
Journal of Intelligent Manufacturing (2024) 35:667–686
https://doi.org/10.1007/s10845-022-02069-x

Robust-stable scheduling in dynamic flow shops based on deep
reinforcement learning

Felix Grumbach1 · Anna Müller1 · Pascal Reusch1 · Sebastian Trojahn2

Received: 8 June 2022 / Accepted: 7 December 2022 / Published online: 29 December 2022
© The Author(s) 2022

Abstract
This proof-of-concept study provides a novel method for robust-stable scheduling in dynamic flow shops based on deep
reinforcement learning (DRL) implemented with OpenAI frameworks. In realistic manufacturing environments, dynamic
events endanger baseline schedules, which can require a cost intensive re-scheduling. Extensive research has been done on
methods for generating proactive baseline schedules to absorb uncertainties in advance and in balancing the competingmetrics
of robustness and stability. Recent studies presented exact methods and heuristics based on Monte Carlo experiments (MCE),
both ofwhich are very computationally intensive. Furthermore, approaches based on surrogatemeasureswere proposed,which
do not explicitly consider uncertainties and robustness metrics. Surprisingly, DRL has not yet been scientifically investigated
for generating robust-stable schedules in the proactive stage of production planning. The contribution of this article is a
proposal on how DRL can be applied to manipulate operation slack times by stretching or compressing plan durations. The
method is demonstrated using different flow shop instances with uncertain processing times, stochastic machine failures and
uncertain repair times. Through a computational study, we found that DRL agents achieve about 98% result quality but only
take about 2% of the time compared to traditional metaheuristics. This is a promising advantage for the use in real-time
environments and supports the idea of improving proactive scheduling methods with machine learning based techniques.

Keywords Dynamic flow shop · Predictive scheduling · Proactive scheduling · Robust scheduling · Reinforcement learning ·
Simheuristics

Introduction

Job scheduling is a major area of interest within the field
of production planning. A production organization that can
often be observed in practice is the job shop, where each
production job has a set of operations to be processed succes-

B Felix Grumbach
felix.grumbach@fh-bielefeld.de

Anna Müller
anna.mueller@fh-bielefeld.de

Pascal Reusch
pascal.reusch@fh-bielefeld.de

Sebastian Trojahn
sebastian.trojahn@hs-anhalt.de

1 Center for Applied Data Science (CfADS), Bielefeld
University of Applied Sciences, Gütersloh, Germany

2 Deptartment of Economics, Anhalt University of Applied
Sciences, Bernburg, Germany

sively. Each operation is processed without interruption by a
continuously available production resource (e.g. a machine),
and each resource can only process one operation at a time.
In the job shop scheduling problem, the objective is to define
operation sequences in such a way, that an objective func-
tion (e.g., makespan or flow timeminimization) is optimized.
Another common form is the flow shop, where every job has
the same processing order regarding the resources. A spe-
cialized form of the flow shop is the permutation flow shop,
where the sequencing decision can only be made at the first
resource (cf. transfer lines) (Naderi & Ruiz, 2010).

However, in realistic manufacturing environments, fur-
ther planning parameters must be considered, which can
be independent of the production organization. Especially
dynamic events such as machine failures endanger baseline
schedules and can require re-scheduling procedures. This
leads to a loss of time, additional manufacturing costs, miss-
ing production goals, customer dissatisfaction and stress for
employees (Liu et al., 2017; Mailliez et al., 2021; Shen et al.,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-02069-x&domain=pdf
http://orcid.org/0000-0001-6348-7897
https://orcid.org/0000-0001-7544-7825
https://orcid.org/0000-0002-7576-5118
https://orcid.org/0000-0003-4839-585X

668 Journal of Intelligent Manufacturing (2024) 35:667–686

2016). Dynamic events can be resource-dependent (internal
events such as uncertain setup and processing times, machine
failures, uncertain material delivery windows or unplanned
rework) or customer-related (external events such as new
unplanned orders, order cancellations, changed due dates or
order priorities) (Rahmani & Heydari, 2014).

For this reason, there is a need for dynamic or stochas-
tic scheduling methods that take into account uncertain-
ties. Proactive scheduling, also called robust or predictive
scheduling, plays a central role in the treatment of dynamic
events in advance. Instead of a reactive approach based on
subsequent or successive re-scheduling, uncertainties are
considered ex ante while generating baseline schedules.
These schedules should be as insensitive as possible to dis-
ruptions so that re-scheduling situations are prevented (de
Vonder et al., 2007; Goren& Sabuncuoglu, 2008; Jorge Leon
et al., 1994; Negri et al., 2020).

As critical indicators for proactive schedules, robustness
and stability metrics have been studied widely. Robustness
R is defined as the difference between expected performance
PE and real performance PR (see Eq. 1)(Jorge Leon et al.,
1994), whereby the performance corresponds to the main
scheduling objective value (MSOV), e.g. makespan. If the
difference is positive, the baseline schedule is too conser-
vative. As a result, resources are not used optimally. If the
difference is negative, the baseline schedule is too optimistic.
This can lead to overload and time pressure. Due to the nature
of minimization problems, an absolute robustness value is
also used in some studies (see e.g. Al-Behadili et al.,2019;
Goren&Sabuncuoglu, 2008).However, it is thennot possible
to take precise consideration of conservatism and optimism.
The stability S indicates how precisely the operations o ∈ O
are planned for the resources. A stability measure, often used
in other studies, is defined as the sum of absolute deviations
between expected operation completion times cE and real
operation completion times cR (see Eq. 2) (Al-Behadili et al.,
2019;Goren&Sabuncuoglu, 2008; Liu et al., 2017;Rahmani
& Heydari, 2014).

R = PE − PR (1)

S =
∑

o∈O
|co

E − co
R | (2)

Depending on the chosen performance indicator, there is
a conflict in balancing robustness and stability: Improving
one metric can worsen the other (Goren & Sabuncuoglu,
2008). It has been shown that exact robust-stable schedul-
ing is an NP-complete problem even in single machine
environments (Bougeret et al., 2019). Recent studies have
demonstrated heuristic methods to generate balanced robust-
stable schedules. We identified two main paradigms to
measure robustness and stability: using MCE or using surro-
gate measures. There are also two main ways to to balance

robustness and stability: by creating neighborhood solutions
or by adding slack times to critical operations (see Section
“Literature review”). The problem with these approaches is,
that they either do not explicitly optimize robustness and sta-
bility or require too much computing time. This can be a
crucial hurdle in reactive real-time environments.

In recent years, several researchers have identified DRL
as an appropriate optimization method for scheduling prob-
lems (see e.g. Kardos et al., 2021; Park et al., 2021). DRL
is a machine learning technique to solve decision problems
with deep artificial neural networks. Through condition-
ing, an autonomous virtual agent learns a policy on how
to interact with a sequentially influenceable environment in
order to achieve objectives and maximize the outcome. The
iterative process can be formulated as a Markov Decision
Process, which can be summarized as follows: The agent
observes an environment state Si and applies action Ai .
Based on the action effect, the environment is transferred
to a new state Si+1 and a reward Ri is distributed to the
agent (Morales & Zaragoza, 2012). As function approxima-
tors, deep neural networks are used to represent the policy
gradually learned and to predict appropriate actions (output)
for given state observations (input) (François-Lavet et al.,
2018). Fully trained DRL agents achieve a very good com-
promise between result quality and computing time (Liu et
al., 2020). However, after conducting a systematic literature
review, we identify a notable lack of scientific approaches
investigating, how DRL can be used to optimize and to bal-
ance robustness and stability in dynamic flow shops in the
proactive stage. The contribution of this study is a proposal on
how modern DRL techniques can be implemented to enable
a good trade-off between robustness, stability and computing
time (see Section “Trade-off between MSO, robustness and
stability”).

This article is organized as follows: First, we present
related studies with robust-stable scheduling approaches and
highlight research gaps (see Section “Literature review”).
After that, we show our method of how DRL can be used to
dynamically modify operations by stretching or compress-
ing processing times (see Section “Proposed approach”). We
then carry out numerical experiments and benchmark differ-
ent DRL models and metaheuristics in terms of computing
time and result quality. In addition, the robustness/stability
trade-off, the behavior and the scalability of DRL agents is
examined (see Section “Computational study”). Finally, we
summarize our results and present future research questions
(see Section “Conclusions and future research”).

Literature review

In recent years, a considerable amount of literature has been
published on proactive or reactive scheduling in different

123

Journal of Intelligent Manufacturing (2024) 35:667–686 669

problem contexts such as project, production, crew or work-
force planning. However, there is a relatively small body of
literature that is concerned with pure proactive scheduling
in production environments considering robustness and sta-
bility. The existing literature was analyzed with respect to
the use of slack-based techniques, the use of simulation, the
trade-off analysis of robustness and stability and the applica-
tion of DRL for proactive scheduling problems. An overview
of the reviewed papers is given in Table 1.

Dynamic environments and uncertainty modeling

A great deal of previous research has focused on rather
simple environments, such as single machine (SM) and
parallel machine (PM) environments, flow shops (FS), per-
mutation flow shops (PFS), job shops (JS) or flexible job
shops (FJS) (Goren & Sabuncuoglu, 2008; Goren et al.,
2011; Liu et al., 2017; Shen et al., 2016; Vieira et al., 2017;
Wang et al., 2022; Wu et al., 2020). Few authors have used
more complex environments like dual resource JS (DRJS)
or dual resource FJS (DRFJS) (Soofi et al., 2021; Xiao et
al., 2019). Most researchers considered the minimization of
makespan (Cmax), flow time (F), total tardiness (T) resp. ear-
liness/tardiness (E/T) as single or separate main scheduling
objectives (MSO) (Davenport et al., 2001; Goren & Sabun-
cuoglu, 2008; Gonzalez-Neira et al., 2021; Jorge Leon et al.,
1994; Liu et al., 2017; Rahmani & Heydari, 2014). Further-
more, the minimization of energy consumption (EC), setup
time (ST), and idle time (IT) has been considered (Moratori et
al., 2010; Sundstrom et al., 2017), some of which were taken
into account simultaneously (Moratori et al., 2010; Salmas-
nia et al., 2014).

The greater part of the literature on proactive scheduling
focuses on varying processing times (PT) (Juan et al., 2014;
Rahmani & Heydari, 2014; Shen et al., 2016) or machine
failures (MF) (Al-Behadili et al., 2019) separately or simul-
taneously (Negri et al., 2020). Gonzalez-Neira et al. (2021)
and Vieira et al. (2017) considered varying setup times (ST)
in addition to varying processing times. Sundstrom et al.
(2017) considered internal delays (ID). It has been noted that
external uncertainties (ex.) such as new job arrivals are only
considered in the reactive stage (e.g. Moratori et al., 2010).
Since we focus on proactive scheduling approaches, we did
no further analysis on the considered external uncertainties.
In the literature examined, uncertainties were often modeled
by probability distributions (PD) (Al-Behadili et al., 2019;
Davenport et al., 2001), intervals (Wang et al., 2022) or sce-
narios (Rahmani & Heydari, 2014; Soofi et al., 2021; Xiao et
al., 2019). A scenario can be defined as a specific production
situation from a finite set of possible situations that can occur
with a certain probability or under certain conditions and is
reflected in various parameters (e.g. processing times).Xiong
et al. (2013) determined a failure probability (FB) for every

machine considering the machine’s busy time and the total
workload of all machines. Negri et al. 2020 used real-time
sensor data (RTD) to model machine health conditions.

