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Abstract

For several industries, the traditional manufacturing processes are time-consuming and uneconomical due to the absence of
the right tool to produce the products. In a couple of years, machine learning (ML) algorithms have become more prevalent
in manufacturing to develop items and products with reduced labor cost, time, and effort. Digitalization with cutting-edge
manufacturing methods and massive data availability have further boosted the necessity and interest in integrating ML
and optimization techniques to enhance product quality. ML integrated manufacturing methods increase acceptance of new
approaches, save time, energy, and resources, and avoid waste. ML integrated assembly processes help creating what is
known as smart manufacturing, where technology automatically adjusts any errors in real-time to prevent any spillage.
Though manufacturing sectors use different techniques and tools for computing, recent methods such as the ML and data
mining techniques are instrumental in solving challenging industrial and research problems. Therefore, this paper discusses
the current state of ML technique, focusing on modern manufacturing methods i.e., additive manufacturing. The various
categories especially focus on design, processes and production control of additive manufacturing are described in the form
of state of the art review.
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Introduction

< Sachin Kumar

sachin.sdu@yahoo.com Ever since the evolution of humankind, technology has also

undergone evolving at its own pace. Man used stones to light
up the fire to make up for the absence of the mighty sun.
Now the technology has evolved even to replicate the sun’s
power itself (Sivaram, 2018). Such technologies have revolu-
tionized the entire world. Starting with the steam engines in
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the eighteenth century, the industries worldwide have under-
gone a substantial self- up-gradation. The nineteenth century
witnessed a revolution because of one of humankind’s best
inventions, the electricity. With this invention, factories
are better equipped with self-operating mechanisms, auto-
driving motors, etc. This revolution ignited the spark for the
next, which occurred very soon in the late 1960s because of
the invention of computers. Later on, it was universally recog-
nized as the 3rd revolution of the industries (Ali et al., 2021;
Hudson, 1982; Singh et al., 2013). The concept of automa-
tion began in this revolution which immensely helped mass
production (David, 2017; Dunk, 1992; Kuric et al., 2018;
Wu et al., 2015a). With the innovation of computers, sev-
eral manufacturing concepts were progressed, cumulating
the production effectiveness (Azzone & Bertele, 2007; Clegg
etal., 2010; Gorecky et al., 2014; Hudson, 1982; Singh et al.,
2013; Wagner et al., 2008).

It’s almost 50 years since the 3rd industrial revolution, and
the manufacturing sectors worldwide are preparing for the
next. It is the 4th Industrial revolution, a modern gear driven
by the internet and the use of computers (Frank et al., 2019;
Hofmann & Riisch, 2017; Vaidya et al., 2018). In industry
4.0, the advantages over 3.0 were summed, and the comput-
ers were connected to facilitate mutual communication with
the provision to take decisions without human participation
(Dalenogare et al., 2018; Frank et al., 2019; Ghobakhloo,
2020). Cutting-edge technologies like cyber-physical sys-
tems, the Internet of Things (IoT), and the Internet of Systems
are the major cause for Industry 4.0. The concept of the intel-
ligent factory has now become a reality (Dalenogare et al.,
2018; Gorecky et al., 2014). Due to artificial intelligence
and easy access to more data, smart machines are getting
smarter day by day. This helps industries turn out to be more
well-organized, efficient, and optimized (Ghobakhloo, 2020;
Gorecky et al., 2014). Ultimately, it’s machines network,
which are digitally connected for sharing the information
that results in the true power of Industry (Gorecky et al.,
2014; Vaidyaetal.,2018; Wanget al., 2015). Nascent innova-
tion in technology is advancing rapidly, with an ultimate aim
to help humanity in all possible ways. Industrial processes
are also advancing in parallel with the advent of new tech-
nologies. Thus all the manufacturing sectors must implement
Industry 4.0 technologies such as cyber-physical systems
(CSP), big data analytics, 3-D printing, IoT, Artificial Intelli-
gence (Al), Additive Manufacturing (AM) (Guo et al., 2020;
Zhou et al., 2021), and Machine Learning (ML), etc., All
these techniques held the boundless potential for sustainable
manufacturing (Chu et al., 2014; Jin et al., 2020; Kumar &
Kishor, 2021; Paturi & Cheruku, 2021; Tizghadam et al.,
2019).

Industry 4.0 is a transformation of the manufacturing fac-
tories that makes it possible to gather and analyse data across
machines, enabling faster, more flexible, and more efficient
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processes to produce higher-quality goods at reduced bud-
gets (Chu et al., 2014; Gorecky et al., 2014; Jin et al., 2020;
Kumar & Kishor, 2021; Paturi & Cheruku, 2021; Tizghadam
et al., 2019; Vaidya et al., 2018). This new revolution of
the twenty-first century will increase productivity, shift eco-
nomics, enrich industrial growth, and modify the workforce
profile (Gorecky et al., 2014; Vaidya et al., 2018; Wang
et al., 2015). Figure 1 explains the digitization process of
Industry 4.0, including the functional domains of its major
components. The various latest technologies are involved
in implementing and enabling digitization. Some of these
technologies are robots in industry, industrial automation,
cloud computing, internet of things and services and Al are
highly used in industrial applications. Most of these tech-
nologies have completed their saturation stages in terms of
integration in digitization (Nascimento et al., 2018; Yinet al.,
2017).

The term Industry 4.0 collectively refers to a wide range
of current concepts, whose clear classification concerning a
discipline as well as their precise distinction is not possible
in individual cases. In the following fundamental concepts
are listed:

e Smart Factory: Manufacturing will completely be
equipped with sensors, actors, and autonomous systems.
By using “smart technology” related to holistically digi-
talized models of products and factories (digital factory)
and an application of various technologies of Ubiquitous
Computing, so-called “Smart Factories” develop which are
autonomously controlled (Lucke et al., 2008).

e Cyber-physical Systems: The physical and the digital level
merge. If this covers the level of production as well as that
of the products, systems emerge whose physical and digi-
tal representation cannot be differentiated in a reasonable
way anymore. An example can be observed in the area of
preventive maintenance: Process parameters (stress, pro-
ductive time etc.) of mechanical components underlying
a (physical) wear and tear are recorded digitally. The real
condition of the system results from the physical object
and its digital process parameters.

e Self-organization: Existing manufacturing systems are
becoming increasingly decentralized. This comes along
with a decomposition of classic production hierarchy and
a change towards decentralized self-organization.

e New systems in distribution and procurement: Distribution
and procurement will increasingly be individualized. Con-
nected processes will be handled by using various different
channels.

e New systems in the development of products and services:
Product and service development will be individualized.
In this context, approaches of open innovation and product
intelligence as well as product memory are of outstanding
importance.
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Fig. 1 Digitization in manufacturing (Ghobakhloo, 2020)

e Adaptation to human needs: New manufacturing systems
should be designed to follow human needs instead of the
reverse.

Corporate Social Responsibility: Sustainability and
resource-efficiency are increasingly in the focus of the
design of industrial manufacturing processes. These fac-
tors are fundamental framework conditions for succeeding
products.

“Industry 4.0” describes different — primarily IT driven —
changes in manufacturing systems. These developments do
not only have technological but furthermore versatile organi-
zational implications. As a result, a change from product- to
service-orientation even in traditional industries, is expected.
Second, an appearance of new types of enterprises can
be anticipated which adopt new specific roles within the
manufacturing process resp. the value-creation networks.
For instance, it is possible that, comparable to brokers and
clearing-points in the branch of financial services, analog
types of enterprises will also appear within the industry.

With the planning, analysis, modeling, design, imple-
mentation and maintenance (in short: the development) of
such highly complex, dynamic, and integrated information

Modelling (Digital twin)

Customer integration
-Future demand
-Preferences
-Quantities
-Financial transaction

systems, an attractive and at the same time challenging task
for the academic discipline of business and information sys-
tems engineering BISE arises, which can secure and further
develop the competitiveness of industrial enterprises.

Zhou et al. (2020) proposed a PD-type iterative learning
algorithm to identify a category of distinct spatially unified
systems with unstructured indecision. As per stability theory
of repetitive process, suitable measures for system’s steadi-
ness are provided as linear matrix inequalities (LMlIs). To
end, efficacy of modelled algorithm is tested using simulation
of ladder circuits. Xin et al. (2022) suggested a novel online
integral reinforcement learning algorithm for resolving muti-
player non-zero sum games. They proved the convergence of
the iterative algorithm and the results showed the effective-
ness and feasibility of this design method. Stojanovic et al.
(2020) projected two classes of approaches for estimating
the joint parameter-state robustness of linear stochastic mod-
els, collectively having major faults and non-Gaussian noises
which was duly supported by the experimental results.

The concept of industry 4.0 can be made possible
only through nine new technologies, as mentioned in
Fig. 2a. These, when interlinked together, can standardize
the conventional process to the level of industry 4.0. Mass
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Fig.2 a Nine technologies
transforming the industrial
product design (Industry & 4.0
Relate - & Why Manufacturers
Should Care n.d., 2021).
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customization and personalization are the two influential
features in implementing Industry 4.0 guidelines. AM, along
with the Al & ML methods, has excellent potential for final
product personalization. Yet, there are a few difficulties with
AM implementation in mass production. For example, the
cost associated with AM implementation is significantly
huge after a certain point compared to the conventional
machining process (Fig. 2b).

Besides, there exists some hesitance among the industries
for AM implementation because of its inability to produce
large-sized components of desired shape and strength. Much
research has been oriented to tackle various issues facing
implementing the AM techniques directly for mass produc-
tion; however, it is still under exploration. The concepts of
Industry 4.0 will be of a significant boost to all the manufac-
turing industries, especially AM and ML-based, to eradicate
the difficulties in implementing the new technologies. The
combined effect and advantage of these technologies can
yield success in multiple manufacturing domains. Though
all these technologies are interdependent, they can handle
the situation independently and increase the profit mar-
gin of the manufacturing. Though it is in practice in some
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multi-national companies, small-scale industries and SMEs
still are far from implementing Industry 4.0 concepts. The
foremost challenge lies in the installation cost and the knowl-
edge to work with, which is hard to accommodate for low
scale production units. The manufacturing people firmly
believe that industry 4.0 will rule all the sectors in this century
irrespective of the prevailing situation; therefore, large scale
and multinational, national companies have shown massive
interest to implement the same with no time loss.

Motivation and background

The central focus of this article is the estimation of the level of
interest and efforts required in incorporating ML techniques
into the present manufacturing industries. Furthermore, by
identifying subpopulations of related and relevant literature,
this work aims to identify critical areas of the ML technolo-
gies application. Also, the paper identifies the relevant gaps
in the deployment of ML techniques which are presented as
future research scopes. The technology available now enables
us to design and develop products as per the industrial needs.
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With the advent of digital media, it has become a piece of cake
to search and download the research literature, which was
quite cumbersome in manual methods (Chonde, 2016). Var-
ious search engines and repositories such as google scholar
and ScienceDirect are available to receive detailed infor-
mation by entering the keywords of simple phrases. These
customized searches are relied on the input words and do
not fetch any underlying mechanisms or concepts involved.
In this review work, Latent Semantic Analysis (LSA) was
used to develop the relation between sentences and docu-
ments (Dumais, 2004). This emphasizes not just simple word
matching as with traditional searches but core concept justi-
fication.

The enormous application domains and ease of invention
in ML techniques, which were once considered not appro-
priable or feasible, have permitted their enhanced integration
and realization with the modern cutting-edge epoch. With
their spread in manufacturing, industries also welcomed ML
to gain economic benefits. Presently, the manufacturing sec-
tor is undergoing major changes due to great demand to
implement intelligent Manufacturing and Industry 4.0. How-
ever, still, there is major hesitation from several sectors,
especially mid and lower cap, due to fear of cost or training
incurred and their implementation. Thus, another motivation
of this article is to summarize the decade’s publications to
facilitate the quantification of efforts added forward for inte-
grating intelligent techniques such as ML in manufacturing.
Major ML application areas and popular ML algorithms are
detailed in different sections, also highlighting ML’s limita-
tions.

A critical examination of focus areas, and major gaps
(what advancement or research and development can be pro-
posed) should be taken into account so that literature/research
gaps can be filled and ML can have its widespread application
not only in manufacturing but in other domains also. Effi-
cient integration of ML is also possible when its algorithm
is judged based on real-life issues which are challenging,
time-consuming, and expensive to tackle otherwise. In order
to cater above-mentioned motivations, a detailed literature
analysis was made with a major focus on presenting recent
state of the art for ML algorithms and analyzing the cross-
domain possibilities for ML product life cycle.

Typically three motivational paradigms are taken:

e Which ML algorithm is selected and on what parameters?

e ML method’s application frequency on a manufacturing
process and its level?

e Possible shortcomings which remain untouched, and what
advancement can be made/suggested for ML’s better inte-
gration with its cross-examination?

Intelligence is a primary need for learning, which is an
essential feature of smart manufacturing. The ML algorithms

are evident to have an optimum solution that is dependent
on the variable-derived necessities. Major hurdles of ML
integration in manufacturing have been/are on the verge of
being overcome; however, their optimum association is still
remained to work out. This paper also covers major ML
techniques implementable to manufacturing, including their
strengths and limitations. A close tuning of ML’s with the
possible product type and its future perspective should be
addressed before making any judgment. Still, there are sev-
eral issues left unsolved that should be taken care of before
implementing ML.

Thus this article is framed to address the potential domains
of ML in AM processes including, the need and challenges
associated with the AM, ML and its algorithms, their appli-
cations and limitations, ML in design of AM processes
(topological and material design), ML for AM processes
(process parameter optimization, process monitoring, defects
assessment, quality prediction, close loop control, geometric
deviation control and cost estimation), and ML for AM pro-
duction (planning, quality control, data security, dimensional
deviation management).

Challenges of the manufacturing domain

Manufacturing industries are evolved over the centuries, and
it is an integral part of a country’s economy. Few countries
with a well-matured economy experienced reduced contri-
bution toward their GDP through the manufacturing process
over the last decades. We can observe that efforts are con-
stantly put to revamp the manufacturing sectors and boost
the economy. In 2014, the US started an initiative ‘Executive
Actions to Strengthen Advanced Manufacturing in Amer-
ica’ to improve the country’s employment rate and support
the manufacturing factories (Anderson, 2011). The Euro-
pean Union came up with ‘Factories of the Future’ program
to identify industries of the future and nurture them in an
optimistic way (Mavrikios et al., 2011). The manufactur-
ing sectors face various problems nowadays compared to
the past, wheter it is welding, 3D printing, forming and cast-
ing (Kumar, 2016; Kumar & Wu, 2018, 2021a; Kumar et al.,
2017, 2019, 2020a). Environmental pollution, financial cri-
sis, and geopolitical factors are being taken very seriously.
At present, multiple research reports are available in open
literature addressing the major challenges of the manufac-
turing sector to advance in global standards. The conclusion
of a few is given in Fig. 2c. The above-discussed challenges
explain the ongoing trend of the manufacturing factories.
These challenges make the business complicated and fragile.
The obvious complication is deeply inborn in industrial pro-
cess itself and the company’s business processes (Wiendahl
& Scholtissek, 1994). The dynamic business scenario of man-
ufacturing industries is prominently influenced by several
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uncertainties that complicate existing factors (Monostori,
2003). To overcome all these complexities, sophisticated
techniques like ML and AI can be brought into the con-
text. These techniques, which are completely driven by the
data sources, can resolve key industrial issues. They may find
extremely intelligent and non-linear data and transform it into
acomplex model that can be utilized for predictions, recogni-
tion, categorization, analysis, and projection by transforming
raw input.

Uncertainity in AM

One of the major barriers that hinder the realization of the
significant potential of AM techniques is the variation in the
quality of the manufactured parts. Uncertainty quantification
(UQ) and un- certainty management (UM) can resolve this
challenge based on the modeling and simulation of the AM
process. From powder bed forming to melting and solidi-
fication, various sources of uncertainty are involved in the
processes. These sources of uncertainty result in variability
in the quality of the manufactured component. The qual-
ity variation hinders consistent manufacturing of products
with guaranteed high quality. This becomes a major hur-
dle for the wide application of AM techniques, especially
in the manufacturing of metal components. To achieve the
quality control of the AM process, a good understanding of
the uncertainty sources in each step of the AM process and
their effects on product quality is needed. Uncertainty quan-
tification (UQ) is a process of investigating the effects of
uncertainty sources (aleatory and epistemic) on the quanti-
ties of interest (Qols) (Hu & Mahadevan, 2017; Hu et al.,
2016). Even though UQ for models of physical hardware has
been intensively studied during the past decades and con-
tinue to address important research questions, UQ in AM
is still at its early stage. Only a few examples have been
reported in the literature (Lopez et al., 2016). In addition,
currently reported UQ methods for AM are mainly based
on experiments and are performed at the process level. This
will result in excessive material wastage, increased product
development cost, and delay in the product development pro-
cess (Hu & Mahadevan, 2017) because UQ usually requires
numerous experiments and process optimization and UQ are
implemented in a double loop framework (i.e., UQ needs to
be performed repeatedly when the process is changed). To
ensure the best quality of AM product, UQ and UM have
gained increasing attention in recent years. Current research
efforts in UQ and UM of AM processes can be roughly clas-
sified into three groups: (1) UQ of AM using experiments,
(2) UQ of melting pool model, and (3) UQ of solidification
(microstructure) model.
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Experiment-based UQ of AM process

For UQ at the process level, AM experiments are performed
repeatedly at different process parameter settings. Based on
the data of Qols collected at different input settings from
physical experiments, the effects of process parameters on
the quality of manufactured products are analyzed using sta-
tistical analysis (Kamath, 2016). For instance, Delgado et al.
(2012) used analysis of variance (ANOVA) to evaluate the
effects of scan speed, layer thickness and building orientation
on dimensional error and surface roughness. Raghunath and
Pandey (Raghunath & Pandey, 2007) investigated the influ-
ence of process variables such as laser power, beam speed,
hatch spacing, and scan length on the shrinkage of the product
using signal-to-noise (S/N) ratio and ANOVA methods. By
identifying the factors that have the most significant effects
on the variation of product quality, the quality of AM can
be improved by implementing quality control on the influen-
tial factors. The Taguchi method has also been employed to
design experiments for the uncertainty analysis of AM (Garg
et al., 2014; Raghunath & Pandey, 2007).

