig. 13).

Thanks to the presence of weighted input, output and for-
get gates an LSTM could prevent the gradient vanishing,
allowing to store long term memory without losing training
performance. The Gated Recurrent Unit (GRU) is similar
to LSTM but simpler to compute and implement. Based on
LSTM the GRU combines the forget gate and input gate
into the update gate and merges the hidden state with cell
state, simplifying the architecture by reducing the number of
weights, which corresponds to faster training, without losing
performance.

Convolutional Neural Network

For some data like images, in which spatial information is
relevant, multilayer perceptrons are not helpful since they are
defined for vectors as input data; The innovations introduced
by LeCun with the Convolutional Neural Networks (CNN)
(LeCun & Bengio, 1995) were helpful since the develop-
ment of computer vision applications passed by the “manual”
extraction of features that required a lot of image processing
experience to a self-learning features capability of the agent.
The CNN is composed of several layers, such as the Con-
volutional and Pooling layers, that stacked together (LeCun
et al., 1998) allow the network to extract features during the
learning process, and a fully connected layers, as reported
in Fig. 14 that solves the defined task using the extracted

features. Over the years, more complex and accurate archi-
tectures were proposed, and new hints to build a performance
CNN were discovered. [(Krizhevsky et al., 2017; Zeiler &
Fergus, 2014; Simonyan&Zisserman, 2014; Szegedy, 2015;
He et al., 2016; Huang et al., 2017)]

A comprehensive benchmark of different architectures is
shown in the ball chart in Fig. 15. Bianco et al. (2018) The
presented ball chart reports the accuracy with respect to com-
putational complexity on the ImageNet-1k validation set for
different convolutional neural network architectures, each
one described by a ball. The ball size corresponds to the
model complexity, described by the number of parameters.

Deep reinforcement learning

Reinforcement learning (RL) is a subfield of machine learn-
ing used to solve sequential decision-making problems, such
as optimal control problems, which nowadays is ever more
used in different fields of sciences such as robotics (Poly-
doros & Nalpantidis, 2017) and finance (Mattera & Mattera,
2023). The main idea, in Fig. 16, is that an intelligent agent
interacts with an environment and receives states and scores
(or rewards) from it, depending on the goals. Subsequently,
the agent acts on the environment to minimize/maximize a
loss/reward.

The optimal control law, a function between environment
states and control output, is called policy π , and it is the out-
put of RL. Unlike other optimal control frameworks such as
LQR or MPC, RL approach does not care about the dynam-
ics of the system. In order to to find an optimal policy RL

123



474 Journal of Intelligent Manufacturing (2024) 35:467–497

uses the Bellman equation and the Dynamic Programming
(DP) (Bellman, 1954) technique if the system under control
has Markovian properties or the Monte Carlo methods when
the transition function of the system is unknown (Sutton &
Barto, 2018).

The value function V can be defined as a function able to
provide an output in response to an state input. This output
comprises a scalar that explains how good the state is.We can
also define the Q function as the same of the value function
but for the tuple action-state. We can assert that the aim of
RL is to find the correlation between the current state and the
action to take. In that sense, the optimal policy is obtained
using a straightforward method, taking the action which is
associated with the higher Q value.

In addition to algorithms like Q-learning (Watkins, 1992),
temporal-difference error (TDE)-based algorithms such as
SARSA (Rummery & Niranjan, 1994) have been proposed
to update the V and Q values. These algorithms can be
used only for discrete space systems, and the optimiza-
tion problem becomes complicated and time-consuming to
solve when the number of states or action increase. In order
to overcome these limitations, neural networks are used to
approximate the V and Q tables, in Fig. 17 thanks to their
generalization capability. Algorithms like Deep Q Networks
(Mnih, 2015) or Double Deep Q Networks (Van Hasselt
et al., 2016) are used to estimate Q tables, using neural
networks with a softmax output layer and argmax policy
based on Q-learning ideas. Meanwhile gradient-based tech-
niques such as REINFORCE (Williams, 1992) have been
developed to estimate the optimal policy directly using opti-
mization algorithms as stochastic gradient ascent. Tamari
(2016) Nowadays even more complicated algorithms are
developed with the aim to manage system with continuous
space (Grondman et al., 2012) as REINFORCEwith baseline
(Fig. 18) (O’Donoghue et al., 2016), advantage actor-critic
(A2C), Asynchronous Actor-Critic A3C (Mnih et al., 2016)
or that have faster-convergency proprieties likesTrustRegion
Policy Optimization (TRPO) (Schulman et al., 2015), Deep
Deterministic Policy Gradient (DDPG) (Hou et al., 2017),
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and Soft Actor-Critic (SAC) (Haarnoja et al., 2018). In con-
clusion, even if the direct interaction with the system led to
the use of such methods to solve complex real-world prob-
lems, since they give a general-purpose method to explore a
complex environment and learn the fundamental principles
of the world through observation and action, (Arulkumaran
et al., 2017) the major problem is guaranteeing the stability
of the trained model and verifying the stability of the system
under control (Recht, 2019).