Techniques to generate proactive schedules

One approach to solve a scheduling problem under uncer-
tainty is to explicitly allow the insertion of slack or analyze
a schedule’s slack (Davenport et al., 2001; Liu et al., 2017;
Moratori et al., 2010; Salmasnia et al., 2014; Sundstrom et
al., 2017; Xiong et al., 2013). The idea of slack-based tech-
niques is to add additional time to certain activities, so that
the schedule can absorb the effects of the uncertainty and
avoid re-scheduling (Davenport et al., 2001; Sundstrom et al.,
2017). Davenport et al. (2001) introduced two slack-based
techniques: timewindow slack (TWS) and focused timewin-
dow slack (FTWS). TWS ensures that each operation will
have at least a specified amount of slack. FTWS additionally
takes into accountwhere along the temporal horizon the oper-
ation is scheduled. Interestingly, the authors claimed that later
scheduled operations needmore slack to improve robustness.
Unlike other studies,Hatami et al. (2018) applied slack-based
techniques in backward scheduling. Their approach aims at
setting a suitable amount of slack at the beginning of the
schedule.

Another approach to generate proactive production sched-
ules is by creating neighborhood solutions and choosing
the best neighbor found (Al-Behadili et al., 2019; Goren &
Sabuncuoglu, 2008; Shen et al., 2016). Neighbors are fea-
sible solutions that have a small distance in the solution
space relative to the initial solution (Shen et al., 2016). In
practical scheduling heuristics, neighborhoods are generated
by swapping operations in their topological order (Goren
& Sabuncuoglu, 2008) or by flipping assigned resources
in flexible environments. Up to now, a number of studies
adopted a simheuristic approach to generate proactive sched-
ules. Simheuristics integrate simulation into a metaheuristic-
driven framework (Juan et al., 2015). Thus, they combine
the effectiveness of metaheuristics and the simulation’s
capability of uncertainties. Negri et al. (2020) proposed a
simheuristic approach that composes a genetic algorithm and
a discrete event simulation (DES). Liu et al. (2017) proposed
a hybridized evolutionary multi-objective optimization algo-
rithm,where eachphenotypeof thepopulation is evaluatedby
a simulation model. Another simheuristic approach was pro-
posed byGonzalez-Neira et al. (2021). Their approach can be
split up into two phases. In the construction phase, a schedule
that optimizes earliness/tardiness, is generated. In the second
phase, the local search phase, interchanges between jobs are
performed and evaluated through MCE. So far, several stud-
ies have used exact approaches for robust-stable scheduling
(e.g. Davenport et al., 2001; Goren et al., 2011; Rahmani
& Heydari, 2014; Salmasnia et al., 2014; Wu et al., 2020).

123

670 Journal of Intelligent Manufacturing (2024) 35:667–686

Ta
bl
e
1

R
el
at
ed

w
or
k
m
at
ri
x

St
ud

y
E
nv
ir
on

m
en
t

M
SO

U
nc
er
ta
in
ty

U
nc
er
ta
in
ty

m
od

el
in
g

A
pp

ro
ac
h

Sl
ac
k
tim

e
R
ob
us
tn
es
s
cr
ite

ri
on

Si
m
ul
at
io
n

A
l-
B
eh
ad
ili

et
al
.(
20
19
)

PF
S

C
m

a
x

M
F,
ex
.

PD
H

R
,S

�
D
av
en
po
rt
et
al
.(
20
01
)

JS
T

M
F

PD
E

�
R

�
G
on

za
le
z-
N
ei
ra

et
al
.(
20
21
)

PF
S

E
/T

PT
,S

T
PD

H
E
V
,S

D
�

G
or
en

an
d
Sa
bu
nc
uo
gl
u
(2
00
8)

SM
T,

F
M
F

PD
H

R
,S

G
or
en

et
al
.(
20
11
)

JS
C

m
a

x
M
F,
PT

PD
E
,H

S

H
at
am

ie
ta
l.
(2
01
8)

PF
S

C
m

a
x

PT
PD

H
R

�
Jo
rg
e
L
eo
n
et
al
.(
19
94
)

JS
C

m
a

x
PT

,M
F

PD
H

R
�

Ju
an

et
al
.(
20
14
,2

01
5

PF
S

C
m

a
x

PT
PD

H
R

�
L
iu

et
al
.(
20
17
,2

02
0

PF
S

F
M
F,
ex
.

PD
H

�
R
,S

�
M
or
at
or
ie
ta
l.
(2
01
0)

JS
T,

ST
,I
T,

F
ex
.

H
�

S

N
eg
ri
et
al
.(
20
20
)

FS
C

m
a

x
M
F,
PT

PD
,R

T
D

H
R

�
R
ah
m
an
ia
nd

H
ey
da
ri
(2
01
4)

FS
C

m
a

x
PT

,e
x.

Sc
en
.

E
M
M
R

Sa
lm

as
ni
a
et
al
.(
20
14
)

SM
C

m
a

x
,E

/T
PT

PD
E

�
R

Sh
en

et
al
.(
20
16
)

FJ
S

C
m

a
x

PT
Sc
en
.

H
R

�
So

ofi
et
al
.(
20
21
)

D
R
F-

JS
C

m
a

x
M
F

Sc
en
.

H
A
M
S,

R
M
S

�
Su

nd
st
ro
m

et
al
.(
20
17
)

JS
E
C
,C

m
a

x
ID

PD
E

�
R
,S

V
ie
ir
a
et
al
.(
20
17
)

JS
C

m
a

x
ST

,P
T

PD
H

R
�

W
an
g
et
al
.(
20
20
,2

02
2)

PM
C

m
a

x
PT

In
te
r-
va
l

H
M
M
R

W
u
et
al
.(
20
20
)

FS
C

m
a

x
PT

Sc
en
.

E
,H

R
M
S

�
X
ia
o
et
al
.(
20
17
,2

01
9)

D
R
JS

C
m

a
x

PT
Sc
en
.

H
R

�
X
io
ng

et
al
.(
20
13
)

FJ
S

C
m

a
x

M
F

FB
H

�
R

123

Journal of Intelligent Manufacturing (2024) 35:667–686 671

But due to the high computational time required for exact
methods, most researchers propose heuristic approaches (see
Al-Behadili et al., 2019; Goren et al., 2011; Soofi et al., 2021;
Xiao et al., 2019; Wang et al., 2022).

Techniques to evaluate proactive schedules

Most researchers evaluate proactive schedules by using
robustness and stability measures described in Section
“Introduction”. Rahmani et al. (2014), who model varying
processing times through scenarios, evaluated a schedule by
the expected robustness over all scenarios. This approachwas
also applied byWang et al. (2022), who called it themin-max
regret criterion (MMR). Wu et al. (2020) introduced a metric
called robust makespan (RMS). RMS is defined as the max-
imum makespan of a schedule among all scenarios. Soofi et
al. (2021) also use RMS and additionally consider the aver-
age makespan (AMS) over all scenarios. Gonzalez-Neira et
al. (2021) additionally used two qualitative criteria to evalu-
ate the schedule performance and address robustness through
expected value (EV) and standard deviation (SD) of the earli-
ness/tardiness. The greater part of the literature on proactive
scheduling has utilised simulation to evaluate a schedule’s
robustness or stability, such as Leon et al. (1994), Davenport
et al. (2001) and Shen et al. (2016). Alternatively, simulation
models can be integrated into the optimization algorithm, as
described above.

Since simulation experiments require substantial compu-
tational times (Goren & Sabuncuoglu, 2008), some studies
used surrogate measures for evaluation, such as Goren and
Sabuncuoglu (2008), Goren et al. (2011), Liu et al. (2017)
or Sundstrom et al. (2017). Surrogate measures are quickly
observable metrics that are assumed to correlate well with
stochastically ascertainable robustness or stability. Twowell-
known examples are the average total slack time (Jorge Leon
et al., 1994) or sum of variances on the critical path (Goren
et al., 2011). Classically, they are used to estimate how sus-
ceptible the critical path is to disturbances such as machine
breakdowns or varying processing times. The disadvantage
is that they only implicitly describe the actual robustness
and stability, which can lead to undesirable side effects such
as neglecting non-critical operations. Conclusively, surro-
gate measures have shown low effectiveness compared to
simulation-based metrics (Xiao et al., 2017).

Trade-off betweenMSO, robustness and stability

Anumber of studies optimized two ormore objectives simul-
taneously. Al-Behadili et al. (2019) proposed an approach
that optimizes makespan as MSO, robustness and stability.
In general, a schedule is called stable, if the real operations
do not deviate from the planned operations of the baseline
schedule. It can be measured by the sum of absolute devia-

tions between expected operation completion times and real
operation completion times (see Eq. 2) or by using surrogate
measures, such as slack-basedmethods, which do not require
simulation and therefore showmore computational efficiency
(see e.g. Davenport et al., 2001). But there are only few
researchers who analyzed the trade-offs between MSO and
robustness or between robustness and stability. Xiong et al.
(2013) analyzed the trade-off between MSO and robustness.
They developed a multi-objective evolutionary algorithm to
minimize the estimated makespan and estimated robustness,
that generates a set of feasible, pareto-optimal schedules.
They suggested involving managers in the decision-making
process by allowing them to choose the final schedule based
on domain knowledge. In further research, Shen et al. (2016)
also proposed a heuristic approach to optimize two MSOs
and the robustness over different scenarios. They highlighted
that the MSOs and robustness are seriously conflicted, and
no solution can simultaneously optimize all three objectives.

Few studies have analyzed the trade-off between robust-
ness and stability. Goren and Sabuncuoglu (2008) analyze
the trade-off in a single-machine environment with random
machine failures for three different MSO namely makespan,
total flow time and total tardiness. They explored the effect
on stability if robustness is optimized and vice versa. They
discovered that stability is not considered during robustness
optimization and that the schedule’s robustness worsens dur-
ing stability optimization. Thus, the researchers suggested
managing the trade-off by optimizing the weighted linear
combination of robustness and stability depending on the
MSO: In case of makespan minimization as MSO, practi-
tioners should focus on stability optimization and in case of
flow time or tardiness minimization, robustness optimization
should be prioritized. Liu et al. (2017) managed the trade-off
between robustness and stability by developing an algorithm
that efficiently creates a set of pareto-optimal schedules.
The visualization of these pareto fronts show, that increas-
ing stability leads to lower robustness and vice versa. The
paper focuses on the algorithm’s efficiency and draws no
further conclusions about the actual trade-off. Sundstrom et
al. (2017) systematically evaluated the triangular trade-off
between MSO namely energy consumption, robustness and
stability. They also used pareto fronts to analyze the trade-off.
Each front depicts robustness and stability values for a con-
stant energy consumption and shows the same results as Liu
et al. (2017). Further analysis of the corresponding schedules
revealed that slack at the end of the schedule would improve
the robustness, while stability is improved by slack through-
out the schedule (Sundstrom et al., 2017).