UQ of melting pool

As one of the most important models in the AM process,
UQ of melting pool is of great interest to the researchers.
For example, Schaaf performed uncertainty and sensitivity
analysis for the melting pool model to identify the most
sensitive parameters in the model (Schaaf, 1999). Anderson
proposed to use DAKOTA (Swiler et al., 2017) and ALE3D
software to explore UQ of the melting process (Anderson &
Delplanque, 2015). Most recently, Lopez et al. (2016) per-
formed UQ for the metal melting pool model based on a
thermal model developed by Devesse etal. (2014). They iden-
tified four sources of uncertainty in the melting pool model,
namely model assumptions, unknown simulation parameters,
numerical approximations, and measurement error (Adam-
czak et al., 2014). In order to reduce the uncertainty, they
incorporated the online measurement data into the model.
Based on these efforts, the effects of uncertain parameters on
the shape of the melting pool are studied.

UQ of solidification

Along with the research efforts in UQ of the melting pool
model, efforts have also been devoted to UQ of the solidifi-
cation model in recent years. Ma et al. (2015) used design
of experiments and FE models to identify the critical vari-
ables in laser powder bed fusion. Loughnane (Loughnane,
2015) has developed a UQ framework for microstructure
characterization in AM. This framework accounts for sources
of characterization errors, which are modeled using phan-
toms. Based on the modeling of error sources, effects of the
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errors on the microstructure statistics are analyzed. Statisti-
cal analysis and virtual modeling tools are also developed
for the analysis of the microstructure. Park et al. (2014)
used a homogenization method to investigate the effect of
microstructure on the mechanical properties in the macro-
model. Cai and Mahadevan (2016) studied the effect of
cooling rate on the microstructure and considered various
sources of uncertainty during the process of solidification.
The above literature review indicates that UQ and UM of
AM process are still at its early stages.

ML in manufacturing

The manufacturing industry produces a vast amount of data
every day (Chand & Davis, 2010). These data compromise
various formats, for example Monitoring information from
the manufacturing line, meteorological specifications, pro-
cess performance, machining time, and machine tool settings,
to name a few examples (Davis et al., 2015). Different coun-
tries have used unlike names for this process; for example,
Germany uses Industry 4.0, the USA uses Smart Manufac-
turing, while in South Korea, it is known as smart Factory.
The vast amount of research publications increases the mas-
sive amount of data, sometimes called Big Data (Lee et al.,
2013). Such data helps to improve the process performance
by giving active feedback to the machine. The extracted use-
ful information from the Big Data helps to expand the process
and product quality sustainably (Elangovan et al., 2015).
However, the negative impact of such a huge amount of data
will confuse or lead to a false conclusion. If the system used
to manage such massive data is well-established, itis always a
boon to the manufacturing industries. It can also be noted that
the availability of such a reliable data system helps improve
the process quality, cost reduction, understanding of the cus-
tomers’ expectations, and analysing business complexity and
dynamics involved (Davis et al., 2015; Loyer et al., 2016).
Industrial production, engineering services, materials and
processes, environmental simulation, aerospace, computers
and privacy, nuclear physics, thermal engineering, elec-
tronics and communication, automotive industry, chemical
engineering, ergonomics, bio-medical, pharmaceutics, and
commercial are some of the fields where ML has attracted
many researchers and investigators from around the world
(Fahle et al., 2020; Jin et al., 2020; Rai et al., 2021; Sharp
et al., 2018; Wang et al., 2020; Wuest et al., 2016). On
top of all, ML in manufacturing is an area where numer-
ous research works are carried out. ML techniques are used
for design, management, scheduling, material resource plan-
ning, capacity analysis, quality control (Peres et al., 2019),
maintenance, and automation, etc. (Fahle et al., 2020; Jin
et al., 2020; Rai et al., 2021; Sharp et al., 2018; Wang et al.,
2020; Wuest et al., 2016). Rolf et al. (2020) used the genetic

algorithm (GA) for solving a hybrid flow scheduling pro-
gram. The developed model gave improved results than the
procedure adopted in the industries. Using support vector
regression (SVR), Ahmed et al. (2020) estimated the splic-
ing intensity of an unrestrained beam sample. This was one of
the first ML studies in architecture and civil materials man-
agement. The possibilities of employing the Naive Bayes
classification approach for deterioration detection in con-
struction were investigated by Addin et al. (2007). They
demonstrated that machine learning might be used in mate-
rial science and design. Peters et al. (2007) used the random
forest algorithm to model the distribution of Eco hydrology
in ecological modelling. In ergonomics, the logistic regres-
sion technique was used by McFadden (1997) to forecast
the pilot-error incidences of US airline pilots. Dubey et al.
(2015) demonstrated the ANN technique’s application to find
the power delivery in pressurized heavy water reactors in
nuclear engineering. The above-discussed techniques were
also explored in various fields of engineering, which opened
the path to significant developments to solve complex real-
time problems (Alade et al., 2020; Ali et al., 2021; Calvé &
Savoy, 2000; Hapfelmeier & Ulm, 2014; Piro et al., 2012;
Ramachandran et al., 2020; Seibi & Al-Alawi, 1997).
Typically, the two most important aims for any industrial
company are product performance and volume. To sustain
healthy competition among the competitors, a firm should
produce sophisticated quality products on a mass scale.
Therefore, research of computing techniques such as ML and
Al in the manufacturing domains has become very signifi-
cant in a couple of years. For the past 50 years, Al has helped
to improve the process by constantly developing ML models
(Zhang & Huang, 1995). Manav et al. (2018) solved turn-
ing process optimization using the GA model. Weiwen et al.
(2018) developed an SVR model for sensing the breakouts for
high-speed small hole drilling EDM. Sukumar et al. (2014)
developed the ANN model to optimize the process condi-
tions for face milling of Al alloy. Yi et al. (2020) employed
the random forest algorithm for performance evaluation in
the fused deposition modeling process. In a similar context,
Imran et al. (2017) employed genetic algorithm techniques
for the cellular manufacturing systems. Similarly, massive
research work has been exercised in past few decades to
improve process and cost reduction in the manufacturing
industries (D’ Addona & Antonelli, 2019; Knoll et al., 2019;
Kreutz et al., 2019; Schreiber et al., 2019; Wu et al., 2017).
Because each algorithm has advantages and disadvantages,
the model’s performance is heavily reliant on the data used
to construct the model. Singh et al. (2013) created an SVR
method to assess layer stresses during the hydro-mechanical
deep design method. They examined the efficiency of the
procedure using the ANN algorithm with the finite element
approach. Niu et al. (2017) created an SVR method to assess
layer stresses during the hydro—mechanical deep design
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Fig.3 a Pie chart representing the contribution of different ML models in recent years. b Number of journals year wise which are taken for the
study. ¢ Chart representing the application ML in different manufacturing processes (Paturi & Cheruku, 2021)

method. They examined the efficiency of the procedure using
the ANN algorithm with the finite element approach. Niu
et al. (2017) conducted comparison research to assess the
emission characteristics of a CRDI-assisted marine diesel
engine using ANN and support vector machines (SVM-
Regression). Similar comparison studies have been done in
different fields of the manufacturing industries (Acayaba &
Escalona, 2015; Caydas & Ekici, 2012; Gokulachandran &
Mohandas, 2015; Jurkovic et al., 2018; Tian & Luo, 2020).
A comprehensive comparison is made by Paturi et al. (2021)
for ML applicability in different industries. The summary of
their study is shown in Fig. 3a-c.

Though Industrial application tops the chart, ML tech-
niques are widely used in significant manufacturing pro-
cesses like welding, grinding, and AM (Jia et al., 2021). ML
in AM is one of the attractive research in AM as it forms the
stepping stone for the next industrial revolution. The range
and architecture of the ISA-95 framework are highlighted
in Fig. 4, which also outlines key application sectors where
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ML concepts might be inherited in production and other sec-
tors. ML has found its surge of application in manufacturing
twice. The first time occurred in the early 1980s when the
computer and the internet were invented. Because of some
practical difficulty, ML could not deliver its full potential in
problem-solving, because of which the industrial adoption of
this technology was significantly poor. But after the invention
of coding platforms with improved user interface and well-
advanced computer processors, ML has once again started
playing a significant role in almost all industries (Thoben
et al., 2017). The focus of major industries and the research
group is mainly on developing domain-specific ML models
based on references from past works. It has been postulated
that the cross-domain models pulled very little attention from
ML models. This would be a handy tool to connect and inter-
pret the data throughout the life cycle of any product.

ML platform has remained separated throughout the
product life cycle, including conceptualization, planning,
fabrication, inspection, and maintenance. A huge junk of
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Fig. 4 Theorized application
domains and prospects of ML
application and beyond
(Johnsson et al., 2006; Sharp
etal., 2018)
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data is being generated every day with increased applica-
tion and adoption of modern manufacturing concepts such as
the Industrial (IoT), a subsystem of Industry 4.0, and intelli-
gent manufacturing. The question that remains unanswered
is how well such data can be connected to developing an
ML system for manufacturing. In applications such as Total
Conceptual models, Design for Lean Thinking, and Design
for Manufacturing, understanding the numerous product life
cycle stages is critical (Garbie, 2013; Silva et al., 2014). All
types of cost growth are mostly the result of decision-making.
It was discovered that lowering the negative impacts of deci-
sions earlier in the lifecycle could benefit a manufacturing
system’s price and performance. For these kinds of decision-
making, the production needs a thorough grasp of the entire
lifespan and how one action affects the other.

Several ML models are developed to tackle massive data
(Multivariate Statistical Methods in Quality Management
xxxx). However, factors like probable over-fitting must be
considered in the implementation process (Widodo & Yang,
2007). Several options are available for reducing dimensions
if it ascertains to be an issue, even though it is improba-
ble because of the influence of the algorithms used (Pham
& Afify, 2005). Using ML in manufacturing can be vital
in extracting outlines from available data that can estimate
the possible output (Nilsson & Nilsson, 1996). This new
technique could help process owners make better decisions
or automatically improve the system for a better marginal
profit in the business. Lastly, the objective of specific ML

algorithms is to find patterns or regularities that explain rela-
tionships between the various causative parameters involved
in the process. Due to the challenges of a quickly changing,
complex manufacturing setting, machine learning (ML) as
part of Al has the ability to understand and evolve. Hence,
the developer has the freedom of analyzing without expect-
ing the consequences of the situation. As a result, ML makes
a compelling case for its implementation in manufacturing
compared to other prevailing models. A significant power of
ML models is that it automatically learns from and adapt to
changing situations (Lu, 1990).

A major challenge of ML integration with manufactur-
ing processes is how to collect the appropriate data? It poses
a major limitation as data’s quality, quantity and composi-
tion are variable and depends on the end-term requirement.
Thus type of data available to feed the algorithms is crucial
and casts a major influence on output performance. Several
times, high dimensional data may contain huge immaterial
and obsolete information, which can widely impact the per-
formance of the ML’s algorithm used (Yu & Liu, 2003). In the
present era, major ML techniques process the data containing
continuous and nominal figures. The degree of influence is
primarily based on the multiple variables, including the algo-
rithm as well as mode of variables and their types. Hence it
can be regarded as major challenge for several researchers
in the context of ML in manufacturing. Multiple times the
security concerns and industrial competition also restrict to
gathering of the required quality data and hamper the pro-
cess of ML integration. It is important to note that in multiple
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instances, compared to conventional methods, ML permits
better analysis of the information feed with it with consid-
erably low need of raw data availability; still, its successful
integration with the system needs special attention. As men-
tioned by Hoffmann (Hoffmann, 1990), ML requires a lot
of time to collect the data, while in conventional methods,
numerous effort is vested in extracting the useful informa-
tion from raw data. After data is collected, its preprocessing
is crucial as output will be largely impacted based on which
preprocessing algorithm is chosen. It may cause a challenge
for the training of set of algorithms used. It is pretty common
in various manufacturing processes that some atrributes or
their values are missing or absent from the master data sheet.
Thus the absent values cause major hurdles for successful
and reliable integration of ML in manufacting.

Another important challenge with ML integration is
choosing suitable techniques or algorithms for a particular
problem. Though there are multiple sets of ‘general ML tech-
niques, specialized problems need unique methods to tackle
the issue and may have their own pros and cons (Hoffmann,
1990).

As of now, a few common approaches are in trend for
choosing an appropriate ML algorithm for common prob-
lems, which are as follow:

e First is to determine the data availability and its origin of
source (reliable data sources are preferred). Next is how
it is framed, whenever it is labelled or unlabelled to mak-
ing a choice between a supervised, unsupervised, or RL
approach.

e Second is, suitability of the ML algorithm with the problem
type and its definition. Special attention should be made
on data structure and its quantity required for training and
assessment.

e Third is, past history of the ML algorithms applied under
similar condition to check their response time and output.
The research problem where it is applicable should have
similar background and applicability.

Next critical challenge for successful ML integration
is “data interpretation”. There are multiple variables, that
should be taken into to account for reliable data analysis, for
example, format of output, type of algorithm, variables set-
ting, intended outcome, data, and its’ preprocessing. With the
outcomes analysis, certain different boundaries might have
more influence.

Common ML algorithms applicable
to manufacturing application

The prevalence of machine learning has been increasing
tremendously in recent years due to the high demand and
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advancements in technology. The potential of machine learn-
ing to create value out of data has made it appealing for
businesses in many different industries. Most machine learn-
ing products are designed and implemented with off-the-shelf
machine learning algorithms with some tuning and minor
changes.

There is a wide variety of machine learning algorithms
that can be grouped in three main categories:

Supervised machine learning

Supervised learning (SL) permits a software application to
learn a training data set to correctly identify unlabelled data
in the test set (Learned-Miller, 2014). The ML model adjusts
the weightage of the fed input variables until a proper fit of
the data is attained. SL algorithms can solve almost all the
numerical problems in engineering. In SL, every input data
is labeled with an output Y, and the training dataset contains
numerous input—output combinations. Every input, such as
X1; X2;...;Xn, is a vector that contains all of the attributes
that may impact the performance. Every output can be an
objective classification (good or unsatisfactory), classifica-
tion as the ML category, or objective parameter (porosity
and strength), and regression as the ML class. The datasets
can take many forms, including photos, audio samples, and
text. An objective function, called the cost function, is used
to calculate the error among the predicted and actual output
values. The trial phase can yield an unbiased valuation of
the correctness of the model with previously unseen extra
information, known as a test set.

At present multiple SL algorithms have been invented by
the researchers and each of them has its special applications,
advantage, and disadvantage. However, choosing the best of
them for different applications is a daunting task.

Statistical Learning Theory (SLT)

It is a most suitable, widely adopted ML algorithm for
solving manufacturing problems. As per the SL theory, the
algorithm training is to educate it (without being explicitly
programmed) for selecting a function to establish a relation
between inputs and output. Primary emphasis of SLT lies on
the “extent of efficiently choosing output for an unseen previ-
ous inputs” (Evgeniou et al., 2000). Considering the base of
SLT algorithm, other practical algorithms are derived such
as NNs, SVMs, and Bayesian modeling (Evgeniou et al.,
2002). With minor changes, the SLT can fit well on multiple
manufacturing applications; hence it is its major advantage.
SLT also permits to work with less number of specimens or
samples needed for analysis. A major limitation of SLT is its
overfitting with some realization problems (Evgeniou et al.,
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2002). Additionally, using SLT, the computational complex-
ity is not entirely avoided but eliminated by relaxing design
queries (Koltchinskii et al., 2001).

Bayesian networks (BNs)

It is a graphical model which does describe the probabil-
ity relationship among multiple parameters. BNs can be
regarded most renowned applications of SLT. Naive Bayesian
Networks is a modified but modest form of BNs, which
is comprised of directed acyclic graphs. BM claims a few
advantages, such as limited storage requirements, ability to
be used as an incremental learner, and ease to analyze the
output. BNs has limitation that the tolerance for superfluous
and inter-reliant attributes is minimal (Joshi et al., 2019).

Instance-based learning (IBL)

IBL (Kang & Cho, 2008), also referred to as Memory-Based
Reasoning (MBR) (Kang & Cho, 2008) is typically based
on k-nearest neighbor (k-NN) classifiers. Though a satisfac-
tory level of accuracy with good stability can be achieved in
IBL/MBR techniques, they have not proven the best match
for ML integration (Dutt & Gonzalez, 2012). The primary
reason for IBL/MBR’s exclusion from their implementation
may be, among other things, their difficulty in setting the
attribute weight vector in little-known domains.

NN or artificial neural networks

These techniques are enthused by brain’s functionality. Con-
sideirng the fact that brain can intelligently complete many
tasks (e.g. vision, speech recognition and analysis), same can
be beneficial when dealing with engineering problems when
successfully transferred to ML systems (Nilsson & Nilsson,
1996). NN permits an artificial system to accomplish unsu-
pervised, reinforcement and supervised learning tasks (e.g.
pattern recognition) by simulating decentralized ‘computa-
tion’ of the central nervous system by parallel processing. NN
finds its application in multiple manufacturing sectors such
as in the semiconductor industry and in diverse problems
such as process control. Manallack and Livingstone (Man-
allack & Livingstone, 1999) suggested that NN algorithms
can yield best results in most cases however had the cons
of overfitting the fed data, and it is major limitation of NN
in real-life applications. Additionally, NN makes the model
more complicated and suffers from intolerance concerning
missing values and heavy computational time.

SVMs

SVMs were added as novel ML techniques aimed at two-
group classification problems. Burbidge et al. (2001) claimed

that SVM is a pretty robust and very accurate ML technique
which is also well matched for structure—activity relation-
ship analysis. It may be regarded as an applied technique for
STL (Wuest et al., 2014). Another fact is that it signifies the
decision boundary using a subset of the training examples,
known as the support vectors.

