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Abstract
Chemical mechanical planarization (CMP) is a complex and high-accuracy polishing process that creates a smooth and planar
material surface. One of the key challenges of CMP is to predict the material removal rate (MRR) accurately. With the
development of artificial intelligence techniques, numerous data-driven models have been developed to predict the MRR in
the CMP process. However, these methods are not capable of considering surface topography inMRR predictions because it is
difficult to observe and measure the surface topography. To address this issue, we propose a graphical model and a conditional
variational autoencoder to extract the features of surface topography in the CMP process. Moreover, process variables and
the extracted features of surface topography are fed into an ensemble learning-based predictive model to predict the MRR.
Experimental results have shown that the proposed method can predict the MRR accurately with a root mean squared error
of 6.12 nm/min, and it outperforms physics-based machine learning and data-driven methods.

Keywords Chemical mechanical planarization · Deep learning · Graphical model · Material removal rate prediction

Introduction

Chemical mechanical planarization (CMP) refers to a high-
precision surface polishing process with a combination of
chemical and mechanical forces (Sheu et al., 2012; Zantye
et al., 2004). CMP was initially innovated by Klaus D.Beyer
in the 1980s to create a smooth surface so that lithographic
imaging can be implemented subsequently (Krishnan et al.,
2010). CMP can be used to polish a wide range of materials,
such as tungsten, semiconductors, metal, carbon nanotubes,
and silicon oxide (Awano, 2006; Steigerwald et al., 1997).
CMP has been used in many applications, such as optical
components, wireless communications, and large-scale inte-
gration manufacturing (Lee et al., 2016; Leon et al., 2017;
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Yin et al., 2019). A typical CMP device includes a rotating
table, a planarization pad, a wafer carrier, a wafer, a slurry
dispenser, and a rotating dresser, where a wafer is captured
by a wafer carrier, and a polishing pad is attached to the
rotating table. In the CMP process, a wafer is pushed toward
the planarization pad, and both the rotating table and the
wafer carrier are rotated in an identical direction. The abra-
sive materials are dispensed on the planarization pad via a
slurry during the polishing process. A rotating dresser may
be engaged in conditioning the polishing pad after the CMP
process.

The performance of the CMP process can be evaluated
using many metrics, such as wafer-to-wafer thickness varia-
tion, surface roughness, and process reliability and stability.
To reduce the wafer-to-wafer thickness variation in CMP,
accurate prediction of material removal rate (MRR) is crit-
ical (Deng et al., 2021). However, predicting MRR with
high accuracy remains a challenge because MRR depends
on various process variables and surface topography, such
as the rotating rate of the wafer, flow rate of slurry, polish-
ing pad asperity density, wafer hardness, and so on (Park
et al., 2008; Yu et al., 2016). According to the literature,
numerous methodologies have been developed to predict the
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MRR during the CMP process, and these methodologies can
be classified into two groups: model-based and data-driven
methods. The majority of model-based methods are built
upon the basic or modified Preston equations (Luo et al.,
1998). The Preston equation is an empirical model that con-
siders the pressure applied to a wafer in a vertical direction
and the relative speed between the wafer and the polishing
pad (Evans et al., 2003). However, fewmodel-basedmethods
are able to accurately predict the MRR of the CMP process
(Kong et al., 2010). Over the past few years, data-driven
methods have been increasingly used to predict MRR by
incorporatingmultiple process variables, such as rotating rate
of wafer and flow rate of slurry (Lee & Kim, 2020; Xia et al.,
2021). However, these methods are not capable of consid-
ering surface topography in MRR predictions as the surface
topography is difficult to observe and measure (Chen et al.,
2020). To address this issue, our contributions are listed as
follows:

• A directed graphical model is proposed to reveal the rela-
tions among process variables, surface topography, and
MRR during the CMP process.

• A conditional variational autoencoder is introduced
based on the proposed directed graphicalmodel to extract
the features of the surface topography.

• An ensemble learning-based predictive model is devel-
oped to predict the MRR during the CMP process.

The remainder of this paper is organized as follows. Sec-
tion Related work reviews the model-based and data-driven
methods for MRR predictions in the CMP process. Section
Methodology proposes a directed graphical model and intro-
duces a conditional variational autoencoder to extract the
features of the surface topography. In addition, an ensemble
learning-based approach is presented in this section to pre-
dict the MRR during the planarization process. Section Case
study uses a CMP dataset to demonstrate the effectiveness of
the proposed method. Section Conclusions and future work
concludes this study and directs future work.

Related work

This section reviews the model-based and data-driven meth-
ods for predicting MRR in CMP processes. The limitation of
these methods is summarized at the end of this section.