DRL-basedmethods

Recent studies have been utilized DRL for scheduling with
uncertainties. However, the usage of DRL in the field of

123

672 Journal of Intelligent Manufacturing (2024) 35:667–686

production scheduling is limited to the reactive phase of
the approaches, such as in (Minguillon & Stricker, 2020;
Shahrabi et al., 2017; Wang et al., 2020). However, exam-
ples of robust scheduling with DRL in the proactive phase
can be found in other domains (Kenworthy et al., 2021; Su
et al., 2018). Kenworthy et al. (2021) used a combination
of DRL and Integer Programming (IP) to solve an aircraft
crew-scheduling problem. The probabilities in the neural net-
work output layer are used to assign coefficient weights to
the variables in the IP. This approach enables an IP with
fewer variables and constraints that can deal with stochastic
flight durations. Their scheduling objective is to maximize
the total amount of buffers. A buffer, in this case, is defined as
the amount of time between successive flights of a particular
pilot. Su et al. (2018) proposed a hybrid teaching-learning-
based optimization algorithm that includes DRL techniques
in the teaching phase. They apply their algorithm for air-
craft carrier flight deck operations with stochastic durations
to maximize the probability of completing within the limita-
tive makespan and minimize the weighted sum of expected
makespan and the makespan variance.

Research gaps

The following essential research gaps can be summarized
from our literature review:

1. There exist a few exact robust-stable scheduling
approaches such as (Davenport et al., 2001; Goren et
al., 2011; Rahmani & Heydari, 2014; Salmasnia et al.,
2014; Wu et al., 2020) and several heuristic approaches
such as (Al-Behadili et al., 2019; Goren et al., 2011;
Soofi et al., 2021; Xiao et al., 2019; Wang et al., 2022).
To the best of our knowledge, there does not exist an
approach that uses DRL in the proactive stage of pro-
duction planning. We also cannot identify a DRL-based
approach that directly balances robustness and stability in
general. Since a fully trained DRL agent can be compu-
tationally efficient, can handle uncertain environments,
and has proven good results in proactive scheduling in
other domains, the use of DRL for robust-stable produc-
tion scheduling should be scientifically investigated.

2. Many researchers used simulations to evaluate robust-
ness and stability (Al-Behadili et al., 2019; Davenport
et al., 2001; Soofi et al., 2021; Wu et al., 2020; Xiao et
al., 2019), since the effectiveness is higher compared to
surrogate measures (Xiao et al., 2017). Thus, there exist
several approaches that integrate simulations directly into
the heuristic search strategies (Gonzalez-Neira et al.,
2021; Liu et al., 2017; Negri et al., 2020). These so
called simheuristics improve the verification and vali-
dation processes (Juan et al., 2015) and thus, lead to
better results. But a major disadvantage of simheuris-

tics is their computational effort (Juan et al., 2015). To
ensure stochastic precision in practical cases with a large
number of planning objects and uncertainties, a corre-
spondingly high number of MCEs must be carried out.
Thus, the real-time applicability of simheuristics is rather
low and more research is required too minimize the com-
putational effort to generate proactive schedules without
losing insights gained by simulation.

3. A few researchers have analyzed a schedule’s robustness
and its stability simultaneously (Al-Behadili et al., 2019;
Goren& Sabuncuoglu, 2008; Liu et al., 2017; Sundstrom
et al., 2017). The approaches of Goren and Sabuncuoglu
(2008) and Liu et al. (2017) suggested two different ways
how to manage the trade-off between robustness and sta-
bility. To the best of our knowledge, Sundstrom et al.
(2017) are the only researchers, who further analyze,
how prioritizing robustness and stability influence the
schedule itself. Thus, we suggest further research on how
proactive schedules are influenced by the trade-off and
additionally, if the trade-off is influenced by the MSO.

Proposed approach

This section describes the core components of our DRL-
based method to generate robust-stable schedules proac-
tively. The approach enables a non-iterative method with a
metrics-oriented optimization: A DRL agent internalizes the
behavior of a stochastic DES and is able to adjust operation
processing times without performing computationally inten-
sive MCE step by step. The method is aligned to a dynamic
flow shop scenario considering uncertain processing times,
machine failure probabilities and uncertain repair times. It
is inspired by our industrial partner (see Sections “Deter-
ministic flow shop problem”, “Scenario with uncertainties”).
The method comprises the following sequential sub-steps:
First, an opening optimization procedure is conducted,where
a baseline schedule is generated deterministically without
considering robustness and stability. Then, stability, robust-
ness and other metrics are measured within DES-basedMCE
(see Section “Robustness and stability evaluation”). Based
on the stochastic results, a DRL agent modifies the baseline
schedule to improve robustness and stability. Here, either
operations are extended by additional slack times (stretching)
or operations are shortened in their plan duration (com-
pressing) (see Sections “Subsequent robustness and stability
optimization”, “DRL design”). Stretching corresponds to
conservative planning, while compression corresponds to
optimistic planning. For example, the agent can put addi-
tional slack times on the critical path of the schedule to stretch
operations and catch endangering dynamic events (see Fig.
1).

123

Journal of Intelligent Manufacturing (2024) 35:667–686 673

Fig. 1 Illustrated baseline
schedule with 3 machines and 3
jobs (input for the proposed
DRL-based approach) and
proactive schedule with
additional slack times (output
from the DRL agent)

Table 2 Notation for the
deterministic baseline problem
(flow shop scheduling problem)

Notation Description

n Number of jobs

m Number of subsequent machines

pi,k Processing time of a job i on machine k

ℵ Big positive integer number

δi,k Start time of a job i on machine k (variable)

εi, j,k 1, if job i precedes job j on machine k, else 0 (variable)

Deterministic flow shop problem

Before describing the dynamic problem with uncertainties
and the robustness/stability optimization, the opening proce-
dure’s deterministic baseline problem must be formalized.
Inspired by the production organization by our corporate
research partner, a flow shop scheduling problem with wait-
ing times and infinite machine buffers is considered. In this
setting, every production job has a number of operations
equal to the number of machines. As a non-permutation set-
ting, jobs can overtake each other in the production line. As
MSO, the operation sequences should be set in such a way
that either themakespan or the total flow timewithout release
times is minimized. Due to the alignment as a feasibility
study, the problem was simplified to ensure a better transfer-
ability of the proposed approach. For example, employees,
sequence dependencies or setup operations were not taken
into account (Table 2).

The baseline flow shop model for makespan minimiza-
tion can be formulated as the following mixed integer linear
program:

minCmax = max
1≤i≤n

{δi,m + pi,m} (3)

s.t.

δi,k + pi,k ≤ δi,k+1 ∀i ∈ {1, ..., n},∀k ∈ {1, ..., m − 1}
(4)

εi, j,k(ℵ + p j,k) + δi,k − δ j,k ≥ p j,k (5)

∀i ∈ {1, ..., n},∀ j ∈ {1, ..., n},∀k ∈ {1, ..., m}
(1 − εi, j,k)(ℵ + pi,k) + δ j,k − δi,k ≥ pi,k (6)

∀i ∈ {1, ..., n},∀ j ∈ {1, ..., n},∀k ∈ {1, ..., m}
δi,k ∈ N ∀i ∈ {1, ..., n},∀k ∈ {1, ..., m} (7)

εi, j,k ∈ {0, 1} ∀i ∈ {1, ..., n},∀ j ∈ {1, ..., n},
∀k ∈ {1, ..., m} (8)

Equation 3 represents the objective function for makespan
minimization. Equation 4 ensures that an operation of a job
can only start, when the preceding operation on the previ-
ous machine is completed. Furthermore, wait times between
operations are allowed with this modeling. Equations 5, 6
ensure that a machine can only process one operation at
a time. For total flow time minimization (without release
times), Eq. 3 must be replaced by the following objective
function:

min F =
n∑

i=1

δi,m + pi,m (9)

Scenario with uncertainties

To specify a dynamic problem with consideration of uncer-
tainties, the scenario must be explained in more detail: the
partner company manufactures custom industrial fittings,
where the single production of complete systems involves
the non-takted manufacturing steps (1) machining, (2) weld-
ing and (3) assembly. For each product category PC ∈ {1, 2}
andmanufacturing step k, we assume triangularly distributed
uncertain processing times Dk,PC . Each uncertain process-
ing time is represented as a tuple (a, c, b), where [a, b] are the
interval bounds and c is the mode (a ≤ c ≤ b). In this way,
asymmetric distributions can also be defined in a compact

123

674 Journal of Intelligent Manufacturing (2024) 35:667–686

Table 3 Metrics for a single
simulation run

Metric Description

R Robustness of a schedule measured in a simulation run (see Eq. 1)

S Stability (see Eq. 2)

Cmax Makespan

F Total flow time

ei,k End time of operation (i, k)

T Si,k Total slack of an operation

manner. The expected value E(X) and the standard deviation
2
√

V (X) for a triangular distribution tuple X can be defined
as follows:

E(X) = a + b + c

3
(10)

2
√

V (X) =
2
√

(a − b)2 + (b − c)2 + (a − c)2

6
(11)

Moreover, each machine has a failure probability P(Fk). As
a simplified modeling, a failure can occur once per operation
and requires a repair operation with a triangularly distributed
machine-specific repair time Qk . Equation 12 defines the
expected processing time of an operation including a proba-
blemachine repair time. This value is used for each operation
processing time pi,k in the deterministic opening procedure
to achieve an optimal or near optimal MSOV under realistic
conditions (see Section “Action space analysis”).

E(Dk,c) + P(Fk)E(Qk) (12)

Robustness and stability evaluation

After generating a baseline schedule deterministically with
expected processing times, robustness and stability must
be evaluated under stochastic conditions within DES-based
MCE. The DES is used to dynamically simulate a base-
line schedule according to the operation sequence set by the
opening procedure. Dynamic simulation means that random
processing times are set according to the processing time
distributions and consideration of downtimes. During simu-
lation, operations are started as soon as the previous operation
is completed and the machine is available. The start time of
an operation set by the opening procedure can therefore also
be undershot. According to the formulated baseline problem
(see Section “Deterministic flow shop problem”), waiting
times between operations and jobs are possible. Moreover,
station buffer upper bounds are not taken into account. The
DES is designed as a process-based simulation in which each
resource is designed as its own asynchronous process. In the
beginning, a separate process is started for each machine
M1, ..., Mm . A process runs until all associated operations
are completed according to the baseline schedule. In each

Table 4 Summary metrics for all simulation runs

Metric Description

R Average robustness from all simulation runs

S Average stability

Cmax Average makespan

F Average total flow time

ei,k Average end time of an operation

T Si,k Average total slack of an operation

T S Average total slack from all operations

process, the next specified operation is taken from the input
buffer as it becomes available. Next, the operation is exe-
cuted with a randomly set processing time according to the
distributions. In addition, a machine failure can occur that
must be remedied within the respective repair time. After the
operation is completed, it is committed to the next machine’s
buffer or final drain. The simulation ends when all processes
are finished. In the context of MCE, the simulation is per-
formed multiple times, with dynamic events being triggered
randomly in each case. After a simulation run, the metrics
described in Table 3 are measured. Considering all simula-
tion experiments, the metrics described in Table 4 can be
obtained.