Ensemble methods

It combines a weighted committee of learners to solve a clas-
sification or regression problem. The committee or ensemble
contains several base learners like NNs, trees, or nearest
neighbors. At several instances, the base learners can be from
the algorithm family, which is referred as a homogeneous
ensemble. At the same time, a heterogeneous example is con-
structed by compounding base learners of different types.

Deep machine learning

This is a new field of ML with the capability to process the
data in several processing layer toward highly non-linear and
complex feature representations. It is primarily governed by
the computer vision and language processing domain but has
significant capability for data-driven manufacturing applica-
tions. Deep Convolutional Neural Networks (ConvNets) have
established their astonishing prediction ability in a wide spec-
trum of computer vision. Compared to standard NNs, where
each neuron from layer » is connected to all neurons in layer
(n — 1), a ConvNet is built by numerous filter stages with a
restricted view and hence most suited for image, video, and
volumetric data. From layer to layer, a ConvNet transforms
the output of the previous layer in a higher abstraction by
applying non-linear activation.

ML in additive manufacturing

Production industries are creating large volumes of data on
the manufacturing line in this 4th industrial revolution epoch,
often called as "Industry 4.0," and AM /3D printing indus-
try is no exemption. AM technologies are crucial elements
of Industry 4.0 concept (Alabi, 2018; Xing et al., 2020).
AM denotes a group of manufacturing technologies in which
materials are joined directly to produce components based on
3D modelling data. AM is a technique of creating physical
items from 3D modelling by layering or solidifying a mate-
rial (Guo & Leu, 2013; Kulkarni et al., 2000). AM has been
found successful in developing 3D structures of various mate-
rials, as mentioned in Table 1. Any improvements to present
AM processes in design, production, and process require sig-
nificant operators’ and designers’ knowledge (Wang et al.,
2020). Design, process, and manufacturing turn out to be fur-
ther complicated to reap AM’s benefits (Jiaet al., 2021; Wang
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Table 1 Commonly used metals/alloys for commercial use of AM (Frazier, 2014)

Titanium Aluminum Tool steels Super alloys Stainless steel Refractory
Ti-6Al-4 V Al-Si-Mg H13 IN625 316 & 316L MoRe

ELI Ti 6061 Cermets IN718 420 Ta-W
CPTi Stellite 347 CoCr
y-TiAl PH 174 Alumina

et al., 2020). Any major alteration in the design demands in-
depth knowledge of variables and their corresponding effects
on the part behaviour. As a result, these objectives frequently
entail significant time and/or computation trade-offs.

In AM parameters, a limited orthogonalization is reported:
Boosting the extrusion temperatures, for example, could
enhance layer adhesion but also cumulate the stringing. Fine-
tuning workflow variables for particular parts or innovative
materials may be proven time-consuming and uneconom-
ical (Qi et al., 2019). Component regularity is crucial in
industries in which the AM integration is favoured, for exam-
ple, aerospace, however, deviation in component grade of an
equipment is a hurdle to wider acceptance. The administra-
tion and evaluation of vast volumes of data and knowledge
are all part of these difficulties. Such issues can be alleviated
by using ML algorithms to reduce the quantity of human
or computational work needed for achieving satisfying out-
comes. Baumann et al. (2017) provided the basis for this
introduction by mentioning AM is a rapid prototyping (RP)
technology but has far more potential than merely prototyp-
ing. As a result, there is no need to construct any production
tools ahead of time. Furthermore, material waste is decreased
because the process is additive rather than subtractive. On
the downside, the cost per created product is significantly
higher than for mass-produced items; hence it’s best for lim-
ited batches (Morrison, 2015). Based on the process used,
the quality of additively generated objects can differ and
be inferior to that of bulk or tailor machined things. This
is usually done in discrete planar layers, although there are
other non-planar techniques (Ahlers et al., 2019). AM offers
arange of benefits compared to conventional methods, such
as adaptation of mass-part parts and increased complexity in
macro, meso, and micro scales and complicated components
with complicated structures and designs. As a result, AM
has generated a high degree of research in industrial and aca-
demic environments worldwide in recent years. Despite these
advantages, there are some disadvantages, such as a funda-
mental lack of consistency (Dowling et al., 2020), which has
made certification problematic in several industries (Thomp-
son et al., 2016). Another downside is scarcity of proper and
adequate acquaintance of design guidelines, despite various
pros as discussed above (Thompson et al., 2016). Neverthe-
less, they are known to produce some side effects such as
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damage to the skin and breathing problems. Table 2 listed
the various chemicals utilized in AM processes, as well as
their hazardous and ecological consequences (Huang et al.,
2012).

In this article, the phrases 3D printing and AM are
used interchangeably to describe technologies capable of
making three-dimensional physical items based on three-
dimensional digital models by layer to layer addon, curative,
or other component processing. These technologies suppress
traditional methods of extracting material from a structure
to produce an anticipated output shape, e.g., drilling, turn-
ing, or other subtractive fabrication methods (Beaman et al.,
2020). While suitable to all major industries, the aerospace,
automotive, and medical sectors have been at the forefront
of AM development. The main driver of the aerospace and
automotive industries is minimizing component weight with-
out compromising performance. Medical applications of AM
have a broader range of motives, while patient customization,
enhanced biocompatibility, and performance are all common
themes. Consumer products commonly employ AM tech-
nique, with mass customization and light-weighting being
two prominent motives (Gibson et al., 2021). Apart from
the predefined sequence of producing predictions through
data modelling, experts are investigating creative and novel
techniques to incorporate ML algorithms with the AM. ML
techniques, apps, and frameworks are being used by AM
professionals to improve its quality, optimise production pro-
cesses, and reduce costs. With this wide concept in account,
ML may be characterised as supervised, unsupervised, or
reinforcement learning (Sutton & Barto, 2015).

AM has existed since nearly 1980, but it was only recently
that the revolution gained popularity and budgets after the key
patent expired, notably for consumer-grade 3D printing tech-
nology. ML has been studied since around 1960 (Widrow &
Lehr, 1990) and is based on natural notions such as the per-
ceptron (Rosenblatt, 1958). Still, it has lately gained traction
due to outstanding results produced by research organizations
and commercial enterprises like Google. Different studies are
now being specialized to additive production research, which
can address fundamentals and complex challenges through
ML approaches. Research on ML has been conducted at
this age, and it has been discovered that this is the era of
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Table 2 Hazardous and ecological impact of different chemicals used in AM processes (Huang et al., 2012)

SNo AM Chemical/solvent Emissions Hazards of usage Biodegradability
process
1 SLA Propylene carbonate C0,,CO,SOx Minor system toxicity was ~ Readily biodegradable (more
reported in rats than 80% degraded in
10 days)
Urethane resins Excessive ingestion may Not reported harmful to
result vomiting atmosphere
Tripropylene glycol Minor irritation after eye Can be biodegraded by 50%
contact in just 8.7 days, and by
No other effect to skin 81.9% over a 28-day test
period
Isopropanol Irritation and burning in Has a potential to acutely
eyes decrease oxygen from
and occasionally corneal aqueous systems
injuries; irritation
and soreness on skin and
prolonged
exposure may have
dermatitis
2 SLS Polyamide resin CO, No serious issues were Form inflammable mixture in
seen while contact with some
handling or exposure to chemicals or long exposure
this chemical to air
Acrylonitrile butadiene Molten plastic may Since it is insoluble in water,
styrene develop lethal burns, its eco-toxicity is low
processing fumes may
result eye irritation and
choking of the
respiratory tract
3 LENS Photopolymers C0O,,C0O,SOx Inhalation may cause No hazardous decomposition
ulceras, throat burning products
and coughing; skin and
eyes may have redness,
irritation and swelling
4 FDM Propylene glycol C0,,CO,SOx,PMc,NOy Irritation in eyes, skin, No hazardous decomposition

monomethylether

nose, throat; headache,
nausea, dizziness,
drowsiness,
incoordination; vomiting,
diarrhea

products

database creation since a big quantity of knowledge is gener-
ated everyday across numerous networks, production, online
networks, pharmaceuticals, aviation, 3D printing, automo-
biles, and telecommunications are just a few examples.

ML is adiscipline of Al thatenables a device to train from a
dataset obtained from various sources and perform intelligent
activities, such as conducting complex processes by gather-
ing accessible data, rather than following a pre-programmed
technique (Craig et al., xxxx). ML mainly deals with massive
data quantities. The sector has inevitably resorted to mas-
ter learning approaches because of the vast amount of data
collected throughout the AM build process. As the supply
sector increases, the difficulty of constructing industrial addi-
tive machinery or 3D entry-level desktop printing devices to

produce a large quantity of bug-free components or finished
products that satisfy high failure criteria also constitutes his
challenges. Parameter variations during construction were
recently revealed as factors for the creation of defects in
the AM sector. This could help the AM industry to iden-
tify potential areas of trouble with the finished product of
the equipment and even perhaps produce more strong build-
ing procedures and cost-cutting strategies. Computer vision,
prediction, and information retrieval are three major compo-
nents that find their direct applications in AM processes. With
the implementation of cutting-edge techniques in graphics,
hardware has allowed their in-depth research, allowing quick
optimization of ML algorithms on massive data (Shinde &
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Fig.5 a Demonstrates a taxonomy of machine learning applications in
the AM domain (Meng et al., 2020). X1; X»; ...;X; represents the input
vector, which includes various input characteristics, and Y represents
the output. b An NN having one input layer, 2 hidden layers, and one

Shah, 2018). As a result of these advancements, ML solu-
tions can now be used in AM for better productivity. As a
result, the focus of this section is on AM technology and
how it might be used in conjunction with ML.

Figure 5a depicts the ML taxonomy and the corresponding
implementations in AM. A well-known ML approach is Arti-
ficial Neural Network (ANN). Its prominence has grown in
tandem with the advancement of processing power, notably
with the adoption of GPUs and their simultaneous compu-
tational power for easy mathematical analysis. An ANN is
comprised of different layers, each containing a set of fun-
damental neurons (Fig. 5b). The perceptron, designed by
Rosenblatt in 1958, was one of the first studies on ANN
(Rosenblatt, 1958). The Heaviside step function serves as
an activation function, calculates response by input values,
and defines the neuron by its own weight(s) in that context.
A layer’s output is the sum of all of its neurons. During
the training phase of a multilayer ANN, backpropagation
may be employed for increasing each neuron’s weight. It
can be obtained by manipulating loss function’s gradient,
representing a distance between the ANN’s output and the
training data, and then propagating the errors backward.
The subsequent network may be a (classical) feedforward
neural network (FNN) if the network layers are ordered
sequentially, i.e., if no backward connection exists between
separate layers; otherwise a recurrent neural network (RNN).
When training RNNs, long short-term memory networks
(LSTMs) deal with the issue of disappearing gradients in
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output layer that is fully interconnected. (Grierson & Quayle, 2021).
Neurons are symbolized by circles, which apply activation functions to
the total sum of the activation and weight pairs from the previous layer

the abovementioned backpropagation process. At the same
time, deep learning is relied on an ANN with multiple lay-
ers, including hidden layers (i.e., layers that are neither
input nor output), and also convolutional and pooling lay-
ers that are only regionally connected (i.e., not all neurons
in one layer are linked to neurons in the next layer). Neu-
rons may be arranged in layers. By layering and connecting
these levels with neighboring layers, convolution neural net-
works (CNNys) are constructed. In the existing AM industry,
variability in manufactured components’ functionality that
relies significantly on numerous processing variables, such
as printing speed and film thickness, is a key hurdle. Vari-
ous review articles have looked into the relationship between
process, structure, and property (Kumar & Kar, 2021; Kumar
& Kishor, 2021; Singh et al., 2017). Experimenting or run-
ning high-fidelity simulations is one option to deal with this
problem, acquire reliable data, and aid in adjusting process-
ing parameters. Still, both are time intensive or pricey, or
both. The use of in situ monitoring systems is another way to
ensure part quality and process dependability, but an effec-
tive defect detection approach based on in situ data such as
pictures is required. A robust and accurate data processing
and data extraction tool is required in both directions. These
challenges are being sorted out by ML, a branch of AL. Witha
trustworthy dataset, ML algorithms can acquire information
from the training set and create conclusions relying on that
information. On another side, trained ML algorithms might
have predictions and identify the ideal operational settings.
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On the other side, ML algorithms use in-situ data to detect
defects in real-time. More ML applications, such as geomet-
ric variation control, cost estimate, and quality analysis, have
been documented in recent studies (Jin et al., 2020; Razvi
et al., 2019). In general, ML applications can be considered
a type of data processing. Therefore ML integration can be
regarded as an important part of Industry 4.0.

As per ASTM F42 (ISO & ASTMS, 2900 - xxxx), various
AM methods can be classified into major groups, as shown
in Fig. 6a. Materials jetting (Wang et al., 2018a) and stereo-
lithography (Lee et al., 2013) are also the classifications of
AM processes; however, they will not be discussed here in
detail. To better comprehend the advantages of ML in man-
ufacturing processes, three broad categories are proposed
and shown in Fig. 6b. The aim here is to demonstrate how
these groups affect successful AM integration and informa-
tion protection planning and scheduling. These processes will
be dealt with in detail in the forthcoming section. As com-
plied by Shinde and Shah (2018), major application domains
of ML technique can be grouped as computer vision, pre-
diction, semantic analysis, natural language processing, and
information retrieval (Fig. 6c¢).

Machine learning in design for additive
manufacturing (DfAM)

DfAM is a subset of Design for Manufacturing and Assembly
(DfMA), although it differs from conventional DEMA in sev-
eral ways. Because AM can produce complicated structures
that are impossible to fabricate using traditional manufac-
turing processes, designers are rethinking the conventional
DfMA process used in AM (Thompson et al., 2016). AM also
avoids the assembly phase because it may fabricate the entire
product in a single step. DFAM (Ponche et al., 2014; Thomp-
son et al., 2016) is a novel word that considers the unique
possibilities of AM as well as the differences between tra-
ditional manufacturing and AM approaches. The processing
of DfAM comes under the following categories:

Topology design

Topology Optimization (TO) (Bendsge, 1999) is a method
for designing structures that optimizes material distribution
inside a design region whilst taking into account spe-
cific stresses and restraints.TO procedures typically include
multiple designs and prototyping repetitions, making them
technologically intensive, especially for mass scale and dif-
ficult to made components. Once the ML models have been
correctly learned, they could provide favorable ideas without
starting over, allowing the ML-centric technique to comple-
ment the classic TO approach. Unfortunately, there is still a
paucity of research on employing ML for topology design for
AM applications. Yao et al. (2017) presented an integrated

ML methodology for AM design feature suggestions while
the designing phase used a clustering algorithm. Figure 7a
shows a typical case study in this context. In contrast, this
work used no TO techniques and instead substituted the
heavy pieces with lightweight components retrieved from
a set in the initial model. The CNN was utilized to skill
the in-between topologies acquired using typical TO tech-
niques in order to solve a mechanical malfunction. The TO
algorithm was interrupted after only a few iterations to antic-
ipate the optimal designs at an interim phase. With some
unusual pixel-wise tweaks, the learned CNN algorithm may
anticipate eventual topology optimisation by nearly twenty
times quicker than standard simplified isotropic material with
penalization (SIMP). Developed network may be employed
for handling heat flux issues, and when applying threshold-
ing, and exceeded SIMP in terms of performance as well
as numerical precision. This establishes CNN model’s broad
generalizability without requiring knowledge of the prob-
lem’s nature. This technology was expanded by Banga et al.
(2018) to construct 3D structures. When the FEM-based
SIMP technique was used exclusively, it could anticipate the
final designs fairly soon, with an average numerical preci-
sion of 96.2% and a savings in time of 40% once trained.
The generative adversarial network (GAN) can predict the
optimized structures without SIMP iterations. GAN is a gen-
erative programming approach that incorporates advanced
deep learning techniques (Goodfellow et al., 2014). The well-
learned GAN model may create a huge sum of unrecognized
design having intricate geometry which fit design specifi-
cations based on the limitations and variables. Figure 7b-d
shows several examples of these studies. All of the train-
ing data was generated via the usual TO approach, which
should be stressed. As a result, while ML cannot com-
pletely replace the classic TO technique, it can be utilized to
reduce the number of iterations and accelerate the optimiza-
tion method. Furthermore, the ML-centered TO technique
might be utilised for a speedy, approximate forecast of initial
information too. But at the other side, the above-mentioned
undertakings have yet to be conducted in additive manufac-
turing.

Material design

Materials experts and researchers have created a variety
of metamaterials, which are composites with distinguish-
able properties. Manually developing metamaterials using
the Edisonian method is extremely difficult and laborious.
The synthesis of metamaterials can be considerably accel-
erated using modern ML approaches (Gu et al., 2018).
Thanks to recent developments in ML, material specialists
and researchers can now predict material properties to invent
new metamaterials. Furthermore, as several researchers have
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proved, AM techniques can materialize previously impossi-
ble ideas to construct. The synergistic potential of cutting-
edge ML in materials and AM techniques is largely untapped.
Chen et al. (2018) devised a fully automated method for
identifying ideal metamaterial designs, which were then
experimentally confirmed using the PEBA2301 elastic mate-
rial and a selective laser sintering (SLS) procedure (Fig. 8).