Applications inWire Arc Additive
Manufacturingmonitoring

Nowadays, driven by the increasing demands for improved
quality, productivity and flexibility, advanced methods to
online inspect components’ quality have become crucial tar-
gets for the development of modern production systems.
For this purpose, different sensors are applied to observe
and estimate process parameters with the aim to generate
a feedback loop for the control system and monitoring the
presence of defects. Generally, robotic systems are equipped
with encoders that provide information about the joint’s pose
and velocity, while power sources could provide informa-
tion regarding wire feed speed, current and voltage. External
sensors could be integrated into aWAAMsystemwith appro-
priate processing modules to provide additional information
about the process, such as geometry information, using opti-
cal sensors such as profilometers and camera, temperature
information, using thermal camera or pyrometer, or informa-
tion regarding metal transfer mode and presence of defects
using acoustic sensors. In the following section, AI applica-
tions in the development ofmonitoring systems are presented
for arc current and voltage signals (I), acoustic signals (II),
optical signals (III) and thermal signals (IV). Furthermore,
each section is divided into defect and process monitoring
applications.

Arc current and voltage signals

Defect monitoring

The arc current and voltage signals recorded during welding
operation are reliable indicators of arc stability and help to
identify defects in the weld bead or the deposited layers for
WAAM. As mentioned above, typical WAAM defects are
cracks, porosity and lack of penetration; these defects are
associated with non-correct process parameters or specific
heat. The specific heat during an arc process is 1:

Q = Varc Iarc

W S

Observing the formula 1, it is clear that arc current and volt-
age greatly impact defect presence. In general, if the specific
heat is too low due to low current or high welding speed, a
lack of penetration with the previous layer occurs, while high
values of specific heat, associated with a low welding speed,
may lead to the presence of cracks that lead to themechanical
properties of final components.

Several studies have used statistical tools to evaluate
defects, principally porosity or lack of penetration, as pro-
posed in [Wei et al. (2001), Johnson et al. (1991), Sumesh
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Fig. 12 Unrolled rappresetation
of a LSTM network

Fig. 13 Comparison between
LSTM and GRU architectures.
The GRU architecture is
computationally faster than
LSTM, thanks to the presence of
few gates

Fig. 14 Naive convolutional stack composed of convolutional and pooling layers. The final layer of a convolutional stack is flattened and processed
by feedforward networks

(2017), Wu et al. (2006)], once features were extracted from
signals (Figs. 10, 11, 12, 13, 14, 16, 17, 18, 19).

For example (Adolfsson et al., 1999) used features such as
arc and short-circuit times, short-circuit count, short-circuit
peak current, average welding current and arc voltage wave-
forms in a short arc welding process and the Sequential
Probability Ratio Test (SPRT) as defect detection alghortim.
Fewworks have evaluated the possibility of using neural net-
works to solve the defect detection problem based on signals
from the welding machine. Shin et al. (2020) used six fea-
tures extracted each 0.1 s of a short circuit welding as input of
a fully connected network once CTWD,WFS,welding speed
and shielding gas mix were fixed. These features were volt-
age standard deviation (std), voltage std during arc period,

average arc time, number of short-circuiting periods, std of
short-circuit time and std of instantaneous short-circuit volt-
age. During experiments, arc voltage was measured with a
sampling rate of 10kHz for 20 s. In this way, an accuracy of
89.5% was reached. Nele et al. (2022) (Fig. 19) used four
features to train a deep neural network that were the errors of
instantaneous values of current, voltage and welding speed
from those defined in the Welding Procedure Specification
(WPS) (max and min current, mean voltage and mean weld-
ing speed) with an accuracy of 94,7%.

Li (2022) proposed a Support Vector Machine incremen-
tal learning approach to identify defects during the WAAM
process after statistical features extraction. This method can
identify defects with an accuracy of 90% using a small
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Fig. 15 Accuracy vs. computational complexity of different CNN
architectures

Fig. 16 Deep reinforcement learning for Markovian Decision Pro-
cesses (MDPs). An agent acts with the environment, receiving rewards
and states from it. The observations are used for taking the next action
and the reward for the learning task

amount of data initially; the system is also reinforced over
time as more data enters the system and exhibits the ability
to find new defects during the learning process (Figs. 24, 25,
31, 32, 33, 35, 36).