Model-basedmethods

Model-based methods refer to the methods that predict
the behavior of a system or a process using numerical or
analytical models. Luo and Dornfeld (2001) presented a
physics-basedmodel to predict theMRR in theCMPprocess,

where both wafer-abrasive and pad-abrasive mechanisms in
plastic contact mode were investigated. The proposed model
considered multiple process variables in MRR predictions,
such as pressure, velocity, pad roughness, and so on. The
experimental results have shown that the proposed model
enables an accurateMRR prediction and a better understand-
ing of the abrasive mechanism in the CMP process. Lee and
Jeong (2011) presented a semi-empirical CMPmodel to pre-
dict the MRR during the copper CMP process by combining
the basic form of the Preston equation and a spatial param-
eter. The distributions of velocity, contact stress, and rate of
reaction were considered in the proposed model. Zhao and
Chang (2002) presented a closed-form equation to predict the
MRR in the polishing process of silicon wafers based upon a
micro-contact andwearmodel. The proposed equation incor-
porated multiple process variables, material parameters, and
chemical parameters. Experimental results have suggested
that the MRR is sensitive to wafer hardness, slurry type, and
rotating speed. Oh and Seok (2009) combined a mechanical
abrasive model with a slurry dispensation model to esti-
mate the MRR for silicon dioxide in the CMP process. The
effects led by both mechanical and chemical actions were
included in MRR predictions. The experimental results have
demonstrated that the proposed method can deal with the
non-Prestonian behavior during the planarization process.
Lee et al. (2013) introduced a MRR distribution model to
predict the MRR in the planarization process. To estimate
the parameters of the proposed model, a CMP experiment
was conducted on different types of slurries. Nguyen et al.
(2015) introduced a MRR analytical model by considering
both the contact time of the planarization process and the
kinematic mechanism. The numerical results have demon-
strated that the non-conformity of the pad wear is due to the
inconsistencies in both cutting path density and contact time.

Data-drivenmethods

Data-drivenmethods refer to themethods that guide decision
making using data instead of physical models represent-
ing the behavior behind a system or a process. Kong et al.
(2010) integrated a statistical learning model with a non-
linear Bayesian method to predict the MRR of the CMP
process. The particle filter was implemented to estimate the
state of the CMP process, and vibration signals were used
to predict the MRR. The numerical results have demon-
strated that this approach can effectively predict the MRR
during the planarization process. Li et al. (2019) presented
an ensemble learning method to predict the MRR in the pla-
narization process. Temporal and frequency-domain features
were extracted from multiple sensor measurements and fed
into the ensemble learning method. The numerical results
have demonstrated that the proposed methodology can pre-
dict theMRRat different polishing stageswith high accuracy.
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Yu et al. (2019) introduced a physics-constrained machine
learning method to predict the MRR. The Greenwood and
Williamson contactmodel (Greenwood&Williamson, 1966;
Johnson & Johnson, 1987) served as a predictive model
to estimate the MRR, and the random forests method was
used to estimate the topography terms in the Greenwood and
Williamson contact model. Wang et al. (2017) used a deep
neural network to predict the MRR during the planarization
process based on the polishing process variables. The particle
swarm optimization method was implemented to study the
effect of the learning rate onprediction accuracy. The numeri-
cal results have demonstrated that the proposed deep learning
approach can accurately predict the MRR under different
operating conditions. Jia et al. (2018) introduced an adaptive
polynomial neural network to predict the MRR. The features
and predictive models were selected automatically, and two
novel categories of features were introduced to improve the
prediction performance.

In summary, numerous model-based and data-driven
methods have been introduced to predict the MRR in the
CMP process. However, most model-based methods are not
able to predict the MRR with high accuracy due to the com-
plexity of the CMP process. Some of the existing data-driven
methods are effective in predicting the MRR, however, few
data-driven methods predict the MRR by taking into account
the surface topography information because it is difficult
to measure the surface topography in the CMP process. To
address these issues, the objective of this study is to develop
a directed graphical model and a conditional variational
autoencoder to extract the features of the surface topography.
In addition, an ensemble learning-based predictive model is
presented to predict the MRR during the CMP process.

Methodology

The proposed methodology includes three primary steps.
First, a directed graphical model is proposed to reveal the
relations among process variables, surface topography, and
MRR in the CMP process. Second, a conditional variational
autoencoder is introduced based on the proposed directed
graphical model to extract the features of the surface topog-
raphy.Third, both process variables and the extracted features
of the surface topography are fed into an ensemble learning-
based predictive model to predict the MRR in the CMP
process. More details of these three steps are introduced in
the following subsections.

Directed graphical model

A directed graphical model refers to a probabilistic model
where the dependency of multiple variables is revealed in a
directed graph (Airoldi, 2007). Figure 1 shows the proposed

Fig. 1 The proposed directed graphical model, where t refers to the
surface topography, r refers to the material removal rate, and v refers
to the process variables

directed graphical model where the relationships among pro-
cess variables, surface topography, and MRR are revealed.