Subsequent robustness and stability optimization

For a better understanding of the proposed DRL-based
method, the subsequent dynamic problem is formalized in
this section. The optimization model enables stretching and
compressing operation durations to absorb dynamic events
and to improve robustness and stability simultaneously. To
evaluate a proactive schedule candidate P S, the optimization
procedure integrates MCE (see Section “Robustness and sta-
bility evaluation”) to calculate an aggregated and normalized
robustness/stability value � ∈ R>0.

min� = |P SR |w
|BSR | + P SS(1 − w)

BSS
(13)

s.t.

123

Journal of Intelligent Manufacturing (2024) 35:667–686 675

Fig. 2 Stretching an operation before evaluating robustness and stabil-
ity via MCE. Simplified example with 1 machine and 1 job

P Spi,k ∈ N ∀i ∈ {1, ..., n},∀k ∈ {1, ..., m} (14)

The lower the� value, the better is the linear combination of
robustness and stability in comparison to the related baseline
schedule BS. Since robustness and stability are competing
objectives, a linear weighting is applied using a robustness
weight w ∈ [0, 1] and a stability weight 1− w for balancing
(see Eq. 13). Stretching or compressing operations is enabled
my manipulating operation plan durations pi,k in a range as
it is allowed by technological constraints. Every operation
duration P Spi,k from the P S is overwritten with regard to
improve robustness and stability (see Eq. 14, Fig. 2). The next
section describes how a DRL agent can be implemented to
solve this dynamic problem, taking into account the logistical
specifics of the baseline problem (see Section “Deterministic
flow shop problem”).

DRL design

This section describes the general conception of the DRL
agent based on the formalized dynamic problem in Sec-
tion “Subsequent robustness and stability optimization”. We
identified two state-of-the-art actor critic DRL algorithms
for discrete action spaces: Proximal Policy Optimization
(PPO) (see OpenAI, 2022c; Schulman et al., 2017) and
Advantage Actor-Critic (A2C) (see Mnih et al., 2016; Ope-
nAI, 2022b), which have been realized using an OpenAI
Gym environment (see OpenAI, 2022a) in combination with
the Stable-Baselines3 framework (see Stable-Baselines3,
2022). Hyperparameter configuration including neural net-
work architecture and documentation of the training process
can be found in Section “DRL policy learning benchmark
(PPO vs. A2C)”.

Algorithm 1 illustrates the essential training procedure
including reward calculation. An episode always includes
as many steps as there are operations in the schedule. The
first step refers to the first operation on machine M1, the last
step to the last operation on machine Mm . For each training
step, the current state π , the chosen action ζ and the cur-
rent modified proactive schedule candidate P S are passed
as arguments. The state space contains various features that
are intended to describe the baseline schedule and the cur-
rent proactive schedule structure as generally as possible (see
Table 5). Figure 3 shows the discrete action space utilized.

It provides three actions applicable for each scheduled oper-
ation (i, k). Depending on the action chosen, the operation
processing time pi,k is stretched or compressed to improve
robustness and stability.

In the step function essential for the episodic learning, the
next operation is first initialized and then modified consid-
ering the chosen action, which is also overwritten in the P S
candidate. Then, the P S is simulated once in a deterministic
manner. In this way, current effects on robustness and stabil-
ity are measured and updated in a new state space π∗. Based
on this, the intermediate reward can be calculated, that is
distributed after each step (see Algorithm 2). It is calculated
according on how the agent set the processing time per oper-
ation. Setting optimistic processing times improves stability,
if operations were previously stretched. On the other hand,
conservative processing times improve robustness (see Sec-
tion “Action space analysis”). Stability optimization through
action 2 is rewarded directly but results in a penalty due to
robustness degradation considering w. On the other hand,
robustness improvement only results in a reward, which is
slightly higher. In the last episode step, the P S is handed
over to the MCE to calculate the robustness/stability value
� (see Eq. 13). Based on this, a final penalty is distributed,
where � is multiplied by a large number. This ensures that
the final penalty has a significantly greater impact than the
intermediate rewards. A value greater than 1 awards a higher
penalty that increases linearly with degradation. For a value
less than 1, the penalty decreases rapidly as the improvement
increases. In this way, combined with appropriate discount
factors, wewere able tomake the agent more greedy and reli-
able in terms of achievable end results. The specified reward
and penalty scores are the result of a successive empirical
analysis and will not be explained further.

Algorithm 1 DRL training episode (pseudocode snippet)
1: function step(π : state, ζ : action, P S: proactive schedule candidate)
2: (i, k) ← get Next Operation()

3: P S ← modi f yOperation(ζ, i, k, P S)

4: π∗ ← simulateSchedule(P S)

5: rew ← inter Reward(ζ, π, π∗)
 See Algorithm 2
6: if Last scheduled operation then

7: rew ← rew +
{

(−100�)10, if � < 1

−125�, else

 See Eq. 13

8: end if
9: return π∗, rew
10: end function

Computational study

Numerical experiments were conducted and discussed to
answer the following questions: (1) How does the plan dura-

123

676 Journal of Intelligent Manufacturing (2024) 35:667–686

Table 5 DRL observation features with logistical specifics for non-permutation flow shops with waiting times and infinite machine buffers

No. Description

1 Number of jobs

2 Current episode step

3 Current operation machine k [dummy encoded]

4 Current operation product category c [dummy encoded]

5 Determines, if the total slack of the current operation (i, k) operation is above average (BST Si,k
> BST S)

[binary encoded]

6 Determines, if the current operation is on the critical path (BST Si,k
= 0) [binary encoded]

7 Number of succeeding jobs on the current machine

8 Sum of stretched and compressed operations on the machine
⎛

⎝∑
o∈O ′

⎧
⎨

⎩

0, if action 1 has been chosen
−1, if action 2 has been chosen
1, else

O ′ := Machine operations

⎞

⎠

9 Sum of stretched and compressed operations within the job

10 Current effect on robustness (P SM SOV − BSM SOV + BSR)

11 Current effect on the job end time (P Sei,m − BSei,m)

12 Current effect on the operation end time (P Sei,k − BSei,k)

Algorithm 2 Intermediate reward calculation (pseudocode
snippet)
1: function interreward(ζ , π , π∗)
2: rew ← 0
3: if |π∗

10| < |π10| then
 see Table 5
4: rew ← 6w
5: else
6: rew ← −4w
7: end if
8: if ζ2 has been selected then
9: rew ← 4(1 − w)

10: end if
11: return rew
12: end function

tion affect the trade-off between robustness and stability and
how to define the action space (see Section “Action space
analysis”)? (2) How well do DRL agents learn a policy
to generate robust-stable schedules (see Section “DRL pol-
icy learning benchmark (PPO vs. A2C)”)? (3) How is the
learned policy reflected in the agent’s decision behavior (see
Section “DRL agent behavior analysis”)? (4) How well per-
forms a DRL agent in comparison to a Simulated Annealing
with Research Strategy (SARS) approach regarding result
quality and computational efficiency (see Section “DRL per-
formance benchmark (PPO vs. SARS)”)? (5) How performs
the agentwhenvarying problem size and uncertainty and how
are robustness and stability affected (see Section “Scalabil-
ity investigation”)? The general experimental setup for all
experiments including test data description is documented in
Section “Experimental setup”.

Fig. 3 DRL discrete action space with three possible actions for
selecting an operation plan duration within the aggregated uncertainty
distribution. The actions have been determined by the experiments in
Section “Action space analysis”. Action 1 corresponds to plan duration
P D3; Action 2 corresponds to P D2; Action 3 corresponds to P D4
(see Appendix Table 9). Illustrated representation not to scale

Experimental setup

The experiments were conducted with the following hard-
ware: GPU: Nvidia Quadro RTX3000 5980MB VRAM;
CPU: IntelCore i7-10875H@2.3GHz (16CPUs); 16384MB
RAM. Makespan (Cmax) and total flow time (F) minimiza-
tion were considered as separate MSOs. With respect to
the scope, robustness and stability have been considered
equally in the experiments (w = 0.5). In fact, the weight
w is an independent variable that has an effect on the plan-
ning result depending on the MSO Goren and Sabuncuoglu

123

Journal of Intelligent Manufacturing (2024) 35:667–686 677

(2008). However, results from equal weighting are discussed
in relation to the agent performance (see Section “DRL pol-
icy learning benchmark (PPO vs. A2C)”). After intensive
research, we could not identify suitable benchmark instances
which can be used for our approach and uncertaintymodeling
without further modification. Furthermore, the uncertainties
had to be scalable in order to analyze the degree of uncer-
tainty. Consequently, like other authors (see e.g. Al-Behadili
et al., 2019; Goren&Sabuncuoglu 2008; Liu et al., 2017), we
generated suitable instances. In addition to instances based
on the industrial scenario (see Section “Scenario with uncer-
tainties”), we modified a well-known instance proposed by
Taillard (1993) for deterministic flow shop scheduling bench-
marks.

• GMRT5x3. Compact scenario-based test datawith 5 jobs
and 3 machines.

• GMRT10x3. Extended scenario-based test data with 10
jobs.

The GMRT instances were utilized to generally analyze the
DRL agent learning performance and behavior (cf. initially
mentioned experiment questions 1–4). For training and eval-
uating the DRL agent, 10 training and 10 test instances were
generated per data set andperMSO, eachwith a randomnum-
ber of product categories. The COIN-OR Branch-and-Cut
solver V2.10 has been used to generate optimal determinis-
tic baseline schedules. The uncertainties considered for the
subsequent proactive optimization method can be found in
Appendix Tables 6, 7. According to experiment question
4, the proposed DRL-based approach has been compared
against an iterative metaheuristic. Consequently, the number
of experiments must be chosen such that the true � value of
a neighbor is precisely approximated. It had to be prevented
that random outliers are confused with local optima.We used
the standard deviation of the means to measure the error of
yielded � values Jacoboni and Lugli (1989). Here we set an
upper limit of about σn ≈ 0.005, which corresponds to about
n = 10, 000 experiments and led to reliable results.

In order to indicate the reliability and scalability of the
method, the following instances were used:

• T20x5LV. Modified Taillard instance with 20 jobs, 5
machines and low uncertainty variance (LV).

