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Abstract
This paper proposes a newdata clusteringmethodusing the advantages ofmetaheuristic (MH)optimization algorithms.Anovel
MH optimization algorithm, called arithmetic optimization algorithm (AOA), was proposed to address complex optimization
tasks.Math operations inspire theAOA, and it showed significant performance in dealingwith different optimization problems.
However, the traditional AOA faces some limitations in its search process. Thus, we develop a new variant of the AOA, namely,
Augmented AOA (AAOA), integrated with the opposition-based learning (OLB) and Lévy flight (LF) distribution. The main
idea of applying OLB and LF is to improve the traditional AOA exploration and exploitation trends in order to find the
best clusters. To evaluate the AAOA, we implemented extensive experiments using twenty-three well-known benchmark
functions and eight data clustering datasets. We also evaluated the proposed AAOA with extensive comparisons to different
optimization algorithms. The outcomes verified the superiority of the AAOA over the traditional AOA and several MH
optimization algorithms. Overall, the applications of the LF and OLB have a significant impact on the performance of the
conventional AOA.
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Introduction

The wide applications of the internet, WEB, and smart
devices increase the data and produce critical problems to
mine the useful data (Zhou et al., 2019; Ezugwu et al.,
2022). Different data mining methods have been developed
to tackle these problems using several techniques, including
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clustering, regression, and classification (Abualigah, 2019;
Abualigah et al., 2018). Some of these applications are
employed in different area, such as recommendation sys-
tems (Schickel-Zuber & Faltings, 2007), text mining (Chen
et al., 2020), and computer vision applications (Dhanachan-
dra et al., 2015; Namratha&Prajwala, 2012). Data clustering
has received wide attention due to its simple application
by collecting items in similar groups depending on their
features (Abualigah et al., 2017). This is done by minimiz-
ing the distance between these comparable items and their
centers. There are two common types of data clustering
methods, called portioning and hierarchy. The hierarchical
approaches face certain drawbacks with large datasets due
to their slow implementations, and they can be considered
time-consuming methods. Therefore, partitioning methods
have been adopted for data clustering due to their efficiency
with large datasets (Saxena et al., 2017; Xu & Wunsch,
2005) Moreover, the most common clustering methods are
K-means and fuzzy C-means (FCM). Such methods gener-
ate canters to the group items in a randommanner. Thus they
face major limitations, for example, convergence in the local
optima (Jain, 2010; Abualigah & Diabat, 2020).

In this regard, different types of the optimization tech-
niques are applied to control in these algorithms (Abualigah,
2020; Abualigah & Diabat, 2021), such as particle swarm
optimization (PSO) (Eberhart&Kennedy, 1995), sine-cosine
algorithm (SCA) (Mirjalili, 2016), genetic algorithm (GA)
(Holland, 1992), atom search optimization (ASO) (Zhao et
al., 2019), artificial bee colony (ABC) (Karaboga & Bas-
turk, 2007), salp swarm algorithm (SSA) (Mirjalili et al.,
2017), gravitational search algorithm (GSA) (Rashedi et al.,
2009), cuckoo search algorithm (CS) (Gandomi et al., 2013),
marine predators algorithm (MPA) (Faramarzi et al., 2020),
Aquila Optimizer (Abualigah et al., 2021), and other opti-
mization algorithms (Abualigah & Diabat, 2020; Abualigah
et al., 2020, 2022).

The application of these algorithms improves the perfor-
mance of the clustering methods; however, these algorithms
also still have somedrawbacks, especially in solvingmechan-
ical clustering problems (Abualigah et al., 2021, 2020).
For instance, some of them cannot effectively explore the
search domain in all problems, whereas other methods have a
low exploitation ability (Mukhopadhyay et al., 2015; Suresh
et al., 2009). Therefore, several attempts are to overcome
these limitations by combining some optimization algo-
rithms or improving their local search methods. The results
of these attempts showed an excellent ability to enhance
many algorithms (Ewees et al., 2017, 2018). For example,
Alswaitti et al. (2018) proposed a Kernel density-based PSO
method for data clustering. To overcome the shortcomings
of the traditional PSO, they applied the kernel density esti-
mation method with a bandwidth estimation technique to
solve the problem of premature convergence. They evalu-

ated the improved PSO method with eleven UCI datasets
and showed significant performance compared to the tra-
ditional PSO. In Abd Elaziz et al. (2019), an automatic
data clustering algorithm was proposed using a hybrid of
sine-cosine algorithm SCA and ASO. The main goal of the
hybrid method is to automatically find the optimal num-
ber of centroids to minimize the Compact-separated index.
Thus, the sine cosine algorithm enhances the atom search
optimization algorithm’s searchability to find the optimal
solution. It was evaluated with different datasets and with
several performancemeasures. Evaluation outcomes showed
that the hybrid ASOSCA obtained better results than the
traditional ASO and SCA and several optimization meth-
ods.

In Zabihi and Nasiri (2018), a new data clustering method
was proposed using amodified version of theABCalgorithm.
The main idea of the modified version, called history-driven
ABC (Hd-ABC), is to enhance the exploitation capability
of the traditional ABC algorithm by employing a mem-
ory mechanism. It was evaluated on nine UCI datasets and
showed superior performance. Zhou et al. 2019 proposed a
clustering method using both density peaks clustering and a
modified version of the GSA. They evaluated the combing
approach using ten datasets, and they compared it to several
existing optimization algorithms and the traditional k-means
algorithm. It showed significant performance with a higher
level of stability. In Boushaki et al. (2018), a new variant of
the CS algorithm is proposed for data clustering. The main
idea is to apply boundary handling strategy and Chaos maps
to enhance the global search ability of the CS. The modi-
fied CS algorithm was evaluated with six real-life datasets
and compared to eight optimization methods, and it showed
competitive performance.

A hybrid of MPA and PSO for automatic data clustering
was proposed byWang et al. (2020). The global searching of
the MPA is improved by using the update strategy of PSO,
and it showed better performance compared to the traditional
MPA, traditional PSO, and other optimization algorithms.
Furthermore, various modified optimization algorithms have
been applied for data clusterings, such as multi-objective GA
with the fuzzy c-means (FCM) (Wikaisuksakul, 2014), an
enhanced version of Grey Wolf Optimizer (Tripathi et al.,
2018), a new variant of harmony search algorithm (Talaei et
al., 2020), and amodifiedversionof themulti-verse optimizer
(Abasi et al., 2020).

In the same context, a new MH algorithm named Arith-
metic Optimization Algorithm (AOA) was developed in
Abualigah et al. (2021). This algorithm emulated the func-
tion of arithmetical operators such as subtraction, addition,
division, and multiplication. These operators are used to
represent exploration and exploitation. According to these
behaviors, AOA has been applied to solve global and engi-
neering optimization problems. However, similar to other
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MH techniques, AOA still needs more improvements to bal-
ance the exploration and exploitation during the search for
the optimal solution. In addition, following the NFL theorem
assumed that no one algorithm can solve all optimization
problems with the same performance. This motivated us to
present an alternative version of AOA and apply it to real-
world applications.

Motivated by the excellent performance ofMHalgorithms
in data clustering, we developed a new clustering method
based on the modified AOA in this paper. This modifica-
tion depends on using Opposition-based learning (OBL)
and Lévy Flight (LF) distribution to improve the ability
of AOA to converge towards the optimal solution. In gen-
eral, OBL is applied to enhance the exploration of AOA and
LF to improve the exploitation. These two techniques have
established their performance in several applications through
modifying several MH methods (Elaziz et al., 2020; Elaziz
& Oliva, 2018; Elaziz &Mirjalili, 2019). For example, OBL
is applied to enhance the performance of the Sine-cosine
algorithm (SCA) as in Elaziz et al. (2017). The brainstorm
optimization is improved using OBl, and it is used as global
optimization and feature selectionmethod inOliva andElaziz
(2020). In Ewees et al. (2018), the modified version of the
grasshopper optimization algorithm based on OBL has been
applied as a global optimization technique and compared
with other methods. Moreover, the LF distribution has been
used to enhance the performance of several MH techniques
such as improved PSO and used to improve the quality
of flexible job shop greening scheduling with crane trans-
portation application (Zhou & Liao, 2020). In Yan et al.
(2017), LF distribution combined with PSO and applied to
solve the atomic clusters optimization problem. Salp Swarm
Algorithm has been improved using LF and applied to sev-
eral global optimization methods as in Zhang and Wang
(2020)

Besides these behaviors of OBL and LF, an alternative
modified AOA has been presented. The developed method
starts by setting the initial value for solutions. Followed
by computing each solution’s fitness value and finding the
best solution. The next step is to adopt the current solution
using AOA, OBL, and LF distribution operators. Updating
the solutions is repeated until it reaches terminal conditions
and returns the best solution.

In summary, our main objectives and contributions are:

• Propose an alternative global optimization and clustering
technique according to the enhanced version of AOA.

• Develop the performance of AOA using the operators of
OBL and LF distribution.

• Apply the developedmethod to global optimization prob-
lems and real-world clustering datasets.

• Compare the results of the developed method with other
MH techniques.

The sections of this paper are presented as follows. Sec-
tion 2 describes the background of the applied techniques.
Section 3 gave the proposed AAOA clustering method and
its experimental evaluation compared to other methods. Sec-
tion 4 shows the 23 benchmark functions. Section 5 is the
conclusion and future directions.

Background

Arithmetic optimization algorithm

The basic steps of the Arithmetic Optimization Algorithm
(AOA) (Abualigah et al., 2021) are introduced in this section.
In general, AOA is similar to other MH techniques, with
two phases named exploration and exploitation. These two
phases are emulated using the basic mathematics operators
(i.e., −,+, ∗, and /).

The first step in AOA is to generate a set of N agents; each
represents the solution for the tested problem. These agents
represent the population X that is given as:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · x1, j x1,n−1 x1,n
x2,1 · · · x2, j · · · x2,n
· · · · · · · · · · · · · · ·
...

...
...

...
...

xN−1,1 · · · xN−1, j · · · xN−1,n

xN ,1 · · · xN , j xN ,n−1 xN ,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The next step is to compute the fitness function for each
agent and determine the best of them Xb. Then according to
the value of Math Optimizer Accelerated (MOA), AOAwill
perform exploration or exploitation, and the value of MOA
is updated as:

MOA(t) = Min + t ×
(
MaxMOA − MinMOA

Mt

)
(2)

In Equation (2), t is the current iteration, Mt is the
total number of iterations. MinMOA and MaxMOA are the
minimum and maximum value of the accelerated function,
respectively Zheng et al. (2022).

In the case of the AOA exploration phase, the division
(D) and multiplication (M) operators are used. This process
is formulated as:

Xi, j (t + 1)

=
{
Xi j ÷ (MOP + ε) × ((UBj − LB j ) × μ + LB j ), r2 < 0.5

Xi j × MOP × ((UBj − LB j ) × μ + LB j ), otherwise

(3)
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where Xi j is the i th position in the j th solution, ε refers to
a small integer value, UBj and LBj denotes the lower and
upper boundaries of the search space at the j th dimension,
respectively. μ = 0.5 denotes the control function, and the
Math Optimizer (MOP ) is formulated as:

MOP (t) = 1 − t1/α

M1/α
t

(4)

In Equation (4), α = 5 denotes the dynamic parameter
which determines the precision of exploitation throughout
iterations. Meanwhile, the exploitation phase of AOA is con-
ducted using the subtracting (S) and addition operators (A)
Elaziz et al. (2021). This achieved using the following for-
mula:

xi, j (t + 1)

=
{
Xi j − MOP × ((UBj − LB j ) × μ + LB j ), r3 < 0.5
Xi j + MOP × ((UBj − LB j ) × μ + LB j ), otherwise

(5)

where r3 is a random number generated inside [0,1]. After
that, the updating process of agents is performed using the
operators of AOA. The steps of the AOA are given in Algo-
rithm 1.

Algorithm 1 Steps of AOA
1: Initialize the parameters of AOA such as α=5, μ=0.5, number of

agents N and total number of iterations tM .
2: Construct the initial value for the agents X i = 1, ..., N .
3: while (t < Mt ) do
4: Compute the fitness function for each agent.
5: Determine the best agent Xb.
6: Update the MOA and MOP using Equation (2) and (4), respec-

tively.
7: for i = 1 to N do
8: for j = 1 to Dim do
9: Update the value of r1, r2, and r3.
10: if r1 > MOA then
11: Exploration phase
12: Use Equation (3) to update the Xi .
13: else
14: Exploitation phase
15: Use Equation (5) to update the Xi .
16: end if
17: end for
18: end for
19: t=t+1
20: end while
21: Return (Xb).

Lévy flight distribution

In this section, Lévy flight is one of themost popular distribu-
tion approaches which follow the non-Gaussian distribution

(Houssein et al., 2020; Chegini et al., 2018). After that,
Equation (6) is used to update agents inside the population
according to the following formula.

x(t + 1) = x(t) × Levy(Dim) (6)

Levy(Dim) = s × u × σ

|υ| 1β
(7)

In Equation (6), s = 0.01 denotes a constant value, u and υ

denote random numbers between [0 1]. σ is given using the
following formula.

σ =
(

�(1 + β) × sine(πβ
2 )

�(
1+β
2 ) × β × 2(

β−1
2 )

)
(8)

where sine denotes the sine function value, and β is a con-
stant value fixed to 1.5.

Opposition-based learning (OLB)

The OBL strategy was proposed by Tizhoosh (2005) as a
machine intelligence method. It was used in many applica-
tions as an efficient search mechanism to enhance several
optimization methods (Ewees et al., 2018). The OBL works
to create a new opposition solution using the current one to
improve the search space.