Given the intended elastic material parameters, such as
Young’s modulus, Poisson’s ratio, and shear modulus, the
system is expected to produce a customized microstruc-
ture that meets the specification using ML technique. Gu
etal. (2018) constructed 100,000 microstructures using three

@ Springer

kinds of unit cells on an 8 by 8 lattice structure, accounting
for fewer than 10-8% of all possible combinations. Convolu-
tional neural networks (CNN) were then utilized for training
a database that included mechanical parameters calculated
using the FEM, yielding innovative microstructural patterns
for a composite metamaterial twice strong and forty times
hard. The multi-material jetting AM method was used to val-
idate their ideas (Fig. 9). One notable difference is that FEM
simulation required around five days to calculate mechanical
characteristics. Still, CNN only took ten hours to learn and a
few seconds to generate the output.
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Machine learning for additive manufacturing
processes

ML is a tool for data processing. The data that can be eval-
uated and used for the Process- Structure—Property (PSP)
relation chain are presented in Fig. 10. The term "process"
is separated into two words , "processing parameter" and

(d)

etal., 2020). The expected results are compared to real data obtained by
traditional TO procedures(Sosnovik & Oseledets, 2019). ¢ The similar
approach is utilised for 3D structures(Banga et al., 2018). d GAN was
used to create TO structures (Rawat & Shen, 2018)

"resultant processing data," in common PSP connections. It
is possible to discriminate between data accessible before-
hand and after processing.

e Extruder temperature in ME, laser power in L-PBF, print-
ing pace, and film thickness all have a significant effect on
printed items and therefore influence their reliability and
productivity;

@ Springer



38 Journal of Intelligent Manufacturing (2023) 34:21-55

Step 1 Step 2 Step 3 Step 4

Estimate gamut Identify families Fit templates Reduce parameters

0.5

I

L N Family Skeleton
w ‘«:: . § »representative ‘

0
e
-0.5 — "
=15 -05 05 1 Fitted Pr|nC|paI
Embedding space structure directions

Fig. 8 Illustrates a computational workflow for identifying extremal microstructure families based on elastic material parameters (Desai et al., 2018;
Wang et al., 2020)

@) Family of unit cells © 4, . - _—
— siff |
[ —Soft [
19 —ML-opt I
—ML-min |
'nﬁi' 8t ——Train-max | 1
s
Exx < Eyy xx = Eyy Bx: > Byy w 6
o
(b) Microstructure Bunldmg blocks Data matrix n 4
2 o1 i 24 31 Al 2
Al 289 20 @ A 23
Sitasrazes
2031328 Y 2
12829 0
3123123 ” - 3
2328 A2 0 005 01 015 02 025 03
il 24 & 1 12 31

Strain [-]

Fig.9 The optimisation of the microstructure by ML could help to build stronger and more durable materials (Gu et al., 2018; Wang et al., 2020)

Closed-loop control and defect detection Quality Assessment
Grain size
Surface
Processing Parameters Processing data unevenness
* Porosity and

@ other
imperfections
¢ Melt pool depth
¢ In-situ images
* Video acoustic
signals

Parametric optimization

Properties cum quality prediction

Fig. 10 Shows the link between process, structure, and property in AM are shown by highlighted text. The source and terminus of each
additive manufacturing. The available data for machine learning is rep- arrow reflect the source and outgoing values, respectively (Meng et al.,
resented by the text in the boxes. Some known ML implementations in 2020)
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e The intended structure has a major impact on production
charges and geometric variation in produced items;

e The obtained in situ images and acoustic emissions (AE)
can be used for the identification and type of problems in
real-time by surveillance systems.

As a consequence, ML models trained on a given dataset
comprising a minimum of two categories of linked data in
PSP network will be able to derive conclusions from this
input. It is the most common approach to ML model imple-
mentation.

Process parameter optimization

Developers will not know the grade of a part developed with
a particular set of processing parameters until it is manufac-
tured. Consequently, several steps must be taken to ensure
product performance, such as printing specimens and validat-
ing their efficiency, making the design costly, time-intensive,
as well as unpredictable. Therefore, a direct link between
governing variables and product performance can be highly
advantageous. Tests and computations are valuable tools for
establishing a connection, however, getting optimal variables
is difficult when multiple input parameters are tangled. ML
techniques can be utilized in the form of substitute models to
enhance operational efficiencies (Wang et al., 2018b, 2019).
To additively build new materials, process parameter devel-
opment and optimization have traditionally been carried out
using the design of experiments or simulation methods. How-
ever, in the case of metal AM, developing an experimental
strategy often necessitates a lengthy and costly investigation
process (Wang et al., 2018b, 2019).

A physical-based simulation can be used to demonstrate
the theoretical underpinnings for the production of various
features during handlings. However, macro-scale models,
such as FEM, may have inaccuracies with experimental out-
comes owing to decreased assumptions. Single tracks or a
few tracks and layers are frequently the subjects of increas-
ingly more advanced approaches, such as computational fluid
dynamics. This makes predicting the mechanical character-
istics of pieces on a macro scale or in a continuum complex.
As a result, several researchers have looked at the poten-
tial of using ML to overcome the issues mentioned above
in metal AM process optimization, as shown in Table 3. ML
was found to be primarily used as a link to two levels of qual-
ity criteria for significant process parameters: mesoscale and
macroscale. Moreover, some scholars have employed process
maps as a means of finding process frames. These process
maps can be a valuable tool for further analysis. Single routes
are the main construction elements in the mesoscale of high-
energy AM. Topology of the weld pool can have a substantial
influence on the finished quality of product, for example,
shape, continuation and consistency. Because of insufficient

empirical observations, the powder-based and wire-based
DED (wire-based) processes were predicted using a multi-
layer perceptron (MLP). The process variables were thus
inexorably linked to the melt pool morphologies. It thus
indicates a particular geometry can be attained by adjust-
ing parametric combinations in the opposite direction. In
the 3D response maps to melt pool depths vs. process set-
tings, Tapia et al. (2017) used the Gaussian Process-base
(GP) substitute model as shown in Fig. 11a-c. As a result,
parametric combinations can be defined to eliminate forma-
tion of keyhole melting. A mixture of one empirical dataset
and two additional literature data sets have been used for the
139 data sets. Several ad hoc filters have been implemented
to decrease abnormalities, resulting in 96 valid data points.
Their 6.023 wm preview error is acceptable since it was
equivalent to data gathering faults. The porosity of AM-built
parts is another primary concern at the mesoscale. Total den-
sity is the prime purpose in metal AM since the mechanical
behavior of components is heavily affected by porosity, espe-
cially by fatigue. Multi-Layer Perceptron (MLP) can depict
complex non-linear interactions with little insight into how
predictions are produced. Moreover, the unsafe nature of the
prediction outputs may be usually evaluated, but when the
same amount of input information is given, it is substantially
costly than the MLP. As a result, MLP and GP combined with
Bayesian approaches were used to estimate porosity in selec-
tive laser melting (SLM) based on combinations of process
factors, as shown in Fig. 11(d)—(e). The PLA sample open
porosity during SLS processing was estimated using SVM
and MLP algorithms.

Multi-gene Genetic Programming (MGGP), though lim-
ited by the system’s generalization, is a cutting-edge tech-
nique that may robotically develop the shape. The printing
of a 58 wt% HA + 42 wt% PA powder mix utilizing SLS was
done to achieve the necessary open porosity values through
adjustment of process parameters. Ensemble-based MGGP
with a better generalizing capacity.

ML technique can also be used to investigate the macro-
scale characteristics of AM-built objects. A fuzzy inference
system based on adaptive systems (ANFIS) can usually only
handle partial values. As a result, since there are so many
unknowns in the fatigue process, it’s beneficial for analyzing
fatigue attributes. Zhang et al. (2019) acquired 139 SS316 L
fatigue data that had been manufactured under 18 different
treatment configurations on the same SLM equipment. The
ANFIS was effectively used with the ’process based’ model
and the "property model’ to predict high-cyclical fatigue with
an average root squared error of 11-16%. However, when
they used the training set with the 66 data points to estimate
fatigue life, the performance of their algorithms was reduced,
owing to the variability of machine-to-mechanical systems.
It is therefore advised to use both empirical and bibliograph-
ical inputs in model training in order to increase its ability for
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Fig. 11 A GP-based model for predicting mesoscale features of SLM-
fabricated parts (Wang et al., 2020). Samples of SS316 L(Tapia et al.,
2017): a A single track optical micrograph. B Prediction of melt pool

generalization. Wang et al. (2018b) argued that examining the
top surface morphology might assist in narrowing down the
electron beam melting process window (EBM). SVM, for
example, works well when the proximity between classes
is apparent, but it is simple to overfit. As a result, Aoyagi
et al. (2019) proposed a straightforward method for con-
structing EBM flowcharts using only 11 datasets. It should
also be noted that SVM was used in this study solely to fit the
data to identify the decision boundaries. Because the training
dataset was so small, assigning a training dataset to evalu-
ate the model’s accuracy was problematic. Recurrent neural
networks (RNN) are being used to anticipate time series. To
determine the high thermal history of complicated compo-
nents of the DED process as established by Mozaffar et al.
(2018), RNN was therefore utilized for training FEM data in
view of the time dependence of the inputs. In addition, both
MLP and SVM have tried to forecast the thin wall deposits
for DED.

The study focused on the mechanical characteristics of
macroscopic dimensions in the AM extrusion material pro-
cess. For process parameters that had been carefully studied,
FDM includes the thickness layer, temperature, and struc-
ture guidance. Here, the MLP is utmost widely employed
methodology. An adequately trained MLP is preferable to
the precision and prediction of the system’s nonlinear data.
The usage of the compressive strength, wear rate, elasticity

@ Springer

depth based on experiments (¢) and modelling. PH samples from SS17-
4 (Tapiaet al., 2016). d Test coupons that are exactly as they were built.
e The observation’s spatial behaviour throughout the process parameter
grid. f Forecast of porosity for every power-speed combination

dynamics, creep, and restorative properties were thoroughly
assessed in estimating material tensile parameters of PLA
and PC-APS materials.

Process monitoring

While parameter optimization can aid in process predictabil-
ity, it cannot totally eradicate failures (Kwon et al., 2018).
Process monitoring approaches that can detect build failures
and defects are required since print problems account for a
considerable portion of the cost of AM parts. Various ML
solutions have attempted to handle this challenge, and they
are categorized into two groups depending on input data type:
optical and acoustic. The most frequently applied monitoring
solutions are those that utilize information from digital, high-
speed, or infrared cameras. The melt pool is a typical target in
PBF operations, at which majority of monitoring investiga-
tion are oriented. Kwon et al. ( 2018) used melt pool thermal
data to train CNN-based software for distinguishing high to
low-quality constructions having failure rate less than 1.1%,
potentially saving time and money. Zhang et al. (2020b)
uncovered that integrating melt pool, plume, and spatter data
to categorize component quality yields best results. A form
of NN known as a long—short term memory network has been
determined much better prediction (Zhang et al., 2021). Other
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AM techniques, such as binder jetting and material extru-
sion, have also benefited from optical monitoring. Gunther
etal. (2020) employed an optical tool for analyzing defects in
binder jet parts. The techniques used here were not disclosed,
and there was no discussion of the model’s accuracy. Opti-
cal tracking has been used in material extrusion to detect
defects in real-time. Wu et al. (2016b) employed a classi-
fication method for detecting infill print faults in material
extrusion, giving them more confidence in final product’s
quality. The study had a 95% accuracy rate; however, it didn’t
consider other essential quality metrics like precision and
recall. Li et al. (2021) determined dimensional deviation with
zero mean error and a standard deviation of 0.02 mm using
in situ optical monitoring of a material extrusion process.
Sun et al. (2021) employed adaptive fault detection and root-
cause analysis using moving window KPCA and information
geometric causal inference. They noted that this scheme had
good performance in reducing the faulty false alarms and
missed detection rates and locating fault root-cause. Said
et al. (2020) added a new Fault Detection method applicable
to the process monitoring using Kernel partial least squares
(KPLYS) in static and dynamic forms. They noted that results
obtained from reduced kernel partial least squares (KRPLS)
have demonstrated the efficiency of the developed technique
in terms of false alarm rate, good detection rate and compu-
tation time, compared with the conventional fault detection
KPLS. Lee et al. (2020) proposed Kernel principal compo-
nent analysis and found it can effectively monitor the tool
wear. The proposed method can effectively integrate multi-
sensor information and synthesize the data to estimate the
state of the process.

A more recent and comparatively cheaper means to mon-
itor the build throughout the printing process is called
acoustic monitoring. These methods depend on acoustic sig-
nals related to part porosity and melt states in PBF processes
and material extrusion process failures. In contrast to optical
monitoring, acoustic monitoring systems have cheaper sen-
sors. The ML algorithms used range from supervised CNNs
to clustering solutions. Acoustic monitoring effectively high-
lights problem builds with reduced requirement for post-print
examination and testing, with confidence levels of up to
89% for porosity classification and 94% for melt-pool-related
defects. Extrusion procedures have also been subjected to
acoustic monitoring. Wu et al. (Wu et al., 2015b) employed
acoustic monitoring and an SVM classifier to assess if the
extruder was pushing out material with 100% accuracy. The
SVM could detect extruder obstructions with 92% accuracy
(normal, semi-blocked, or blocked).

Powder spreading characterization

The degree of consistency for powder distribution in the
PBF process is critical to quality of final products. Improper

powder distribution can cause a variety of problems, includ-
ing warping and swelling, which can cause the entire build
to fail. Re-coater striking curled-up or humped compo-
nents, re-coater dragging impurities, re-coater blade damage,
debris over powder bed are all examples of powder spread-
ing problems. Furthermore, eliminating the requirement for
human-made detectors for specific abnormalities is highly
desirable. To that purpose, a mechanism for detecting and
classifying powder spreading faults autonomously while
build was introduced. Scime and Beuth used modern com-
puter vision techniques such as k-means clustering (Scime
& Beuth, 2018a) and multi-scale CNN (Scime & Beuth,
2018b) to learn the algorithm accurately. They also categorize
powder-bed picture patches into seven kinds using photos
recorded throughout the SLM process. This technology also
allows for in-process repair of flaws in the AM process when
a feedback control system is used.

Defect detection, quality prediction, and closed-loop
control

In situ monitoring devices have advanced to the point that
real-time data can be collected for defect detection and
closed-loop control in AM. ML models may employ actual
information like spectroscopy, images, AE, and computed
tomography (CT) in a variety of ways, as shown below.

e Identify the information with error (potentially with defect
categories) or not by experimental tests or human exper-
tise. Then, train supervised learning models for detecting
defects and performance projection in real-time, which is a
frequent implementation of ML classification techniques.

e Execute cluster assessment with unsupervised learning
approaches for abnormal data to be clustered and detect
faults without labelling.

e Build the ML regression models utilizing data from some
real-time adjustable process conditions to modify these
processing parameters in real-time. The third way is illus-
trated by voltage level control in the MJ process. Their
process control structure is made up of three basic com-
ponents, as indicated in Fig. 12. A charge-coupled device
(CCD) camera captures the dynamic photos of the droplet
first. Secondly, the images are used to extract four droplet
properties (satellite, ligament, quantity, and pace), which
are then coupled with the current—voltage to create a neu-
ral network (NN) ML algorithm. Finally, the trained ML
model is used to determine the appropriate voltage level
and send it to the voltage modification system, which reg-
ulates the droplet jetting pattern.

@ Springer
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Fig. 12 The MJ program’s
closed-loop voltage regulation
architecture (Meng et al., 2020;
Wang et al., 2018a)
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Fig. 13 The geometric error compensation approach for Ti-6Al-4 V in
the L-PBF process is shown (Meng et al., 2020). The input data consist
of a the thermal history and b the processing parameters. The pre-
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Geometric deviation control

AM parts commonly have low geometric precision and sur-
face integrity(Grasso, 2017). These geometric flaws obstruct
AM’s use in a variety of fields, including aerospace and
pharma. Under such scenario, ML models can recognize
geometric faults, quantify the deviation, and make recom-
mendations for correcting the flaws. As shown in Fig. 13,
Francis et al.(Francis & Letters, 2019) built a geometric error
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The distortion in the CAD model is reversed to compensate for errors.
CAMP-BD is a convolutional and ANN for predicting additive manu-
facturing using big data (Francis & Letters, 2019)

compensation framework for the L-PBF process using a con-
volutional neural network (CNN) ML model. The trained ML
model can anticipate distortion by considering thermal data
and a few process variables for feeding and distortion as an
outcome, which is then fed back into the CAD model for
error detection and correction. The geometric accuracy of
items manufactured using the adjusted CAD model will be
greatly enhanced due to this method.
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Fig. 14 A framework for cost analysis on account of geometry and process likenesses (Chan & Lu, 2018; Meng et al., 2020)

Cost estimation

Manufacturers, clients, and other supply chain stakeholders
need to know how much printing costs and how long it takes
to print something. Although the dimensions of the proposed
shape can be used to estimate them, an additional precise
and effective cost approximation technique is still necessary.
Chan et al. (2018) recently published an application of cost
estimation. The cost estimation framework they proposed is
shown in Fig. 14:

e A customer presents a production order that includes a
three-dimensional model;

e The input vector is formed from the three-dimensional
model and fed into trained ML algorithms for cost estima-
tion using clustering analysis based on similar workloads.

o If such customer requests it or data required for training
the ML algorithm is insufficient, the 3D model will be
delivered to modeling techniques to estimate costs, which
will be used as training source for ML algorithms.

e After integrating the ML forecasts, the gross expected cost
is calculated;

e The customer gets the final estimate.

Machine learning for additive manufacturing
production

Additive manufacturing planning

Since AM is regarded a costly production procedure at this
level, many end-users need a substantial return. A delicate
pre-production strategy is needed for the production process,
from the CAD design to the finished product quality test. As
aresult, some projects have used ML to aid in AM planning.
Tang et al. (2016) showed that for FDM-print grid structures,
the manufacturability of a component could be evaluated uti-
lizing ML in pre-manufacturing. Moreover, the multimodal
learning system combining CNN and MLP had been built
based on concepts, materials, and process parameters such
that a metal part could be produced successfully by SLM.
Likewise, Lu (xxxx) has utilized SVM to boost the reliabil-
ity of a 3D printable testing model to determine if the AM
process was suitable for the design. Moreover, in contrast to
the previous estimators created on SLS machines, MLP was
designed to decrease the error rate from 20 to 35% by 2 to
15%.
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Fig. 15 ML approach to minimize SLM treatment thermal distortion (Chowdhury et al., 2018; Wang et al., 2020)

Additive manufacturing quality control

A significant barrier to AM quality assurance is the vari-
ability in the production quality between different machines
in the same process, or even from construction to produc-
tion. Variations in dimensional precision, density, process
stability, and material properties may result from the dis-
parity (Kumar & Wu, 2020, 2021b; Kumar et al., 2020b).
As a result, for establishing quality in AM parts, numerous
studies are endeavored for utilizing the ML algorithms. Three
methods for eliminating geometric errors are rescaling whole
components, altering their primary CAD, and employing the
quality measures. Prior to manufacturing, MLP or CNN may
be employed to predict scaling ratio and change total size
of the components. Shape-dependent geometric variations
because of heat stress could be modelled using the ML algo-
rithms, allowing for appropriate geometric adjustments in the
CAD model. MLP was utilized to correct geometric distor-
tion to decrease the thermal consequences induced by SLM
(Chowdhury et al., 2018). The FEM modeling output was
produced for forecasting the distorted regions and altering
existing CAD data (Fig. 15). Noriega et al. (2013) employed
a similar method in FDM printing, replacing simulated data
with test results. For providing process control, SOM may
interlink distinct geometric aberrations for specific process-
ing parameters. In comparison to many current supervised
ML algorithms, added with a laser scanner this method can
cut short required cloud data necessary for measuring the
dimensional correctness of additively manufactured com-
ponents. Additionally, the single tracks may be changed at
the macro scale by modifying DED process parameters to
minimize geometric flaws. Surface pictures taken after each
created layer in the PBF process is laser exposed can train ML
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algorithms to recognize deformed portions quickly before
powder coating.