Process monitoring

Another significant usage of process parameter signals is
associated with the possibility of estimating the bead geome-
try. Xiong et al. (2014) used a second-order regressionmodel
and a neural network, as reported in Fig. 20, to predict bead
width and height based on process parameters signals such as
WFS, welding speed, arc voltage and CTWD, since arc cur-
rent depends on these factors with an RMSE% less than 2 %
forANNand 2,6% for second-order regression. They showed
that neural networks gave better results thanks to their gen-
eralization capability. Sivasakthivel and Sudhakaran (2018)

studied also the effect of shielding gas and torch angle on
bead formation.

Kumar et al. (2016) used a neural network to predict bead
convexity index and penetration with a mean error of 1.63
% for a CMT welding using the average current, voltage and
welding speed. They found that the geometry of the layers
depends principally on thewire feed speed andwelding speed
ratio. In particular, the layer width and height increased with
an increase in wire feed speed, and the bead width decreased
for higher welding speed. Chen et al. (2000) developed a neu-
ral network to estimate the backside geometry of the weld
pool during a GTAW process using process parameters such
as arc current and voltage, welding speed and CTWD at
sample time t and the same parameters acquired with two
times delay. Yin et al. (2019) used the current and previous
CMTcurrent to estimate theweldpenetration, beadwidth and
weld height or reinforcement for a single pass CMT welding
through a simple neural network with an accuracy of 97%,
and the used scheme is shown in Fig. 21.

Jin et al. (2020) converted the current signal in a scalogram
by a Morlet wavelet transform and processed it in a CNN to
estimate the back-bead model with an accuracy of 93,5%.
According to the literature, this approach might also be used
to estimate the welding penetration.

Acoustic signal

Defect monitoring

Monitoring the audible sound emitted by thewelding process
is often based on the experience of the welders since it gives
good information regarding the transfer mode (Arata et al.,
1979) or pool behaviour in general. The new computational
capabilities allowed researchers to investigate the possibil-
ity of elaborating these signals with innovative deep learning
techniques. As shown by Horvat et al. (2011) different sound
sources appear during welding as a sound impulse, when
a short arc occurs, or as a turbulent noise during spray arc
mode. As demonstrated in Erdmann-Jesnitzer et al. (1967)
the sound is related to the arc length and current. In particu-
lar, the sound pressure increases according to current and arc
length, which enables the use of the acoustic signal to find
defects during the process as current and voltage measure-
ments. In particular, since the sound intensity can directly
reflect the energy variation of the process, and since most
defects are related to energy variation, acoustic signal anal-
ysis is widely used in features and defect recognition. Chen
et al. (2010), Pal et al. (2010) showed that some features of
the audio signal (e.g. kurtosis) could be used to detect burn-
through during welding, as reported in Fig. 22. Other authors
used audio signals to estimate defects during welding; Yusof
et al. (2017) used an Hilbert Huang transform and the energy
information to detect the presence of defects.
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Fig. 17 An example of Q-table in which there are 25 states and 4 actions

Fig. 18 Actor-Critic agent scheme. A critic network aims to approxi-
mate the V or Q value, receiving in input the state or the state-action
pair, while the actor approximate the policy

Process monitoring

Audio signals can be used also to predict the process
behaviour, such as stability and level of penetration. Roca
et al. (2009) developed an artificial neural network that pre-
dicts the stability of GMAW process based on statistical and
temporal features extracted by the acoustic emission (AE)
signal. The features used in this work were the average of
the peaks amplitudes in the instant of short circuit, the stan-
dard deviations of these peaks, the short circuit frequency,
the time between peaks and its std, the sound pressure level
in dB and RMS value of the acquired signal. Similarly, Per-
nambuco et al. (2019) used an artificial neural network with
three hidden layers to classify transfer mode with 84% accu-
racy, which is related to process stability. Lv et al. (2017)
demonstrated that the acoustic signal is also related to the

penetration state, as reported in Fig. 23, so they extracted 39
features from the audio signal and train a neural network to
classify the state of penetration in 3 different states. Subse-
quently, they developed a controller for the penetration level.
In particular, they increase the heat input to achievemore pen-
etration, otherwise, they reduced it, increasing or decreasing
the arc current of a pre-defined value, but no intelligent con-
trol system is used in this work.

Rohe et al. (2021) (Fig. 24) used a CNN to evaluate
the deviation of the shielding gas from the ones defined in
the Welding Procedure Specification using arc sound. Since
audio is distance-dependent, they mounted the microphone
parallel to the welding torch with a distance of 380mm
from the arc. Starting from a gas flow rate of 15L/min they
decreased by steps of 1.5L/min until no shielding gas was
used. Once the signal was filtered with a passband filter
500-20kHz, they used an STFT. The spectrogram, after a
normalization, passed in a CNN, reaching an accuracy of
94%. They showed that a flow rate below 70% of reference
also produces unacceptable pores in the weld, which makes
this method suitable as a defect detection module.