In the OBL method, there is an opposite value (XO ) for a
real value. X ∈ [LB,UB] can be calculated using Equation
(9).

XO = UB + LB − X (9)

Opposite value (Ewees et al., 2018): X = (X1, X2 , ...,
Xn) is a value in the search space, X1, X2, ..., XD and X j

[UBj , LBj ], j ∈ 1, 2, ..., D. This representation is applied
using the following Equation (10).

XO
j = UBj + LBj − X j , where j = 1....D. (10)

Furthermore, in the optimization task, the two solutions (XO

and X ) are evaluated using the fitness functions; then, the
best solution will be reserved and ignored the other.

The proposed AAOA

The general framework of the developed method, named
AAOA, is given in Fig. 1. AAOA aims to enhance the ability
of the AOA to balance exploration and exploitation during
the process of searching for the optimal solution. To achieve
this aim, the OBL approach and LF distribution are com-
bined with the operators of traditional AOA. Each of them is
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applied to perform a specific task, such as OBL, to enhance
the exploration ability of AOA to discover the infeasible
region. Meanwhile, LF is used to improve the convergence
rate towards the optimal solution and avoid the attraction to
the local optima point. This integration between AOA, OBL,
and LF significantly enhance the performance of AOA.

The proposed AAOA algorithm begins by randomly set-
ting the initial value of N agents (X ) using the following
formula.

Xi j = rand × (UB − LB) + LB,

i = 1, 2, ..., N , j = 1, 2, ..., D (11)

In Equation (11), UB and LB are the upper and lower
boundaries of the search domain, respectively. D denotes
the dimension of each agent Xi . The following process cal-
culates the fitness value for each agent and allocates the
best of them Xb. Followed by starting updating the agents
X using the combination between AOA, OBL, and LF. This
was conducted using random factor R f ∈ [0, 1] that switches
between the operators of AOA (on one side) and the compe-
tition of OBL and LF (on the second side). For example, if
R f < 0.5, then the operators of AOA will be used to update
the current solutions. Otherwise, either the OBL or LF will
be used, and inside the developed method, each of those two
techniques has 50% to be applied. This process can be for-
mulated as:

Xi (t + 1)

=
⎧⎨
⎩

Use operators o f AOA as in Eqs. (3) − (5), R f < 0.5{
Apply OBL as in Equation(10) rand < 0.5
Apply LF as in Equation(6), otherwise

, otherwise

(12)

After that, the terminal conditions are checked, and if they
are not satisfied, then the updating process is repeated. Oth-
erwise, the best solution Xb is returned as an output of the
developed method. The steps of AAOA are illustrated in
Algorithm 2.

Algorithm 2 Steps of AAOA algorithm
1: Set the initial value for the parameters such as α=5, μ=0.5, N and

D.
2: Use Equation (11) to generate initial population X .
3: while (t < Mt ) do
4: Compute the Fitness Function for each agent Xi .
5: Allocate the the best agent Xb.
6: if R f > 0.5 then
7: if rand >0.5 then
8: Use OBL technique as in Equation (10).
9: else
10: Use LF distribution as in Equation (6).
11: end if
12: else
13: Update the value of MOA and MOP using Equation (2) and

Equation (4), respectively.
14: for (i=1 to N ) do
15: for ( j=1 to D) do
16: Update the value of r1, r2, and r3.
17: if r1 > MOA then
18: Apply Equation (3) to update X .
19: else
20: Apply Equation (5) to update X .
21: end if
22: end for
23: end for
24: end if
25: t=t+1
26: end while
27: Return the best agent (x).

To summarize, the proposed AAOA presented begins
with the generation of a random set of solutions. During
the evolution-based optimization phase, the AAOA’s search
criteria look for probable placements of the current-best solu-
tion. The technological advances to the next level with each
solution. The AAOA employs the Arithmetic Optimization
Algorithm, Levy flight distribution, and opposition-based
learning approaches, according to theAlgorithm 2. Each iter-
ationwill update and enhance the prospective solutions using
these search approaches according to probability conditions.
The three search methods avoid the local optima solution by
generating high distribution solutions. Moreover, the mutual
processes between them help keep the balance between the
search process (exploration and exploitation).
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Fig. 1 Framework of developed AAOA method

Performance evaluation using 23 benchmark
functions

In this section, the performance of the developed method is
assessed using a set of the classical benchmarks.

Benchmark description

The mathematical formulation and classifications of the
employed 23 mathematical functions are presented in
Tables 1, 2, and 3 . The benchmark functions in Table 1
are unimodal; the reason for using this set is to evaluate
the exploitation ability of the proposed optimizer, as this set
of functions has only one optimal solution. For the mathe-
matical functions listed in Table 2, they have several peaks,
some local optima, and only one global optimum; thus, they

are considered the best choice in evaluating the optimization
algorithm’s exploration. Finally, for examining the balance
between the exploration and exploitation abilities, the Fixed-
dimension multimodal benchmark functions of Table 3 are
considered challenging tasks. The considered dimensions,
the defined search space limits, and the global values ( fmin)
of the mathematical functions are reported in the Table.

Experiments and results

In this section, the proposed AAOA algorithm’s ability is
evaluated through two stages; the first one is handling a set
of challenging CEC benchmark functions. The second stage
focuses on clustering eight UCI benchmark datasets. The
description of these datasets is listed in Sect. 5.2.1; each
dataset has properties and characteristics which make dif-

Table 1 Unimodal benchmark
functions

Function Description Dimensions Range fmin

F1 f (x) = ∑n
i=1 x

2
i 10,100 [−100,100] 0

F2 f (x) = ∑n
i=0 |xi | + ∏n

i=0 |xi | 10,100 [−10,10] 0

F3 f (x) = ∑d
i=1(

∑i
j=1 x j )

2 10,100 [−100,100] 0

F4 f (x) = maxi {|xi |, 1 ≤ i ≤ n} 10,100 [−100,100] 0

F5 f (x) = ∑n−1
i=1 [100(x2i − xi+1)

2 + (1 − xi )2] 10,100 [−30,30] 0

F6 f (x) = ∑n
i=1([xi + 0.5])2 10,100 [−100,100] 0

F7 f (x) = ∑n
i=0 i x

4
i + random[0, 1) 10,100 [−128,128] 0
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ferent challenges. The proposed AAOA algorithm compared
to the original AOA as well as six well-known algorithms
namely the Particle swarm optimization (PSO) (Eberhart &
Kennedy, 1995), Grey wolf optimizer (GWO) (Mirjalili et
al., 2014), Sine cosine algorithm (SCA) (Mirjalili, 2016),
Marine Predators Algorithm (MPA) (Faramarzi et al., 2020),
whale optimization algorithm (WOA) (Mirjalili & Lewis,
2016), and Salp Swarm Algorithm (SSA) (Mirjalili et al.,
2017). Four measures are used in the comparisons: worst,
best, average, and standard deviation of the finesse values.
Besides, as a statistical test, the Wilcoxon rank-sum test is

applied to check if there are significant differences between
AAOA and the other algorithms or not at p-value < 0.05.

First experiment: global optimization

In this sector, the proposed AAOA has assessed using more
popular 23mathematical functions andofCEC2019 suite that
has several specifications. The proposed AAOA has com-
pared with a set of recent state-of-the-art techniques using
numerous statistical analyses to appraise and demonstrate
theAAOA’ss efficiency in handling global optimization chal-
lenges. The considered algorithms including the basic AOA,

Table 2 Multimodal benchmark functions

Function Description Dimensions Range fmin

F8 f (x) = ∑n
i=1(−xi sin(

√|xi |)) 10,100 [−500,500] −418.9829×
n

F9 f (x) = ∑n
i=1[x2i − 10cos(2πxi ) + 10] 10,100 [−5.12,5.12] 0

F10 f (x) =- 20exp(-

0.2
√

1
n

∑n
i=1 x

2
i ) − exp( 1n

∑n
i=1 cos(2πxi )) + 20 + e

10,100 [−32,32] 0

F11 f (x) = 1 + 1
4000

∑n
i=1 x

2
i − ∏n

i=1 cos(
xi√
i
) 10,100 [−600,600] 0

F12 f (x) = π
n {10sin(π y1)} + ∑n−1

i=1 (yi − 1)2[1 +
10sin2(π yi+1) + ∑n

i=1 u(xi , 10, 100, 4)] , where
yi = 1 +
xi + 1

4
, u(xi , a, k,m)

⎧⎪⎨
⎪⎩

K (xi − a)m if xi > a

0 - a ≤ xi ≥ a

K (−xi − a)m - a ≤ xi

10,100 [−50,50] 0

F13 f (x) =
0.1(sin2(3πx1) + ∑n

i=1(xi − 1)2[1 + sin2(3πxi +
1)]+(xn−1)21+sin2(2πxn))+∑n

i=1 u(xi , 5, 100, 4)

10,100 [−50,50] 0

Table 3 Fixed-dimension multimodal benchmark functions

Function Description Dimensions Range fmin

F14 f (x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1

(xi − ai j )

)−1

2 [−65,65] 1

F15 f (x) = ∑11
i=1

[
ai − x1(b2i +bi x2)

b2i +bi x3+x4

]2
4 [−5,5] 0.00030

F16 f (x) = 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [−5,5] -1.0316

F17 f(x)=
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2 + 10(1 − 1
8π )cos x1 + 10 2 [−5,5] 0.398

F18 f (x) =[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22 )

] ×[
30 + (2x1 − 3x2)2 × (18 − 32xi + 12x21 + 48x2 − 36x1x2 + 27x22 )

]
2 [−2,2] 3

F19 f (x) = − ∑4
i=1 ci exp

(
− ∑3

i=1 ai j (x j − pi j )2
)

3 [−1,2] -3.86

F20 f (x) = − ∑4
i=1 ci exp

(
− ∑6

i=1 ai j (x j − pi j )2
)

6 [0,1] -.32

F21 f (x) = − ∑5
i=1

[
(X − ai )(X − ai )T + ci

]−1
4 [0,1] -10.1532

F22 f (x) = − ∑7
i=1

[
(X − ai )(X − ai )T + ci

]−1
4 [0,1] -10.4028

F23 f (x) = − ∑10
i=1

[
(X − ai )(X − ai )T + ci

]−1
4 [0,1] -10.5363
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Fig. 2 Qualitative results for the tested 13 problems
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Fig. 2 continued
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Fig. 3 Diversity plots for between the best and worst solutions on 8 benchmark functions
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Table 4 Parameter values for
the comparative algorithms

Algorithm Parameter Value

AOA α 5

μ 0.5

PSO Topology Fully connected

Cognitive and social constant (C1, C2) 2, 2

Inertia weight Linear reduction from 0.9 to 0.1

Velocity limit 10% of dimension range

GWO Convergence parameter (a) Linear reduction from 2 to 0

MPA γ γ >1

P 0.0

SSA v0 0

SCA α 0.05

WOA α Decreased from 2 to 0

b 2

AAOA α 5

μ 0.5

Fig. 4 Execution time of the
AOA and the proposed AAOA
for 13 benchmark functions

Particle SwarmOptimization (PSO) (Abualigah et al., 2018),
Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), Sine
Cosine Algorithm (SCA) (Mirjalili, 2016), Marine Predators
Algorithm (MPA) (Faramarzi et al., 2020), Whale Opti-
mization Algorithm (WOA) (Mirjalili & Lewis, 2016), and
Salp Swarm Algorithm (SSA) (Mirjalili et al., 2017). The
algorithms were implemented in the experimental results’
fairness under the same settings: population size was set to
30, and maximum iterations 500 for 30 independent times.
Table 4 summarizes the parameter settings of the counter-
parts algorithms, which have been taken from the original
papers. All the analysis and simulations have been imple-
mented on the Windows 10 operating system with an Intel
Core i5, 2.2 GHz CPU, and 16 GB of RAM. All competitors
were conducted in the MATLAB 2018 platform to guarantee
unbiased comparison.

Qualitative analysis

To validate the developed AAOA technique’s performance,
the convergence and the trajectory are used in Fig. 2. This
Figure depicts the qualitative measures, such as the 2D plot
of the function drawn in the first column, to discuss the
search space’s topology. Furthermore, the solution trajectory
is exposed in the second column of the Figure, while the
average fitness value and convergence curves are exhibited
in the third and fourth columns, respectively.