• T20x5HV. The same instance with a high uncertainty
variance (HV).

According to experiment question 5, it was analyzed how
the agent handles more extensive environments with varied
uncertainties. In this case, the baseline schedules were gen-
erated using the Shortest Processing Time (SPT) dispatching
rule. Due to the specifics of our scheduling and uncertainty

model, the data wasmodified as described in Appendix Table
8.

Action space analysis

This analysis addressed the first experiment question and
examined the impact of different plan durations (PD) uti-
lizable as P Spi,k in the subsequent robustness and stability
optimization method (see Section “Subsequent robustness
and stability optimization”). The aim was to investigate and
to specify the scope of the DRL action space (see Section
“DRL design”), which is important for a proper policy learn-
ing. In particular, it was analyzed which PD leads to which
consequences in terms of robustness and stability. Moreover,
general conclusions about the conflict between robustness
and stability could be drawn. FivePDwere considered,where
P D1 is a veryoptimistic, P D3 a realistic and P D5 a very con-
servative time.All PDarewithin the bounds of the aggregated
processing time distribution of an operation (see Appendix
Table 9). Appendix Table 10 and Fig. 4 give a statistical
overview of the effects.

What stands out in the results are the very similar trade-off
patterns and the associated impact of different PD. Accord-
ing to our observations, P D3 achieved good stability values
for Cmax and F minimization. More optimistic or conser-
vative values worsened the stability in all cases. The more
conservative P D4, on the other hand, led to better robust-
ness. With P D5, even positive robustness was achieved for
all baseline schedules. This measurement confirms the con-
flict in a simultaneous robustness and stability optimization
in this case: The more realistic the plan durations, the bet-
ter the stability. If, on the other hand, the PD are chosen
more conservatively, the robustness increases at the expense
of stability. This interesting finding may be related to statisti-
cal scope per metric. With a single operation, it is most likely
that the expected operation duration will occur (scope of sta-
bility). However, at the level of the overall schedule (scope of
robustness), previously unknown causes lead to overly opti-
mistic planning when expected values are utilized. Future
studies should examine these causes in more detail, which
would go beyond the scope of this work.

A closer inspection of the figure shows that the robust-
ness values in the F case are significantly more sensitive to
the PD chosen and more widely spread, which can also be
observed in the different value ranges of the robustness axes.
This result can be explained by the fact that the Cmax objec-
tive function only depends on one value (end time of the
last operation), whereby the F objective function contains
the end time of each job. Therefore, instead of one, several
operations must be considered in the F case. This is an indi-
cator that stretching or compressing operation durations has
to be done in a targeted manner. In this case, it is not suffi-
cient to just stretch an operation at the end in order to achieve

123

678 Journal of Intelligent Manufacturing (2024) 35:667–686

apparent robustness. Conclusionally, it can be confirmed that
a corresponding optimization method for balancing robust-
ness and stability can be utilized by choosingPDdynamically
per operation and in a targeted manner. Since we locate the
best trade-offs between P D2 and P D4, these three PD have
been included in the DRL action space. In terms of a fea-
sibility study, this choice of actions may be is appropriate.
However, future work should examine the applicability of
continuous action spaces, where even more targeted values
can potentially be set. Subject to the three selectable actions
defined, the agent’s learning and prediction performance are
presented and discussed in the next section. How and why
the agent selects which action in which situation is examined
in Section “DRL agent behavior analysis”.

DRL policy learning benchmark (PPO vs. A2C)

The purpose of this experiment was to evaluate an A2C
and a PPO model to compare two modern DRL algorithms
regarding their learning and predicting performance (see
experiment question 2). Separate models were trained for
F minimization and Cmax minimization as MSO. Each
model was trained multiple times with GMRT5x3 and
GMRT10x3 training samples. After extensive tests, some
Stable-Baselines3 standard parameters have been modified
to improve policy learning (see Appendix Table 11). During
successivemodification and identification of proper hyperpa-
rameters, PPO was significantly more robust to adjustments.
In contrast to A2C, PPO has generally shown good perfor-
mance evenwith different settings.A2C sometimes delivered
bad results, so choosing a proper parameter setting was very
time-consuming. A possible explanation for this might be
that A2C is more sensitive to the hyperparameters than PPO.

Figure 5 shows an overview of the agents’ performances
quantified by overall reward obtained during the training pro-
cess for F andCmax minimization asMSO (left graph). In the
first training half, all models experienced significant growth,
which eventually slowed during the exploitation phase. Inde-
pendently from the MSO, the learning curves share a similar
pattern, where the PPO learning curve has a steeper slope and
has significantly higher rewards in the final stages. Another
interestingfinding is, that bothmodels consistently earnmore
reward for F minimization in comparison toCmax minimiza-
tion. This result may be explained by the fact that the weight
w = 0.5 has an effect on the outcome. According to Goren
and Sabuncuoglu (2008), greater priority should be given to
stability in the context of Cmax minimization. Furthermore,
robustness is more insensitive in this case, which can lead to
poorer results with this weighting. In summary, the observed
difference in performance is complementary to the authors’
recommendation.

Moreover, the obtained predictions (average� values) for
the fully trained DRL models are visualized in form of a box

chart (right graph). Statistical details are added in Appendix
Table 12. For all test samples and for both MSO, PPO gen-
erally achieved better average � values and lower standard
deviations. This also reflects the patterns of rewards achieved
in the training processes, with the improvement being more
pronounced in the F case than in theCmax case. The standard
deviation was less than 0.043 in each case, with PPO tend-
ing to have slightly less scatter with this metric. Therefore,
in some cases, the � values deteriorated compared to the
baseline schedule. Nevertheless, the average robustness and
stability could be improved by the agents, whereby PPO has
outperformed A2C. In addition, the PPO model was handier
to train and better able to learn policy, because it was more
independent of hyperparameters.

The results in this section indicate that DRL is a suitable
method for robust-stable scheduling in dynamic manufac-
turing environments. However, with respect to DRL design
and to the reduced and abstracted problem, further investiga-
tions must be carried out. First, this study was limited to the
manipulation of processing times (stretching or compressing
operations).With respect to the large scope, other approaches
could not be considered. Consequently, more research is
required to analyze and implement other paradigmsof robust-
stable scheduling, such as generating proactive schedules
by creating neighborhood solutions through resource flip-
ping or changing sequences by operation swapping. Second,
it must be examined how an agent performs in different
environments with different parameters. A related scalability
analysis is carried out in Section “Scalability investigation”.
In advance, the next section moves on to discuss the behavior
of the PPO agent and to answer the question: Which action
has been chosen in which situation and what are the conse-
quences?

DRL agent behavior analysis

The following analysis examines the DRL agent’s decision
behavior and draws conclusions about the optimization met-
rics (see experiment question 3). It was analyzed, which
actions based on which observations were chosen by the
agent and how did this affect robustness and stability. The
fully trained PPO agent was analyzed based on GMRT10x3
instances in the context of F minimization. From 500
episodes, all actions chosen by the agent were comparedwith
the situational state observation.

Looking at Fig. 6, it is apparent that the agent did not
choose the actions evenly: Stretching (applying P D4) was
applied significantly more often, whereby the realistic value
(P D3) was hardly retained. This result may be explained by
the fact that the baseline schedules generated are always too
optimistic. This corresponds to the expectation in accordance
with the analysis in Section “Action space analysis”: The
use of P D3 always implies a negative robustness. However,

123

Journal of Intelligent Manufacturing (2024) 35:667–686 679

Fig. 4 Different PD and their
effect on robustness and
stability. Results observed by
GMRT5x3 with F and Cmax
minimization as MSO. In both
MSO cases, the
robustness/stability conflict
becomes transparent. Good
stability is obtained with
realistic expected values (P D3).
Good robustness can be
achieved with more conservative
values (P D4)

Fig. 5 PPO vs. A2C benchmark
for F and Cmax minimization as
MSO (w = 0.5). Average
rewards achieved during
training over time (left graph)
and best model’s predictions
after training (right graph). All
models were trained and tested
with GMRT5x3 and GMRT10x3
samples. PPO outperforms A2C
in terms of obtained rewards and
predictions after training (�
values)

these results were predictable, since robustness and stability
have to be balanced with w = 0.5. On the other side, the
application of compressing (applying P D2) is particularly
interesting. Overall viewed and in comparison to P D3 and
P D4, P D2 has a negative impact on robustness and stability.
Nevertheless, the agent selected compression in about 15%
of all cases.

In a further analysis, we examined in which situations
the agent tends to compress operations. For this purpose,
we have generated a classification decision tree based on
state-action tuples. Techniques based on decision trees are a
suitable method to (approximately) explain the behavior of
DRL agents (Ding et al., 2020). In order to reduce complex-
ity, stretching actions were not taken into account. Figure 7
shows an excerpt of the first decision tree leaves. Even if the
Gini coefficients are relatively even, the essential pattern is
emerging that be interpreted as follows: If the agent assumes
that (1) an operation will end earlier than planned and (2)
that the operation tends to be on the critical path, the oper-
ation is compressed by the agent. Such a situation occurs
especially, when predecessor operations have already been
stretched. Thus, compressing the operation compensates the

effect of an “overflow” of the current operation and all suc-
cessor operations.

Atfirst glance, this behavior seems trivial due to the reward
design (see Section “DRL design”), but it may indicate a
problem related to the stability metric. The stability met-
ric used in this study and by most authors only considers
operation end times (see Eq. 2). And if, in practice, target
processing times are shortened in order to cushion other oper-
ations, this can lead to stress and pressure. This observation
may support the hypothesis that the widely used stability
metric is too imprecise. We suggest qualitatively, that sta-
bility should be characterized by the fact that re-scheduling
procedures can be avoided as often as possible. The more
stable the plan, the less often re-scheduling occurs or the less
impact re-scheduling causes. In particular, the impact must
be suitably quantified.

DRL performance benchmark (PPO vs. SARS)

In this experimentwe analyzed the PPOagent performance in
comparison to a SARS algorithm roughly based on Yu et al.
(2021) (see experiment question 4). The SARS algorithm has
been implemented as follows: In every iteration, a random

123

680 Journal of Intelligent Manufacturing (2024) 35:667–686

Fig. 6 Actions chosen by the
agent (F minimization as MSO
in the context of GMRT10x3).
The agent stretched most of the
operations and compressed them
less often. The default expected
value (realistic operation
duration) was hardly selected

Fig. 7 Decision process
whether operations are
compressed (CART decision
tree). The agent tends to choose
compression when a critical
path operation may end earlier
than originally planned

Fig. 8 PPO vs. SARS
benchmark for F and Cmax
minimization as MSO
(w = 0.5) in the context of
GMTR5x3 and GMRT10x3. In
this analysis, average � values
achieved, scatter and computing
time are compared. The
computing time is shown on a
logarithmic axis. PPO achieves
about 2% worse results than
SARS, but only requires about
2% computing time

operation is randomly stretched or compressed according to
the action space options (see Appendix Algorithm 3). The
number of cooling stepswas set to 50,which already required
a computation time of about 8 minutes. This is due to the fact
that the step-by-step evaluation performed 10,000MCE each
time, which significantly increased the computing time. All
five steps were checked to see whether an improvement had
occurred. If not, the current solution has been reverted to the
best solution found. This performance analysis examined the
relationship between average � value achieved, the related

scatter in the form of standard deviation, and approximate
computation time in seconds.