The process variables of the CMP process, such as polish-
ing pressure andflow rate of slurry, affect surface topography,
such as pad asperity density and average asperity radii (Yu et
al., 2019). Therefore, an arrow is considered to be directed
fromprocess variables to surface topography to represent that
the process variables affect the surface topography. The pro-
cess variables affect the MRR, for example, a higher rotation
rate of wafer and table can lead to a higher MRR. There-
fore, an arrow is directed from process variables to material
removal rate to represent that the process variables can be
used to predict the MRR. In addition, the surface topography
can also affect the MRR, for instance, a higher active asper-
ity density can lead to a higher MRR. Thus, a directed arrow
is pointed from surface topography to material removal rate
to represent that the surface topography can also be used to
predict the MRR.

In the proposed graphical model, the process variables can
be observed from sensor measurements and the MRR can be
measured after theCMPprocess.However, the surface topog-
raphy is difficult to observe and measure due to its dynamic
evolution during the planarization process. To extract fea-
tures that enable a maximized MRR prediction accuracy, the
extracted features of the surface topography can be expressed
as Eq. (1),

t := argmax
t

pθ (r | v) (1)

where t refers to the features of the surface topography, r is
the material removal rate, v refers to the process variables, θ
is a collection of parameters in the conditional probability of
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MRR , i.e. pθ (r | v). To simplify the optimization process,
we use log-likelihood instead of likelihood. Then, Eq. (1) can
be rewritten as:

t := argmax
t

log pθ (r | v) (2)

With using the Bayesian theory, log pθ (r | v) can also be
written as Eq. (3).

log pθ (r | v) = log
pθ (v, r)
pθ (v)

= log
pθ (v, r , t)

pθ (t | v, r) · pθ (v)

(3)

Based on the chain rule of the proposed directed graphical
model, pθ (v, r , t) can be expressed as:

pθ (v, r , t) = pθ (r | t, v) · pθ (t | v) · pθ (v) (4)

By substituting Eq. (4) to Eq. (3), log pθ (r | v) can bewritten
as Eq. (5).

log pθ (r | v) = log
pθ (r | t, v) · pθ (t | v)

pθ (t | v, r) (5)

The conditional probability distribution of t is unknown as
the surface topography can not be obtained directly. Thus,
pθ (t | v, r) is intractable. To deal with this intractable pos-
terior distribution, a variational inference is introduced and
log pθ (r | v) can be expressed as:

log pθ (r | v)
= log

pθ (r | t, v) · pθ (t | v)
pθ (t | v, r) · qφ(t | v, r)

qφ(t | v, r)
(6)

Then, the expectation of Eq. (6) can be written as Eq. (7),
where φ is the collection of parameters in the variational
inference qφ(t | v, r).

Et∼qφ(t|v,r)
[
log

pθ (r | t, v) · pθ (t | v)
pθ (t | v, r) · qφ(t | v, r)

qφ(t | v, r)
]

(7)

Equation (7) can be decomposed into the sum of two terms,
where the first term can be expressed as:

Et∼qφ(t|v,r)
[
log

pθ (r | t, v) · pθ (t | v)
qφ(t | v, r)

]
(8)

The second term is expressed as Eq. (9), which is a KL-
divergence of two distributions.

DKL [qφ(t | v, r)‖pθ (t | v, r)] (9)

Because the KL-divergence of two distributions is always
positive, and this KL-divergence term includes an intractable
probability distribution pθ (t | v, r). A variational lower
bound is introduced, and the extracted features of surface
topography can be expressed as:

t := argmax
t

Et∼qφ(t|v,r)
[
log

pθ (r | t, v) · pθ (t | v)
qφ(t | v, r)

]
(10)

The expectation termofEq. (10) can also be decomposed into
two terms, and the extracted features of the surface topogra-
phy can be written as:

t : = argmax
t

Et∼qφ(t|v,r)[log pθ (r | t, v)]
− DKL [qφ(t | v, r)‖pθ (t | v)]

(11)

Based on the Universal Approximation Theorem (Hornik et
al., 1989), neural networks are employed to approximate the
three conditional probability distributions in Eq. (11).

Conditional probabilistic autoencoders

The conditional probability distributions in the variational
lower bound are approximated using autoencoder-based neu-
ral networks. The conditional probability qφ(t | v, r) is
approximated with an encoder network. The inputs of this
encoder network are process variables v and the MRR r , and
the outputs of this network are the features of the surface
topography t. We name this encoder network the generative
encoder network as it aims at generating the features of the
surface topography. The relationships between the inputs and
the outputs of this network can be mathematically written as
Eq. (12),

oq,L = fq,L · · · [ fq,l · · · [ fq,2[ fq,1(v, r)]]]
µ1 = wq,L+1,1 · oq,L + bq,L+1,1

diag(�1) = wq,L+1,2 · oq,L + bq,L+1,2

t1 = µ1 + �1 � ε, ε ∼ N (0, I)

(12)

where fq,l(·) can be expressed as fq,l(·) = σ(wq,l ·oq,l−1 +
bq,l); wq,l refers to the vector of weights of the generative
encoder network at hidden layer l; bq,l is the bias vector of
the generative encoder network at hidden layer l; oq,l−1 is
the output of the hidden layer l −1; σ refers to the activation
function; µ1 and �1 are mean and standard deviation of the
conditional probability distribution qφ(t | v, r) respectively.