From the second column representing the trajectory of
the solution, it can be observed that the solution has a high
magnitude and frequency in the early iterations. At the last
iterations, they have nearly vanished. This illustrates the high
exploration ability of AAOA in the early iterations and good
exploitation in the last iterations. AAOA has a high chance
of reaching the optimal solution based on this behavior. The
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Table 5 The results of the comparative methods on 23 benchmark functions (F1-F23), where the dimension is 10

Function Measure Algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

F1 Worst 3.6714E-105 1.4724E-04 2.2113E-19 4.5912E-01 9.0487E-30 2.1815E-27 5.0205E-03 0.0000E+00

Average 7.3429E-106 6.6744E-05 5.8760E-20 9.2835E-02 3.0194E-30 4.3631E-28 1.0076E-03 0.0000E+00

Best 1.0748E-144 2.1508E-05 8.0664E-22 1.0902E-07 4.2474E-32 2.6378E-37 1.4185E-07 0.0000E+00

STD 1.6419E-105 4.9775E-05 9.1594E-20 2.0477E-01 3.8606E-30 9.7557E-28 2.2433E-03 0.0000E+00

P-value 3.4659E-01 1.7115E-02 1.8935E-01 3.4038E-01 1.1845E-01 3.4657E-01 3.4461E-01 NaN

h 0 1 0 0 0 0 0 NaN

F2 Worst 0.0000E+00 2.4150E-01 1.8821E-11 6.2793E-05 8.1028E-17 2.1929E-26 3.7646E+00 0.0000E+00

Average 0.0000E+00 7.1622E-02 1.1883E-11 3.1406E-05 2.5499E-17 4.3889E-27 1.1863E+00 0.0000E+00

Best 0.0000E+00 2.4914E-03 5.0224E-12 1.3688E-06 1.3576E-18 1.1825E-31 9.3831E-02 0.0000E+00

STD 0.0000E+00 9.8332E-02 5.0026E-12 2.3922E-05 3.2712E-17 9.8054E-27 1.4679E+00 0.0000E+00

P-value 0.0000E+00 1.4203E-01 7.1828E-04 1.8836E-02 1.1951E-01 3.4620E-01 1.0835E-01 NaN

h 0 0 1 1 0 0 0 NaN

F3 Worst 1.9208E-76 2.0184E+00 2.8185E-07 9.5335E+01 4.5011E-11 6.7721E+03 1.0093E+03 0.0000E+00

Average 3.8416E-77 9.7368E-01 6.3998E-08 3.7175E+01 9.0713E-12 2.9820E+03 3.2909E+02 0.0000E+00

Best 1.2396E-164 3.3024E-01 1.4252E-09 1.2861E+00 2.7165E-16 6.7273E+02 4.8908E+01 0.0000E+00

STD 8.5901E-77 7.1020E-01 1.2225E-07 4.1555E+01 2.0091E-11 2.5114E+03 3.9270E+02 0.0000E+00

P-value 3.4659E-01 1.5450E-02 2.7546E-01 8.0471E-02 3.4224E-01 2.9030E-02 9.7825E-02 NaN

h 0 1 0 0 0 1 0 NaN

F4 Worst 3.8502E-17 2.7070E-01 1.6792E-05 3.9693E-01 1.3581E-11 6.6612E+01 4.8639E+00 0.0000E+00

Average 7.7003E-18 2.0423E-01 7.1074E-06 1.7436E-01 3.4499E-12 3.0951E+01 2.5904E+00 0.0000E+00

Best 1.4689E-61 1.2542E-01 2.9788E-06 4.3986E-03 4.1828E-13 3.2965E+00 7.6410E-01 0.0000E+00

STD 1.7218E-17 6.3778E-02 5.8023E-06 1.7742E-01 5.6843E-12 3.0423E+01 1.5967E+00 0.0000E+00

P-value 3.4659E-01 9.6102E-05 2.5488E-02 5.9220E-02 2.1179E-01 5.2488E-02 6.7068E-03 NaN

h 0 1 1 0 0 0 1 NaN

F5 Worst 8.6796E+00 7.8845E+01 8.0644E+00 8.9674E+00 7.8260E+00 8.7426E+00 1.8977E+04 8.5605E+00

Average 8.1674E+00 2.8407E+01 7.4190E+00 8.2479E+00 7.3315E+00 8.1054E+00 5.5739E+03 8.4250E+00

Best 7.7921E+00 8.3235E+00 6.8484E+00 7.3359E+00 6.8496E+00 7.6936E+00 1.1763E+02 8.3184E+00

STD 3.5495E-01 3.0603E+01 4.8280E-01 6.2827E-01 4.8326E-01 4.4101E-01 8.2723E+03 1.0342E-01

P-value 1.5797E-01 1.8240E-01 1.8600E-03 5.5150E-01 1.1242E-03 1.5336E-01 1.7089E-01 NaN

h 0 0 1 0 1 0 0 NaN

F6 Worst 5.3553E-01 4.5251E-04 9.9893E-01 1.3917E+00 2.1665E-01 1.2341E+00 1.2902E-03 7.0097E-01

Average 4.2954E-01 1.8417E-04 6.5000E-01 1.0285E+00 7.4381E-02 8.7633E-01 2.6309E-04 4.6646E-01

Best 3.5530E-01 5.5462E-05 2.4657E-01 7.7813E-01 2.5162E-09 3.1688E-01 1.2485E-07 1.6220E-01

STD 8.5388E-02 1.5811E-04 2.8474E-01 2.5069E-01 1.0401E-01 3.4588E-01 5.7427E-04 2.0410E-01

P-value 7.1873E-01 9.2040E-04 2.7512E-01 4.6261E-03 5.0383E-03 5.1902E-02 9.2140E-04 NaN

h 0 1 0 1 1 0 1 NaN

F7 Worst 6.9417E-04 6.3741E-02 3.6259E-03 3.2693E-02 2.5382E-03 1.4928E-02 6.8846E-02 1.3123E-04

Average 2.3886E-04 3.1397E-02 2.2385E-03 1.3969E-02 1.3107E-03 7.3729E-03 4.2178E-02 6.6808E-05

Best 6.2278E-06 6.5564E-03 1.3620E-03 8.2537E-04 5.3540E-04 8.2613E-04 1.9537E-02 3.9960E-06

STD 2.8193E-04 2.0521E-02 8.4858E-04 1.4438E-02 7.5747E-04 6.5073E-03 2.3397E-02 4.5599E-05

P-value 2.1487E-01 9.1698E-03 4.4692E-04 6.3464E-02 6.3507E-03 3.6341E-02 3.8168E-03 NaN

h 0 1 1 0 1 1 1 NaN
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Table 5 continued

Function Measure Algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

F8 Worst −1.9043E+03 −1.1783E+03 −1.5947E+03 −1.7777E+03 −3.0237E+03 −2.0573E+03 −2.5300E+03 −2.1259E+03

Average −2.3038E+03 −1.6321E+03 −2.0713E+03 −1.8451E+03 −3.1190E+03 −2.5389E+03 −2.8089E+03 −2.3056E+03

Best −2.5926E+03 −2.0988E+03 −2.3522E+03 −1.9615E+03 −3.3015E+03 −3.0054E+03 −3.2620E+03 −2.5115E+03

STD 2.7501E+02 3.8061E+02 3.0281E+02 8.0340E+01 1.0803E+02 4.0242E+02 2.8531E+02 1.5125E+02

P-value 9.8993E-01 6.2458E-03 1.6018E-01 3.1870E-04 9.9797E-06 2.5960E-01 8.2609E-03 NaN

h 0 1 0 1 1 0 1 NaN

F9 Worst 0.0000E+00 2.8994E+01 5.2472E+00 1.6032E+00 2.0207E+00 9.2822E+00 4.5768E+01 0.0000E+00

Average 0.0000E+00 1.8520E+01 3.7314E+00 7.5807E-01 8.0300E-01 1.8564E+00 3.4624E+01 0.0000E+00

Best 0.0000E+00 7.9942E+00 2.2714E+00 1.1745E-08 0.0000E+00 0.0000E+00 2.2884E+01 0.0000E+00

STD 0.0000E+00 9.2530E+00 1.0630E+00 7.8396E-01 1.0996E+00 4.1511E+00 9.9346E+00 0.0000E+00

P-value 0.0000E+00 2.0683E-03 5.0055E-05 6.2572E-02 1.4113E-01 3.4659E-01 5.2701E-05 NaN

h 0 1 1 0 0 0 1 NaN

F10 Worst 8.8818E-16 2.5853E+00 5.7325E-10 1.9963E+01 5.7732E-14 1.5099E-14 4.0298E+00 8.8818E-16

Average 8.8818E-16 9.8503E-01 1.9795E-10 3.9928E+00 1.8652E-14 1.2967E-14 2.4586E+00 8.8818E-16

Best 8.8818E-16 4.9304E-04 3.6313E-11 1.3295E-05 4.4409E-15 7.9936E-15 2.7050E-04 8.8818E-16

STD 0.0000E+00 1.0679E+00 2.1546E-10 8.9279E+00 2.2609E-14 3.1776E-15 1.5506E+00 0.0000E+00

P-value 0.0000E+00 7.3069E-02 7.4006E-02 3.4658E-01 1.1701E-01 2.8154E-05 7.5584E-03 NaN

h 0 0 0 0 0 1 1 NaN

F11 Worst 2.9762E-04 2.3135E+01 8.4698E-02 6.3292E-01 1.2745E-02 5.6621E-01 3.1339E-01 0.0000E+00

Average 5.9651E-05 9.8523E+00 2.8584E-02 2.2887E-01 4.0390E-03 1.1324E-01 2.2794E-01 0.0000E+00

Best 0.0000E+00 3.2158E+00 7.7716E-16 6.5672E-02 0.0000E+00 0.0000E+00 1.0827E-01 0.0000E+00

STD 1.3303E-04 7.8836E+00 3.5400E-02 2.2951E-01 5.8388E-03 2.5322E-01 8.1754E-02 0.0000E+00

P-value 3.4537E-01 2.3397E-02 1.0863E-01 5.6309E-02 1.6049E-01 3.4659E-01 2.4992E-04 NaN

h 0 1 0 0 0 0 1 NaN

F12 Worst 3.2650E-01 3.3160E-02 4.4519E-02 7.0218E-01 2.6777E-01 5.1379E+00 8.3002E+00 1.3256E-02

Average 2.6296E-01 7.7940E-03 3.3878E-02 3.0153E-01 2.2727E-01 1.2100E+00 4.6983E+00 4.0260E-03

Best 1.9540E-01 9.6693E-06 2.3359E-02 1.7769E-01 1.9560E-01 3.2119E-02 1.8935E+00 7.8476E-10

STD 4.7344E-02 1.4390E-02 1.0118E-02 2.2472E-01 2.9431E-02 2.2017E+00 2.3883E+00 5.8589E-03

P-value 1.9017E-01 3.8925E-07 6.9624E-07 4.8470E-01 1.0000E+00 3.4751E-01 3.0552E-03 NaN

h 0 1 1 0 1 0 1 NaN

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F13 Worst 8.8434E-01 1.3717E-02 5.0411E-01 7.7919E-01 9.9548E-01 5.4688E-01 6.2218E+00 2.8098E-01

Average 8.1537E-01 2.9982E-03 2.5332E-01 5.6111E-01 8.9161E-01 3.6786E-01 1.3591E+00 7.7033E-02

Best 7.5659E-01 1.1362E-04 7.7404E-02 4.2049E-01 7.9186E-01 2.0389E-01 4.9516E-02 1.8477E-02

STD 6.4465E-02 5.9946E-03 1.7762E-01 1.4603E-01 7.2341E-02 1.3050E-01 2.7190E+00 1.1413E-01

P-value 1.1656E-01 3.4199E-09 7.3214E-05 1.9127E-03 1.0000E+00 5.0075E-05 7.1078E-01 NaN

h 0 1 1 1 1 1 0 NaN

F14 Worst 1.2671E+01 1.7374E+01 1.5504E+01 1.0763E+01 9.9800E-01 1.2671E+01 1.2671E+01 9.8039E+00

Average 1.1711E+01 5.6571E+00 8.2107E+00 4.1870E+00 9.9800E-01 6.6595E+00 1.1711E+01 4.7347E+00

Best 7.8740E+00 9.9800E-01 2.9821E+00 1.2253E+00 9.9800E-01 1.9920E+00 7.8740E+00 9.9800E-01

STD 2.1451E+00 6.8180E+00 5.5593E+00 3.7541E+00 4.3356E-16 5.5022E+00 2.1451E+00 3.4876E+00

P-value 5.1546E-01 9.4838E-02 2.2541E-01 4.6011E-03 3.7005E-06 9.2134E-02 1.0000E+00 NaN

h 1 0 0 1 1 0 1 NaN
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Table 5 continued

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F15 Worst 8.6878E-02 1.2121E-03 5.8549E-04 1.6278E-03 1.2232E-03 2.2519E-03 1.9194E-03 6.8815E-02

Average 4.1454E-02 9.8175E-04 4.9501E-04 1.2658E-03 6.0108E-04 1.3458E-03 1.5055E-03 3.5352E-02

Best 5.6252E-04 8.7378E-04 4.5528E-04 8.4678E-04 3.0749E-04 6.3429E-04 1.0245E-03 6.1628E-04

STD 4.1286E-02 1.3798E-04 5.1580E-05 3.8425E-04 3.7037E-04 7.3227E-04 4.0452E-04 3.2494E-02

P-value 8.0164E-01 4.5591E-02 4.3268E-02 4.7015E-02 4.3774E-02 4.7452E-02 4.8242E-02 NaN

h 0 1 1 1 1 1 1 NaN

F16 Worst −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0311E+00 −1.0316E+00 −1.0034E+00 −1.0316E+00 −1.0316E+00

Average −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0313E+00 −1.0316E+00 −1.0260E+00 −1.0316E+00 −1.0316E+00

Best −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0315E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0316E+00

STD 7.0450E-07 1.1102E-16 9.7604E-08 1.7270E-04 1.1413E-14 1.2635E-02 3.8976E-13 1.7942E-07

P-value 5.5710E-01 3.4689E-03 3.2923E-02 1.4119E-03 3.4689E-03 3.4659E-01 3.4689E-03 NaN

h 0 1 1 1 1 0 1 NaN

F17 Worst 8.1362E-01 3.9789E-01 3.9791E-01 4.3518E-01 3.9789E-01 4.0794E-01 3.9789E-01 4.5989E-01

Average 5.5011E-01 3.9789E-01 3.9790E-01 4.1035E-01 3.9789E-01 4.0106E-01 3.9789E-01 4.3629E-01

Best 4.1450E-01 3.9789E-01 3.9789E-01 3.9874E-01 3.9789E-01 3.9824E-01 3.9789E-01 4.0894E-01