By incorporating different sensors and cameras, in-
process supervision is used to increase the quality of addi-
tively manufactured components, as aforementioned. Signal
emissions, mostly visual and auditory may be recorded and
analysed to acquaint multiple ML systems for managing the
3D build. ML can help diagnosis printing status and failure
mechanisms, melting state, porosity detection, tensile prop-
erty estimation, and surface roughness estimation in AM.

Additive manufacturing data security

Intellectual property (IP) protection are very important and
industries pay a huge amount in that. The cyber and physical
realms are the two important characteristics of digital man-
ufacturing, as depicted in Fig. 16a. Usually, the data thefts
are most commonly occur in the cyber domain; this could
also happen in the real-life realm (such as side channels)
since AM technology releases several signals when gener-
ating 3D builds. ML techniques could be used to monitor
outgoing channels and extract CAD data in IP surveillance.
To now, ML has only been able to record acoustic signals
during printing in order to structure 3d models from side
channels. Transducers could capture acoustic signals from
stepper motors in an FDM, as seen in Fig. 16b. It’s similar
to G-code in that it leaks data for the FDM process, includ-
ing axis motion, nozzle velocity, temperature, and material
discharge. The retrieved features of audio files can be used
to develop ML algorithms in Mohammad et al. (2016) to
rebuild a model with a forecast efficiency of 78% axis and
a predicted inaccuracy of 18%. To capture the audio data in
an IP-theft case, the burglar even can position his cell phone
near the device. This information was used by Hojjati et al.
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Fig. 16 a Cyber and physical
invasion during AM system
development process. b Side
Channel Acoustic Model Attack
(Al Faruque et al., 2016; Wang
et al., 2020)
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(2016) to properly rebuild an aircraft model around one mm
in length with one-degree angular error.

Printability and dimensional deviation management

Models can be created for identifying component printabil-
ity in material extrusion processes and PBF, using the CNNs
and the SVMs. The usage of NNs can cut print time esti-
mates for PBF operations from 20-35 to 2-15%, allowing
for better equipment control. The material, machine, and
film production are all three-dimensional elements in AM
systems; for example, in the process of conversion of a
CAD model to an STL file format, the resolution will be
reduced. In PBF, ML was used to rectify these to initially
optimise the orientation of the components, reduce noncon-
formity because of machine, and adjust the computer design
for material thermal effects. To analyse and evaluate point-
cloud data for dimensional deviance of components produced
by extrusion procedures, Khanzedah et al. (2019) have put
an uncontrolled learning algorithm, a self-organizing map.
Their implementation allowed for the classification of par-
tial differences into discrete clusters on account of severity
of the existing differences that permitted the identification of

(b)

suboptimal conditions in the process. By changing the part’s
size for material extrusion, Noriega et al. (2013) used NNs to
compensate for dimensional variation. Their two NN imple-
mentations reduced deviance by 50% for outer dimensions
and 30% for internal dimensions, respectively. Charalampous
et al. (2021) used the AM of T4 spinal vertebrae as a case
study and attained 25% decrease in dimensional deviance
for 1:1 scale and 33% reduction at 3:1. Multiple literature
has investigated how to limit geometrical deviance in DED
and binder jetting. Shen et al. (2018) conducted an analysis in
which CNNs were used to forecast geometrical deviance and
recompense it by tilting, resizing, and turning the CAD geom-
etry of a dental crown that will be made using binder jetting
procedures. During the operational study, the CNN casted-off
a voxel-based method, where each voxel was graded as reli-
able or defective. The F1 scores, which are a single-value
metric added for assessing the prediction accuracy, were
then calculated. The F1 scores for both the predictive and
compensatory models averaged 94%. Despite this, no actual
samples were produced, making the conclusions unreliable.
The most typical method of dimensional deviation correction
in DED is to use process parameter optimization to optimise
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the geometric features of separate channels. It partially cor-
rects component and machinery issues, but not document
formatting issues. Caiazzo and Caggiano (2024) established
optimization model for analysis of results. References (Al
Faruque et al., 2016) and (Hojjati et al., 2016) discovered that
material extrusion machines are vulnerable to intellectual
property theft. The noise produced in stepper motors might be
collected and treated to infer characteristics of the 3D builds,
according to Al Faruque et al. (2016). This data was utilised
to rebuild the CAD geometry that was being manufactured
in a physical-to-cyber-theft. These studies employed non-
descript supervised classification and regression models for
predicting elements added with their quantities. With a mean
axis prediction and overall length prediction error 78 and
18%, respectively, the geometry was efficiently rebuilt. IP
theft is a feature of AM, influenced by ML, contrasting to the
other uses mentioned. If AM, specifically material extrusion,
is made feasible for encryption methods, this must be solved.

Conclusion and future research

Based on many studies, the world is experiencing a flood
of data that generates large amounts of data every day from
different sources, for example (urban planning statistics, sen-
sor readings, environmental parameters, financial records,
AM/3D printer data, medical information, data on mobility
etc.). It is vital to gather relevant insights and information
from the diverse information available on many networks.
ML algorithms can be used to examine new research areas by
representing and extracting insights from heterogeneous data
utilising available data. In research on Intelligent Manufac-
turing by Kang et al. (2016), AM and ML have been regarded
as important innovations for Industry 4.0 also known as the
4th industrial revolution.

e ML techniques and their applications in various key AM
processes have been thoroughly examined in this study. In
research, ML is found effective in improving 3D build’s
quality. In AM, ML is integrated to improve tool productiv-
ity, research novel materials, and find property—structure
relationships. The great majority of existing ML appli-
cations in manufacturing fields are heavily focused on
processing-related procedures such as process parameter
optimization, as seen. These can be used to tweak oper-
ation parameters for one or more performance standards.
Even though these optimization algorithms are machine-
oriented, there is a lack of work that attempts to develop
better approaches. Irrespective of whether the final optimi-
sation technique is conventional or ML-based, a huge num-
ber of tests will be required without such breakthroughs.
Therefore, most of ML ongoing research are expected to be
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concentrated soon on novel materials, reasonable produc-
tion plans, and computerized in-process feedback systems
to AM that can further enhance smart AM.

e Researchers can apply advanced machine learning tech-
niques to time series analysis, conceptual advancements
and simulation, model-based fabrication, production data
processing and retrieval, analytical thinking, medical and
biological records, data-driven clustering algorithms, fault
and outlier identification, and in-situ and performance
tracking.

e Overall, ML has increased the likelihood of AM imple-
mentation and enhanced its perceived value. Most ML
solutions for AM, on the other hand, are not tested suffi-
ciently to be applied in real-world problems. As a solution,
current studies should aim on enhancing the applicabil-
ity of these tools for actual industrial issues and offering
practical industrial examples to boost confidence in their
efficacy.

e Considering the restrictions of the feedstock, the opera-
tion settings, and the prior processing outcomes, one might
optimise for best succeeding machine variables assigned
to obtain greatest feasible quality standards, as done by
Weiss et al. (2014). Pondering further, this technique
might be extended from part-specific phases to machine-
and facility-specific phases, enhancing overall productiv-
ity while accounting for resources, power, and constraints.

e Another potential study issue could be equipment simplic-
ity and the utilisation of higher raw element limitations.
ML-based optimization strategies may cope to greater
requirements of the processing phases, providing consis-
tent quality while lowering machinery and raw cost of
materials.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Acayaba, G. M. A., & de Escalona, P. M. (2015). Prediction of surface
roughness in low speed turning of AISI316 austenitic stainless
steel. CIRP Journal of Manufacturing Science Technology, 11,
62-67. https://doi.org/10.1016/j.cirpj.2015.08.004


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirpj.2015.08.004

Journal of Intelligent Manufacturing (2023) 34:21-55

49

Adamczak, S., Bochnia, J., & Kaczmarska, B. (2014). Estimating the
uncertainty of tensile strength measurement for a photocured mate-
rial produced by additive manufacturing. Metrological Measuring
System, 21, 553-560. https://doi.org/10.2478/mms-2014-0047

Addin, O., Sapuan, S. M., Mahdi, E., & Othman, M. (2007). A Naive-
Bayes classifier for damage detection in engineering materials.
Materials and Design, 28, 2379-2386. https://doi.org/10.1016/j.
matdes.2006.07.018

Ahlers, D., Wasserfall, F., Hendrich, N., & Zhang, J. (2019). 3D printing
of nonplanar layers for smooth surface generation. /[EEE Inter-
national Conference Automative Science Enginerring. https://doi.
org/10.1109/COASE.2019.8843116

Ahmad, M. S., Adnan, S. M., Zaidi, S., & Bhargava, P. (2020). A
novel support vector regression (SVR) model for the prediction
of splice strength of the unconfined beam specimens. Construc-
tion Building Materials, 248, 118475. https://doi.org/10.1016/j.
conbuildmat.2020.118475

Al Faruque, M. A., Chhetri, S. R., Canedo, A., Wan, J. (2016). Acoustic
Side-Channel Attacks on Additive Manufacturing Systems. 2016
ACM/IEEE 7th Int Conf Cyber-Physical Syst ICCPS 2016 - Pro-
ceedings 2016. https://doi.org/10.1109/ICCPS.2016.7479068.

Alabi, M. O. (2018). Big data, 3D printing technology, and industry of
the future. International Journal of Big Data and Anal Healthcare,
2, 1-20. https://doi.org/10.4018/ijbdah.2017070101

Alade, 1. O., Rahman, M. A. A., & Saleh, T. A. (2020). An approach
to predict the isobaric specific heat capacity of nitrides/ethylene
glycol-based nanofluids using support vector regression. Journal
of Energy Storage, 29, 101313. https://doi.org/10.1016/j.est.2020.
101313

Ali, W., Shamsuddin, S. M., & Ismail, A. S. (2012). Intelligent Naive
Bayes-based approaches for Web proxy caching. Knowledge-
Based System, 31, 162-175. https://doi.org/10.1016/j.knosys.
2012.02.015

Ali, N. H. M., Ahmad, F., Abidin, N. I., Suhaili, S., Rahman, M. A. A.,
Harun, H., et al. (2021). Agile Project Management Software for
Construction and Management Industries (pp. 101-111). https://
doi.org/10.1007/978-981-16-0742-4_7

Anderson, A. (2011). Report to the President on Ensuring American
Leadership in Advanced Manufacturing. Exec Off Pres.

Anderson, A., & Delplanque, J.-P. (2015). Development of Physics-
Based Numerical Models for Uncertainty Quantification of Selec-
tive Laser Melting Processes - 2015 Annual Progress Report.
Livermore, CA (United States). https://doi.org/10.2172/1226942.

Aoyagi, K., Wang, H., Sudo, H., & Chiba, A. (2019). Simple method to
construct process maps for additive manufacturing using a support
vector machine. Additive Manufacturing, 27,353-362. https://doi.
org/10.1016/J.ADDMA.2019.03.013

Azzone, G., & Bertele, U. (2007). Measuring the economic effective-
ness of flexible automation: A new approach. International Journal
of Production Research., 27, 735-746. https://doi.org/10.1080/
00207548908942583

Banga, S., Gehani, H., Bhilare, S. (2018). SP preprint arXiv, 2018
undefined. 3d topology optimization using convolutional neural
networks. ArxivOrg n.d.

Baumann, F.,, Scholz, J., & Fleischer, J. (2017). Investigation of a new
approach for additively manufactured continuous fiber-reinforced
polymers. Procedia CIRP, 66, 323-328. https://doi.org/10.1016/J.
PROCIR.2017.03.276

Beaman, J. J., Bourell, D. L., Seepersad, C. C., & Kovar, D. (2020).
Additive manufacturing review: Early past to current practice.
Journal of Manufacturing Science and Engineering Transactions
ASME. https://doi.org/10.1115/1.4048193/1086507

Bendsge, M. (1999). Material interpolation schemes in topology opti-
mization. Amsterdam: Springer.

Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design
by machine learning: Support vector machines for pharmaceutical

data analysis. Computers & Chemistry, 26, 5-14. https://doi.org/
10.1016/S0097-8485(01)00094-8

CART - Regression Tree from scratch with a hands-on example(in R)
— Insight — Data Science Society, IMI, New Delhi n.d. https://
insightimi.wordpress.com/2020/03/15/cart-regression-tree-from-
scratch-with-a-hands-on-examplein-1/ (accessed July 16, 2021).

Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti,
R. (2019). Machine learning-based image processing for on-line
defect recognition in additive manufacturing. CIRP Annals, 68,
451-454. https://doi.org/10.1016/J.CIRP.2019.03.021

Cai, G., & Mahadevan, S. (2016). Uncertainty quantification of manu-
facturing process effects on macroscale material properties. Inter-
national Journal for Multiscale Computational Engineering, 14,
191-213. https://doi.org/10.1615/IntIMultCompEng.2016015552

Caiazzo, F., & Caggiano, A. (2018). Laser Direct metal deposition of
2024 al alloy: Trace geometry prediction via machine learning.
Materials, 11, 444. https://doi.org/10.3390/MA 11030444

Caydas, U., & Ekici, S. (2012). Support vector machines models for
surface roughness prediction in CNC turning of AISI304 austenitic
stainless steel. Journal of Intelligent Manufacturing, 23, 639-650.
https://doi.org/10.1007/s10845-010-0415-2

Chan, S., & Lu, Y. (2018). Data-driven cost estimation for additive
manufacturing in cybermanufacturing. Amsterdam: Elsevier.

Chand, S., & Davis, J. (2010). What is smart manufacturing. Time Mag-
azine Wrapper, 7, 28-33.

Charalampous, P., Kostavelis, I., Kontodina, T., & Tzovaras, D. (2021).
Learning-based error modeling in FDM 3D printing process. Rapid
Prototyping Journal, 27, 507-517. https://doi.org/10.1108/RPJ-
03-2020-0046

Chonde, S. (2016). A methodology of machine learning in automated
entity summarization. Pennsylvania State University.

Chowdhury, S., Mhapsekar, K., & Anand, S. (2018). Part build orienta-
tion optimization and neural network-based geometry compensa-
tion for additive manufacturing process. Journal of Manufacturing
Science and Engineering, 1, 140.

Chu, W. W. S,, Kim, C. S. C,, Lee, H. T. H., Choi, J. O. J., Park, J. L.
J., Song, J. H., et al. (2014). Hybrid manufacturing in micro/nano
scale: A review. International Journal of Precision Engineering
and Manufacturing - Green Technology, 1, 75-92. https://doi.org/
10.1007/s40684-014-0012-5

Clegg, B. A., Heggestad, E. D., & Blalock, L. D. (2010). The
influences of automation and trainee aptitude on training effec-
tiveness. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 54, 2329-2332. https://doi.org/10.1177/
154193121005402723

Craig, C., N. McCarthy, J., Montgomery, T. H., & Fourniol, F.
MACHINE LEARNING: THE POWER AND PROMISE OF
COMPUTERS THAT LEARN BY EXAMPLE. st ed. n.d.

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018).
The expected contribution of Industry 4.0 technologies for indus-
trial performance. International Journal of Production Economics,
204, 383-394. https://doi.org/10.1016/].1JPE.2018.08.019

David, F. N. (2017). Forces of production: A social history of industrial
automation. Forces Prod. https://doi.org/10.4324/9780203791806

Davis, J., Edgar, T., Graybill, R., Korambath, P., Schott, B., Swink,
D., et al. (2015). Smart manufacturing. Annual Review of Chem-
ical and Biomolecular Engineering, 6, 141-160. https://doi.org/
10.1146/annurev-chembioeng-061114-123255

Delgado, J., Ciurana, J., & Rodriguez, C. A. (2012). Influence of pro-
cess parameters on part quality and mechanical properties for
DMLS and SLM with iron-based materials (pp. 601-610). Berlin:
Springer.

Delli, U., & Chang, S. (2018). Automated process monitoring in
3D printing using supervised machine learning. Procedia Manu-
facturing, 26, 865-870. https://doi.org/10.1016/J. PROMFG.2018.
07.111

@ Springer


https://doi.org/10.2478/mms-2014-0047
https://doi.org/10.1016/j.matdes.2006.07.018
https://doi.org/10.1109/COASE.2019.8843116
https://doi.org/10.1016/j.conbuildmat.2020.118475
https://doi.org/10.1109/ICCPS.2016.7479068
https://doi.org/10.4018/ijbdah.2017070101
https://doi.org/10.1016/j.est.2020.101313
https://doi.org/10.1016/j.knosys.2012.02.015
https://doi.org/10.1007/978-981-16-0742-4_7
https://doi.org/10.2172/1226942
https://doi.org/10.1016/J.ADDMA.2019.03.013
https://doi.org/10.1080/00207548908942583
https://doi.org/10.1016/J.PROCIR.2017.03.276
https://doi.org/10.1115/1.4048193/1086507
https://doi.org/10.1016/S0097-8485(01)00094-8
https://insightimi.wordpress.com/2020/03/15/cart-regression-tree-from-scratch-with-a-hands-on-examplein-r/
https://doi.org/10.1016/J.CIRP.2019.03.021
https://doi.org/10.1615/IntJMultCompEng.2016015552
https://doi.org/10.3390/MA11030444
https://doi.org/10.1007/s10845-010-0415-2
https://doi.org/10.1108/RPJ-03-2020-0046
https://doi.org/10.1007/s40684-014-0012-5
https://doi.org/10.1177/154193121005402723
https://doi.org/10.1016/J.IJPE.2018.08.019
https://doi.org/10.4324/9780203791806
https://doi.org/10.1146/annurev-chembioeng-061114-123255
https://doi.org/10.1016/J.PROMFG.2018.07.111

50

Journal of Intelligent Manufacturing (2023) 34:21-55

Desali, C., Skouras, M., Zhu, B., & Matusik, W. (2018). Computational
discovery of extremalmicrostructure families. Science Advaces, 1,
7.