The conditional probability pθ (t | v) is approximated
with an encoder network. The inputs of this network are pro-
cess variables, and the outputs are the features of the surface
topography. We name this network as the conditional prior
network as it aims at generating the features of the surface
topography conditioning on the prior knowledge of process
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variables. The relationships between the inputs and the out-
puts of this network can be mathematically written as Eq.
(13),

o
′
p,L = f

′
p,L · · · [ f ′

p,l · · · [ f
′
p,2[ f

′
p,1(v)]]]

µ2 = w
′
p,L+1,1 · o′

p,L + b
′
p,L+1,1

diag(�2) = w
′
p,L+1,2 · o′

p,L + b
′
p,L+1,2

t2 = µ2 + �2 � ε, ε ∼ N (0, I)

(13)

where f
′
q,l(·) can be written as f

′
q,l(·) = σ(w

′
q,l · o′

q,l−1 +
b

′
q,l); w

′
q,l refers to the vector of weights of the conditional

prior encoder network at hidden layer l; b
′
q,l is the bias vector

of the conditional prior encoder network at hidden layer l;
o

′
q,l−1 is the output of the hidden layer l − 1; µ2 and �2 are
mean and standard deviation of the conditional probability
distribution qφ(t | v) respectively; and L refers to the total
number of hidden layers.

The conditional probability pθ (r | t, v) is approximated
with a decoder network. The inputs of this network are
process variables and the features of the surface topogra-
phy extracted from the generative encoder network, and the
outputs of this network are predicted MRR. We name this
network as the predictive network as it aims at predicting
the MRR in the CMP process. The relationships between the
inputs and the outputs of this network can be mathematically
expressed as Eq. (14),

r̂ = f p,L · · · [ f p,l · · · [ f p,2[ f p,1(v, t1)]]] (14)

where f p,l(·) can be written as f p,l(·) = σ(wp,l · op,l−1 +
bp,l); wp,l refers to the vector of weights of the predictive
decoder network at hidden layer l; bp,l is the bias vector of
the predictive decoder network at hidden layer l; op,l−1 is
the output of the hidden layer l − 1;

Then, the expectation of the variational lower bound in
Eq. (11) can be considered as the MRR prediction errors,
which can be rewritten as Eq. (15),

Et∼qφ(t|v,r)[log pθ (r | t, v)] = ‖r − r̂‖22 (15)

where r is the ground truth of the MRR, and r̂ refers to
the predicted MRR. The KL-divergence of the variational
lower bound in Eq. (11) can be considered as the differences
between two distributions, which can be expressed as Eq.
(16).

DKL [qφ(t | v, r)‖pθ (t | v)] = 1

2

(
tr(�−1

2 �1)

+(μ2 − μ1)
T�−1

2 (μ2 − μ1) − d + log

( | �2 |
| �1 |

)) (16)

Next, the gradient descent method can be used to train
the parameters in these networks. However, it may not be
optimized to generate t2 as the conditional prior network is
not connected to a predictive network. To address this issue,
another predictive network is introduced. A similar setup can
also be found in Zhao et al. (2017), Pandey and Dukkipati
(2017), and Wei et al. (2021). The inputs of this network are
process variables and the features of the surface topography
extracted from the conditional prior encoder network, and
the outputs of this predictive network are predicted MRR.
The relationships between the inputs and the outputs of this
predictive network can be mathematically expressed as Eq.
(17),

r̂ ′ = f
′′
p,L · · · [ f ′′

p,l · · · [ f
′′
p,2[ f

′′
p,1(v, t2)]]] (17)

The additional introduced predictive decoder network results
in one extra objective in the variational lower bound, and this
extra objective can be expressed as:

Et∼pθ (t|v)[log pθ (r | t, v)] = ‖r − r̂ ′ ‖22 (18)

In summary, there are four networks are introduced to
approximate multiple conditional probability distributions.
These networks include one generative encoder network,
one conditional prior encoder network, and two predictive
decoder networks. By summing Eq. (15), Eq. (16), and Eq.
(18), the total losses of these four networks can be written as
Eq. (19), which is a sum of three losses.