STD 1.7077E-01 0.0000E+00 9.8396E-06 1.4689E-02 1.2864E-12 4.1356E-03 2.2637E-13 2.0948E-02

P-value 1.7733E-01 3.4404E-03 3.4471E-03 5.3139E-02 3.4404E-03 6.1320E-03 3.4404E-03 1NaN

h 0 1 1 0 1 1 1 NaN

F18 Worst 3.0802E+01 3.0000E+00 3.0029E+00 3.0114E+00 3.0000E+00 3.0753E+01 3.0000E+00 3.0125E+00

Average 1.2027E+01 3.0000E+00 3.0008E+00 3.0041E+00 3.0000E+00 1.2261E+01 3.0000E+00 3.0125E+00

Best 3.0000E+00 3.0000E+00 3.0000E+00 3.0001E+00 3.0000E+00 3.0008E+00 3.0000E+00 3.0125E+00

STD 1.6104E+02 2.8522E-15 1.1745E-03 4.6344E-03 2.3915E-15 1.3091E+01 5.4613E-13 1.5305E+02

P-value 6.1705E-01 2.4364E-01 2.4365E-01 2.4366E-01 2.4364E-01 2.9551E-01 2.4364E-01 NaN

h 0 0 0 0 0 0 0 NaN

F19 Worst −3.8156E+00 −3.8628E+00 −3.8549E+00 −3.8246E+00 −3.0898E+00 −3.6286E+00 −3.8592E+00 −3.8309E+00

Average −3.8416E+00 −3.8628E+00 −3.8594E+00 −3.8420E+00 −3.7082E+00 −3.7816E+00 −3.8618E+00 −3.8426E+00

Best -3.8584E+00 −3.8628E+00 −3.8624E+00 −3.8508E+00 −3.8628E+00 −3.8613E+00 −3.8628E+00 −3.8548E+00

STD 1.6010E-02 4.9651E-16 3.3479E-03 1.1863E-02 3.4570E-01 1.0570E-01 1.5284E-03 8.6320E-03

P-value 8.9950E-01 8.0527E-04 3.7242E-03 9.2704E-01 4.0992E-01 2.3428E-01 1.2244E-03 NaN

h 0 1 1 0 0 0 1 NaN

F20 Worst −2.6031E+00 −3.2031E+00 −3.0853E+00 −2.4894E+00 −2.6611E+00 −3.0271E+00 −3.0487E+00 −3.3220E+00

Average −2.9196E+00 −3.2982E+00 −3.1613E+00 −2.8432E+00 −2.8776E+00 −3.1269E+00 −3.2133E+00 −3.3220E+00

Best −3.0981E+00 −3.3220E+00 −3.3214E+00 −3.0582E+00 −3.1308E+00 −3.2590E+00 −3.3220E+00 −3.3220E+00

STD 2.1461E-01 5.3169E-02 9.7207E-02 2.1822E-01 2.2937E-01 9.7455E-02 1.1469E-01 5.4241E-09

P-value 7.7271E-01 3.9806E-03 3.4386E-02 8.1410E-01 5.0457E-01 5.5705E-02 1.9085E-02 NaN

h 0 1 1 0 1 0 1 NaN

F21 Worst −2.2251E+00 −2.6305E+00 −2.6298E+00 −3.5065E-01 −5.0552E+00 −4.7932E+00 −5.1008E+00 −1.0153E+01

Average −3.3565E+00 −3.6304E+00 −4.6369E+00 −7.6896E-01 −8.1140E+00 −6.8504E+00 −8.1322E+00 −1.0153E+01

Best −4.3544E+00 −5.1008E+00 −1.0145E+01 −8.7592E-01 −1.0153E+01 −9.7925E+00 −1.0153E+01 −1.0153E+01

STD 8.5993E-01 1.3217E+00 3.2569E+00 2.3386E-01 2.7923E+00 2.6367E+00 2.7673E+00 0.0000E+00

P-value 1.0743E-07 4.0497E-06 5.3321E-03 2.6558E-13 1.4111E-01 2.3165E-02 1.4111E-01 NaN

h 1 1 1 1 0 1 0 NaN
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Table 5 continued

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F22 Worst −1.4041E+00 −5.0877E+00 −2.7648E+00 −3.7244E-01 −5.0877E+00 −3.7244E-01 −2.7659E+00 −5.0877E+00

Average −2.2074E+00 −9.3399E+00 −8.8704E+00 −1.3948E+00 −8.2768E+00 −4.4906E+00 −6.4850E+00 −9.3398E+00

Best −3.1091E+00 −1.0403E+01 −1.0402E+01 −2.8961E+00 −1.0403E+01 −9.6681E+00 −1.0403E+01 −1.0403E+01

STD 7.1504E-01 2.3771E+00 3.4131E+00 1.0239E+00 2.9113E+00 3.4659E+00 3.6740E+00 2.3770E+00

P-value 2.0363E-04 9.9995E-01 8.0715E-01 1.2912E-04 5.4477E-01 3.2615E-02 1.8274E-01 NaN

h 1 0 0 1 0 1 0 NaN

F23 Worst −2.6813E+00 −2.4273E+00 −1.0505E+01 −9.3329E-01 −5.1285E+00 −3.2559E+00 −2.4273E+00 −5.1285E+00

Average −3.3013E+00 −8.9146E+00 −1.0522E+01 −2.0262E+00 −9.4548E+00 −5.3482E+00 −6.2342E+00 −9.4547E+00

Best −4.1587E+00 −1.0536E+01 −1.0532E+01 −3.5478E+00 −1.0536E+01 −9.2183E+00 −1.0536E+01 −1.0536E+01

STD 5.9042E-01 3.6265E+00 1.0197E-02 1.1237E+00 2.4185E+00 2.2709E+00 3.9692E+00 2.4184E+00

P-value 5.5576E-04 7.8875E-01 3.5285E-01 2.5143E-04 9.9995E-01 2.4375E-02 1.5989E-01 NaN

h 1 0 0 1 0 1 0 NaN

Table 6 The results of the
Friedman ranking test for the
comparative methods overall 23
benchmark functions, where the
dimension is 10

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F1 Ranking 2 6 5 8 3 4 7 1

F2 Ranking 1 7 5 6 4 3 8 1

F3 Ranking 2 5 4 6 3 8 7 1

F4 Ranking 2 6 4 5 3 8 7 1

F5 Ranking 4 7 2 5 1 3 8 6

F6 Ranking 4 1 6 8 3 7 2 5

F7 Ranking 2 7 4 6 3 5 8 1

F8 Ranking 5 8 6 7 1 3 2 4

F9 Ranking 1 7 6 3 4 5 8 1

F10 Ranking 1 6 5 8 4 3 7 1

F11 Ranking 2 8 4 7 3 5 6 1

F12 Ranking 5 2 3 6 4 7 8 1

F13 Ranking 6 1 3 5 7 4 8 2

F14 Ranking 7 4 6 2 1 5 8 3

F15 Ranking 8 3 1 4 2 5 6 7

F16 Ranking 6 1 4 7 2 8 3 5

F17 Ranking 8 1 4 6 3 5 2 7

F18 Ranking 7 2 4 5 1 8 3 6

F19 Ranking 6 1 3 5 8 7 2 4

F20 Ranking 6 2 4 8 7 5 3 1

F21 Ranking 7 6 5 8 3 4 2 1

F22 Ranking 7 1 3 8 4 6 5 2

F23 Ranking 7 4 1 8 2 6 5 3

Summation 106 96 92 141 76 124 125 65

Mean rank 4.61 4.17 4.00 6.13 3.30 5.39 5.43 2.83

Final ranking 5 4 3 8 2 6 7 1

123



3538 Journal of Intelligent Manufacturing (2023) 34:3523–3561

averagefitness value overall for the solutions among the num-
ber of iterations depicted in the third column of Fig. 2 reveals
the abilities of the AAOA in converging to the high qualified
solutions in less number of iterations. The AAOA starts with
a high average fitness value at the beginning of iterations.
However, before the number of iterations reached 50, the
average became small. For the fourth column in Fig. 2 it can
be noticed from the convergence curve that the convergence
curves are smooth in most of the studied functions while the
AAOA has higher qualified solutions than the AOA.

To illustrate the exploration and exploitation abilities of
the proposed AAOA variant in comparison with its basic
version (AOA), theDiversity plots between the best andworst
solutions using the AAOA and AOA are exposed in Fig. 3 for
different eight functions. It can be observed that the AAOA
can maintain the diversity between solutions better than the
traditional AOA.

Figure 4 shows the execution time of the AOA and the
proposed AAOA for 13 benchmark functions. It is clear in
this figure that the execution time of the tested methods (i.e.,
the original AOA and the proposed AAOA) is approximately
equal, despite the modifications that happened to the origi-
nal method. This reflects the extent of the proposed method’s
ability to achieve high results in a time compared to the orig-
inal method.

Simulations and discussions of 23 benchmark functions

This section uses the worst, best, average, and standard
deviation (STD) values to measure the proposed variant’s
performance. Moreover, the Wilcoxon rank-sum test with
significant deference of 0.05 is considered an indicator of
the existing significant difference between the proposed vari-
ant and the other counterparts. The Friedman ranking test is
applied to indicate the final rank of the proposed AAOA and
demonstrate the ability of the AAOA to handle most of the
employed benchmark functions compared with other state-
of-the-art counterparts.

The data in Table 5 represent the results of the AAOA ver-
sus that of the basic AOA, PSO, GWO, SCA, MPA, WOA,
and SSA. The Worst, Best, Average, and STD values by
AAOA reveal the ability of the AAOA to defeat all the other
algorithms in about 50 % of the considered 23 benchmarks
as it displayed the least values of the computed metrics in
the functions of (F: 1, 2,3, 4, 7, 9, 10, 11, 12, 20, 21) more-
over, it has comparable performance in the other 50 % of the
applied functions. The attained P-value values through the
Wilcoxon rank-sum test with significant deference of 0.05
confirm the superiority of the AAOA in comparison with the
PSO in 17 functions as the P-value is less than 0.05; there-
fore, the null hypothesis test is rejected (h=1 means there
is a significant difference between the considered optimize;
AAOA Vs. PSO). The reported P-values in cases of GWO,

SCA, MPA, WOA, and SSA demonstrate the outperforming
performance of theAAOA in handling about 12 functions out
of the 23 ones; therefore, the null hypothesis test is rejected
(h=1). For further investigation, the Friedman ranking test is
applied to determine the proposed AAOA’s rank among the
other counterparts while processing the 23 functions. The
obtained classes are reported in Table 6. The ranks’ average
values divulge the AAOA’s ability to achieve a compara-
ble position between the recent state-of-the-art algorithms.
The average rank of AAOA is 2.83, which is much smaller
than the other algorithms; hence the AAOA occupied the
first position as a final rank. MPA takes the second rank with
an average rank of 3.3. By observing the reported data in
Tables 5 and 6, one can conclude that the AAOA proves
its superiority statistically in comparison with a set of recent
state-of-the-art and the basic version of AOA.

The convergence curves of the proposed AAOA are
depicted in Fig. 5 versus the AOA and the state-of-the-art
techniques to assess the efficiency of the AAOA’s central
cores (exploration and exploitation). The curves show the
smooth convergence of the AAOA by achieving higher qual-
ity solutions than the PSO, GWO, SCA,WOA, and SSA that
suffered from high stagnation at the local optimal solutions.

Scalability analysis

In this section, the performance of AAOA is examined with
thirteen functions of Tables 1 and 2 with a high dimension of
100 to evaluate the stability of the optimizer with increasing
the dimension of the handled optimization problems. The
obtained worst, best, average, and STD values by the pro-
posed variant and the other techniques (AOA, PSO, GWO,
SCA, MPA, WOA, and SSA) are reported in Table 7. More-
over, the P-value and the null hypothesis test result based
on the Wilcoxon rank-sum test with significant deference of
0.05 are listed in Table 7 for AAOA versus the other tech-
niques. The reported data of the Table reveal the stability and
efficiency of the proposed AAOA as it provides the optimal
solutions for the six functions (F1,F2,F3,F4, F9, and F11,
where the fmin = 0 (see Tables 1 and 2)). Furthermore, it
has the closest results for the optimal solutions of the other
functions (F5, F6, F7, F8, F10) comparedwith the other algo-
rithms. The reported P-values are less than 0.05 for 85 % of
the studied functions. Therefore, one can conclude the high
stability and superiority of AAOA while dealing with high-
dimensional problems.