Figure 8 shows the obtained results summarized for
GMRT10x3 and GMRT5x3. Statistical details can be found
in Appendix Table 13. What stands out in these results is the
dominance of theDRL agent in terms of computing time. The
DRLAgent required about 10 seconds to generate a proactive
schedule and to evaluate via MCE. Without evaluation, the
time could be further reduced to less than one second. The
average� values and scatter obtained by the PPO agent were

123

Journal of Intelligent Manufacturing (2024) 35:667–686 681

Fig. 9 PPO performance for F
minimization as MSO
(w = 0.5) in the context of
T20x5LV and T20x5HV data
sets. Average rewards achieved
during training over time (left
graph) and best model’s
predictions after training (right
graph). Lower uncertainty
variances (T20x5LV) lead to
better performances during and
after training

only slightly worse in all cases. This can be an indication that
the agent needs even better features or training sequences for
better generalization. However, this potential for improve-
ment is not considered in detail in this feasibility study. From
the graph, it can be seen that in the case of Cmax minimiza-
tion, significantly poorer average results were also achieved
with the SARS implementation. This supports the hypothesis
that this is an effect of the weight w = 0.5 and not attributed
to the DRL agent or training process design (see Section
“DRL policy learning benchmark (PPO vs. A2C)”). Inter-
estingly, the scattering behaves in the opposite way: Both
the agent and the metaheuristic each achieve a better stan-
dard deviation in theCmax case. This can be explained by the
greater variability of the F objective, which has already been
observed and discussed in Section “Action space analysis”.
The more operations are stretched in terms of conservative,
robust planning, the greater the scattering of the robustness
achieved in the F case (see Fig. 4).

Based on the previous findings, these results support the
idea that DRL is a viable and efficient method to generate
proactive schedules, although there is room for improve-
ment. The greatest advantage of the proposed DRL approach
lies in the low computing time. After a proper training, it
obtains about 98% of the result quality in about 2% of the
time compared to traditional methods such asmetaheuristics.
This can be explained by the fact, that a DRL agent internal-
ized the behaviour of the stochastic simulation model within
the training to infer on robustness and stability. Conventional
probabilistic methods such as metaheuristics have no way of
storing experiences and hypotheses that lead to the situational
selection of suitable actions. Instead, it is necessary to evalu-
ate successively, which takes up a lot of computing time due
to the complex MCE.

As mentioned in the previous parts, there are some disad-
vantages or improvement potentials that can be investigated
in further studies. The central research question raised in this
section is: How is it possible to outperform metaheuristics in

other performance criteria such as mean scores and scatter?
In particular, it should be examined whether hyperparam-
eters, training processes, actions, rewards and observations
can be further improved. Finally, the scalability of the DRL
design is evaluated in the next section.

Scalability investigation

In order to assess the applicability of the proposed approach
to other environments, repeated measurements of the learn-
ing and prediction performance were conducted (see Fig. 9
and Appendix Table 14). It was analyzed how the agent han-
dles a larger problem input (more machines, more jobs) and
how the extent of uncertainties affects robustness and stabil-
ity. With respect to the large scope, we have focused on F
minimization as MSO and PPO as DRL technology. With
minor modifications, we were able to make the agent opera-
tional for a larger scaled environment. The training duration
was increased to 20,000 steps and the final reward was dis-
tributed by a factor of ten. This ensured the higher weighting
of the final reward compared to the sum of the intermediate
rewards.

The charts below illustrate the average reward achieved
during training (left graph) and the prediction quality after
training completion (right graph). The agents experienced a
learning curve in both scenarios (low and high uncertainty)
and generated comparatively good proactive schedules after
training. What is striking about the training performances is
the significantly different reward scores obtained. At higher
uncertainty variances (T20x5HV data set), the agent has a
significantly lower slope of rewards over time, possibly influ-
enced by the MCE: The greater the impact of uncertainties,
the more experiments have to be carried out in order to cal-
culate precise robustness and stability metrics. In addition,
it can be assumed that the agent has to explore more dur-
ing training and also experiences many deterioration effects.
Likewise, the fully trained agent generated significantly bet-

123

682 Journal of Intelligent Manufacturing (2024) 35:667–686

ter proactive schedules in the case of low uncertainty. With
regard to the� values, bettermeans, less scattering and fewer
outliers could be achieved with T20x5LV. Interestingly, the
results were even better than in the previous GMRT exper-
iments. This is an indicator that the proposed method can
also be scaled to larger flow shops. However, an increase in
uncertainty results in a loss of obtainable robustness and sta-
bility. Conclusionally, the degree of uncertainty has a greater
effect than the number of planning objects such as machines
or jobs.

Amajor disadvantage is still, that an agent must be trained
for new situations. Future work should analyze how an
agent can be better generalized for a varying number of
planning objects. It is particularly important to design the
reward and the observation space evenmore universally. Due
to the need for more and more robustness, flexibility and
responsiveness in innovative logistic systems (Jafari et al.,
2022; Monostori, 2018) this also refers to other scheduling
domains and associated MSO. In addition to related produc-
tion organizations such as flexible job shops ormore complex
environments such as multi-resource shops, robust-stable
scheduling can also be used, for example, in route planning,
project management or for crew scheduling. From a mathe-
matical point of view, it is also about allocating resources
with tasks on the timeline. Consequently, the robustness
and stability metrics defined as well as the design of the
action space remain universally applicable. However, the
observation space responsible for describing the environmen-
tal constraints has to be adapted for each specific problem
in an extensive feature engineering process. Moreover, the
proactive consideration of other types of dynamic events and
especially external events such as new job arrivals is of sci-
entific and practical relevance.

Conclusions and future research

The presented research examined, how DRL can be applied
in the proactive stage for robust-stable scheduling to absorb
uncertainties in advance. For this purpose, a DRL concept
was developed, where scheduled operations were stretched
or compressed in their time in order to optimize the com-
peting metrics, robustness and stability. The metrics were
collected in the course of DES-based MCE for dynamic
flow shops, whereby uncertain processing times andmachine
repair times were given by triangular distributions. The study
was primarily set out to analyze the effectiveness, efficiency
and scalability of DRL. After extensive numerical experi-
ments, the findings suggest that DRL, and especially PPO, is
a viable method to generate proactive schedules in near real-
time. PPOcomes about 98%close to SARS, but requires only
2% of its computing time after a successful training. This is
a great advantage for the application in time-critical reactive

environments. Moreover, it could be shown that the DRL
agents can also learn and predict successfully after varying
jobs, machines and uncertainties. These findings will be of
interest to researchers and practitioners and could be used to
develop proactive methods by making them more efficient
and intelligent.

The major restriction of this work was proof-of-concept
DRLdesign focusing the proactive stage for F andCmax min-
imization as MSO. In summary, the following wide range of
future research questions can be derived from the limitations
of this study:

• Aggregated robust-stable scheduling. A limitation of
the proposed approach is the decomposition of MSOV
optimization and proactive planning in two consecutive
steps. It could be analyzedwhich positive and undesirable
effects are related to an aggregation of both stages (see
Section “Proposed approach”).

• DRL-based re-scheduling. This article does not include
an analysis of how to combine proactive planning
and reactive planning. Further work could analyze and
develop a hybrid approach of predictive-reactive schedul-
ing considering DRL on one or both stages (see Section
“Proposed approach”).

• Robustness/stability trade-off. The conflict between
robustness and stability must be formally explained in
more detail (see Section “Action space analysis”).

• Continuous actions. Future work could improve the
agent’s precision by utilizing continuous rather than dis-
crete action spaces (see Section “Action space analysis”).

• Neighborhood-based scheduling. It would be interest-
ing how robust-stable neighborhood solutions can be
generated using DRL (see Section “DRL policy learn-
ing benchmark (PPO vs. A2C)”).

• Balancing robustness and stability. As far as we know,
general situational rules for weighting robustness and
stability with regard to MSO and practical requirements
have not yet been established (see Section “DRL policy
learning benchmark (PPO vs. A2C)”).

• Stabilitymetric improvement. It could be identified that
the frequently used stability metric in particular can lead
to undesirable effects. Future research should develop
methods that focus directly on minimizing re-scheduling
situations or associated effects (see Section “DRL agent
behavior analysis”)

• Agent performance improvement. Further investiga-
tions could analyze how DRL can obtain even better end
results than traditional metaheuristics and how to reduce
the prediction scatter (see Section “DRL performance
benchmark (PPO vs. SARS)”).

• Other scheduling contexts. It would be interesting to
evaluate the applicability of other scheduling models,

123

Journal of Intelligent Manufacturing (2024) 35:667–686 683

MSO or different types of dynamic events (see Section
“Scalability investigation”).

• Agent generalizability. Further research is required to
make the agents more reliable and independent of the
environment (see Section “Scalability investigation”)

• Practical application. Due to the scope, no evaluation
of practical use could be carried out in this work. In this
context, future studies should address in-situ simulations,
benchmarks and in-depth analysis of robust-stable meth-
ods in practical environments.

Author Contributions FG: conceptualization, methodology, formal
analysis, investigation, writing—original draft, writing—review and
editing; AM: investigation (related work analysis), writing—original
draft, writing—review and editing; PR: funding acquisition, resources;
ST: supervision.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was supported as part of the joint research project
Human-centered Smart Service Lab/Predictive Scheduling (with project
number [EFRE-030018] of the European Regional Development Fund)
which is funded by the federated state North Rhine-Westphalia, Ger-
many. Project description available on https://www.fh-bielefeld.de/
forschung/forschungsprojekte/aktuelle-projekte-fb-3/reusch-predictive-
scheduling (German language).

Code availability Code with test instances and experiment results avail-
able on: https://doi.org/10.17605/OSF.IO/SXM3Q.

Declarations

Conflict of interest The authors have no conflict of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

See Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and Algorithm 3.