Devesse, W., De Baere, D., & Guillaume, P. (2014). The isotherm migra-
tion method in spherical coordinates with a moving heat source.
International Journal of Heat and Mass Transfer, 75, 726-735.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.015

Dowling, L., Kennedy, J., O’Shaughnessy, S., & Trimble, D. (2020). A
review of critical repeatability and reproducibility issues in powder
bed fusion. Materials and Design, 186, 108346. https://doi.org/10.
1016/j.matdes.2019.108346

Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Infor-
mation Science and Technology, 38, 188-230. https://doi.org/10.
1002/aris.1440380105

Dunk, A. S. (1992). Reliance on budgetary control, manufacturing pro-
cess automation and production subunit performance: A research
note. Accounting, Organ Society, 17, 195-203. https://doi.org/10.
1016/0361-3682(92)90020-S

Dutt, V., & Gonzalez, C. (2012). Making Instance-based Learning The-
ory usable and understandable: The Instance-based Learning Tool.
Comput Human Behav, 28, 1227-1240. https://doi.org/10.1016/J.
CHB.2012.02.006

D’Addona, D. M., & Antonelli, D. (2019). Application of numerical
simulation for the estimation of die life after repeated hot forging
work cycles. Procedia CIRP, 79,632-637. https://doi.org/10.1016/
j-procir.2019.02.063

Elangovan, M., Sakthivel, N. R., Saravanamurugan, S., Nair, B. B.,
& Sugumaran, V. (2015). Machine learning approach to the
prediction of surface roughness using statistical features of vibra-
tion signal acquired in turning. Procedia Computer Science, 50,
282-288.

Evgeniou, T., Poggio, T., Pontil, M., & Verri, A. (2002). Regularization
and statistical learning theory for data analysis. Computational
Statistics & Data Analysis, 38, 421-432. https://doi.org/10.1016/
S0167-9473(01)00069-X

Evgeniou, T., Pontil, M., & Poggio, T. (2000). Statistical learning the-
ory: A primer. International Journal of Computer Vision, 38, 9-13.
https://doi.org/10.1023/A:1008110632619

Fahle, S., Prinz, C., & Kuhlenkoétter, B. (2020). Systematic review
on machine learning (ML) methods for manufacturing processes
— Identifying artificial intelligence (Al) methods for field appli-
cation. Procedia CIRP, 93, 413—418. https://doi.org/10.1016/J.
PROCIR.2020.04.109

Francis, J., & Letters, L.B.-M. (2019). Deep learning for distortion
prediction in laser-based additive manufacturing using big data.
Amsterdam: Elsevier.

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0
technologies: Implementation patterns in manufacturing compa-
nies. International Journal of Production Economics, 210, 15-26.
https://doi.org/10.1016/J.1JPE.2019.01.004

Frazier, W. E. (2014). Metal additive manufacturing: A review. Jour-
nal of Materials Engineering and Performance, 23, 1917-1928.
https://doi.org/10.1007/S11665-014-0958-Z/FIGURES/9

Garbie, 1. H. (2013). DFSME: Design for sustainable manufactur-
ing enterprises (an economic viewpoint). International Journal
of Production Research, 51, 479-503. https://doi.org/10.1080/
00207543.2011.652746

Garg, A., Tai, K., & Savalani, M. M. (2014). State-of-the-art in empir-
ical modelling of rapid prototyping processes. Rapid Prototyping
Journal, 20, 164—-178. https://doi.org/10.1108/RPJ-08-2012-0072

Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities
for sustainability. Journal of Cleaner Production, 252, 119869.
https://doi.org/10.1016/J.JCLEPRO.2019.119869

Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive
manufacturing technologies. Additive Manufacturing Technology.
https://doi.org/10.1007/978-3-030-56127-7

@ Springer

Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., & Phoha, S. (2018).
Application of supervised machine learning for defect detection
during metallic powder bed fusion additive manufacturing using
high resolution imaging. Additive Manufacturing, 21, 517-528.
https://doi.org/10.1016/J.ADDMA.2018.04.005

Gokulachandran, J., & Mohandas, K. (2015). Comparative study of
two soft computing techniques for the prediction of remaining
useful life of cutting tools. Journal of Intelligent Manufacturing,
26, 255-268. https://doi.org/10.1007/s10845-013-0778-2

Goodfellow, I., Jean Pouget-Abadie, M. M., Xu, B., David Warde-
Farley, S. O., Courville, A., & Bengio, Y. (2014). Generative
adversarial nets. Advanced Neural Information Processing Sys-
tems, 1,27.

Gorecky, D., Schmitt, M., Loskyll, M., & Ziihlke, D. (2014). Human-
machine-interaction in the industry 40 era. In: Proceedings of
2014 12th IEEE International Conference of Industrial Informat-
ics INDIN 2014:289-294. https://doi.org/10.1109/INDIN.2014.6
945523

Grasso, M., Demir, A. G., Previtali, B., & Colosimo, B. M. (2018).
In situ monitoring of selective laser melting of zinc powder via
infrared imaging of the process plume. Robot Computer Integrat-
ing Manufacturing, 49,229-239. https://doi.org/10.1016/J.RCIM.
2017.07.001

Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017).
In-process monitoring of selective laser melting: spatial detection
of defects via image data analysis. American Society Mechanical
Engineering, 2017, 139.

Grasso, M., Technology, B.C.-M.S. (2017). Process defects and in situ
monitoring methods in metal powder bed fusion: A review. lop-
sciencelopOrg n.d.

Grierson, D. R., & Quayle, S. D. (2021). Machine learning for addi-
tive manufacturing. Encyclopedia, 3, 1541-1556. https://doi.org/
10.1016/j.matt.2020.08.023

Gu, G. X., Chen, C. T,, Richmond, D. J., & Buehler, M. J. (2018).
Bioinspired hierarchical composite design using machine learn-
ing: Simulation, additive manufacturing, and experiment. Material
Horizons, 5,939-945. https://doi.org/10.1039/C8MH00653 A

Gunther, D., Pirehgalin, M. F., Weis, 1., Vogel-Heuser, B. (2020). Con-
dition monitoring for the Binder Jetting AM-process with machine
learning approaches. Proceedings - 2020 IEEE Conference Indus-
trial Cyberphysical Systems ICPS 2020 2020:417-20. https://doi.
org/10.1109/ICPS48405.2020.9274716.

Guo, M., Jia, C., Zhou, J., Liu, W., & Wu, C. (2020). Investigating
the generation process of molten droplets and arc plasma in the
confined space during compulsively constricted WAAM. Journal
of Materials Processing Technology, 275, 116355. https://doi.org/
10.1016/J.JMATPROTEC.2019.116355

Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology,
applications and research needs. Frontiers of Mechanical Engi-
neering, 8, 215-243. https://doi.org/10.1007/s11465-013-0248-8

Hapfelmeier, A., & Ulm, K. (2014). Variable selection by Random
Forests using data with missing values. Computing Statical Data
Analysis, 80,129-139. https://doi.org/10.1016/j.csda.2014.06.017

Hoffmann, A. G. (1990). General limitations on machine learning.
ECAL 90, 345-347.

Hofmann, E., & Riisch, M. (2017). Industry 4.0 and the current status
as well as future prospects on logistics. Computers in Industry, 89,
23-34. https://doi.org/10.1016/].COMPIND.2017.04.002

Hojjati, A., Adhikari, A., Struckmann, K., Chou, E. J., Ngoc, T.,
Nguyen, T., et al. (2016). Leave Your Phone at the Door: Side
Channels that Reveal Factory Floor Secrets. In: Proceedings of
2016 ACM SIGSAC Conference on Computer Communications
Security. https://doi.org/10.1145/2976749.

How IoT & Industry 4.0 Relate - and Why Manufacturers Should
Care n.d. https://lucidworks.com/post/how-are-iot-and-industry-
4-related/ (accessed July 16, 2021).


https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.015
https://doi.org/10.1016/j.matdes.2019.108346
https://doi.org/10.1002/aris.1440380105
https://doi.org/10.1016/0361-3682(92)90020-S
https://doi.org/10.1016/J.CHB.2012.02.006
https://doi.org/10.1016/j.procir.2019.02.063
https://doi.org/10.1016/S0167-9473(01)00069-X
https://doi.org/10.1023/A:1008110632619
https://doi.org/10.1016/J.PROCIR.2020.04.109
https://doi.org/10.1016/J.IJPE.2019.01.004
https://doi.org/10.1007/S11665-014-0958-Z/FIGURES/9
https://doi.org/10.1080/00207543.2011.652746
https://doi.org/10.1108/RPJ-08-2012-0072
https://doi.org/10.1016/J.JCLEPRO.2019.119869
https://doi.org/10.1007/978-3-030-56127-7
https://doi.org/10.1016/J.ADDMA.2018.04.005
https://doi.org/10.1007/s10845-013-0778-2
https://doi.org/10.1016/J.RCIM.2017.07.001
https://doi.org/10.1016/j.matt.2020.08.023
https://doi.org/10.1039/C8MH00653A
https://doi.org/10.1109/ICPS48405.2020.9274716
https://doi.org/10.1016/J.JMATPROTEC.2019.116355
https://doi.org/10.1007/s11465-013-0248-8
https://doi.org/10.1016/j.csda.2014.06.017
https://doi.org/10.1016/J.COMPIND.2017.04.002
https://doi.org/10.1145/2976749
https://lucidworks.com/post/how-are-iot-and-industry-4-related/

Journal of Intelligent Manufacturing (2023) 34:21-55

51

Hu, Z., & Mahadevan, S. (2017). Uncertainty quantification and man-
agement in additive manufacturing: Current status, needs, and
opportunities. International Journal of Advanced Manufacturing
Technology, 93, 2855-2874. https://doi.org/10.1007/s00170-017-
0703-5

Hu, Z., Mahadevan, S., & Du, X. (2016). Uncertainty quantification of
time-dependent reliability analysis in the presence of parametric
uncertainty. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech
Eng. https://doi.org/10.1115/1.4032307

Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2012). Additive manu-
facturing and its societal impact: A literature review. International
Journal of Advanced Manufacturing Technology, 67, 1191-1203.
https://doi.org/10.1007/S00170-012-4558-5

Hudson, C. A. (1982). Computers in manufacturing. Science, 215,
818-825. https://doi.org/10.1126/SCIENCE.215.4534.818

ISO/ASTMS52900 - 15 Standard Terminology for Additive Manufactur-
ing — General Principles — Terminology n.d.

Imran, M., Kang, C., Lee, Y. H., Jahanzaib, M., & Aziz, H. (2017).
Cell formation in a cellular manufacturing system using simulation
integrated hybrid genetic algorithm. Computers & Industrial Engi-
neering, 105, 123-135. https://doi.org/10.1016/j.cie.2016.12.028

Jacobsmiihlen, J. (2015). SK-I 2015-41st, 2015 undefined. Detection
of elevated regions in surface images from laser beam melting
processes. IeeexploreleeeOrg n.d.

Jafari-Marandi, R., Khanzadeh, M., Tian, W., Smith, B., & Bian, L.
(2019). From in-situ monitoring toward high-throughput process
control: Cost-driven decision-making framework for laser-based
additive manufacturing. Journal of Manufacturing Systems, 51,
29-41. https://doi.org/10.1016/J.JMSY.2019.02.005

Jia, C. B, Liu, X. F, Zhang, G. K., Zhang, Y., Yu, C. H., & Wu, C.
S. (2021). Penetration/keyhole status prediction and model visu-
alization based on deep learning algorithm in plasma arc welding.
International Journal of Advanced Manufacturing Technology,
117,3577-3597. https://doi.org/10.1007/s00170-021-07903-9

Jin, Z., Zhang, Z., Demir, K., & Gu, G. X. (2020). Machine learning for
advanced additive manufacturing. Matter, 3, 1541-1556. https://
doi.org/10.1016/j.matt.2020.08.023

Johnsson, C., Brandl, D. (2006). K U. ISA 95 for Beginners, Report.
2006.

Joshi, M. S., Flood, A., Sparks, T., Liou, F. W. (2019). Applications of
supervised machine learning algorithms in additive manufactur-
ing: A review. Solid Free. Fabr. 2019 Proc. 30th Annu. Int. Solid
Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2019.

Jurkovic, Z., Cukor, G., Brezocnik, M., & Brajkovic, T. (2018). A
comparison of machine learning methods for cutting parameters
prediction in high speed turning process. Journal of Intelligent
Manufacturing, 29, 1683-1693. https://doi.org/10.1007/s10845-
016-1206-1

Kamath, C. (2016). Data mining and statistical inference in selective
laser melting. International Journal of Advanced Manufacturing
Technology, 86, 1659—1677. https://doi.org/10.1007/s00170-015-
8289-2

Kang, P., & Cho, S. (2008). Locally linear reconstruction for instance-
based learning. Pattern Recognition, 41, 3507-3518. https://doi.
org/10.1016/J. PATCOG.2008.04.009

Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., et al.
(2016). Smart manufacturing: Past research, present findings, and
future directions. International Journal of Precision Engineering
Manufacturing - Green Technology, 3, 111-128. https://doi.org/
10.1007/s40684-016-0015-5

Khanzadeh, M., Chowdhury, S., Tschopp, M. A., Doude, H. R., Maru-
fuzzaman, M., & Bian, L. (2018). In-Situ Monitoring of Melt
Pool Images for Porosity Prediction in Directed Energy Depo-
sition Processes, 51, 437-455. https://doi.org/10.1080/24725854.
2017.1417656

Khanzadeh, M., Rao, P., Jafari-Marandi, R., Smith, B. K., Tschopp,
M. A, & Bian, L. (2018). Quantifying geometric accuracy with
unsupervised machine learning: Using self-organizing map on
fused filament fabrication additive manufacturing parts. Journal of
Manufacturing Science and Engineering. https://doi.org/10.1115/
1.4038598

Knoll, D., Neumeier, D., Priiglmeier, M., & Reinhart, G. (2019). An
automated packaging planning approach using machine learn-
ing. Procedia CIRP, 81,576-581. https://doi.org/10.1016/j.procir.
2019.03.158

Koltchinskii, V., Abdallah, C. T., Ariola, M., & Dorato, P. (2001). Statis-
tical learning control of uncertain systems: Theory and algorithms.
Applied Mathematics and Computation, 120, 31-43. https://doi.
org/10.1016/S0096-3003(99)00283-0

Kreutz, M., Ait-Alla, A., Varasteh, K., Oelker, S., Greulich, A., Freitag,
M., etal. (2019). Machine learning-based icing prediction on wind
turbines. Procedia CIRP, 81, 423-428. https://doi.org/10.1016/j.
procir.2019.03.073

Kulkarni, P., Marsan, A., & Dutta, D. (2000). Review of process plan-
ning techniques in layered manufacturing. Rapid Prototyp J, 6,
18-35. https://doi.org/10.1108/13552540010309859

Kumar, S. (2016). Ultrasonic assisted friction stir processing of 6063
aluminum alloy. Archives of Civil and Mechanical Engineering,
16, 473-484. https://doi.org/10.1016/j.acme.2016.03.002

Kumar, S., & Kar, A. (2021). A review of solid-state additive manu-
facturing processes. Transactions on Indian Natational Academic
Engineering, 6, 955-973. https://doi.org/10.1007/S41403-021-
00270-7

Kumar, S., & Kishor, B. (2021). Ultrasound added additive manu-
facturing for metals and composites: Process and control addit
subtractive manuf compos (pp. 53—-72). Singapore: Springer.

Kumar, S., & Wu, C. S. (2018). A novel technique to join Al and Mg
alloys: Ultrasonic vibration assisted linear friction stir welding.
Materials Today Proceedings, 5, 18142—18151. https://doi.org/10.
1016/j.matpr.2018.06.150

Kumar, S., & Wu, C. S. (2020). Suppression of intermetallic reaction
layer by ultrasonic assistance during friction stir welding of Al and
Mg based alloys. Journal of Alloys and Compounds, 827, 154343.
https://doi.org/10.1016/j.jallcom.2020.154343

Kumar, S., & Wu, C. (2021b). Eliminating intermetallic compounds
via Ni interlayer during friction stir welding of dissimilar
Mg/Al alloys. Journal of Material Research and Technology, 15,
4353-4369. https://doi.org/10.1016/J.JMRT.2021.10.065

Kumar, S., & Wu, C. (2021a). Strengthening effects of tool-mounted
ultrasonic vibrations during friction stir lap welding of Al and
Mg alloys. Metallurgical and Materials Transactions a, Physical
Metallurgy and Materials Science, 52,2909-2925. https://doi.org/
10.1007/511661-021-06282-w

Kumar, S., Wu, C. S., Padhy, G. K., & Ding, W. (2017). Application
of ultrasonic vibrations in welding and metal processing: A status
review. Journal of Manufacturing Processes, 26,295-322. https://
doi.org/10.1016/j.jmapro.2017.02.027

Kumar, S., Wu, C. S., & Shi, L. (2020b). Intermetallic diminution
during friction stir welding of dissimilar Al/Mg alloys in lap con-
figuration via ultrasonic assistance. Metallurgical and Materials
Transactions a: Physical Metallurgy and Materials Science, 51,
5725-5742. https://doi.org/10.1007/s11661-020-05982-z

Kumar, S., Wu, C. S., & Song, G. (2020a). Process parametric depen-
dency of axial downward force and macro- and microstructural
morphologies in ultrasonically assisted friction stir welding of
Al/Mg alloys. Metallurgical and Materials Transactions a: Physi-
cal Metallurgy and Materials Science, 51,2863-2881. https://doi.
org/10.1007/s11661-020-05716-1

Kumar, S., Wu, C. S., Sun, Z., & Ding, W. (2019). Effect of ultrasonic
vibration on welding load, macrostructure, and mechanical prop-
erties of Al/Mg alloy joints fabricated by friction stir lap welding.