L = L1 + L2 + L3;
L1 = ‖r − r̂‖22; L2 = ‖r − r̂ ′ ‖22;
L3 = 1

2

(
tr(�−1

2 �1) + (μ2 − μ1)
T

�−1
2 (μ2 − μ1) − d + log

( | �2 |
| �1 |

))
(19)

Next, these four networks are connected to train the param-
eters and extract the features of the surface topography. We
name these connected networks as conditional probabilistic
autoencoders. Figure 2 shows the flow diagram of the pro-
posed conditional probabilistic autoencoders, where � is a
collection of trainable parameters in the generative encoder
network,�

′
is a collection of trainable parameters in the con-

ditional prior encoder network, � and �
′
refer to collections

of trainable parameters in predictive decoder networks.
In the training phase, the process variables v and MRR r

are fed into the generative encoder network to derive μ1 and
�1;μ1 and�1 are used to generate the features of the surface
topography t1; both v and t1 are fed into a predictive decoder
network to get the predicted MRR r̂ . The process variables v
are fed into the conditional prior encoder network to derive
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Fig. 2 Flow diagram of the proposed conditional probabilistic autoencoders

μ2 and �2; μ2 and �2 are used to generate the features of
the surface topography t2; both v and t2 are fed into another
predictive decoder network to derive the predicted MRR r̂ ′ ;
μ1, �1, μ2, and �2 are used to calculate the KL-divergence
loss, i.e. L3; r and r̂ are used to calculate one prediction

loss, i.e. L1; r and r̂
′ are used to calculate another prediction

loss, i.e. L2; Next, all losses L1, L2, L3 are back-propagated
through these networks to update the trainable parameters,
�, �

′
, �, and �

′
. In the test phase, process variables are

fed into the conditional prior encoder network to extract μ2

and�2.μ2 refers to the deterministic version of the extracted
features of the surface topography. The deterministic version
of the extracted features helps improve the accuracy of MRR
predictions. Table 1 shows the training and test phases of the
proposed conditional probabilistic autoencoders.

MRR predictive model

Next, process variables and the extracted features of the sur-
face topography are fed into an ensemble learning-based
MRR predictive model to predict the MRR during the CMP
process. Ensemble learning usually achieves the best pre-
diction performance by combining multiple base learning
algorithms (Polikar, 2006). In this work, we select the
best three base regressors out of ten base regressors, the
selected base regressors include Random Forests (RF), Gra-
dient Boosting Trees (GBT), and Adaptive Boosting (AB).
More details onwhy these three base regressorswere selected

are provided in Sect. Feature extraction and hyperparame-
ters tuning. Moreover, the stacking method is implemented
to combine three base regressors. These base regressors are
briefly introduced in the following sections.

Random forests

The RF refers to an ensemble learning methodology by con-
structing and combining multiple decision trees (Breiman,
2001; Wu et al., 2019). To develop a decision tree, a random
set of variables are selected to split a parent node into two
child nodes. The splitting criteria of each parent node can be
expressed as the following optimization problem,

min
j,c

⎡
⎣ min
m1,m2

⎛
⎝ ∑

xi∈R1

(yi − m1)
2 +

∑
xi∈R2

(yi − m2)
2

⎞
⎠

⎤
⎦ (20)

where R1 = {x | x j ≤ c} and R2 = {x | x j ≥ c} refer to two
regions after the splitting process is completed; x j is the j-th
splitting variable; c refers to a cutting point; m1 denotes the
mean of the yi ’s that lie into the region R1; and m2 denotes
the mean of the yi ’s that lie into the region R2.

The splitting process is replicated unit the stopping criteria
has been satisfied. A final prediction is made by averaging
predictions made by all constructed decision trees.
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Table 1 The training and test
phases of the proposed
conditional probabilistic
autoencoders

Methodology: Conditional Probabilistic Autoencoders to Extract Topography Features

Procedure Autoencoders-Training

1: Construct r and v, Define Learning rate α

2: Randomly initialize �, �, �
′
, �

′

3: while not done do

4: Use v, r to derive μ1, �1

5: Use v to derive μ2, �2

6: Derive t1, t2 with μ1, �1, μ2, �2

7: Predict r̂ and r̂ ′ with t1, t2, and v

8: Compute Losses L1, L2, and L3

9: Update � ← � - α · ∂(L1+L3)
∂�

10: Update �
′ ← �

′
- α · ∂(L2+L3)

∂�
′

11: Update � ← � - α · ∂L1
∂�

12: Update �
′′ ← �

′
- α · ∂L2

∂�
′

13: end while

14: return parameters �
′

End Procedure

Procedure Autoencoders-Testing

1: Use conditional prior encoder network

2: Feed process variables v to extract μ2, �2

3: Use μ2 as the surface topography features

End Procedure

Gradient boosting trees

The GBT is an ensemble learning method by constructing
decision trees sequentially (Friedman, 2001). Higherweights
are assigned on data points that are challenging to predict to
improve predictive accuracy. TheGBT predictor aims at esti-
mating amapping function g(x) of input x. Themathematical
model is used to approximate the function g(x), which can
be written as a sum of multiple local functions gn ,

g(x) =
N∑

n=1

βngn(x; γn) (21)

where N is the total number of local functions; γn is a collec-
tion of parameters of the local function gn; βn refers to the
weighted coefficient. γn and βn can be approximated with
the Eq. (22), where L is the loss function.