Optical signal

Process monitoring

As presented above, it is possible to estimate geometrical
parameters of the weld pool with secondary sensors, such as
current sensors or encoders, and artificial intelligence tools
that create soft-sensors. However, their use increases mea-
surement uncertainty,making developing truly robust control
systems challenging. Furthermore, as mentioned above, a
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Fig. 19 Network architecture and software module proposed in Nele et al. (2022)

Fig. 20 Soft sensor to measure bead geometry used in Xiong et al.
(2014)

trusty acquisition of the pool geometry is mandatory to
develop supervised learning algorithms. For these reasons,
optical sensors are used to create direct feedback to the con-
trol system or to create labels for AI algorithms that allow
the creation of soft sensors. Due to the intense light noise

induced by the arc, high-speed laser sensors or cameras with
appropriate 660 or 850 nm band-filters have to be used.
Pinto-Lopera et al. (2016) used cameras to compute the pool
geometry in real-time through computer vision algorithms.
In other examples, Xia (2020) extracted geometrical infor-
mation from the welding camera by using computer vision
techniques as Canny algorithm, as reported in Fig. 25.

Xiong and Zhang (2013) used classical computer vision
techniques such as Gaussian filter, Sobel operator andHough
transformation to extract the characteristic points of the bead
geometry to compute beadwidth. Since the bead height is not
always equal to the programmed distance during the process,
an error of layer height accumulates rapidly and defects occur
due to changes in stick out (or CTWD) and consequently to
the arc current. For this reason, another camera is used to
estimate the CTWD, which helps better estimate the bead
width. The information coming from this processing mod-
ule might be used for a closed-loop controller. Chen et al.
(2000) used a vision system to extract geometrical informa-
tion of a weld pool from images to train a neural network
that estimates the geometrical parameters of the pool based

Fig. 21 Using of current signal
to predict bead geometry in Yin
et al. (2019)
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Fig. 22 Welding defect
monitoring with sound kurtosis
(Pal et al., 2010)

on time-delayed process parameters, avoiding inserting a
camera and a heavier processing algorithm in the software
module. The same authors in Chen et al. (2003) designed a
neuron self-learning Proportional-Summational-Differential
(PSD) controller that adaptively changes PSD gains by inter-
acting with the system, using this soft-sensor-like feedback
signal. Optical signals might also be used to detect defects
during the process. Chen et al. (2021), used anActive appear-
ance model to extract information about the geometrical
aspect of the weld pool and a random forest algorithm to esti-
mate the penetration level using the extracted visual features.
Not only CCD cameras are used with artificial intelligence
techniques to measure or estimate the the geometrical aspect
of the deposited bead. Xia (2022) used a profilometer tomea-
sure the surface roughness of the deposited layers, as reported
in Fig. 26, varying the overlap ratio and the ratio between the
welding speed and the wire feed. They compared the per-
formance of different machine-learning algorithms, such as
Extreme learningmachine (ELM), Support vector regression

(SVR) and Adaptive neuro-fuzzy inference system (ANFIS)
in which parameters are optimised using Genetic algorithm
(GA) or Particle swarm optimisation (PSO). They demon-
strated that, among developed models, GA–ANFIS achieved
the highest prediction performance with an RMSE of 0.069.

Wang (2020) discovered that the image of the molten pool
in the next framewould be affected by the previous one due to
heat accumulation, which suggests that a correlation between
frames exists. With this assumption, they used a Lotter et al.
(2016) to predict themolten pool geometry after 140ms in the
long term; this allowed to improve the control margin since
quick solidification dynamics introduced some uncertainties
in the pool geometry control.

Defect monitoring

In addition to defects internal to the material, such as poros-
ity or sticking of the different layers, important defects are
also those observable externally such as the humping defect,
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Fig. 23 Sound signal of different penetration states reported by Lv et al. (2017)

Fig. 24 CNN trained by Rohe et al. (2021) to predict from sound spectrogram the deviation of shielding gas from once defined in the WPS

Fig. 25 Computer vision algorithm toe xtract bead width during WAAM proposed in Xia (2020)

so also optical sensors can be used to monitor the presence
of defects. Cho et al. (2022) used CNN for anomaly detec-
tion tasks with respect to a regular bead. In particular, they
compared the results of Net169, ResNet50V2, InceptionRes-
NetV2, andMobileNetV2 and discovered that MobileNetV2
gives the best results in computational time (33 ms) and sim-
ilar results in accuracy (95%). Also, Lee et al. (2021) used
transfer learning with a VGG16 CNN architecture to develop
a defect detection system with high accuracy once HDR
images of abnormal humping and regular beads were col-
lected. Zhang et al. (2019) used 11 layers-CNN to estimate
the lack of penetration defects during GTAW once images
from different angles are acquired, and data augmentation
with rotation and additional noisewasmadewith an accuracy