Table 6 GMRT uncertain
processing times Dk,PC for
machine k and product category
c (triangularly distributed)

Constant Value

D1,1 (149, 150, 155)

D2,1 (165, 167, 170)

D3,1 (90, 95, 102)

D1,2 (165, 168, 172)

D2,2 (205, 207, 212)

D3,2 (195, 198, 200)

Table 7 GMRT failure
probabilities P(Fk) and
triangular machine repair time
distributions Qk

Constant Value

P(F1) 0.05

P(F2) 0.15

P(F3) 0.1

Q1 (35, 40, 48)

Q2 (25, 27, 30)

Q3 (30, 35, 40)

Table 8 Uncertainty modeling for modified Taillard instances (LV: low
uncertainty variance, HV: high uncertainty variance)

Uncertain parameter Value

Di,k LV: (pi,k ∗ 0.94, pi,k , pi,k ∗ 1.06)

HV: (pi,k ∗ 0.88, pi,k , pi,k ∗ 1.12)

P(Fk) LV: {0.04, 0.06, 0.1}
HV: {0.07, 0.09, 0.15}

Qk LV: {(10, 15, 20), (8, 16, 24)}
HV: {(20, 25, 35), (25, 32, 40)}

Product categories are not considered in comparison to the GMRT
instances. Instead, every job has its own triangularly distributed uncer-
tain processing time Di,k . On initializing the modified test instances,
machine failure probability P(Fk) and repair time Qk have been
selected randomly from the sets defined below

123

https://www.fh-bielefeld.de/forschung/forschungsprojekte/aktuelle-projekte-fb-3/reusch-predictive-scheduling
https://www.fh-bielefeld.de/forschung/forschungsprojekte/aktuelle-projekte-fb-3/reusch-predictive-scheduling
https://www.fh-bielefeld.de/forschung/forschungsprojekte/aktuelle-projekte-fb-3/reusch-predictive-scheduling
https://doi.org/10.17605/OSF.IO/SXM3Q
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

684 Journal of Intelligent Manufacturing (2024) 35:667–686

Table 9 Plan duration (PD)
parameters for the subsequent
method to balance robustness
and stability (see Section
“Subsequent robustness and
stability optimization”)

PD Processing time expected value Comment

P D1 E(Dk,PC) − 2
√

V (Dk,PC)

2 Very optimistic

P D2 E(Dk,PC) Optimistic

P D3 E(Dk,PC) + P(Fk)E(Qk) Realistic

P D4 E(Dk,PC) + P(Fk)E(Qk) + 2
√

V (Dk,PC)

4 + P(Fk)
2√V (Qk)

4 Conservative

P D5 E(Dk,PC) + P(Fk)E(Qk) + 2
√

V (Dk,PC) + P(Fk)
2
√

V (Qk) Very conservative

Basis for the specification of the DRL action space. P D3 corresponds to the expected value including probable
repair time. P D2 corresponds to the expected value without repair time. Within the bounds of the aggregated
distribution, the further values were set even more optimistically or conservatively by subtracting or adding
a proportion of the standard deviation

Table 10 Effects of PD on
robustness and stability,
differentiated according to
makespan and total flow time
optimization

PD MSO Robustness Stability
R Rσ Rmin S Sσ |R| + S

P D1 Cmax − 38.35 2.38 − 44.64 283.8 14.63 322.15

P D2 Cmax − 29.19 2.39 − 34.83 230.67 12.98 259.86

P D3 Cmax − 4.68 2.1 − 9.43 218.06 4.37 222.74

P D4 Cmax 1.35 2.52 − 4.37 232.79 5.34 234.14

PT P5 Cmax 9.89 2.84 3.05 253.28 7.26 263.17

P D1 F − 137.79 6.93 − 150.99 293.06 9.5 430.85

P D2 F − 105.32 4.6 − 112.73 238.22 7.46 343.54

P D3 F − 16.97 5.88 − 25.88 219.39 5.59 236.36

P D4 F 7.56 8.23 − 5.7 234.85 11.15 242.41

PT P5 F 35.93 14.29 17.12 258.88 17.19 294.81

The data presented here was collected in the context of GMRT5x3

Table 11 DRL hyperparameters
for the PPO/A2C benchmark

Hyperparameter Value

Overall training steps 104

Network update interval (steps) 22

Learning rate (linearly decreasing) 10−4 (PPO) / 10−3 (A2C)

Discount factor 0.99

Activation function Rectified Linear Unit (ReLU)

Network architecture - Input layer: min. 12 neurons

(depending on the feature encoding)

- 1st hidden layer (shared): 29 neurons

- 2nd hidden layer (value net): 27, 26 neurons

- 2nd hidden layer (policy net): 26 neurons

- Output layer: 3 neurons

(corresponding to P D2, P D3, P D4)

Table 12 PPO vs. A2C
benchmark for F and Cmax
minimization as MSO
(w = 0.5)

Model Data MSO: min F MSO: minCmax

� �σ � �σ

PPO GMRT5x3 .969 .027 .972 .03

PPO GMRT10x3 .958 .028 .987 .016

PPO GMRT5x3 GMRT10x3 .971 .029 .98 .023

A2C GMRT5x3 .983 .043 .976 .028

A2C GMRT10x3 .967 .031 .991 .017

A2C GMRT5x3 GMRT10x3 .977 .035 .982 .026

Predictions by the fully trained DRL models were obtained for GMRT5x3 and GMRT10x3 (separate and
mixed). Mean � values and standard deviations are presented for each model and MSO

123

Journal of Intelligent Manufacturing (2024) 35:667–686 685

Algorithm 3 SARS candidate creation (pseudocode snippet)
o ← choice(O)
 Choose a random operation from the set of all scheduled operations O

2: a ← choice(A)
 Get random action from action space A
odur ← apply Action(a)
 Stretch or compress the operation duration

4: � ← MC E(O)
 Conduct MCE and measure robustness R and stability S
return �

Table 13 SARS results for F
and Cmax minimization as MSO
(w = 0.5) in the context of
GMTR5x3 and GMRT10x3

Method Data t MSO: min F MSO: minCmax

� �σ � �σ

SARS GMRT5x3 ≈ 500 .955 .017 .948 .01

SARS GMRT10x3 ≈ 500 .947 .019 .981 .008

Table 14 PPO after-training predictions on T20x5LV and T20x5HV
instances for F minimization as MSO (w = 0.5)

Method Data � �σ

PPO T20x5LV .961 .019

PPO T20x5HV .984 .027

The degree of uncertainty has an effect on the achievable robustness
and stability

References

Al-Behadili, M., Ouelhadj, D., & Jones, D. (2019). Multi-objective
biased randomised iterated greedy for robust permutation flow
shop scheduling problem under disturbances. Journal of the Oper-
ational Research Society, 71(11), 1847–1859. https://doi.org/10.
1080/01605682.2019.1630330

Bougeret, M., Pessoa, A. A., & Poss, M. (2019). Robust scheduling
with budgeted uncertainty. Discrete Applied Mathematics, 261,
93–107. https://doi.org/10.1016/j.dam.2018.07.001

Davenport, A. J., Gefflot, C. & Beck, J. C. (2001). Slack-based tech-
niques for robust schedules. In Proceedings of the sixth european
conference on planning (ECP-2001).

de Vonder, S. V., Demeulemeester, E., & Herroelen, W. (2007). A
classification of predictive-reactive project scheduling procedures.
Journal of Scheduling, 10(3), 195–207. https://doi.org/10.1007/
s10951-007-0011-2

Ding, Z., Hernandez-Leal, P., Ding, G. W., Li, C., & Huang, R. (2020).
arXiv:2011.07553.

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., &
Pineau, J. (2018). An introduction to deep reinforcement learning.
Foundations and Trends® in Machine Learning, 11(3–4), 219–
354. https://doi.org/10.1561/2200000071

Gonzalez-Neira, E. M., Montoya-Torres, J. R., & Jimenez, J.-F. (2021).
A multicriteria simheuristic approach for solving a stochastic per-
mutation flow shop scheduling problem. Algorithms, 14(7), 210.
https://doi.org/10.3390/a14070210

Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures
for scheduling: Single-machine environment. IIE Transactions,
40(1), 66–83. https://doi.org/10.1080/07408170701283198

Goren, S., Sabuncuoglu, I., & Koc, U. (2011). Optimization of sched-
ule stability and efficiency under processing time variability and
random machine breakdowns in a job shop environment. Naval
Research Logistics (NRL), 59(1), 26–38. https://doi.org/10.1002/
nav.20488

Hatami, S., Calvet, L., Fernandez-Viagas, V., Framinan, J. M., & Juan,
A. A. (2018). A simheuristic algorithm to set up starting times

in the stochastic parallel flowshop problem. Simulation Modelling
Practice and Theory, 86, 55–71. https://doi.org/10.1016/j.simpat.
2018.04.005

Jacoboni, C., & Lugli, P. (1989). The Monte Carlo method for semi-
conductor device simulation. Springer Vienna. https://doi.org/10.
1007/978-3-7091-6963-6

Jafari, H.,Ghaderi,H.,Malik,M.,&Bernardes, E. (2022). The effects of
supply chain flexibility on customer responsiveness: The moderat-
ing role of innovation orientation.Production Planning & Control.
https://doi.org/10.1080/09537287.2022.2028030

Jorge Leon, V., David Wu, S., & Storer, R. H. (1994). Robustness mea-
sures and robust scheduling for job shops. IIE Transactions, 26(5),
32–43. https://doi.org/10.1080/07408179408966626

Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., & Jorba, J.
(2014). A simheuristic algorithm for solving the permutation flow
shop problem with stochastic processing times. Simulation Mod-
elling Practice and Theory, 46, 101–117. https://doi.org/10.1016/
j.simpat.2014.02.005

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G.
(2015). A review of simheuristics: Extending metaheuristics to
deal with stochastic combinatorial optimization problems. Oper-
ations Research Perspectives, 2, 62–72. https://doi.org/10.1016/j.
orp.2015.03.001

Kardos, C., Laflamme, C., Gallina, V., & Sihn, W. (2021). Dynamic
scheduling in a job-shop production system with reinforcement
learning. Procedia CIRP, 97, 104–109. https://doi.org/10.1016/j.
procir.2020.05.210

Kenworthy, L., Nayak, S., Chin, C., & Balakrishnan, H. (2021). NICE:
Robust scheduling through reinforcement learning-guided integer
programming. arXiv:2109.12171.