(γn, βn) = argmin
γ,β

E[L(yi , gn−1(xi ) + βg(xi ; γ ))] (22)

Next, the greedy-stagewise method (Friedman, 2001) can
be used to solve this optimization problem and update the
parameters sequentially.

Adaptive boosting

The AB algorithm is similar to the GBT algorithm, which
starts from fitting a regressor on the initial dataset and fit-
ting extra regressors on the same dataset with higher weights
on data points that are challenging to predict. One primary
difference between the AB and GBT algorithms is that the
AB algorithm identifies weak learners by high-weight data
points, the GBT algorithm identifies weak learners by the
gradient. More details of the AB algorithm can be found in
Kégl (2013) and Friedman et al. (2000).

Next, the stacking method is employed to combine these
three base regressors. A stacking ensemble learning method
includes two stages that are training base regressors and train-
ing a meta-regressor (Li et al., 2019). Figure 3 shows the
two-stage stacking ensemble learning method. In the first
stage, process variables and the extracted features of the sur-
face topography are fed into three base regressors to make
three individual predictions. In the second stage, these indi-
vidual predictions are fed into a meta regressor to make a
final prediction. In this work, the multi-layer perceptron was
employed as a meta regressor.
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Fig. 3 Two-stage ensemble learning method with stacking

Table

CMP 
Slurry

Polishing 
pressure

Pad

Wafer
Wafer carrier

Dresser

Conditioning 
pressure

Fig. 4 The schematic diagram of the CMP process

Case study

In this section, the effectiveness of the proposed methodol-
ogy is demonstrated on a CMP dataset from the PHM data
challenge (Li et al., 2019).

Data description

This dataset includesmultiple sensormeasurements obtained
from a CMP process. Figure 4 exhibits a schematic diagram
of a typical CMP process. For a typical CMP process, a wafer
is captured by a wafer carrier, a polishing pad is attached to
the rotating table. In the CMP process, a wafer is pushed
toward the planarization pad, and both the rotating table and
the wafer carrier are rotated in an identical direction. The
abrasive materials are dispensed on the planarization pad via
a slurry during the polishing process. A rotating dresser may
be engaged in conditioning the polishing pad after the CMP
process.

The data includes 19 process variables. These variables,
such as chamber pressure, flow rate of slurry, and applied
pressure, are real-time collected data. Table 2 lists the sym-
bol and descriptions of these process variables. The real-time

Table 2 Data descriptions

Symbol Description

v1 Usage of polish-pad backing film

v2 Usage of dresser

v3 Usage of polishing table

v4 Usage of dresser table

v5 Chamber pressure

v6 Pressure applied to the main outer air bag

v7 Pressure applied to the center air bag

v8 Pressure applied to the retainer ring

v9 Pressure applied to the ripple air bag

v10 Usage of polishing membrane

v11 Usage of wafer carrier sheet

v12 Flow rate of slurry type A

v13 Flow rate of slurry type B

v14 Flow rate of slurry type C

v15 Rotating rate of wafer

v16 Rotating rate of stage

v17 Rotating rate of head

v18 Status of dressing water

v19 Pressure applied to the edge air bag

Table 3 Number of wafers in training, validation, and test datasets
under two stages

2016 PHM CMP datasets

Number of wafers Training Validation Test

Total 1,752 384 378

Stage A 937 212 192

Stage B 815 172 186

data were obtained from wafers under two operating stages
(Stage A and Stage B), which are grouped into three datasets,
including a training dataset, a validation dataset, and a test
dataset. In this work, we remove wafers with a large pro-
portion of missing values to better evaluate the performance
of the proposed methodology. Table 3 shows the number
of wafers was polished in three datasets under two stages.
The proposed method was trained on the training dataset and
evaluated on the remaining two datasets.