of 99%. Pan et al. (2020) used a transfer learning algorithm
that modified the structure of the existingMobileNet to mon-
itor welding defects in a small dataset. Xia et al. compared
the results in accuracy for defects classification for WAAM
process (Xia et al., 2022) of different CNN architectures and
discovered that ResNet gave the best results with an accuracy
of 97.62% in classification of humping, spatter and regu-
lar process. Similar results are reached in Xia et al. (2020),
where some images that composed the dataset are reported
in Fig. 27. Nomura et al. (2021) used a CNN to solve a classi-
fication problem to predict a burn-through defect and a CNN
with a final regression layer to estimate the penetration depth
from images acquired every 0.1 s with a band-pass filter of
980 nm.
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Fig. 26 Schematic diagram to
quantify average surface
roughness proposed by Xia
(2022)

Fig. 27 Dataset used in Xia et al. (2020) to train a CNN for quality inspection purpose
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Fig. 28 Methodology in Penttilä et al. (2019) for intelligent process parameters variation

Fig. 29 ANN proposed by Yu et
al. (2021) for penetration state
monitoring from features
extracted by thermal camera

Fig. 30 Illustration of single
bead geometry and schematic
diagram of the multilayer neural
network proposed by Wang
(2020). The input of the neural
networks are the measured
interpass temperature, the wire
feed speed and welding speed
(TS) used during deposition
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Fig. 31 Evolution of the shape of the weld pool from the elliptic (flawless) to the drop type (start of the formation of humping) reported by Alfaro
et al. (2015)

Fig. 32 Architecture of ANN
for optimal reference generation
and Fuzzy controller developed
in Cruz et al. (2015)

Fig. 33 ARX model response of system in Xia (2020)

123



484 Journal of Intelligent Manufacturing (2024) 35:467–497

Fig. 34 Illustration of the ML framework for Adaptive Welding Speed Adjustment, developed in Kershaw et al. (2021)

Fig. 35 Results of MPC controller proposed by Xia (2020) at changing in references (1-2) and disturbances (3)

Li (2022) explored the possibility of usingYOLOv3 (Red-
mon & Farhadi, 2018) architecture with modified anchors
to develop a software module for item location detection
and defect detection. Although the results regarding com-
ponent location are excellent (100%), the same is not valid
for defect detection accuracy (53%). However, the usage of
optical vision systems is not limited to system identification
and defect detection. Penttilä et al. (2019) designed a vision
systemwith an intelligent decision-making softwaremodule,

reported in Fig. 28, composed of a neural network to develop
an adaptive artificial intelligence (AI)-based gas metal arc
welding (GMAW) parameter control system. The machine
vision system uses a laser sensor to scan the upcoming seam,
so welding parameters are optimized according to the trained
neural network.
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Fig. 36 Closed loop
performance of actor-critic
controller proposed by Jin et al.
(2019)

Thermal signal

Process monitoring

Wire Arc Additive Manufacturing is a very complex ther-
mal process with different and quick thermal exchanges. In
analogy to welding processes, the thermal history is a crucial
parameter that influences the mechanical properties due to
its strong correlation with microstructures. Wu et al. (2019)
Since the temperature is a significant parameter to monitor,
infrared thermography is widely used since it provides fast
responses, broad detection ranges and non-contact in weld-
ing and WAAM applications. As such, thermal cameras or
pyrometers (Almeida&Williams, 2010) are currently used in
WMS. It has been recently demonstrated that there is a rela-
tionship between temperature and weld penetration (Chen
& Chin, 1990). Furthermore, thermography is also used to

estimate this parameter and the pool geometry (Menaka et
al., 2005) thanks to the acquisition of images, and given the
complexity of the problem, artificial intelligence techniques
might be used. Chokkalingham et al. (2012) used a ther-
mal camera to extract eight features from the pool geometry
such as peak temperature, the mean and standard deviation
of the Gaussian temperature profile, thermal area, length and
width of theweld pool, full-width halfmaximumof theGaus-
sian temperature curve and Bead width computed from the
first derivative curve of the Gaussian temperature curve and
an ANN to estimate the depth of penetration in a GTAW
process. Vishnuvaradhan et al. (2013) used two different
ANFISmodels to predict beadwidth and depth of penetration
with better results than two MLP networks, using a Cellu-
lar Automata algorithm to manipulate the thermal image and
extracting from processed images the best features. Ghanty
(2008) showed that a Radius Based Function Network (RBF)
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performs better in estimating the bead width and the depth
of penetration compared to a Multi-Layer Perceptron net-
work using features extracted from a thermal camera during
a GTAW process. Yu et al. (2021) extracted features such as
the first moment, second moment and Hu invariant moments
from thermal images ROI for a CMTwelding process. These
features were used in an ANN to classify the state of pene-
tration such as full-penetration, no-penetration and excessive
penetration, as reported in Fig. 29, with an accuracy of 99%
for each class.