The Friedman ranking test is computed in Table 8 to
emphasize the superiority of the proposed AAOA. The
AAOA has the first rank in eleven problems out of the
studied thirteen functions; hence it is finally located in the
first place in the queue of the other techniques for solving
high-dimensional problems. The MPA occupies the second
position, with an average rank is nearly the number achieved
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Table 7 The results of the comparative methods on 13 benchmark functions (F1-F13), where the dimension is 100

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F1 Worst 5.7400E-02 2.2310E+03 2.0261E-03 3.8332E+04 3.2817E-21 1.1106E-29 8.1677E+04 0.0000E+00

Average 4.4350E-02 1.6004E+03 1.4510E-03 1.5210E+04 1.4781E-21 4.3420E-30 6.2996E+04 0.0000E+00

Best 3.2315E-02 1.1263E+03 7.3684E-04 4.3932E+03 1.4386E-22 6.3044E-43 4.8765E+04 0.0000E+00

STD 8.9599E-03 5.4140E+02 6.0662E-04 1.3783E+04 1.4282E-21 5.9481E-30 1.2415E+04 0.0000E+00

P-value 3.9597E-06 1.6764E-04 6.8701E-04 3.8858E-02 4.9369E-02 1.4127E-01 3.2822E-06 NaN

h 1 1 1 1 1 0 1 NaN

F2 Worst 2.8780E-11 2.8529E+02 6.8352E-03 3.4808E+01 1.0476E-12 1.2834E-24 3.5509E+14 0.0000E+00

Average 6.0435E-12 2.1408E+02 5.9942E-03 1.5981E+01 5.0309E-13 3.1753E-25 1.3382E+14 0.0000E+00

Best 2.3358E-30 1.6411E+02 4.6550E-03 2.4408E+00 1.3910E-13 8.9555E-29 4.6962E+02 0.0000E+00

STD 1.2726E-11 5.2338E+01 8.6386E-04 1.2890E+01 3.8191E-13 5.4978E-25 1.8382E+14 0.0000E+00

P-value 3.1927E-01 1.6461E-05 2.9640E-07 2.4212E-02 1.8551E-02 2.3260E-01 1.4220E-01

h 0 1 1 1 1 0 0

F3 Worst 2.9653E+00 9.1869E+04 2.2430E+04 6.9790E+05 1.3653E+02 2.3020E+06 3.3012E+05 0.0000E+00

Average 1.5619E+00 5.3665E+04 1.6293E+04 4.3464E+05 5.8978E+01 1.9853E+06 2.3776E+05 0.0000E+00

Best 6.3954E-01 4.0234E+04 1.0246E+04 2.8902E+05 1.6259E-01 1.5889E+06 1.4319E+05 0.0000E+00

STD 9.6778E-01 2.1649E+04 5.0643E+03 1.6896E+05 6.3174E+01 2.6702E+05 6.9843E+04 0.0000E+00

P-value 6.8944E-03 5.4541E-04 9.2984E-05 4.2793E-04 7.0284E-02 1.7315E-07 6.2340E-05 NaN

h 1 1 1 1 0 1 1 NaN

F4 Worst 1.4384E-01 4.2315E+01 4.3088E+01 9.6594E+01 6.8674E-08 9.5191E+01 9.2656E+01 0.0000E+00

Average 1.1378E-01 3.9028E+01 3.2012E+01 9.4647E+01 3.0489E-08 9.2981E+01 7.3317E+01 0.0000E+00

Best 9.3782E-02 3.6333E+01 1.7622E+01 9.2496E+01 7.0132E-09 8.8208E+01 6.5332E+01 0.0000E+00

STD 2.0605E-02 2.9838E+00 9.5748E+00 1.8360E+00 2.3254E-08 2.7946E+00 1.1132E+01 0.0000E+00

P-value 1.7246E-06 2.0228E-09 7.0878E-05 3.5858E-14 1.8945E-02 1.1871E-12 4.4435E-07 NaN

h 1 1 1 1 1 1 1 NaN

F5 Worst 9.8946E+01 1.5864E+06 9.9133E+01 4.4649E+08 9.8967E+01 9.8700E+01 1.6099E+08 9.8686E+01

Average 9.8913E+01 1.1229E+06 9.8913E+01 2.3862E+08 9.8944E+01 9.8654E+01 9.1823E+07 9.8597E+01

Best 9.8863E+01 8.3862E+05 9.8724E+01 1.1642E+08 9.8885E+01 9.8544E+01 4.5615E+07 9.8440E+01

STD 3.7080E-02 2.9921E+05 1.7714E-01 1.3605E+08 3.3786E-02 6.3548E-02 4.5327E+07 9.4473E-02

P-value 2.0858E-01 3.0924E-05 7.0966E-01 4.4074E-03 5.5590E-05 1.8593E-05 1.9248E-03 NaN

h 0 1 0 1 1 1 1 NaN

F6 Worst 2.0706E+01 1.6033E+03 1.9252E+01 4.2497E+04 1.5336E+01 2.0894E+01 6.8666E+04 1.6675E+01

Average 2.0182E+01 1.2410E+03 1.7659E+01 1.6165E+04 1.4822E+01 2.0098E+01 6.1987E+04 1.4307E+01

Best 1.9683E+01 1.0186E+03 1.5777E+01 6.8592E+03 1.4121E+01 1.9397E+01 4.7779E+04 1.0828E+01

STD 4.0924E-01 2.4984E+02 1.4948E+00 1.4823E+04 6.2191E-01 6.1142E-01 8.3772E+03 2.2966E+00

P-value 8.0447E-01 4.3615E-06 9.6842E-03 4.0854E-02 8.5662E-07 6.0938E-04 1.8021E-07 NaN

h 0 1 1 1 1 1 1 NaN

F7 Worst 3.8666E-04 2.5057E+03 7.2634E-02 3.0053E+02 3.3417E-03 2.7156E-02 2.0712E+02 4.1756E-04

Average 1.9544E-04 1.9148E+03 4.8944E-02 1.3565E+02 2.2643E-03 1.0221E-02 1.8291E+02 1.8629E-04

Best 3.0869E-05 1.4762E+03 3.7955E-02 6.6520E+01 1.0616E-03 3.0531E-03 1.5775E+02 9.1872E-06

STD 1.5111E-04 4.7416E+02 1.3616E-02 9.6866E+01 8.4646E-04 9.7959E-03 1.9791E+01 1.6249E-04

P-value 9.2881E-01 1.8084E-05 4.3418E-05 1.3987E-02 6.5308E-04 5.1250E-02 3.1490E-08 NaN

h 0 1 1 1 1 0 1 NaN
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Fig. 5 Convergence behaviour of the comparative methods on the test functions (F1, F4, F7, and F10), where the dimension is 10

by AAOA. Therefore, AAOA outperforms the contemporary
state-of-the-art techniques in providing high-quality solu-
tions for high-dimensional problems.

The convergence rate of the modified variant AAOA is the
primary sector studied to assess the influence of integrating
the operators of OBL and LF distribution while optimiz-
ing high-dimensional problems. Therefore, the convergence
curves of AAOA versus the other counterparts are displayed
in Fig. 6 for the thirteen studied functions. By inspecting the
exposed curves in the Figure, one can observe that the AAOA
converges to the optimal solutions in the first number of iter-
ations; meanwhile, the PSO, GWO, and SSA have stacked
the local solutions regarding all the studied functions.

Table 9 shows the results of the comparative methods on
13 benchmark functions (F1-F13) through 1 second, where
the dimension is 10. We have chosen 1 second, which is
approximately equal to 500 iterations. These comparisons
are conducted to further prove the proposed AAOA in solv-
ing the given problems compared with other methods using
the same execution time. It is evident in Table 9 that the
proposed AAOA got better results compared to other com-

parative methods, which reflects its ability also when the
execution is performed using the same time. According to
the Welxxcon test, the proposed method exceeds almost all
the comparative methods. For example, in solving F1, the
proposed AAOA overcame PSO, GWO, SCA, MPA, WOA,
and SSA. The statistical analysis confirmed the ability of the
proposedAAOA to get better results compared to othermeth-
ods. Moreover, according to the Friedman ranking test, the
proposed AAOA got the first rank, followed by GWO,MPA,
AOA, WOA, PSO, SCA, and SSA.

Performance evaluation using CEC2019 benchmark
functions

Within this section, a different set of benchmark functions
Is used to assess the performance of the developed AAOA
algorithm.These functions are collected from the challenging
functions of CEC2019, and their descriptions are given in
Table 10.

In Table 11, the results of the proposed AAOA method
are compared with other well-known optimization methods
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Fig. 6 Convergence behaviour of the comparative methods on the test functions (F1-F23), where the dimension is 100
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Fig. 6 continued
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Table 7 continued

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F8 Worst −6.9170E+03 −3.0252E+03 −1.0162E+04 −5.8194E+03 −1.8710E+04 −7.3178E+03 −1.1868E+04 −2.6214E+04

Average −8.1798E+03 −5.7685E+03 −1.2350E+04 −6.2132E+03 −1.9752E+04 −8.0930E+03 −1.4234E+04 −2.8926E+04

Best −9.0511E+03 −9.7099E+03 −1.4180E+04 −6.8038E+03 −2.0451E+04 −8.7765E+03 −1.5815E+04 −2.9989E+04

STD 1.0614E+03 2.5430E+03 1.4667E+03 4.3032E+02 6.8073E+02 5.2306E+02 1.5095E+03 1.5894E+03

P-value 8.7374E-01 8.0259E-02 2.8530E-04 2.5777E-04 1.5011E-09 2.9901E-09 2.5948E-05 NaN

h 0 0 1 1 1 1 1 NaN

F9 Worst 0.0000E+00 1.1366E+03 5.2868E+01 4.4709E+02 0.0000E+00 0.0000E+00 9.6633E+02 0.0000E+00

Average 0.0000E+00 1.0194E+03 3.1745E+01 3.1390E+02 0.0000E+00 0.0000E+00 8.1597E+02 0.0000E+00

Best 0.0000E+00 8.9846E+02 1.3855E+01 1.4633E+02 0.0000E+00 0.0000E+00 7.4205E+02 0.0000E+00

STD 0.0000E+00 9.1873E+01 1.4690E+01 1.0941E+02 0.0000E+00 0.0000E+00 9.6520E+01 0.0000E+00

P-value 7.4442E-09 1.3008E-03 2.0576E-04 2.6523E-03 NaN NaN 6.3423E-08 NaN

h 1 1 1 1 NaN NaN 1 NaN

F10 Worst 4.9318E-03 1.0209E+01 8.2324E-03 2.0752E+01 2.6974E-12 4.1682E-12 1.9560E+01 8.8818E-16

Average 3.6306E-03 9.6175E+00 5.2546E-03 1.8343E+01 1.5037E-12 9.6083E-13 1.9264E+01 8.8818E-16

Best 1.9527E-03 8.2952E+00 3.5290E-03 8.8714E+00 5.9064E-13 8.8818E-16 1.8880E+01 8.8818E-16

STD 1.2271E-03 7.7388E-01 1.8433E-03 5.2949E+00 8.1043E-13 1.8015E-12 3.1785E-01 0.0000E+00

P-value 1.6664E-04 3.0348E-09 2.1493E-04 5.5027E-05 3.2250E-03 2.6761E-01 9.8298E-15 NaN

h 1 1 1 1 1 0 1 NaN

F11 Worst 1.0822E+03 3.4699E+02 1.8664E-03 1.8721E+02 0.0000E+00 0.0000E+00 7.5380E+02 0.0000E+00

Average 9.0902E+02 2.4982E+02 8.6121E-04 1.0497E+02 0.0000E+00 0.0000E+00 6.3737E+02 0.0000E+00

Best 7.8862E+02 1.9796E+02 5.2039E-04 3.0922E+01 0.0000E+00 0.0000E+00 4.0009E+02 0.0000E+00

STD 1.0661E+02 5.7496E+01 5.6831E-04 6.6013E+01 0.0000E+00 0.0000E+00 1.4128E+02 0.0000E+00

P-value 5.9298E-08 1.0523E-05 9.5212E-03 7.4485E-03 2.1493E-04 NaN 7.9510E-06 NaN

h 1 1 1 1 1 NaN 1 NaN

F12 Worst 1.1014E+00 1.1350E+04 8.0595E-01 4.9419E+08 4.3328E-01 1.1124E+00 2.7004E+08 7.1482E-01

Average 1.0624E+00 5.4789E+03 6.8980E-01 3.3427E+08 3.2741E-01 1.0384E+00 1.3723E+08 5.9364E-01

Best 1.0258E+00 1.5744E+03 6.1167E-01 1.0991E+08 2.7736E-01 9.7801E-01 4.7881E+07 3.9451E-01

STD 2.7642E-02 3.7229E+03 9.0416E-02 1.7282E+08 6.2849E-02 4.8637E-02 8.6665E+07 1.1993E-01

P-value 3.6599E-01 1.1020E-02 6.3453E-05 2.5290E-03 4.0640E-08 5.8223E-05 7.6134E-03 NaN

h 0 1 1 1 1 1 1 NaN

F13 Worst 1.0030E+01 2.5902E+05 1.0858E+01 9.9631E+08 9.8810E+00 8.8942E+00 5.8500E+08 9.8997E+00

Average 1.0001E+01 1.3197E+05 9.8435E+00 7.3144E+08 9.7799E+00 7.8694E+00 3.7399E+08 9.8176E+00

Best 9.9439E+00 1.8250E+04 8.6541E+00 5.0812E+08 9.6931E+00 6.3475E+00 2.0733E+08 9.6997E+00

STD 3.3263E-02 9.2198E+04 9.0349E-01 2.2614E+08 7.4330E-02 1.0471E+00 1.9167E+08 8.3752E-02

P-value 1.8473E-03 1.2606E-02 9.5071E-01 8.9577E-05 4.7341E-01 3.2215E-03 2.4029E-03 NaN

h 1 1 0 1 0 1 1 NaN

(AOA, PSO, GWO, SCA, MPA, WOA, and SSA) using
advanced benchmark functions (CEC20019). These compar-
isons are conducted to prove further the proposed method
(AAOA) in solving various optimization problems. The
results clearly show that the performance of the proposed
method is better than all other comparative methods. It got
the first tanking compared to other methods. TheMPA, how-
ever, is located in the second rank. Therefore, AAOA is the
recommended variant for this benchmark suite among the

other comparable optimizers. Moreover, the obtained results
illustrated that the modified version can bring new best solu-
tions for several test cases.