Feature extraction and hyperparameters tuning

In the previous study, we have demonstrated that five tem-
poral features extracted from the raw data can be used to
predict the MRR in the CMP process accurately (Yu et al.,
2019). In this case study, we extracted the similar temporal
features used in Li et al. (2019) and Yu et al. (2019). The
extracted temporal features include mean, median, mode,
central moment, and standard deviation; and a total of 95
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Table 4 The network structure of the generative encoder network

No. of layers Description Output dimension

1 Input layer batch × 101

2–4 FC & Dropout batch × 100

5 Mean Generation batch × 5

6 Variance Generation batch × 5

7 Features Generation batch × 5

Table 5 The network structure of the conditional prior encoder network

No. of layers Description Output dimension

1 Input layer batch × 100

2-4 FC & Dropout batch × 100

5 Mean Generation batch × 5

6 Variance Generation batch × 5

7 Features Generation batch × 5

Table 6 The network structure of the predictive decoder networks

No. of layers Description Output dimension

1-3 FC & Dropout batch × 100

4 FC layer batch × 1

features were extracted for 19 process variables. Then, the
extracted features and the true MRR were fed into the pro-
posed deep probabilistic autoencoder to extract the features
of the surface topography. To optimize the performance of
the deep probabilistic autoencoder as well as reduce the com-
putational cost, the number of hidden layers in both encoder
and decoder networks is set as 3. A dropout layer was added
after each hidden layer to avoid the over-fitting problem. The
rectified linear unit (ReLU) was used as the activation func-
tion in the hidden layers. Because five temporal featureswere
extracted from each process variable, the dimension of the
extracted features of the surface topography is also set as 5.
Therefore, there is a total of 100 features (95 temporal fea-
tures and 5 topography features) used for MRR prediction.
Tables 4, 5, and 6 show the network structure of the genera-
tive encoder network, conditional prior encoder network, and
predictive decoder networks. In these tables, batch refers to
the batch size, the batch size equals 937 and 815 for wafers
manufactured under stage A and stage B, respectively; FC
refers to the fully connected layers and Dropout refers to the
dropout layers.

Next, we selected the base regressors. It has been demon-
strated that combining base regressors of different types can
improve the performance of ensemble learning models (Shi
et al., 2021). Therefore, we created a base-regressor pool
with ten different base regressors, including RF, AB, GBT,

RF AB
GBT
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SVR RR

kNN BR EN
MLP
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Fig. 5 The RMSE of ten different base regressors for wafers manufac-
tured under two stages on both validation and test dataset

Table 7 The averageRMSEof the selected base regressors with respect
to different number of estimators

Method Number of estimators

100 200 300 400 500

RF 7.409 7.242 7.255 7.284 7.319

AB 6.356 6.615 6.644 6.399 6.523

GBT 6.617 6.496 6.464 6.470 6.469

LASSO, support vector regression (SVR), ridge regression
(RR), k-nearest neighbors (kNN), Bayesian regression (BR),
Elastic-Net (EN), and multiple layer perceptron (MLP). In
this case study, the best three base regressors were selected
to construct the ensemble learningmodel. Figure 5 shows the
RMSE of the ten different base regressors on both validation
and test datasets. The results have shown that RF, AB, and
GBT are the best three base regressors. Therefore, RF, AB,
and GBT were selected as the base regressors in Sect. MRR
predictive model.

To optimize the performance of the ensemble learning
model, hyperparameter tuningwas performed for the selected
base regressors. Table 7 shows the average RMSE of the
selected base regressors with respect to the different number
of estimators. Based on this table, the number of decision
trees used in the RF method is set as 200; the number of
estimators used in the AB method is set as 100; the number
of estimators used in theGBTmethod is set as 300.Moreover,
the meta-regressor is the MLP method which uses 5 hidden
layers for simplicity and 100 hidden nodes in each layer in
order to be consistent with the number of features used for
MRR prediction.
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Fig. 6 Prediction performance on validation dataset under two stages. a–c show the prediction performance under stage A, d–f show the prediction
performance under stage B

Results

In this case study, the root mean squared error (RMSE) was
used as the performance metric to evaluate the MRR predic-
tion performance. RMSE on validation and test datasets can
be calculated using Eq. (23),

RMSE =
√√√√ 1

N

N∑
i=1

(ri − r̂i ) (23)

where ri and r̂i are the true and predictedMRR, respectively;
and N refers to the total number of wafers.

Figure 6 shows thepredictionperformanceof the proposed
methodology on the validation dataset under two polishing
stages. Figure 6a–c show the prediction performance under
polishing stage A, where Fig. 6a compares the predicted
MRR and the true MRR (the ground truth of MRR) in the
order of wafer index; Fig. 6b compares the predicted MRR
and the true MRR in the order of the MRR; and Fig. 6c
presents the histogram and distribution of the prediction dif-
ference between the predicted and true MRR. The RMSE of
the predicted MRR under polishing stage A is 9.51 nm/min
and the standard deviation of the predicted residuals is 9.52
nm/min. Figure 6d–f shows the prediction performance of
polishing stage B, where Fig. 6d compares the predicted
MRR and the true MRR in the order of wafer index; Fig. 6e
compares the predicted MRR and the true MRR in the order

of the MRR; and Fig. 6f shows the histogram and distribu-
tion of the prediction difference between the predicted and
true MRR. The root mean squared error (RMSE) of the pre-
dicted MRR under polishing stage B is 3.73 nm/min and the
standard deviation of the predicted residuals is 3.90 nm/min.