Furthermore, Wang (2020) used also the temperature
information, in particular the interpass temperature value,
to predict the bead geometry, together with wire feed speed
and welding speed, as reported in Fig. 30.

In another example, Caio (2021) used neural networks
to predict microstructure properties, using as label thermo-
graphic parameters obtained from a thermal camera and as
input the process parameters as arc current and voltage,WFS
and welding speed. The Fusion Zone and four parameters
that explain Heat Affected Zone (namely CGHAZ, FGHAZ,
IHAZ, and SHAZ) were predicted with an error of 12%.
Nguyen (2022) proposed an approach based on the usage of
feedforward neural networks to simulate the thermal cycle of
a wall-structure component made by a single WAAM depo-
sition, once synthetic data is obtained by a finite element
(FE)-based model.

Defect monitoring

Alfaro et al. (2015) (Fig. 31) found that seamless welds have
a temperature distribution that varies smoothly in the weld
pool, while welds with defects, such as humping, present
abrupt changes in the distribution of temperatures; thismeans
that temperature could be used to estimate the presence of
defects.

Sreedhar et al. (2012) extracted statistical features from
a stacked thermal image of a shell and dome structure and
correlated these to the presence of defects. Chen et al. (2010)
proposed a residual neural network to classify defects with
an accuracy of 96% using thermal images collected by a
MAG32 at 50 Hz with an inference time of 1.35 ms. Mozaf-
far (2018) showed that Gated Recurrent Units could predict
thermal behaviour during a Direct Energy Deposition pro-
cess using temperature signals. Fernández et al. (2020) used a
CNN-LSTMnetwork to identify defects by acquiring images
from a thermal camera for a CMTwelding process with 97%
accuracy. According to the authors, this network architecture
can exploit the complex temporal dynamics of the process,
improving the classification accuracy with respect to a stan-
dard CNN (95% on the same dataset) that uses only spatial
information and no temporal ones.

Applications inWire Arc Additive
Manufacturing control

As discussed above, process parameters are strongly related
to the presence of defects in WAAM components, andWMS
with AI software modules might be developed to identify the
defects in real-time. The possibility of identifying defects
during the process is an essential characteristic of innova-
tive production systems; these systems should also be able
to regulate in real time all the process parameters to avoid
defect occurrence. For these reasons, the same sensors used
for quality monitoring have to be used to create feedback
loops for control systems; however in the optics of intelligent
systems, also the information processed by these software
modules might be used in this scope. Since the welding pro-
cess behind WAAM is a non-linear, high-coupled dynamic
system, classical control systems such as PIDs, developed on
the assumption of linear dynamics of the system under con-
trol, cannot be used optimally. For this reason, the research
community developed innovative control techniques, such as
those based on deep learning. Cruz et al. (2015) (Fig. 32) used
an ANN to estimate the welding speed, WFS and voltage to
obtain the desired beadwidth and a Fuzzy logic controller for
the welding speed adjustment based on measurements from
the vision sensor.

Lü et al. (2010) developed a model-free gradient-based
controller (MFC) for the backside width. This controller
had peak current welding and WFS as control variables and
errors in the input. The error was computed by subtract-
ing the reference width from the estimated backside width.
The estimated backside width was given from a soft sen-
sor composed of a neural network in which the inputs were
the output of the vision algorithm that measured the topside
width and the control variables. Xia et al. developed two
works related to intelligent control of WAAM. In Xia (2020)
(Fig. 33) the authors developed an ARX model to describe
the relationship between layer width and WFS, using com-
puter vision algorithms such as Canny andWiener filters and
least square estimation.Based on this data-drivenmodel, they
developed a Model Predictive Control and tested the perfor-
mance in simulation, comparing the results reached with a
PID controller (Fig. 34). The same authors in Xia (2020)
developed a data-driven model for the WAAM process, an
Adaptive Neuro Fuzzy Inference System (ANFIS), and they
showed lower error compared with ARXmodel. They devel-
oped a Model-Free Adaptive Iterative Learning Controller
(MFAILC) and tested it on a real system once learning was
done in a simulated environment with an ANFIS model to
simulate the WAAM dynamics.

Mu et al. (2022) used a similar approach, based on an
ARX model and MPC, to build multilayer components and
compared the results with a PID controller. Kershaw et al.
(2021) developed a machine learning framework to adjust
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the welding speed for the bead width control. In particular,
as reported in Fig. 34, a CNN is used to estimate the bead
width, while a feedforward network is used to adjust the
welding speed with the aim to reduce the error.