@ Springer


https://doi.org/10.1007/s00170-017-0703-5
https://doi.org/10.1115/1.4032307
https://doi.org/10.1007/S00170-012-4558-5
https://doi.org/10.1126/SCIENCE.215.4534.818
https://doi.org/10.1016/j.cie.2016.12.028
https://doi.org/10.1016/J.JMSY.2019.02.005
https://doi.org/10.1007/s00170-021-07903-9
https://doi.org/10.1016/j.matt.2020.08.023
https://doi.org/10.1007/s10845-016-1206-1
https://doi.org/10.1007/s00170-015-8289-2
https://doi.org/10.1016/J.PATCOG.2008.04.009
https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1080/24725854.2017.1417656
https://doi.org/10.1115/1.4038598
https://doi.org/10.1016/j.procir.2019.03.158
https://doi.org/10.1016/S0096-3003(99)00283-0
https://doi.org/10.1016/j.procir.2019.03.073
https://doi.org/10.1108/13552540010309859
https://doi.org/10.1016/j.acme.2016.03.002
https://doi.org/10.1007/S41403-021-00270-7
https://doi.org/10.1016/j.matpr.2018.06.150
https://doi.org/10.1016/j.jallcom.2020.154343
https://doi.org/10.1016/J.JMRT.2021.10.065
https://doi.org/10.1007/s11661-021-06282-w
https://doi.org/10.1016/j.jmapro.2017.02.027
https://doi.org/10.1007/s11661-020-05982-z
https://doi.org/10.1007/s11661-020-05716-1

52

Journal of Intelligent Manufacturing (2023) 34:21-55

International Journal of Advanced Manufacturing Technology,
100, 1787-1799. https://doi.org/10.1007/s00170-018-2717-z

Kauric, I, Cisar, M., Tlach, V., Zajacko, L., Gdl, T., & Wigcek, D. (2018).
Technical diagnostics at the department of automation and produc-
tion systems. Advances in Intelligent Systems and Computing, 835,
474-484. https://doi.org/10.1007/978-3-319-97490-3_46

Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G.-H., Cho, J.-
H., et al. (2018). A deep neural network for classification of
melt-pool images in metal additive manufacturing. Journal of
Intelligence Manufacturing, 31,375-386. https://doi.org/10.1007/
S10845-018-1451-6

Le Calvé, A., & Savoy, J. (2000). Database merging strategy based
on logistic regression. Information Process and Management, 36,
341-359. https://doi.org/10.1016/S0306-4573(99)00036-9

Learned-Miller, E. G. (2014). Introduction to Supervised Learning.
Department of Computer Science, University of Massachusetts.

Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and
trends in predictive manufacturing systems in big data environ-
ment. Manufacturing Letters, 1, 38—41. https://doi.org/10.1016/j.
mfglet.2013.09.005

Lee, W. J., Mendis, G. P, Triebe, M. J., & Sutherland, J. W. (2020).
Monitoring of a machining process using kernel principal compo-
nent analysis and kernel density estimation. Journal of Intelligent
Manufacturing, 31, 1175-1189. https://doi.org/10.1007/s10845-
019-01504-w

Lee, S. H., Park, W. S., Cho, H. S., Zhang, W., & Leu, M. C. (2016).
A neural network approach to the modelling and analysis of stere-
olithography processes. Proceedings of the Institution of Mechan-
ical Engineers Part B Journal of Engineering Manufacture, 215,
1719-1733. https://doi.org/10.1177/095440540121501206

Li, L., McGuan, R., Isaac, R., Kavehpour, P., & Candler, R. (2021).
Improving precision of material extrusion 3D printing by in-situ
monitoring & predicting 3D geometric deviation using conditional
adversarial networks. Additive Manufacturing, 38, 101695. https://
doi.org/10.1016/J.ADDMA.2020.101695

Lopez, E., Witherell, P., & Lane, B. (2016). Identifying uncertainty in
laser powder bed fusion additive manufacturing models. J Mech
Des Trans ASME. https://doi.org/10.1115/1.4034103

Loughnane, G. (2015). A Framework for Uncertainty Quantification
in Microstructural Characterization with Application to Additive
Manufacturing of Ti-6Al-4V. Brows All Theses Dissertation, 2015.

Loyer, J. L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Compar-
ison of Machine Learning methods applied to the estimation of
manufacturing cost of jet engine components. International Jour-
nal of Production Economics, 178, 109-119. https://doi.org/10.
1016/j.ijpe.2016.05.006

Lu, S. C. Y. (1990). Machine learning approaches to knowledge
synthesis and integration tasks for advanced engineering automa-
tion. Computers in Industry, 15, 105-120. https://doi.org/10.1016/
0166-3615(90)90088-7

Lu, T. (2016). Towards a fully automated 3D printability checker. Pro-
ceedings of IEEE International Conference in Industrial Technol-
0gy, 2016, 922-927. https://doi.org/10.1109/ICIT.2016.7474875

Lucke, D., Constantinescu, C., Westkdmper, E. (2008). Smart Factory
- A Step towards the Next Generation of Manufacturing. Manuf.
Syst. Technol. New Front (pp. 115-118). Springer. https://doi.org/
10.1007/978-1-84800-267-8_23.

Ma, L., Fong, J., Lane, B., Moylan, S., Filliben, J., Heckert, A., et al.
(2015). Using design of experiments in finite element modeling
to identify critical variables for laser powder bed fusion. Austin:
University of Texas.

Manallack, D. T., & Livingstone, D. J. (1999). Neural networks in drug
discovery: Have they lived up to their promise? European Jour-
nal of Medicinal Chemistry, 34, 195-208. https://doi.org/10.1016/
S0223-5234(99)80052-X

@ Springer

Manav, O., & Chinchanikar, S. (2018). Multi-objective optimization of
hard turning: A genetic algorithm approach. Material Today Pro-
ceedings, 5, 12240-12248. https://doi.org/10.1016/j.matpr.2018.
02.201

Mavrikios, D., Papakostas, N., Mourtzis, D., & Chryssolouris, G.
(2011). On industrial learning and training for the factories of the
future: A conceptual, cognitive and technology framework. Jour-
nal of Intelligence and Manufacturing, 24, 473-485. https://doi.
org/10.1007/S10845-011-0590-9

McFadden, K. L. (1997). Predicting pilot-error incidents of US airline
pilots using logistic regression. Applied Ergonomics, 28,209-212.
https://doi.org/10.1016/S0003-6870(96)00062-2

Meng, L., McWilliams, B., Jarosinski, W., Park, H. Y., Jung, Y. G., Lee,
J., et al. (2020). Machine learning in additive manufacturing: a
review. JOM Journal of the Minerals Metals and Materials Society,
72, 1. https://doi.org/10.1007/s11837-020-04155-y

Monostori, L. (2003). Al and machine learning techniques for man-
aging complexity, changes and uncertainties in manufacturing.
Engineering Applications of Artificial Intelligence, 16, 277-291.
https://doi.org/10.1016/S0952-1976(03)00078-2

Montazeri, M., & Rao, P. (2018). Sensor-based build condition moni-
toring in laser powder bed fusion additive manufacturing process
using a spectral graph theoretic approach. Journal of Manufactur-
ing Science Engineering Transactions ASME. https://doi.org/10.
1115/1.4040264/741453

Morrison, A. (2015). Design issues and orientations in additive manu-
facturing Steinar Killi*. William Lavatelli Kempton, 5, 289-307.

Mozaffar, M., Paul, A., Al-Bahrani, R., Wolff, S., Choudhary, A.,
Agrawal, A., et al. (2018). Data-driven prediction of the high-
dimensional thermal history in directed energy deposition pro-
cesses via recurrent neural networks. Manufacturing Letters, 18,
35-39. https://doi.org/10.1016/J.MFGLET.2018.10.002

Multivariate Statistical Methods in Quality Management. n.d.

Nascimento, D. L. M., Alencastro, V., Quelhas, O. L. G., Caiado, R.
G. G., Garza-Reyes, J. A., Lona, L. R., et al. (2018). Exploring
Industry 4.0 technologies to enable circular economy practices in
a manufacturing context: A business model proposal. Journal of
Manufuring and Technology Management, 30, 607—627. https://
doi.org/10.1108/IMTM-03-2018-0071

Nilsson, N. J. (1996). Introduction to Machine Learning. An early draft
of a proposed textbook 1996.

Niu, X., Yang, C., Wang, H., & Wang, Y. (2017). Investigation of ANN
and SVM based on limited samples for performance and emis-
sions prediction of a CRDI-assisted marine diesel engine. Applied
Thermal Engineering, 111, 1353—1364. https://doi.org/10.1016/j.
applthermaleng.2016.10.042

Noriega, A., Blanco, D., Alvarez, B. J., & Garcia, A. (2013). Dimen-
sional accuracy improvement of FDM square cross-section parts
using artificial neural networks and an optimization algorithm.
International Journal of Advanced Manufacturing Technology, 69,
2301-2313. https://doi.org/10.1007/S00170-013-5196-2

Okaro, I. A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P, &
Green, P. L. (2019). Automatic fault detection for laser powder-bed
fusion using semi-supervised machine learning. Additive Man-
ufacturing, 27, 42-53. https://doi.org/10.1016/J.ADDMA.2019.
01.006

Park, S. I, Rosen, D. W., Choi, S., & Duty, C. E. (2014). Effective
mechanical properties of lattice material fabricated by material
extrusion additive manufacturing. Additive Manufuring, 1, 12-23.
https://doi.org/10.1016/j.addma.2014.07.002

Paturi, U. M. R., & Cheruku, S. (2021). Application and performance
of machine learning techniques in manufacturing sector from the
past two decades: A review. Materials Today Proceedings, 38,
2392-2401. https://doi.org/10.1016/j.matpr.2020.07.209

Peres, R. S., Barata, J., Leitao, P., & Garcia, G. (2019). Multistage
quality control using machine learning in the automotive industry.


https://doi.org/10.1007/s00170-018-2717-z
https://doi.org/10.1007/978-3-319-97490-3_46
https://doi.org/10.1007/S10845-018-1451-6
https://doi.org/10.1016/S0306-4573(99)00036-9
https://doi.org/10.1016/j.mfglet.2013.09.005
https://doi.org/10.1007/s10845-019-01504-w
https://doi.org/10.1177/095440540121501206
https://doi.org/10.1016/J.ADDMA.2020.101695
https://doi.org/10.1115/1.4034103
https://doi.org/10.1016/j.ijpe.2016.05.006
https://doi.org/10.1016/0166-3615(90)90088-7
https://doi.org/10.1109/ICIT.2016.7474875
https://doi.org/10.1007/978-1-84800-267-8_23
https://doi.org/10.1016/S0223-5234(99)80052-X
https://doi.org/10.1016/j.matpr.2018.02.201
https://doi.org/10.1007/S10845-011-0590-9
https://doi.org/10.1016/S0003-6870(96)00062-2
https://doi.org/10.1007/s11837-020-04155-y
https://doi.org/10.1016/S0952-1976(03)00078-2
https://doi.org/10.1115/1.4040264/741453
https://doi.org/10.1016/J.MFGLET.2018.10.002
https://doi.org/10.1108/JMTM-03-2018-0071
https://doi.org/10.1016/j.applthermaleng.2016.10.042
https://doi.org/10.1007/S00170-013-5196-2
https://doi.org/10.1016/J.ADDMA.2019.01.006
https://doi.org/10.1016/j.addma.2014.07.002
https://doi.org/10.1016/j.matpr.2020.07.209

Journal of Intelligent Manufacturing (2023) 34:21-55

53

IEEE Access, 7, 79908-79916. https://doi.org/10.1109/ACCESS.
2019.2923405

Peters, J., De, B. B., Verhoest, N. E. C., Samson, R., Degroeve, S., De,
B. P, et al. (2007). Random forests as a tool for ecohydrologi-
cal distribution modelling. Ecological Modelling, 207, 304-318.
https://doi.org/10.1016/j.ecolmodel.2007.05.011

Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and
their applications in manufacturing. Proceedings of Institute and
Mechanical Engineering Part B, 219, 395—412. https://doi.org/10.
1243/095440505X32274

Piro, P, Nock, R., Nielsen, F., & Barlaud, M. (2012). Leveraging k-
NN for generic classification boosting. Neurocomputing, 80, 3-9.
https://doi.org/10.1016/j.neucom.2011.07.026

Ponche, R., Kerbrat, O., Mognol, P., & Hascoet, J. Y. (2014). A novel
methodology of design for additive manufacturing applied to
additive laser Manufacturing process. Robot Computer Integrat-
ing Manufacturing, 30,389-398. https://doi.org/10.1016/J.RCIM.
2013.12.001

Qi, X., Chen, G., Li, Y., Cheng, X., & Li, C. (2019). Applying
neural-network-based machine learning to additive manufactur-
ing: Current applications, challenges, and future perspectives.
Engineering, 5, 721-729. https://doi.org/10.1016/J.ENG.2019.
04.012

Raghunath, N., & Pandey, P. M. (2007). Improving accuracy through
shrinkage modelling by using Taguchi method in selective laser
sintering. International Journal of Machine Tools and Manu-
Sacture, 47, 985-995. https://doi.org/10.1016/j.ijmachtools.2006.
07.001

Rai, R., Tiwari, M. K., Ivanov, D., & Dolgui, A. (2021). Machine
learning in manufacturing and industry 4.0 applications, vol. 59,
pp- 4773-4778. https://doi.org/10.1080/00207543.2021.1956675

Ramachandran, S., Jayalal, M. L., Riyas, A., Jehadeesan, R., &
Devan, K. (2020). Application of genetic algorithm for opti-
mization of control rods positioning in a fast breeder reactor
core. Nuclear Engineering Design, 361, 110541. https://doi.org/
10.1016/j.nucengdes.2020.110541

Rawat, S., & Shen, M. H. H. (2018). A novel topology design approach
using an integrated deep learning network architecture.

Razvi, S. S., Feng, S., Narayanan, A., Lee, Y. T. T., & Witherell, P.
(2019). A review of machine learning applications in additive
manufacturing. Proceedings ASME Design Engineering Techni-
cal Conference. https://doi.org/10.1115/DETC2019-98415

Rolf, B., Reggelin, T., Nahhas, A., Lang, S., & Miiller, M. (2020).
Assigning dispatching rules using a genetic algorithm to solve a
hybrid flow shop scheduling problem. Procedia Manufuring, 42,
442-449. https://doi.org/10.1016/j.promfg.2020.02.051

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, 65, 386—408. https://doi.org/10.1037/h0042519

Said, M., Abdellafou, K. B., & Taouali, O. (2020). Machine learning
technique for data-driven fault detection of nonlinear processes.
Journal of Intellegence Manufuring, 31, 865-884. https://doi.org/
10.1007/s10845-019-01483-y

Schaaf, K. (1999). Uncertainty and Sensitivity Analysis of the Heat
Transfer Mechanisms in the Lower Head, No. NEA-CSNI-
R—1998-18.

Schreiber, M., Klober-Koch, J., Bomelburg-Zacharias, J., Braunreuther,
S., & Reinhart, G. (2019). Automated quality assurance as an intel-
ligent cloud service using machine learning. Procedia CIRP, 86,
185-191. https://doi.org/10.1016/j.procir.2020.01.034

Scime, L., & Beuth, J. (2018a). Anomaly detection and classification in
a laser powder bed additive manufacturing process using a trained
computer vision algorithm. Additive Manufacturing, 19, 114-126.
https://doi.org/10.1016/J.ADDMA.2017.11.009

Scime, L., & Beuth, J. (2018b). A multi-scale convolutional neural
network for autonomous anomaly detection and classification in a

laser powder bed fusion additive manufacturing process. Additive
Manufacturing, 24, 273-286. https://doi.org/10.1016/J.ADDMA.
2018.09.034

Scime, L., & Beuth, J. (2019). Using machine learning to identify in-situ
melt pool signatures indicative of flaw formation in a laser powder
bed fusion additive manufacturing process. Additive Manufactur-
ing, 25,151-165. https://doi.org/10.1016/J.ADDMA.2018.11.010

Seibi, A., & Al-Alawi, S. M. (1997). Prediction of fracture tough-
ness using artificial neural networks (ANNS). Engineering Frac-
ture Mechanics, 56, 311-319. https://doi.org/10.1016/S0013-
7944(96)00076-8

Sharp, M., Ak, R., & Hedberg, T. (2018). A survey of the advancing
use and development of machine learning in smart manufacturing.
Journal of Manufacturing Systems, 48, 170-179. https://doi.org/
10.1016/j.jmsy.2018.02.004

Shevchik, S. A., Kenel, C., Leinenbach, C., & Wasmer, K. (2018).
Acoustic emission for in situ quality monitoring in additive man-
ufacturing using spectral convolutional neural networks. Additive
Manufacturing, 21, 598-604. https://doi.org/10.1016/J. ADDMA.
2017.11.012

Shinde, P. P, & Shah, S. (2018). A Review of Machine Learn-
ing and Deep Learning Applications. In: Proceedings - 2018
4th International Conference Computer Communication Con-
trol Autom ICCUBEA 2018. https://doi.org/10.1109/ICCUBEA.
2018.8697857.