Liu, C.-L., Chang, C.-C., & Tseng, C.-J. (2020). Actor-critic deep rein-
forcement learning for solving job shop scheduling problems.
IEEE Access, 8, 71752–71762. https://doi.org/10.1109/access.
2020.2987820

Liu, F., Wang, S., Hong, Y., & Yue, X. (2017). On the robust and stable
flowshop scheduling under stochastic and dynamic disruptions.
IEEE Transactions on Engineering Management, 64(4), 539–553.
https://doi.org/10.1109/tem.2017.2712611

Mailliez, M., Battaïa, O., & Roy, R. N. (2021). Scheduling and
rescheduling operations using decision support systems: Insights
from emotional influences on decision-making. Frontiers in Neu-
roergonomics. https://doi.org/10.3389/fnrgo.2021.586532

123

https://doi.org/10.1080/01605682.2019.1630330
https://doi.org/10.1080/01605682.2019.1630330
https://doi.org/10.1016/j.dam.2018.07.001
https://doi.org/10.1007/s10951-007-0011-2
https://doi.org/10.1007/s10951-007-0011-2
http://arxiv.org/abs/2011.07553
https://doi.org/10.1561/2200000071
https://doi.org/10.3390/a14070210
https://doi.org/10.1080/07408170701283198
https://doi.org/10.1002/nav.20488
https://doi.org/10.1002/nav.20488
https://doi.org/10.1016/j.simpat.2018.04.005
https://doi.org/10.1016/j.simpat.2018.04.005
https://doi.org/10.1007/978-3-7091-6963-6
https://doi.org/10.1007/978-3-7091-6963-6
https://doi.org/10.1080/09537287.2022.2028030
https://doi.org/10.1080/07408179408966626
https://doi.org/10.1016/j.simpat.2014.02.005
https://doi.org/10.1016/j.simpat.2014.02.005
https://doi.org/10.1016/j.orp.2015.03.001
https://doi.org/10.1016/j.orp.2015.03.001
https://doi.org/10.1016/j.procir.2020.05.210
https://doi.org/10.1016/j.procir.2020.05.210
http://arxiv.org/abs/2109.12171
https://doi.org/10.1109/access.2020.2987820
https://doi.org/10.1109/access.2020.2987820
https://doi.org/10.1109/tem.2017.2712611
https://doi.org/10.3389/fnrgo.2021.586532

686 Journal of Intelligent Manufacturing (2024) 35:667–686

Minguillon, F. E., & Stricker, N. (2020). Robust predictive—Reactive
scheduling and its effect on machine disturbance mitigation. CIRP
Annals, 69(1), 401–404. https://doi.org/10.1016/j.cirp.2020.03.
019

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley,
T., Silver, D.,& Kavukcuoglu, K. (2016). Asynchronous methods
for deep reinforcement learning. arXiv:1602.01783.

Monostori, J. (2018). Supply chains robustness: Challenges and oppor-
tunities. Procedia CIRP, 67, 110–115. https://doi.org/10.1016/j.
procir.2017.12.185

Morales, E. F., & Zaragoza, J. H. (2012). An introduction to reinforce-
ment learning.Decision theory models for applications in artificial
intelligence (pp. 63–80). IGI Global. https://doi.org/10.4018/978-
1-60960-165-2.ch004

Moratori, P., Petrovic, S., & Vazquez-Rodriguez, J. A. (2010). Fuzzy
approaches for robust job shop rescheduling. In International
conference on fuzzy systems. IEEE. https://doi.org/10.1109/fuzzy.
2010.5584722.

Naderi, B., & Ruiz, R. (2010). The distributed permutation flowshop
scheduling problem. Computers & Operations Research, 37(4),
754–768. https://doi.org/10.1016/j.cor.2009.06.019

Negri, E., Pandhare, V., Cattaneo, L., Singh, J., Macchi, M., & Lee, J.
(2020). Field-synchronized digital twin framework for production
scheduling with uncertainty. Journal of Intelligent Manufacturing,
32(4), 1207–1228. https://doi.org/10.1007/s10845-020-01685-9

OpenAI. (2022a). Getting started with gym. https://gym.openai.com/
docs/. Accessed May 24, 2022.

OpenAI. (2022b). OpenAI baselines: ACKTR & A2C. https://openai.
com/blog/baselines-acktr-a2c/. Accessed May 24, 2022.

OpenAI. (2022c). Proximal policy optimization. https://openai.com/
blog/openai-baselines-ppo/. Accessed May 24, 2022.

Park, K. T., Jeon, S.-W., & Noh, S. D. (2021). Digital twin application
with horizontal coordination for reinforcement-learning-based
production control in a re-entrant job shop. International Journal
of Production Research. https://doi.org/10.1080/00207543.2021.
1884309

Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop
schedulingwith unexpected arrivals of new jobs and uncertain pro-
cessing times. Journal of Manufacturing Systems, 33(1), 84–92.
https://doi.org/10.1016/j.jmsy.2013.03.004

Salmasnia, A., Khatami, M., Kazemzadeh, R. B., & Zegordi, S. H.
(2014). Bi-objective single machine scheduling problem with
stochastic processing times. TOP, 23(1), 275–297. https://doi.org/
10.1007/s11750-014-0337-9

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov,
O. (2017). Proximal policy optimization algorithms.
arXiv:1707.06347.

Shahrabi, J., Adibi, M. A., & Mahootchi, M. (2017). A reinforce-
ment learning approach to parameter estimation in dynamic job
shop scheduling. Computers & Industrial Engineering, 110, 75–
82. https://doi.org/10.1016/j.cie.2017.05.026

Shen, X.-N., Han, Y., & Fu, J.-Z. (2016). Robustness measures and
robust scheduling for multi-objective stochastic flexible job shop
scheduling problems. Soft Computing, 21(21), 6531–6554. https://
doi.org/10.1007/s00500-016-2245-4

Soofi, P., Yazdani, M., Amiri, M., & Adibi, M. A. (2021). Robust
fuzzy-stochastic programming model and meta-heuristic algo-
rithms for dual-resource constrained flexible job-shop scheduling
problem under machine breakdown. IEEE Access, 9, 155740–
155762. https://doi.org/10.1109/access.2021.3126820

Stable-Baselines3. (2022). Reliable reinforcement learning implemen-
tations. https://stable-baselines3.readthedocs.io. Accessed May
24, 2022.

Su, X., Han, W., Wu, Y., Zhang, Y., & Liu, J. (2018). A proactive robust
scheduling method for aircraft carrier flight deck operations with
stochastic durations. Complexity, 2018, 1–38. https://doi.org/10.
1155/2018/6932985

Sundstrom, N., Wigstrom, O., & Lennartson, B. (2017). Conflict
between energy, stability, and robustness in production sched-
ules. IEEE Transactions on Automation Science and Engineering,
14(2), 658–668. https://doi.org/10.1109/tase.2016.2643621

Taillard, E. (1993). Benchmarks for basic scheduling problems. Euro-
pean Journal of Operational Research, 64(2), 278–285. https://
doi.org/10.1016/0377-2217(93)90182-m

Vieira, G. E., Kück, M., Frazzon, E., & Freitag, M. (2017). Evaluating
the robustness of production schedules using discrete-event simu-
lation. IFAC-PapersOnLine, 50(1), 7953–7958. https://doi.org/10.
1016/j.ifacol.2017.08.896

Wang, H., Sarker, B. R., Li, J., & Li, J. (2020). Adaptive scheduling for
assembly job shop with uncertain assembly times based on dual
q-learning. International Journal of Production Research, 59(19),
5867–5883. https://doi.org/10.1080/00207543.2020.1794075

Wang, W., Gao, C., & Shi, L. (2022). Robust optimization on unrelated
parallel machine scheduling with setup times. IEEE Transactions
on Automation Science and Engineering. https://doi.org/10.1109/
tase.2022.3151611

Wu,C.-C.,Gupta, J.N.D.,Cheng, S.-R., Lin,B.M.T.,Yip, S.-H.,&Lin,
W.-C. (2020). Robust scheduling for a two-stage assembly shop
with scenario-dependent processing times. International Journal
of Production Research, 59(17), 5372–5387. https://doi.org/10.
1080/00207543.2020.1778208

Xiao, S., Sun, S., & Jin, J. (2017). Surrogate measures for the robust
scheduling of stochastic job shop scheduling problems. Energies,
10(4), 543. https://doi.org/10.3390/en10040543

Xiao, S., Wu, Z., & Yu, S. (2019). A two-stage assignment strategy for
the robust scheduling of dual-resource constrained stochastic job
shop scheduling problems. IFAC-PapersOnLine, 52(13), 421–426.
https://doi.org/10.1016/j.ifacol.2019.11.092

Xiong, J., Ning Xing, L., & Wu Chen, Y. (2013). Robust schedul-
ing for multi-objective flexible job-shop problems with random
machine breakdowns. International Journal of Production Eco-
nomics, 141(1), 112–126. https://doi.org/10.1016/j.ijpe.2012.04.
015

Yu, V. F., Maulidin, A., Redi, A. A. N. P., Lin, S.-W., & Yang, C.-L.
(2021). Simulated annealingwith restart strategy for the path cover
problem with time windows. Mathematics, 9(14), 1625. https://
doi.org/10.3390/math9141625

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cirp.2020.03.019
https://doi.org/10.1016/j.cirp.2020.03.019
http://arxiv.org/abs/1602.01783
https://doi.org/10.1016/j.procir.2017.12.185
https://doi.org/10.1016/j.procir.2017.12.185
https://doi.org/10.4018/978-1-60960-165-2.ch004
https://doi.org/10.4018/978-1-60960-165-2.ch004
https://doi.org/10.1109/fuzzy.2010.5584722
https://doi.org/10.1109/fuzzy.2010.5584722
https://doi.org/10.1016/j.cor.2009.06.019
https://doi.org/10.1007/s10845-020-01685-9
https://gym.openai.com/docs/
https://gym.openai.com/docs/
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://doi.org/10.1080/00207543.2021.1884309
https://doi.org/10.1080/00207543.2021.1884309
https://doi.org/10.1016/j.jmsy.2013.03.004
https://doi.org/10.1007/s11750-014-0337-9
https://doi.org/10.1007/s11750-014-0337-9
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1007/s00500-016-2245-4
https://doi.org/10.1007/s00500-016-2245-4
https://doi.org/10.1109/access.2021.3126820
https://stable-baselines3.readthedocs.io
https://doi.org/10.1155/2018/6932985
https://doi.org/10.1155/2018/6932985
https://doi.org/10.1109/tase.2016.2643621
https://doi.org/10.1016/0377-2217(93)90182-m
https://doi.org/10.1016/0377-2217(93)90182-m
https://doi.org/10.1016/j.ifacol.2017.08.896
https://doi.org/10.1016/j.ifacol.2017.08.896
https://doi.org/10.1080/00207543.2020.1794075
https://doi.org/10.1109/tase.2022.3151611
https://doi.org/10.1109/tase.2022.3151611
https://doi.org/10.1080/00207543.2020.1778208
https://doi.org/10.1080/00207543.2020.1778208
https://doi.org/10.3390/en10040543
https://doi.org/10.1016/j.ifacol.2019.11.092
https://doi.org/10.1016/j.ijpe.2012.04.015
https://doi.org/10.1016/j.ijpe.2012.04.015
https://doi.org/10.3390/math9141625
https://doi.org/10.3390/math9141625

	Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning
	Abstract
	Introduction
	Literature review
	Dynamic environments and uncertainty modeling
	Techniques to generate proactive schedules
	Techniques to evaluate proactive schedules
	Trade-off between MSO, robustness and stability
	DRL-based methods
	Research gaps

	Proposed approach
	Deterministic flow shop problem
	Scenario with uncertainties
	Robustness and stability evaluation
	Subsequent robustness and stability optimization
	DRL design

	Computational study
	Experimental setup
	Action space analysis
	DRL policy learning benchmark (PPO vs. A2C)
	DRL agent behavior analysis
	DRL performance benchmark (PPO vs. SARS)
	Scalability investigation

	Conclusions and future research
	Appendix
	References