Wang (2021) proved that controlling only the bead width
or bead height brought no useful results because even if the
error for one state is minimized, e.g. the error for the bead
width, the error associated with the other state tends to be
large. Therefore they developed an active disturbance rejec-
tion control (ADRC) to adjust the welding current to obtain
the desired bead height and width for a multi-layer WAAM
process for wall structures, once a model by step-response
identification was obtained, and non-linearities were treated
as external disturbances. As discussed above, the bead geom-
etry is not depended only by current, so without controlling
other parameters as welding speed, a greater height at the
beginning of the layer and a lower height at the end were
discovered due the heat accumulation. Furthermore, all the
proposed controllers are tested for multi-layer single bead
deposition, so other considerations have to be considered,
such as the influence of the overlapping distance (Ding et al.,
2015).

For these reasons, other controllers have to be explored.
Reinforcement learning is a control technique increasingly
used in the automation field because fascinating results are
reached in literature to solve complex problems, such as play-
ing Go (Silver, 2016). In this framework, a policy selects
the optimal control action to take based on input from the
environment. This action subsequently influences the envi-
ronment, and a reward quantifies the effect of this influence
on the problem of interest. Dharmawan et al. (2020) pro-
posed a model-based RL algorithm using a Gaussian Process
Regression model for the WAAM and a greedy policy that
maximizes rewards. The results showed that better surface
finish and more near-net-shape could be obtained with a
learning approach; this reduced the materials waste or buy to
fly ratio. In the context of Selective Laser Melting Additive
Manufacturing Ogoke and Farimani (2021) used the Prox-
imal Policy Optimization algorithm for optimal control of
the laser velocity and power to obtain a more stable melt
pool and reduce overheating during the path, according with
reward. Jin et al. (2019) (Fig. 36) applied an Actor-Critic
agent with RBF neural networks to obtain the optimal weld-
ing current that minimizes the error of pool width during a
GMAW process. They trained the agent in simulation with a
simple regressionmodel obtained from the experiments once
the other parameters were fixed. They also tested the robust-
ness of the AC controller concerning disturbances, and they
discovered the ability of the agent to react to disturbances in
an optimal way, which is not possible for an open-loop con-
troller in which the current is chosen through the inversion
of plant dynamics.

Other exciting approaches are proposed in the literature.
Li et al. (2019) used an Actor-Critic agent to estimate the
optimal gains of an adaptive PID controller, meanwhile
Mezaache et al. (2022) used a Particle Swarm Optimization
(PSO) algorithm to choose the optimal parameters ofwelding
speed, welding voltage, WFS and CTWD in order to mini-
mize the width of the Heat Affected Zone (HAZ) during a
GMAW process.

Future research opportunity and conclusion

Defect monitoring

Different types of defects can be found in WAAM compo-
nents and it is known that they are related to the process
parameter selection. For example, porosity and lack of pene-
tration defects can bemonitoredwith arc current, arc voltage,
wire feed speed, welding speed and using acoustic or thermal
information. As shown in the literature, with suitable sen-
sors and simple neural network architectures, it is possible
to develop online defect detection software with reason-
able accuracy, generally better than standard software based
on signal processing techniques. Although the estimates
obtained from neural networks are accurate, they are trust-
worthy when input parameters stay in the observation range
with which the network was trained; this means that what
happens outside the ranges is uncertain. So, even if from the
above literature review it is possible to state that the potential
of using AI techniques for defect monitoring is well known,
future research should be investigating the performance of
suchmethodologies outside the training ranges, sincemost of
the greater results are related to overfitting. For this purpose,
more robust defectmonitoring systemsbased onmulti-sensor
platforms and sensor fusion algorithms should be developed
and innovative techniques to deal with the network overfit-
ting needed to be developed.

Process monitoring

As reported in the presented literature review, process param-
eters are also related to layer geometry (bead width, height
and penetration); also in this case, neural networks can be
used to approximate data-driven relationships with great
results due to their generalization capabilities. Optical sen-
sors can also be used to measure the bead geometry, but even
if they give more realistic results, the required high frame
rate and the hardware and software complexity increase the
equipment cost. For this reason, soft-sensors can introduce
a redundant acquisition system and can reduce equipment
costs, so the possibility of developing data-driven models is
very important for the industry. Moreover, these methodolo-
gies make it possible to find unknown relationships between
variables, such as the influence of shielding gases or the influ-
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Fig. 37 A digital twin interacts with the real process in a bidirectional
way. It evolves dynamically impulsed by the real system, and act on
it once a simulation of its future behaviour is done. In this way, e.g.,

an optimal control system, that is a part of DT, can change process
parameters to avoid defect formation or an excessive roughness value.
Furthermore additional information can be send to a SCADA system