Moreover, the proposed AAOA is further evaluated using
ten CEC2019 compared to the state-of-the-art methods pub-
lished in the literature. The comparative methods include
Fuzzy Self-Tuning PSO (FST-PSO) (Nobile et al., 2018),
improved BAwith variable neighborhood (VNBA) (Wang et
al., 2016), novel PSO using prey-predator relationship (PP-
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Table 8 The results of the
Friedman ranking test for the
comparative methods overall 13
benchmark functions
(Dimension =100)

Function Measure Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

F1 Ranking 5 6 4 7 3 2 8 1

F2 Ranking 4 7 5 6 3 2 8 1

F3 Ranking 2 5 4 7 3 8 6 1

F4 Ranking 3 5 4 8 2 7 6 1

F5 Ranking 4 6 3 8 5 2 7 1

F6 Ranking 5 6 3 7 2 4 8 1

F7 Ranking 2 8 5 6 3 4 7 1

F8 Ranking 5 8 4 7 2 6 3 1

F9 Ranking 1 8 5 6 1 1 7 1

F10 Ranking 4 6 5 7 3 2 8 1

F11 Ranking 8 6 4 5 1 1 7 1

F12 Ranking 5 6 3 8 1 4 7 2

F13 Ranking 5 6 4 8 2 1 7 3

Summation 53 83 53 90 31 44 89 16

Mean rank 4.08 6.38 4.08 6.92 2.38 3.38 6.85 1.23

Final ranking 4 6 4 8 2 3 7 1

PSO) (Zhang et al., 2018), Hybrid KHA with differential
evolution (DEKH) (Wang et al., 2014), Chaotic CS (CCS)
(Wang et al., 2016), and stud krill herd algorithm (SKH)
(Wang et al., 2014).

The attained best, worst, STD, and the p-values based on
theWilcoxon rank-sum testwith significant deference of 0.05
by AAOA and other counterparts are illustrated in Table 12.
The listed data show the efficiency of the AAOA in handling
nine functions out of the ten ones with minimum statistical
metrics (best, worst, and STD). In contrast, it has the sec-
ond position in solving CEC2019. The computed p-values
confirm the superiority of the proposed AAOA and provide
evidence of exiting a significant difference between the opti-
mizers in favor of AAOA. Accordingly, the AAOA has the
least average rank based on Friedman’s test, as reported in the
last lines of the Table; consequently, it is ordered as the first
optimizer while solving that set of benchmarks. The VNBA,
however, is located in the second rank; DEKH got the third
rank, PP-PSO got the fourth rank, SKH got the fifth rank,
FST-PSO got the sixth rank, and CCS got the final rank.

The plotted curves of Fig. 7 depict the acceleration rates
of the AAOA versus AOA, PSO, GWO, SCA, MPA, WOA,
and SSA while optimizing the ten functions of CEC2019.
The exhibited curves show the convergence of the AAOA to
the high-quality solutions with a smooth and fast response.
Meanwhile, the AOA, PSO, GWO, SCA, WOA, and SSA
suffered from high stagnation in local solutions in several
functions. Accordingly, the AAOA proves its efficiency not
only in accuracy but also in convergence property.

Second experiment: clustering applications

Datasets description

This experiment evaluates the AAOA using eight UCI
datasets, namely Cancer, CMC, Glass, Iris, Seeds, Heart,
Vowels, and Water. The descriptions of these datasets are
listed in Table 13.

Results and discussion

This section shows the performance of the proposed AAOA
over eight datasets; the performance results and theWilcoxon
test values are listed in one table. Regarding the Cancer
dataset, Table 14 shows the clustering results for the pro-
posedAAOAand the compared algorithms. In terms ofWorst
measure results, we can prominent see that the proposed
AAOA obtained the best results (i.e., 373.23); this result is
much better than the second-rank algorithm (i.e., PSO), the
PSO obtained 2007.50 followed by GWO, AOA, SCA, SSA,
MPA, and WOA.

The average measure also presented these results; the
AAOA was ranked first with 248.64, followed by the PSO,
GWO, and SCAwith 1116.60, 2812.00, and 3158.00, respec-
tively. The worst algorithm was also the WOA. The AAOA
showed its superiority in the best measure; it was ranked first,
followed by the PSO, GWO, SCA, and SSA. In this mea-
sure, the original AOA was ranked last. However, it was the
most stable algorithm based on the Std measure; it recorded
79.32, whereas the AAOA was ranked second with 90.71.
The third and fourth stable algorithmswereWOA andGWO.
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Table 9 The results of the comparative methods on 13 functions (F1-F13) through 1 second, where the dimension is 10

Function Measure Algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

F1 Worst 1.88169E-02 2.28795E+00 2.71118E-02 7.65498E+01 6.53466E-28 7.62764E-06 1.32293E+03 2.32063E-182

Average 9.84629E-03 1.64005E+00 1.34482E-02 1.91376E+01 1.63366E-28 1.97185E-06 8.44972E+02 5.80157E-183

Best 1.66797E-05 9.76074E-01 2.07291E-03 4.00428E-147 2.83935E-196 1.48918E-63 3.75913E-01 0.00000E+00

STD 9.29658E-03 5.78756E-01 0.00000E+00 3.82748E+01 3.26733E-28 3.77251E-06 5.86319E+02 1.04754E-02

P-value 6.25397E-01 1.35558E-03 4.24728E-02 3.56228E-01 4.24728E-02 4.24943E-02 2.79754E-02 NaN

h 0 1 1 0 1 1 1 NaN

Rank 4 6 5 7 2 3 8 1

F2 Worst 2.51299E-02 4.95042E+00 2.50434E-59 1.73376E+00 2.63499E-02 2.27465E-04 1.00295E+01 1.29387E-10

Average 1.73123E-02 4.35956E+00 6.26086E-60 5.21959E-01 1.51949E-02 7.92545E-05 6.40471E+00 5.08773E-11

Best 1.27597E-02 3.69479E+00 8.25876E-201 9.34296E-18 2.75290E-03 1.00696E-07 4.12695E+00 2.12465E-42

STD 5.51781E-03 5.42118E-01 1.25217E-59 8.24930E-01 6.29315E-11 1.07383E-04 2.68193E+00 1.08740E-02

P-value 7.40235E-01 3.75244E-06 3.13819E-02 2.65250E-01 3.13819E-02 3.19970E-02 3.11093E-03 NaN

h 0 1 1 0 1 1 1 NaN

Rank 5 7 1 6 4 3 8 2

F3 Worst 3.97631E-02 7.14638E+00 9.06846E-08 8.53067E+03 2.69768E-02 5.45216E+03 3.26298E+03 2.09140E-02

Average 2.23757E-02 5.91124E+00 2.26712E-08 3.97873E+03 6.74420E-03 4.02242E+03 1.96532E+03 1.65563E-02

Best 1.24211E-02 4.52371E+00 2.13194E-50 9.93176E+02 1.64952E-14 1.38660E+03 6.78341E+02 1.39120E-02

STD 1.22798E-02 1.24435E+00 4.53423E-08 3.30334E+03 1.34884E-02 1.85975E+03 1.18137E+03 3.28389E-03

P-value 3.95175E-01 7.87406E-05 5.52405E-05 5.26524E-02 2.07200E-01 4.95152E-03 1.58624E-02 NaN

h 0 1 1 0 0 1 1 NaN

Rank 4 5 1 7 2 8 6 3

F4 Worst 9.01168E-02 1.06782E+00 1.09527E-34 1.62020E+01 8.97262E-02 1.42099E+01 2.29380E+01 3.82326E-11

Average 4.18017E-02 9.37060E-01 2.74109E-35 7.73015E+00 6.22068E-02 6.27726E+00 1.74013E+01 9.63329E-12

Best 6.60502E-03 8.13710E-01 4.22496E-107 1.28041E-02 3.78038E-02 1.21406E+00 1.19246E+01 6.69623E-33

STD 3.96320E-02 1.03838E-01 5.47438E-35 8.90951E+00 1.90667E-11 6.04396E+00 5.57157E+00 2.12735E-02

P-value 3.99229E-01 3.15045E-06 1.10278E-03 1.35982E-01 1.10278E-03 8.54571E-02 7.95029E-04 NaN

h 0 1 1 0 1 0 1 NaN

Rank 3 5 1 7 4 6 8 2

F5 Worst 8.00001E+00 7.01808E+02 7.19000E+00 2.89159E+03 8.52247E+00 6.73979E+00 4.37905E+05 4.60686E+00

Average 6.87931E+00 5.07823E+02 6.27650E+00 8.71679E+02 7.20213E+00 6.29290E+00 1.56418E+05 2.75658E+00

Best 5.92341E+00 2.82410E+02 5.54076E+00 7.34901E+00 5.68814E+00 5.83858E+00 3.71879E+04 5.89618E-01

STD 1.03202E+00 1.86782E+02 6.91668E-01 1.37336E+03 1.87175E+00 3.71799E-01 1.90489E+05 1.27929E+00

P-value 7.08041E-01 1.72756E-03 2.50128E-01 2.54822E-01 7.78689E-03 2.21223E-01 1.51655E-01 NaN

h 0 1 0 0 1 0 0 NaN

Rank 4 6 2 7 5 3 8 1

F6 Worst 5.18954E-02 5.02221E+00 2.68900E-02 4.98587E+01 3.50601E-03 5.46378E-02 1.37447E+03 3.16569E-03

Average 4.10082E-02 2.63266E+00 1.84018E-02 1.37646E+01 1.40431E-03 4.25571E-02 9.02173E+02 1.62924E-03

Best 2.92412E-02 1.31618E+00 1.11324E-02 6.34138E-01 2.05109E-06 3.08538E-02 2.88049E+02 6.24076E-04

STD 1.07988E-02 1.63508E+00 6.47293E-03 2.40999E+01 1.70675E-03 1.12386E-03 4.60875E+02 1.01837E-02

P-value 8.41586E-01 1.93649E-02 7.08969E-03 2.98219E-01 2.07615E-04 2.04964E-04 7.84834E-03 NaN

h 0 1 1 0 1 1 1 NaN

Rank 4 6 3 7 1 5 8 2
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Table 9 continued

FunctionMeasure Algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

F7 Worst 2.52997E-04 1.37464E+00 2.62964E-04 1.23009E-01 2.07061E-03 7.28141E-03 1.19627E-01 1.02605E-04

Average 1.08713E-04 8.44918E-01 1.98574E-04 7.49151E-02 1.58235E-03 4.69521E-03 7.93306E-02 6.86800E-05

Best 8.87675E-06 5.96752E-01 1.14002E-04 1.51708E-02 1.39066E-03 3.20901E-03 4.46731E-02 2.51577E-05

STD 1.11659E-04 3.61528E-01 6.58604E-05 4.86981E-02 3.26560E-04 1.80384E-03 4.00799E-02 3.59233E-05

P-value 5.20330E-01 3.41802E-03 1.34198E-02 2.18330E-02 9.21480E-05 2.15990E-03 7.49291E-03 NaN

h 0 1 1 1 1 1 1 NaN

Rank 2 8 3 6 4 5 7 1

F8 Worst −3.73561E+03−2.33354E+03−1.93110E+03−2.15945E+03−2.44143E+03−3.00481E+03−2.22663E+03−3.84973E+03

Average −3.91807E+03−2.69389E+03−2.20080E+03−2.25212E+03−2.82344E+03−3.50461E+03−2.26671E+03−3.92658E+03

Best −4.18966E+03−3.12331E+03−2.43991E+03−2.32993E+03−3.03575E+03−4.17822E+03−2.31321E+03−3.95284E+03

STD 2.08665E+02 3.29722E+02 2.08476E+02 8.58906E+01 2.61873E+02 4.95956E+02 3.57450E+01 5.12440E+01

P-value 9.39419E-01 3.15458E-04 3.67974E-06 4.72274E-08 1.69365E-04 1.41475E-01 2.98314E-09 NaN

h 0 1 1 1 1 0 1 NaN

Rank 2 5 8 7 4 3 6 1

F9 Worst 1.08047E-02 5.17804E+01 0.00000E+00 3.54704E+01 0.00000E+00 1.51138E+01 5.03014E+01 1.08026E-02

Average 7.40368E-03 4.72299E+01 0.00000E+00 1.63030E+01 0.00000E+00 4.35237E+00 4.50724E+01 8.98380E-03

Best 4.46513E-03 4.29289E+01 0.00000E+00 6.07376E-03 0.00000E+00 2.42143E-08 3.99679E+01 6.73401E-03

STD 3.34226E-03 3.66557E+00 0.00000E+00 1.51375E+01 0.00000E+00 7.25280E+00 5.04208E+00 1.67976E-03

P-value 4.30591E-01 2.25374E-07 3.94034E-05 7.48168E-02 3.94034E-05 2.76193E-01 1.97072E-06 NaN

h 0 1 1 0 1 0 1 NaN

Rank 3 8 1 6 1 5 7 4

F10 Worst 6.46140E-02 3.82924E+00 4.44089E-15 2.44370E+00 4.44089E-15 1.76171E-04 1.29323E+01 6.30155E-02

Average 5.57667E-02 3.59380E+00 4.44089E-15 1.10970E+00 1.77636E-15 8.08247E-05 1.14936E+01 5.74011E-02

Best 4.11814E-02 3.25387E+00 4.44089E-15 2.11428E-06 8.88178E-16 3.67816E-05 9.75271E+00 4.34530E-02

STD 1.06630E-02 2.45656E-01 0.00000E+00 1.02582E+00 1.77636E-15 6.46222E-05 1.36514E+00 9.32369E-03

P-value 8.25163E-01 1.16777E-07 1.74929E-05 8.60588E-02 1.74929E-05 1.76389E-05 2.88693E-06 NaN

h 0 1 1 0 1 1 1 NaN

Rank 4 7 2 6 1 3 8 5

F11 Worst 5.30887E-01 5.96717E-01 0.00000E+00 8.14724E-01 0.00000E+00 7.65066E-01 1.04700E+01 1.31743E-01

Average 3.77318E-01 4.15279E-01 0.00000E+00 4.81445E-01 0.00000E+00 5.24226E-01 7.08374E+00 4.23048E-02

Best 2.94501E-01 3.04987E-01 0.00000E+00 8.68717E-03 0.00000E+00 3.08588E-01 3.55113E+00 9.80758E-10