Da Silva, C. E. S., Salgado, E. G., Mello, C. H. P, Da Silva, O. E.,
& Leal, F. (2014). Integration of computer simulation in design
for manufacturing and assembly. International Journal of Produc-
tion Research, 52, 2851-2866. https://doi.org/10.1080/00207543.
2013.853887

Singh, S. K., & Gupta, A. K. (2010). Application of support vec-
tor regression in predicting thickness strains in hydro-mechanical
deep drawing and comparison with ANN and FEM. CIRP Journal
of Manufacturing Science and Technology, 3, 66-72. https://doi.
org/10.1016/j.cirpj.2010.07.005

Singh, S., Ramakrishna, S., & Singh, R. (2017). Material issues
in additive manufacturing: A review. Journal of Manufacturing
Processes, 25, 185-200. https://doi.org/10.1016/j.jmapro.2016.
11.006

Singh, R., Shah, D. B., Gohil, A. M., & Shah, M. H. (2013). Overall
Equipment Effectiveness (OEE) Calculation - Automation through
Hardware & Software Development. Procedia Eng, 51, 579-584.
https://doi.org/10.1016/J.PROENG.2013.01.082

Sivaram, V. (2018). Taming the Sun: Innovations to harness solar energy
and power the planet. Cambridge: MIT Press.

Sosnovik, I., & Oseledets, 1. (2019). Neural networks for topology
optimization. Russian Journal of Numerical Analysis and Mathe-
matical Modelling, 34, 215-223. https://doi.org/10.1515/RNAM-
2019-0018

Stojanovic, V., He, S., & Zhang, B. (2020). State and parameter joint
estimation of linear stochastic systems in presence of faults and
non-Gaussian noises. International Journal of Robust and Nonlin-
ear Control, 30, 6683—6700. https://doi.org/10.1002/RNC.5131

Sukumar, M. S., Ramaiah, P. V., & Nagarjuna, A. (2014). Optimiza-
tion and prediction of parameters in face milling of Al-6061 using
Taguchi and ANN approach. Procedia Eng, 97, 365-371. https://
doi.org/10.1016/j.proeng.2014.12.260

Sun, Y., Qin, W., Zhuang, Z., & Xu, H. (2021). An adaptive fault
detection and root-cause analysis scheme for complex industrial
processes using moving window KPCA and information geomet-
ric causal inference. Journal of Intelligent Manufacturing, 32,
2007-2021. https://doi.org/10.1007/s10845-021-01752-9

Sutton, R. S., & Barto, A. G. (2015). Reinforcement Learning (2nd ed.).
New York: The MIT Press.

Swiler, L. P.,, Eldred, M. S., & Adams, B. M. (2017). Dakota: Bridg-
ing advanced scalable uncertainty quantification algorithms with

@ Springer


https://doi.org/10.1109/ACCESS.2019.2923405
https://doi.org/10.1016/j.ecolmodel.2007.05.011
https://doi.org/10.1243/095440505X32274
https://doi.org/10.1016/j.neucom.2011.07.026
https://doi.org/10.1016/J.RCIM.2013.12.001
https://doi.org/10.1016/J.ENG.2019.04.012
https://doi.org/10.1016/j.ijmachtools.2006.07.001
https://doi.org/10.1080/00207543.2021.1956675
https://doi.org/10.1016/j.nucengdes.2020.110541
https://doi.org/10.1115/DETC2019-98415
https://doi.org/10.1016/j.promfg.2020.02.051
https://doi.org/10.1037/h0042519
https://doi.org/10.1007/s10845-019-01483-y
https://doi.org/10.1016/j.procir.2020.01.034
https://doi.org/10.1016/J.ADDMA.2017.11.009
https://doi.org/10.1016/J.ADDMA.2018.09.034
https://doi.org/10.1016/J.ADDMA.2018.11.010
https://doi.org/10.1016/S0013-7944(96)00076-8
https://doi.org/10.1016/j.jmsy.2018.02.004
https://doi.org/10.1016/J.ADDMA.2017.11.012
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1080/00207543.2013.853887
https://doi.org/10.1016/j.cirpj.2010.07.005
https://doi.org/10.1016/j.jmapro.2016.11.006
https://doi.org/10.1016/J.PROENG.2013.01.082
https://doi.org/10.1515/RNAM-2019-0018
https://doi.org/10.1002/RNC.5131
https://doi.org/10.1016/j.proeng.2014.12.260
https://doi.org/10.1007/s10845-021-01752-9

54

Journal of Intelligent Manufacturing (2023) 34:21-55

production deployment. Handbook of Uncertainity Quantification
(pp. 1651-1693). Berlin: Springer.

Tapia, G., Elwany, A. H., & Sang, H. (2016). Prediction of porosity in
metal-based additive manufacturing using spatial Gaussian pro-
cess models. Additive Manufacturing, 12, 282-290. https://doi.
org/10.1016/J.ADDMA.2016.05.009

Tapia, G., Khairallah, S., Matthews, M., King, W. E., & Elwany,
A. (2017). Gaussian process-based surrogate modeling frame-
work for process planning in laser powder-bed fusion additive
manufacturing of 316L stainless steel. International Journal of
Advanced Manufacturing Technology, 94, 3591-3603. https://doi.
org/10.1007/S00170-017-1045-Z

Thoben, K. D., Wiesner, S. A., & Wuest, T. (2017). “Industrie 4.0” and
smart manufacturing-a review of research issues and application
examples. International Journal of Automative Technology, 11,
4-16. https://doi.org/10.20965/ijat.2017.p0004

Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell,
R. L, Gibson, I, et al. (2016). Design for additive manufactur-
ing: Trends, opportunities, considerations, and constraints. CIRP
Annals - Manufacturing Technology, 65, 737-760. https://doi.org/
10.1016/j.cirp.2016.05.004

Tian, L., & Luo, Y. (2020). A study on the prediction of inherent defor-
mation in fillet-welded joint using support vector machine and
genetic optimization algorithm. Journal of Intelligent Manufactur-
ing, 31, 575-596. https://doi.org/10.1007/s10845-019-01469-w

Tizghadam, A., Khazaei, H., Moghaddam, M. H. Y., & Hassan, Y.
(2019). Machine learning in transportation. Journal of Advanced
Transportation. https://doi.org/10.1155/2019/4359785

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 — A glimpse.
Procedia Manufacturing, 20, 233-238. https://doi.org/10.1016/J.
PROMFG.2018.02.034

Wagner, T., Schertl, A., Elger, J., & Vollmar, J. (2008). Evaluation
of effectiveness and impact of decentralized automation. /IEEE
International Conference Emerging Technology Facture Automa-
tive ETFA, 2008, 1128-1136. https://doi.org/10.1109/ETFA.2008.
4638539

Wang, T., Kwok, T. H., Zhou, C., & Vader, S. (2018a). In-situ droplet
inspection and closed-loop control system using machine learning
for liquid metal jet printing. Journal of Manufacturing Systems,
47, 83-92. https://doi.org/10.1016/J.JMSY.2018.04.003

Wang, C., Tan, X. P, Du, Z., Chandra, S., Sun, Z., Lim, C. W. J.,
etal. (2019). Additive manufacturing of NiTi shape memory alloys
using pre-mixed powders. Journal of Materials Processing Tech-
nology, 271, 152-161. https://doi.org/10.1016/J. JMATPROTEC.
2019.03.025

Wang, C., Tan, X., Liu, E., & Tor, S. B. (2018b). Process parameter
optimization and mechanical properties for additively manufac-
tured stainless steel 316L parts by selective electron beam melting.
Materials and Design, 147, 157-166. https://doi.org/10.1016/]J.
MATDES.2018.03.035

Wang, C., Tan, X. P,, Tor, S. B., & Lim, C. S. (2020). Machine learning
in additive manufacturing: State-of-the-art and perspectives. Addi-
tive Manufacturing, 36, 101538. https://doi.org/10.1016/j.addma.
2020.101538

Wang, L., Torngren, M., & Onori, M. (2015). Current status and
advancement of cyber-physical systems in manufacturing. Journal
of Manufacturing Systems, 37, 517-527. https://doi.org/10.1016/
J.JMSY.2015.04.008

Weiss, S. M., Dhurandhar, A., Baseman, R. J., White, B. F.,, Logan, R.,
Winslow, J. K., et al. (2014). Continuous prediction of manufactur-
ing performance throughout the production lifecycle. Journal of
Intelligent Manufacturing, 27, 751-763. https://doi.org/10.1007/
S10845-014-0911-X

@ Springer

Weiwen, X., Junqi, W., & Wansheng, Z. (2018). Break-out detection
for high-speed small hole drilling EDM based on machine learn-
ing. Procedia CIRP, 68, 569-574. https://doi.org/10.1016/j.procir.
2017.12.115

Widodo, A., & Yang, B. S. (2007). Support vector machine in machine
condition monitoring and fault diagnosis. Mechanical Systems
and Signal Processing, 21, 2560-2574. https://doi.org/10.1016/
j-ymssp.2006.12.007

Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks:
perceptron, madaline, and backpropagation. Proceedings of the
IEEE, 78, 1415-1442. https://doi.org/10.1109/5.58323

Wiendahl, H. P,, & Scholtissek, P. (1994). Management and con-
trol of complexity in manufacturing. CIRP Annals - Manufac-
turing Technology, 43, 533-540. https://doi.org/10.1016/S0007-
8506(07)60499-5

Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A
comparative study on machine learning algorithms for smart man-
ufacturing: Tool wear prediction using random forests. Journal of
Manufacturing Science and Engineering Transactions on ASME,
2017, 139. https://doi.org/10.1115/1.4036350

Wu, M., Phoha, V. V., Moon, Y. B., & Belman, A. K. (2016b). Detecting
malicious defects in 3D printing process using machine learning
and image classification. ASME International Mechanical Engi-
neering & Congress and Exposition Proceedings. https://doi.org/
10.1115/IMECE201667641

Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015a). Cloud-based
design and manufacturing: A new paradigm in digital manufac-
turing and design innovation. Computer Design, 59, 1-14. https://
doi.org/10.1016/J.CAD.2014.07.006

Wu, M., Song, Z., & Moon, Y. B. (2017). Detecting cyber-physical
attacks in CyberManufacturing systems with machine learn-
ing methods. Journal of Intelligence and Manufacturing, 30,
1111-1123. https://doi.org/10.1007/S10845-017-1315-5

Wu, H., Wang, Y., & Yu, Z. (2015b). In situ monitoring of FDM
machine condition via acoustic emission. International Journal
of Advanced Manufuring Technology, 84, 1483—-1495. https://doi.
org/10.1007/S00170-015-7809-4

Wu, H,, Yu, Z., et al. (2016). A new approach for online monitoring of
additive manufacturing based on acoustic emission. Asmedigital-
collection. https://doi.org/10.1115/MSEC2016-8551

Wu, H,, Yu, Z., & Wang, Y. (2016a). Real-time FDM machine condition
monitoring and diagnosis based on acoustic emission and hidden
semi-Markov model. International Journal of Advanced Man-
ufacturing Technology, 90, 2027-2036. https://doi.org/10.1007/
S00170-016-9548-6

Wauest, T., Irgens, C., & Thoben, K. D. (2014). An approach to monitor-
ing quality in manufacturing using supervised machine learning
on product state data. Journal of Intelligent Manufacturing, 25,
1167-1180. https://doi.org/10.1007/s10845-013-0761-y

Wauest, T., Weimer, D., Irgens, C., & Thoben, K.-D. (2016). Machine
learning in manufacturing: Advantages, challenges, and appli-
cations. Prod Manuf Res, 4, 23-45. https://doi.org/10.1080/
21693277.2016.1192517

Xin, X., Tu, Y., Stojanovic, V., Wang, H., Shi, K., He, S., et al. (2022).
Online reinforcement learning multiplayer non-zero sum games
of continuous-time Markov jump linear systems. Applied Mathe-
matics and Computation, 412, 126537. https://doi.org/10.1016/J.
AMC.2021.126537

Xing, C., Jia, C., Han, Y., Dong, S., Yang, J., & Wu, C. (2020).
Numerical analysis of the metal transfer and welding arc behav-
iors in underwater flux-cored arc welding. International Journal
of Heat and Mass Transfer, 153, 119570. https://doi.org/10.1016/
JIJTHEATMASSTRANSFER.2020.119570


https://doi.org/10.1016/J.ADDMA.2016.05.009
https://doi.org/10.1007/S00170-017-1045-Z
https://doi.org/10.20965/ijat.2017.p0004
https://doi.org/10.1016/j.cirp.2016.05.004
https://doi.org/10.1007/s10845-019-01469-w
https://doi.org/10.1155/2019/4359785
https://doi.org/10.1016/J.PROMFG.2018.02.034
https://doi.org/10.1109/ETFA.2008.4638539
https://doi.org/10.1016/J.JMSY.2018.04.003
https://doi.org/10.1016/J.JMATPROTEC.2019.03.025
https://doi.org/10.1016/J.MATDES.2018.03.035
https://doi.org/10.1016/j.addma.2020.101538
https://doi.org/10.1016/J.JMSY.2015.04.008
https://doi.org/10.1007/S10845-014-0911-X
https://doi.org/10.1016/j.procir.2017.12.115
https://doi.org/10.1016/j.ymssp.2006.12.007
https://doi.org/10.1109/5.58323
https://doi.org/10.1016/S0007-8506(07)60499-5
https://doi.org/10.1115/1.4036350
https://doi.org/10.1115/IMECE201667641
https://doi.org/10.1016/J.CAD.2014.07.006
https://doi.org/10.1007/S10845-017-1315-5
https://doi.org/10.1007/S00170-015-7809-4
https://doi.org/10.1115/MSEC2016-8551
https://doi.org/10.1007/S00170-016-9548-6
https://doi.org/10.1007/s10845-013-0761-y
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1016/J.AMC.2021.126537
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.119570

Journal of Intelligent Manufacturing (2023) 34:21-55

55

Yao, X., Moon, S. K., & Bi, G. (2017). A hybrid machine learning
approach for additive manufacturing design feature recommenda-
tion. Rapid Prototyping Journal, 23, 983-997. https://doi.org/10.
1108/RPJ-03-2016-0041

Ye, D., Hong, G. S., Zhang, Y., Zhu, K., & Fuh, J. Y. H. (2018a). Defect
detection in selective laser melting technology by acoustic signals
with deep belief networks. International Journal Advanced Man-
ufacturing Technology, 96, 2791-2801. https://doi.org/10.1007/
S00170-018-1728-0

Ye, D., Hsi Fuh, J. Y., Zhang, Y., Hong, G. S., & Zhu, K. (2018b). In
situ monitoring of selective laser melting using plume and spatter
signatures by deep belief networks. ISA Transactions, 81, 96-104.
https://doi.org/10.1016/J.ISATRA.2018.07.021

Yi, L., GlaBner, C., Krenkel, N., & Aurich, J. C. (2020). Energy simula-
tion of the fused deposition modeling process using machine learn-
ing approach. Procedia CIRP. https://doi.org/10.1016/j.procir.
2020.01.002

Yin, Y., Stecke, K. E., & Li, D. (2017). The evolution of produc-
tion systems from Industry 2.0 through Industry 4.0. International
Journal of Production Research, 56, 848-861. https://doi.org/10.
1080/00207543.2017.1403664

Yu, L., Liu, H. (2003). Feature selection for high-dimensional data: A
fast correlation-based filter solution. Proceedings of 20th Inter-
nations] Confernce and Machine Learning (ICML-03), 2003,
pp- 856-863.

Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. H. (2018). Extrac-
tion and evaluation of melt pool, plume and spatter information for
powder-bed fusion AM process monitoring. Materials and Design,
156, 458-469. https://doi.org/10.1016/J.MATDES.2018.07.002

Zhang, H.-C., & Huang, S. H. (1995). Applications of neural networks
in manufacturing: A state-of-the-art survey. International Jour-
nal of Production Research, 33, 705-728. https://doi.org/10.1080/
00207549508930175

Zhang,Z.,Liu,Z., & Wu, D. (2021). Prediction of melt pool temperature
in directed energy deposition using machine learning. Additive
Manufacturing, 37, 101692. https://doi.org/10.1016/J.ADDMA.
2020.101692

Zhang, M., Sun, C., Zhang, X., & Goh, P. (2019). High cycle fatigue
life prediction of laser additive manufactured stainless steel: A
machine learning approach. Amsterdam: Elsevier.

Zhou, 1., Jia, C., Guo, M., Chen, M., Gao, J., & Wu, C. (2021). Inves-
tigation of the WAAM processes features based on an indirect arc
between two non-consumable electrodes. Vacuum, 183, 109851.
https://doi.org/10.1016/].VACUUM.2020.109851

Zhou, L., Tao, H., Paszke, W., Stojanovic, V., & Yang, H. (2020).
PD-type iterative learning control for uncertain spatially inter-
connected systems. Mathematics, 8, 1528. https://doi.org/10.3390/
MATHS8091528

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1108/RPJ-03-2016-0041
https://doi.org/10.1007/S00170-018-1728-0
https://doi.org/10.1016/J.ISATRA.2018.07.021
https://doi.org/10.1016/j.procir.2020.01.002
https://doi.org/10.1080/00207543.2017.1403664
https://doi.org/10.1016/J.MATDES.2018.07.002
https://doi.org/10.1080/00207549508930175
https://doi.org/10.1016/J.ADDMA.2020.101692
https://doi.org/10.1016/J.VACUUM.2020.109851
https://doi.org/10.3390/MATH8091528

	Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control
	Abstract
	Introduction
	Motivation and background
	Challenges of the manufacturing domain
	Uncertainity in AM
	Experiment-based UQ of AM process
	UQ of melting pool
	UQ of solidification

	ML in manufacturing

	Common ML algorithms applicable to manufacturing application
	Supervised machine learning
	Statistical Learning Theory (SLT)
	Bayesian networks (BNs)
	Instance-based learning (IBL)
	NN or artificial neural networks
	SVMs
	Ensemble methods
	Deep machine learning

	ML in additive manufacturing
	Machine learning in design for additive manufacturing (DfAM)
	Topology design
	Material design
	Machine learning for additive manufacturing processes
	Process parameter optimization
	Process monitoring
	Powder spreading characterization
	Defect detection, quality prediction, and closed-loop control
	Geometric deviation control
	Cost estimation

	Machine learning for additive manufacturing production
	Additive manufacturing planning
	Additive manufacturing quality control
	Additive manufacturing data security
	Printability and dimensional deviation management


	Conclusion and future research
	References