Figure 7 shows thepredictionperformanceof the proposed
methodology on the test dataset under two polishing stages.
Figure 7a–c shows the prediction performance under pol-
ishing stage A, where Fig. 7a compares the predicted MRR
and the true MRR in the order of wafer index; Fig. 7b com-
pares the predictedMRR and the trueMRR in the order of the
MRR; and Fig. 7c shows the histogram and distribution of the
prediction difference between the predicted and true MRR.
The root mean squared error (RMSE) of the predicted MRR
under polishing stage A is 7.01 nm/min and the standard
deviation of the predicted residuals is 7.72 nm/min. Figure
7d–f shows the prediction performance under polishing stage
B, where Fig. 7d compares the predicted MRR and the true
MRR in the order of wafer index; Fig. 7e compares the pre-
dicted MRR and the true MRR in the order of the MRR; and
Fig. 7f shows the histogram and distribution of the prediction
difference between the predicted and true MRR. The RMSE
of the predictedMRRunder polishing stageB is 4.21 nm/min
and the standard deviation of the predicted residuals is 4.27
nm/min. Based on these figures, we can observe that wafers
polished under Stage A has a higher prediction RMSE and
a higher standard deviation in comparison with wafers pol-
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Fig. 7 Prediction performance on test dataset under two stages. a–c show the prediction performance under stage A, d–f show the prediction
performance under stage B

ished under Stage B. One reason that wafers polished under
Stage A has a higher prediction RMSE and a higher stan-
dard deviation is that the MRR of Stage A is higher than
the MRR of Stage B, and the higher MRR brings additional
uncertainties for MRR predictions in the CMP process. We
can also observe that the prediction residues for both Stage
A and Stage B follow normal distributions and has a mean
of zero, which means that the proposed method predicts the
MRR without underestimations or overestimations. More-
over, operating conditions resulting in lower MRR should be
adopted for the CMP process so that wafer-to-wafer thick-
ness variation can be reduced.

Table 8 shows the prediction performance with and with-
out using the extracted surface topography features in terms
of RMSE. This table shows that the extracted surface topog-
raphy features enable a better prediction performance. For
example, the RMSE of the MRR predicted without using the
extract surface topography features on the test dataset under
polishing stage A is 8.25 nm/min. However, the RMSE of
the MRR predicted with using the extract surface topogra-
phy features on the test dataset under polishing stage A is
only 7.01 nm/min.

To further demonstrate the effectiveness of the proposed
method, the proposedmethod is also comparedwith the data-
driven methods reported in the literature. Table 9 shows a
comparison between the proposed method and other meth-
ods reported in the literature in terms of the average RMSE

for both validation and test datasets. The average RMSE
refers to the mean of the RMSE of the validation dataset
and the RMSE of the test dataset. Based on Table 9, we can
conclude that the proposed method outperforms the existing
physics-based, data-driven, and physics-informed machine
learning models reported in the literature. For example, the
average RMSE of the method used in Wang et al. (2017) is
7.60 nm/min. However, the average RMSE of the proposed
method is only 6.12 nm/min.

Conclusions and future work

In this paper, a directed graphical model was developed
to reveal the relationship among surface topography, pro-
cess variables, and MRR in the CMP process. Based on
the proposed directed graphical model, a deep probabilis-
tic autoencoder was introduced to extract the features of
the surface topography. Process variables and the extracted
features of surface topography were fed into an ensemble
learning-based predictive model to predict theMRR. ACMP
dataset was used to demonstrate the effectiveness of the pro-
posed method. The experimental results have shown that the
MRR prediction performance can be improved by using the
extracted features of the surface topography. The proposed
method accurately predicted the MRR in the CMP pro-
cess with a RMSE of 6.12 nm/min. Moreover, the proposed
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Table 8 The prediction
performance with and without
using the extracted surface
topography features in terms of
RMSE (nm/min)

With surface topography Without surface topography

Stage A Stage B Stage A Stage B

Validation 9.51 3.73 10.49 3.55

Test 7.01 4.21 8.25 3.99

Average 6.12 6.57

Table 9 The prediction
performance between the
proposed method and other
methods reported in the
literature

Approach RMSE (nm/min)

Preston Model (Jia et al., 2018) 29.50

Physics-informed machine learning (Yu et al., 2019) 16.97

Luo and Dornfeld Model (Wang et al., 2017) 7.60

ELM-stacking (Li et al., 2019) 7.24

CART-stacking (Li et al., 2019) 6.97

Proposed Method 6.12

method outperforms existing predictive models reported in
the literature in terms of RMSE. In the future, we will
consider the dynamic changes in surface topography and
their impacts on the MRR predictions. Moreover, different
base regressors and ensemble learning methods will also be
explored for MRR predictions.
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