STD 1.10085E-01 1.32590E-01 0.00000E+00 3.97804E-01 0.00000E+00 6.21877E-02 3.81556E+00 2.49379E-01

P-value 3.22519E-01 4.69708E-01 5.65913E-03 8.61399E-01 5.65913E-03 9.50843E-03 1.39545E-02 NaN

h 0 0 1 0 1 1 1 NaN

Rank 4 5 1 6 1 7 8 3

F12 Worst 1.42862E-02 2.56873E-01 4.12870E-03 3.40307E+01 1.62649E-02 3.94276E-03 7.04130E+03 2.81647E-03

Average 7.31272E-03 1.93519E-01 3.94428E-03 1.09573E+01 8.72136E-03 1.46203E-03 1.81999E+03 7.75121E-04

Best 1.09973E-03 8.89995E-02 3.82076E-03 3.49670E-01 1.06749E-03 1.12308E-05 7.05725E+00 2.18823E-07

STD 5.40194E-03 7.25447E-02 1.49934E-04 1.55598E+01 7.90263E-03 1.73050E-03 3.48186E+03 1.36359E-03

P-value 7.78437E-01 2.29983E-03 2.72222E-01 2.08973E-01 9.47936E-02 1.22856E-01 3.36111E-01 NaN

h 0 1 0 0 0 0 0 NaN

Rank 4 6 3 7 5 2 8 1
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Table 9 continued

Function Measure Algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

F13 Worst 9.36196E-01 5.11893E-01 1.09740E-01 1.06851E+00 8.63113E-04 1.98274E-04 2.12529E+04 1.01023E+00

Average 7.34821E-01 3.79058E-01 3.76350E-02 7.02707E-01 2.39221E-04 8.12420E-05 5.38773E+03 8.44288E-01

Best 3.56538E-01 2.84661E-01 1.08324E-02 2.48203E-01 7.90453E-07 2.10228E-05 1.15618E+01 6.41428E-01

STD 2.64637E-01 1.02080E-01 4.81184E-02 3.87129E-01 4.16524E-04 7.94770E-05 1.05772E+04 1.55264E-01

P-value 5.02300E-01 2.43424E-03 6.04589E-05 5.22525E-01 3.58819E-05 3.58426E-05 3.47702E-01 NaN

h 0 1 1 0 1 1 0 NaN

Rank 6 4 3 5 2 1 8 7

Summation 49 78 34 84 36 54 98 33

Mean rank 3.76923E+00 6.00000E+00 2.61538E+00 6.46154E+00 2.76923E+00 4.15385E+00 7.53846E+00 2.53846E+00

Final ranking 4 6 2 7 3 5 8 1

Table 10 CEC2019 benchmark
functions

No. Functions F∗
i = Fi (x∗) Dim Search range

1 Storn’s Chebyshev polynomial fitting problem 1 9 [−8192, 8192]

2 Inverse Hilbert matrix problem 1 16 [−16384, 16384]

3 Lennard-Jones minimum energy cluster 1 18 [−4,4]

4 Rastrigin’s function 1 10 [−100,100]

5 Griewangk’s function 1 10 [−100,100]

6 Weierstrass function 1 10 [−100,100]

7 Modified Schwefel’s function 1 10 [−100,100]

8 Expanded Schaffer’s F6 function 1 10 [−100,100]

9 Happy Cat function 1 10 [−100,100]

10 Ackley function 1 10 [−100,100]

The PSO showed the worst stability compared to the other
algorithms with 598.12. The obtained centroids by all meth-
ods are recorded in Table 15.

The results of the CMC dataset are listed in Table 16.
The proposed AAOA obtained the best results based on the
worst measure (i.e., 80.81) and was ranked first in this table.
The second method was the PSO with 95.97, followed by
the GWO with 310.76. Whereas the other methods, AOA,
SCA, MPA, WOA, and SSA, showed similar performances.
In terms of Average measure results, we can see that the
AAOA obtained 77.60 and outperformed the second-ranked
method (i.e., PSO). The GWO was ranked third. Whereas
the rest methods also showed similar performances to some
extent. These results were also confirmed by inspecting the
products of the Best measure. In contrast, the MPA showed
the most stable behavior of all methods with 0.203, followed
by AOA, WOA, SCA, and SSA, whereas the AAOA showed
an acceptable Std value of 2.772. The obtained centroids by
all methods are recorded in Table 17.

In the Glass dataset, as shown in Table 18, the proposed
AAOA method outperformed the other method in both the
Worst and Average measures; it obtained 1.23 and 0.77 by
the PSO with 10.79 and 6.40, respectively. The rest meth-

ods showed similar results. Regarding the Best measure,
the AAOA and PSO obtained the same results (i.e., 0.000)
and outperformed all other methods. In the Std measure, the
most stablemethodwasMPA, followed by SCA,AAOA, and
AOA, respectively, whereas the PSO showed the worst Std
result. Table 19 shows the obtained centroids by all methods.

Table 20 records the results of the Iris dataset, andTable 21
shows the centroids results for all methods. Table 20 shows
that theAAOAobtained superior results in both theWorst and
Average measures, followed by the PSO and GWO. Simul-
taneously, the AOA, SCA, MPA, WOA, and SSA showed
similar results with significant deference from the AAOA.
Simultaneously, the AAOA obtained 0.90 in the Best mea-
sure and was ranked second after the PSO, which obtained
0.62. In addition, the AAOA also showed good stability in
this dataset and was ranked fourth after the AOA, SSA, and
WOA.

Table 22 records the results of the Seeds dataset. The
AAOA achieved the first rank in Worst, Average, and Best
measures from this table, followed by the PSO and GWO
methods. The AOA was ranked fourth in the Worst measure,
but the SCA was ranked fourth in both Average and Best
measures. The last rank was recorded by the WOA method.
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Table 11 The results of the comparative methods using advanced CEC2019 benchmark functions

Function Measure Comparative algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

CEC01 Worst 7.3742E+04 4.1958E+13 7.3050E+09 1.4335E+11 1.8893E+08 6.2104E+11 7.7662E+10 5.2749E+04

Average 6.2056E+04 2.8902E+13 3.0240E+09 7.6433E+10 7.0561E+07 3.5552E+11 3.0708E+10 5.1240E+04

Best 5.0998E+04 1.4420E+13 1.9325E+07 5.4457E+09 9.8206E+06 2.8190E+10 3.9399E+09 4.8343E+04

STD 1.1385E+04 1.3824E+13 3.8068E+09 6.9041E+10 1.0252E+08 3.0122E+11 4.0797E+10 2.5095E+03

P-value 1.8337E-01 2.2336E-02 2.4089E-01 1.2764E-01 2.9942E-01 1.1041E-01 2.6230E-02 NaN

h 0 1 0 0 0 0 1 NaN

Rank 2 8 4 6 3 7 5 1

CEC02 Worst 1.8664E+01 3.1812E+04 1.7674E+01 1.7657E+01 1.7345E+01 1.8503E+01 1.7388E+01 1.7343E+01

Average 1.8354E+01 2.7723E+04 1.7455E+01 1.7603E+01 1.7345E+01 1.7909E+01 1.7360E+01 1.7343E+01

Best 1.7819E+01 2.3411E+04 1.7345E+01 1.7519E+01 1.7344E+01 1.7411E+01 1.7345E+01 1.7343E+01

STD 4.6518E-01 4.2046E+03 1.8979E-01 7.4026E-02 6.0548E-04 5.5238E-01 2.4257E-02 2.0781E-06

P-value 1.9812E-02 3.3623E-04 3.7050E-01 3.7724E-03 7.5773E-03 1.5150E-01 3.2553E-01 NaN

h 1 1 0 1 1 0 0 NaN

Rank 7 8 4 5 2 6 3 1

CEC03 Worst 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2706E+01 1.2702E+01 1.2702E+01 1.2702E+01

Average 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2704E+01 1.2702E+01 1.2702E+01 1.2702E+01

Best 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2702E+01 1.2702E+01 1.2702E+01

STD 3.4437E-05 3.3956E-07 3.7556E-05 5.6497E-05 1.3670E-03 1.3599E-05 1.6783E-07 3.5642E-11

P-value 8.9352E-02 8.5524E-02 8.9237E-02 9.3659E-02 8.5500E-02 8.7517E-02 8.5512E-02 NaN

h 0 0 0 0 0 0 0 NaN

Rank 6 3 5 7 8 4 2 1

CEC04 Worst 1.7162E+04 4.9854E+01 5.5135E+03 5.4052E+03 5.7977E+01 7.3854E+03 2.4498E+02 3.7069E+01

Average 1.2430E+04 3.9438E+01 2.7161E+03 4.3807E+03 3.9080E+01 5.3175E+03 1.1466E+02 3.0654E+01

Best 9.5669E+03 2.9125E+01 7.8625E+01 3.8433E+03 1.8970E+01 3.4988E+03 3.1066E+01 2.4188E+01

STD 4.1280E+03 6.4402E+00 2.7210E+03 8.8762E+02 1.9532E+01 1.9553E+03 1.1435E+02 1.0365E+01

P-value 6.5203E-03 2.8050E-01 1.6361E-01 1.0645E-03 9.7900E-01 9.4804E-03 3.1986E-01 NaN

h 1 0 0 1 0 1 0 NaN

Rank 8 3 5 6 2 7 4 1

CEC05 Worst 4.4703E+00 1.4997E+00 3.4380E+00 2.8512E+00 1.4474E+00 1.4646E+00 1.6372E+00 3.6810E+00

Average 4.1622E+00 1.2265E+00 2.3129E+00 2.5248E+00 1.2900E+00 1.3168E+00 1.3815E+00 3.0031E+00

Best 3.6485E+00 1.0741E+00 1.3903E+00 2.3254E+00 1.1703E+00 1.1906E+00 1.1847E+00 2.3116E+00

STD 4.4781E-01 2.3715E-01 1.0388E+00 2.8500E-01 1.4232E-01 6.8480E-01 2.3191E-01 1.3830E-01

P-value 4.6245E-04 5.9956E-01 1.7503E-01 2.7226E-03 8.2707E-01 1.3908E-02 6.9929E-01 NaN

h 1 0 0 1 0 1 0 NaN

Rank 1 8 4 3 7 6 5 2

CEC06 Worst 1.2239E+01 1.0790E+01 1.3260E+01 1.2725E+01 8.6342E+00 1.1276E+01 8.5752E+00 4.7221E+00

Average 1.1354E+01 9.4430E+00 1.2305E+01 1.2539E+01 7.1018E+00 1.0558E+01 7.8443E+00 4.3677E+00

Best 9.9344E+00 8.2546E+00 1.0883E+01 1.2425E+01 6.1869E+00 9.2415E+00 7.3449E+00 3.8718E+00

STD 1.2417E+00 1.2752E+00 1.2557E+00 1.6279E-01 1.3353E+00 1.1420E+00 6.4701E-01 4.4245E-01

P-value 1.5619E-02 9.3051E-02 7.9476E-03 2.1915E-03 2.8138E-02 2.7092E-02 4.3501E-01 NaN

h 1 0 1 1 1 1 0 NaN

Rank 6 4 7 8 2 5 3 1
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Table 11 continued

Function Measure Comparative algorithms
AOA PSO GWO SCA MPA WOA SSA AAOA

CEC07 Worst 1.1179E+03 8.0225E+02 1.2860E+03 1.0168E+03 4.4741E+02 1.1147E+03 7.0529E+02 3.8380E+02

Average 8.4110E+02 4.4299E+02 9.2393E+02 8.4300E+02 2.0016E+02 8.1070E+02 4.7248E+02 1.7784E+02

Best 5.3349E+02 2.5601E+02 6.5822E+02 6.0048E+02 1.4706E+01 5.3452E+02 2.8884E+02 5.1048E+01

STD 2.9344E+02 3.1121E+02 3.2480E+02 2.1651E+02 1.7995E+02 2.9108E+02 2.1253E+02 2.2287E+02

P-value 3.9443E-02 3.3355E-01 3.3457E-02 2.3098E-02 8.9916E-01 4.4807E-02 2.0039E-01 NaN

h 1 0 1 1 0 1 0 NaN

Rank 6 3 8 7 2 5 4 1

CEC08 Worst 6.7295E+00 6.9169E+00 6.8943E+00 7.2417E+00 5.7078E+00 6.9735E+00 6.3365E+00 5.5929E+00

Average 6.3733E+00 6.1601E+00 6.2889E+00 6.4895E+00 5.4287E+00 6.7027E+00 5.5738E+00 4.6425E+00

Best 5.7499E+00 5.3852E+00 5.2559E+00 5.6065E+00 4.8883E+00 6.2346E+00 4.9215E+00 3.4497E+00

STD 5.4175E-01 7.6601E-01 8.9899E-01 8.2540E-01 4.6808E-01 4.0708E-01 7.1390E-01 1.0919E+00

P-value 3.4289E-02 2.3102E-01 2.1551E-01 1.2489E-02 3.1561E-01 2.3645E-02 7.8305E-01 NaN

h 1 0 0 1 0 1 0 NaN

Rank 6 4 5 7 2 8 3 1

CEC09 Worst 9.4193E+02 3.4258E+00 5.8507E+00 4.0199E+02 4.3621E+00 1.1423E+03 5.6525E+00 2.8191E+00

Average 7.9561E+02 3.2043E+00 4.9644E+00 2.8781E+02 4.1399E+00 7.3820E+02 4.8127E+00 2.6667E+00

Best 6.9493E+02 2.8219E+00 4.4299E+00 8.8690E+01 3.9202E+00 4.0127E+02 3.9221E+00 2.4966E+00

STD 1.2967E+02 1.6200E-01 7.7292E-01 1.7306E+02 2.2092E-01 3.7504E+02 8.6635E-01 3.3255E-01

P-value 4.5086E-04 6.5564E-02 2.2294E-02 4.6470E-02 1.5359E-02 2.7417E-02 3.9859E-02 NaN

h 1 0 1 1 1 1 1 NaN

Rank 8 2 5 6 3 7 4 1

CEC10 Worst 2.0492E+01 2.0676E+01 2.0790E+01 2.0637E+01 2.0154E+01 2.0462E+01 2.0128E+01 2.0057E+01

Average 2.0404E+01 2.0629E+01 2.0604E+01 2.0561E+01 2.0055E+01 2.0421E+01 2.0057E+01 9.2994E+00

Best 2.0240E+01 2.0549E+01 2.0472E+01 2.0461E+01 2.0003E+01 2.0393E+01 2.0000E+01 3.2368E+00

STD 1.4202E-01 6.9159E-02 1.6551E-01 9.0230E-02 8.5472E-02 3.5880E-02 6.5059E-02 9.3410E+00

P-value 1.0860E-01 1.0358E-01 1.0415E-01 1.0505E-02 1.1688E-01 1.0817E-02 1.1682E-02 NaN

h 0 0 0 1 0 1 1 NaN

Rank 4 8 7 6 2 5 3 1

Summation 54 51 54 61 33 60 36 11

Mean rank 5.4 5.1 5.4 6.1 3.3 6 3.6 1.1

Final ranking 5 4 5 8 2 7 3 1

In the Std measure, all methods showed good stability, but
themost stablemethodswereAAOAandAOA. The obtained
centroids by all methods for Seeds are recorded in Table 23.