Fig. 38 Reinforcement learning framework forWire Arc AdditiveManufacturing process control. A simulation environment, composed of physics-
based and data-driven model for process monitoring, interact with a RL agent that approximate the optimal control policy

ence of the interpass temperature on the final geometry of the
deposited layer. Furthermore, some parameters that can only
be observed after characterisation, such as the extent of heat-
altered zones and penetration depth, can be estimated using
approximation methods such as neural networks, providing
the only way to create a feedback loop for a control system.
From a control point of view, the possibility of developing
data-driven models that relate bead geometry, and other pro-
cess information, to process parameters plays a key role in
the development of simulation environments. By coupling
these models with existing physical models (Doodman Tipi
&Pariz, 2015), highly detailed and computationally low-cost
simulation models can be developed, which can enable the
design of control systems in simulation. Furthermore, such
modelling techniques can be used in the future for the reali-

sation of Digital Twin, which is of fundamental importance
in view of I4.0 and I5.0 production systems. In particular,
by defining digital twins as computational units that dynam-
ically evolve by exchanging data with the real system and
that act at the same time on the system (Tao et al., 2018), the
presented modelling and monitoring methodologies can be
used to develop optimal control applications, estimate some
not observable parameters and send them to a SCADA sys-
tem and make it possible to overcome the main limitations
related to the enormous computational power required for the
simulation of a DT, which is schematic reported in Fig. 37.

Also if the developed works opened to these new appli-
cations, no works can be founded in the literature regarding
this application for digital twin development.
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Process control

In addition to online monitoring applications, the importance
of control systems was highlighted. In fact, the control sys-
tem allows for varying the process parameters to achieve the
desired requirements. A review of the literature showed that
most authors explored solutions to control only one geomet-
rical feature of the deposition process, e.g. only the bead
width or the bead width. Even if the results were signifi-
cant, many limitations affect the applicability in an industrial
environment, since the same process parameters affect in a
different manner the geometry parameters, so multi-variable
control system needed to be developed. Deep learning pro-
vides practical tools that might overcome the challenges
associated to control of non-linear multi-input multi-output
stochastic systems subjected to states and control variables
constraints and easily allow for full integration and devel-
opment in simulation, also considering the potential of these
techniques in systemmodelling. Furthermore, the possibility
accompanying techniques such as Reinforcement Learning
are numerous, aswell as the possibility of training controllers
in the absence of models simply by interacting with the pro-
cess. Finally, an interesting point for future research might
be integrating all presented techniques’ outcomes. In partic-
ular, the output of a defect monitoring module might be used
together with an output of a processmonitoringmodule and a
physical model to obtain a simulation model for the process,
while an actor-critic agent can be used to learn an optimal
control policy in simulation, once the reward function is
written. Finally, deploying the agent policy on an industrial
controller is possible using the new high-performance hard-
ware. A representative image of what is presented and that
is under development by the authors, is reported in Fig. 38.
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Appendix A: A brief bliometric analysis

In the introduction of this work some main bibliometric
results are presented, which come from a brief bibliometric
analysis conducted with the open-source R package biblio-
metric (Aria &Cuccurullo, 2017) using two different queries
from Scopus website:

• 1: WAAM OR (Wire AND Arc AND Additive AND
Manufacturing)

• 2: WAAM OR (wire AND arc AND additive AND
manufacturing) OR (arc AND welding) OR GTAW
OR GMAW) AND (control OR monitoring OR model)
AND((machineAND learning)OR (reinforcementAND
learning) OR (artificial AND intelligence) OR (neural
AND network))

Using the first query some main results are presented,
such as the annual growth rate and the number of total cita-
tions. Furthermore, the top 6 keywords are presented, once a
clustering activity is made limiting to the first 200 most fre-
quent keywords. Additional information is presented in this
appendix about authors and journals.

Starting from the journals the top-15 productive journals
are reported in Fig. 39, and as reported in Fig. 40, The first
article, written byWang andWilliams fromCranfield univer-
sity UK, was published in International Journal of Advanced
Manufacturing Technology, which has been the most impor-
tant journal about this topic until 2018, when it was passed
by Additive Manufacturing.

For what concern authors and institution, as shown in
Fig. 41, 42, 43, the more productive research center, from
both citation and number of produced documents, is theWol-
longong University in New South Wales, Australia, and the
most important authors are Pan Z and Li H. It is also fun-
damental to cite 2 authors Williams S. and Ding J. from
Cranfield university. Just to conclude, from the conducted
bibliographic analysis is possible to note that the most active
author in thefield of artificial intelligence application onWire
Arc Additive Manufacturing is Pan Z. and his research team
at the University of Wollongong.
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Fig. 39 Most productive journal for WAAM topic

123



Journal of Intelligent Manufacturing (2024) 35:467–497 491

Fig. 40 Most productive journal for WAAM topic
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Fig. 41 The graph shows the most important research centres for the topic Wire Arc Additive Manufacturing
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Fig. 42 The graph shows the most productive authors for the topic Wire Arc Additive Manufacturing
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Fig. 43 The graph shows the most cited authors for the topic Wire Arc Additive Manufacturing
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