TheHeart dataset also presented the obtained results in the
Seeds dataset. In Table 25, the proposed AAOA achieved the
first rank in all measures, followed by the PSO except for the
Std measure, and the PSO showed the worst stability among
all methods. In this dataset, the WOA showed better perfor-
mance than the Seeds dataset and was ranked fourth in both
Average and Best measures, whereas the SCA recorded the
lowest performance. The obtained centroids by all methods
for Heart datasets are recorded in Table 25, respectively.

Moreover, by inspecting the results of the Vowels dataset,
as in Table 27, we can see that the AAOA obtained the top
results in both Worst and Average measures, whereas it was

ranked second in theBestmeasure after the PSOmethodwith
slight deference. The WOA obtained the third rank in the
Worst measure and the fourth rank in the Worst and Average
measures after the GOW. Although the MPA was considered
the most stable method in this dataset, it showed the worst
performance in the other measurements. The AAOA and the
compared methods showed good stability except for the PSO
and GWO methods. Table 27 shows the obtained centroids
by all methods.

The results of the Water dataset, as in Tables 28 and 29,
also show the superiority of the proposed AAOA method in
all measures, followed by the PSO and GWO, respectively,
except for the Std measure, which were seventh and eighth,
respectively. Whereas the worst one was the SCA method.
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Table 12 The results obtained by the proposed AAOA and best-published results using CEC2019

Dataset Measure Comparative algorithms
SKH PP-PSO VNBA FST-PSO DEKH CCS AAOA

CEC01 Average 1.7732E+06 2.3500E+08 2.5509E+06 8.8462E+06 9.7534E+05 2.1141E+05 5.1240E+04

Rank 4 7 5 6 3 2 1

CEC02 Average 4.0272E+02 2.6635E+04 8.1681E+02 3.2288E+03 7.0806E+02 3.5892E+02 1.7343E+01

Rank 3 7 5 6 4 2 1

CEC03 Average 8.0693E+00 6.6440E+00 4.6163E+00 9.5409E+00 6.5873E+00 1.2482E+01 1.2702E+01

Rank 4 3 1 5 2 6 7

CEC04 Average 5.0955E+01 4.7666E+01 2.4728E+01 5.8252E+01 2.9409E+01 6.1460E+01 3.0654E+01

Rank 5 4 1 6 2 7 3

CEC05 Average 1.9351E+00 1.6605E+00 3.0251E+00 2.0034E+01 1.9507E+00 3.4583E+00 3.0031E+00

Rank 2 1 5 7 3 6 4

CEC06 Average 1.0254E+01 8.1572E+00 5.7135E+00 9.7719E+00 3.1953E+00 6.6010E+00 4.3677E+00

Rank 7 5 3 6 1 4 2

CEC07 Average 1.3488E+03 1.1194E+03 6.4463E+02 1.3360E+03 1.0600E+03 2.2474E+03 1.7784E+02

Rank 6 4 2 5 3 7 1

CEC08 Average 4.8795E+00 4.3978E+00 4.7793E+00 4.7774E+00 4.4510E+00 5.4003E+00 4.6425E+00

Rank 6 1 5 4 2 7 3

CEC09 Average 1.5981E+00 1.5280E+00 1.3950E+00 1.6020E+00 3.3615E+00 1.6453E+00 2.6667E+00

Rank 3 2 1 4 7 5 6

CEC10 Average 2.1602E+01 2.1380E+01 2.1080E+01 2.1147E+01 2.1638E+01 2.1960E+01 9.2994E+00

Rank 5 4 2 3 6 7 1

Summation 45 38 30 52 33 53 29

Mean ranking 5 4 3 5 3 5 3

Final ranking 5 4 2 6 3 7 1

Table 13 UCI benchmark
datasets

Dataset Features No. Instances No. Classes No.

Cancer 9 683 2

CMC 10 1473 3

Glass 9 214 7

Iris 4 150 3

Seeds 7 210 3

Heart 13 270 2

Vowels 6 871 3

Water 13 178 3

Table 14 The results of the comparative methods using Cancer dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 3.3406E+03 2.0075E+03 2.9497E+03 3.4723E+03 3.4962E+03 3.5481E+03 3.4837E+03 3.7323E+02

Average 3.2792E+03 1.1166E+03 2.8120E+03 3.1580E+03 3.2303E+03 3.3798E+03 3.1769E+03 2.4864E+02

Best 3.1891E+03 5.6231E+02 2.4770E+03 2.8825E+03 3.0636E+03 3.0533E+03 2.9426E+03 1.5354E+02

STD 7.9316E+01 5.9812E+02 1.9206E+02 2.8523E+02 2.1044E+02 1.9032E+02 2.3535E+02 9.0713E+01

P-value 1.1093E-11 1.2455E-02 3.8280E-09 2.1163E-08 2.1090E-09 7.3754E-10 5.2046E-09 NaN

h 1 1 1 1 1 1 1 NaN
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Fig. 7 Convergence behaviour of the comparative methods on the tested benchmark functions (CEC2019)

Table 15 Determining centroid of each cluster for the Cancer dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7 Att.8 Att.9

Centroid1 59.7500 26.3615 94.6250 7.1725 1.6457 19.7746 8.1787 7.8308 393.5426

Centroid2 29.5081 29.5081 29.5081 29.5081 29.5081 29.5081 29.5081 29.5081 29.5081
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Fig. 7 continued

Table 16 The results of the comparative methods using CMC dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 3.3342E+02 9.5968E+01 3.1076E+02 3.3457E+02 3.3483E+02 3.3503E+02 3.3506E+02 8.0812E+01

Average 3.3280E+02 8.9492E+01 3.0801E+02 3.3343E+02 3.3463E+02 3.3422E+02 3.3404E+02 7.7596E+01

Best 3.3222E+02 8.1427E+01 3.0083E+02 3.3213E+02 3.3432E+02 3.3279E+02 3.3233E+02 7.4322E+01

STD 5.3381E-01 6.4788E+00 4.2132E+00 9.8637E-01 2.0260E-01 8.6284E-01 1.1175E+00 2.7715E+00

P-value 4.0084E-16 5.4285E-03 9.4107E-14 5.4724E-16 3.3430E-16 4.7976E-16 6.0874E-16 NaN

h 1 1 1 1 1 1 1 NaN

Table 17 Determining centroid
of each cluster for the CMC
dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7 Att.8 Att.9

Centroid1 32.5462 2.9617 3.4319 3.2621 0.8494 0.7495 2.1348 3.1321 0.0732

Centroid2 33.5000 2.6667 3.3333 3.1667 1.0000 0.6667 2.6667 3.8333 0.1667

Centroid3 29.6667 2.5000 3.0000 3.1667 1.0000 0.8333 2.3333 2.8333 0.1667
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Table 18 The results of the comparative methods using Glass dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 3.4819E+01 1.0789E+01 3.0683E+01 3.4892E+01 3.5156E+01 3.4312E+01 3.5108E+01 1.2339E+00

Average 3.4156E+01 6.3974E+00 2.8928E+01 3.4374E+01 3.4871E+01 3.3668E+01 3.4420E+01 7.6719E-01

Best 3.3643E+01 0.0000E+00 2.7384E+01 3.3750E+01 3.4396E+01 3.2272E+01 3.3672E+01 0.0000E+00

STD 4.6500E-01 4.2028E+00 1.4023E+00 4.1559E-01 3.3531E-01 8.7444E-01 6.6635E-01 4.6153E-01

P-value 3.9293E-14 1.7665E-02 1.0063E-10 2.4331E-14 1.0967E-14 1.1861E-12 2.0235E-13 NaN

h 1 1 1 1 1 1 1 NaN

Table 19 Determining centroid
of each cluster for the Glass
dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7 Att.8 Att.9

Centroid1 1.5184 13.0740 2.9247 1.3807 72.6377 0.5809 9.0628 0.1605 0.0472

Centroid2 1.5178 13.3477 2.6840 1.5090 72.7353 0.5553 8.7573 0.2110 0.0777

Centroid3 1.5182 13.6184 2.6686 1.4262 72.7757 0.3846 8.7676 0.1814 0.0543

Centroid4 1.5185 13.6045 2.3133 1.5724 72.5964 0.4026 9.0602 0.2814 0.0505

Centroid5 1.5175 13.3852 2.7067 1.4619 72.7948 0.6729 8.6600 0.1052 0.0419

Centroid6 1.5190 13.4810 2.8780 1.3567 72.4597 0.4750 9.1217 0.0573 0.0633

Centroid7 1.5195 13.2618 2.6482 1.3055 72.5082 0.4736 9.4482 0.1609 0.0845

Table 20 The results of the comparative methods using Iris dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 2.3879E+01 6.1854E+00 1.6620E+01 2.4327E+01 2.4743E+01 2.4724E+01 2.4769E+01 2.1568E+00

Average 2.3669E+01 4.4847E+00 1.5420E+01 2.3704E+01 2.3725E+01 2.4030E+01 2.4389E+01 1.5982E+00

Best 2.3336E+01 6.1644E-01 1.4206E+01 2.2933E+01 2.2675E+01 2.3344E+01 2.3910E+01 9.0277E-01

STD 2.6766E-01 2.2264E+00 1.0745E+00 5.4736E-01 8.9844E-01 5.3093E-01 3.3891E-01 5.3802E-01

P-value 5.3884E-13 2.2566E-02 5.6017E-09 3.7581E-12 4.4539E-11 2.9593E-12 6.5502E-13 NaN

h 1 1 1 1 1 1 1 NaN

Table 21 Determining centroid
of each cluster for the Iris
dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4

Centroid1 5.8459 3.0574 3.7703 1.2047

Centroid2 2.4750 2.4750 2.4750 2.4750

Centroid3 3.5750 3.5750 3.5750 3.5750

Table 22 The results of the comparative methods using Seeds dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 4.9190E+01 1.9624E+01 4.5216E+01 5.0217E+01 5.0114E+01 5.0609E+01 5.0429E+01 6.6467E+00

Average 4.8628E+01 1.6880E+01 3.8919E+01 4.8580E+01 4.9208E+01 4.9898E+01 4.9681E+01 6.2795E+00

Best 4.8045E+01 1.5609E+01 3.5944E+01 4.7351E+01 4.7817E+01 4.8428E+01 4.8202E+01 5.9471E+00

STD 5.4118E-01 1.5986E+00 3.6522E+00 1.1228E+00 9.5301E-01 8.7649E-01 9.8076E-01 2.5540E-01

P-value 2.8455E-15 4.6458E-07 4.1794E-08 5.3789E-13 1.3909E-13 6.5838E-14 1.5792E-13 NaN

h 1 1 1 1 1 1 1 NaN
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Table 23 Determining centroid
of each cluster for the Seeds
dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7

Centroid1 14.8493 14.5620 0.8707 5.6321 3.2573 3.7140 5.4123

Centroid2 14.9067 14.4467 0.8906 5.4343 3.3717 3.8337 5.2543

Centroid3 14.5800 14.4550 0.8773 5.5570 3.2220 2.0840 5.2055

Table 24 The results of the comparative methods using Statlog (Heart) dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 1.6564E+03 4.0606E+02 9.8492E+02 1.6901E+03 1.6886E+03 1.6730E+03 1.6639E+03 3.5256E+01

Average 1.5771E+03 2.7157E+02 9.1365E+02 1.6460E+03 1.5913E+03 1.4928E+03 1.6003E+03 2.1162E+01

Best 1.4963E+03 7.3502E+01 7.4033E+02 1.6101E+03 1.4790E+03 1.3901E+03 1.4348E+03 0.0000E+00

STD 6.0615E+01 1.2829E+02 1.0093E+02 2.9720E+01 7.8443E+01 1.0902E+02 9.4719E+01 1.3788E+01

P-value 1.1526E-11 2.4798E-03 4.7916E-08 4.8854E-14 7.7397E-11 1.6777E-09 3.1978E-10 NaN

h 1 1 1 1 1 1 1 NaN

Table 25 Determining centroid of each cluster for the Statlog (Heart) dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7 Att.8 Att.9

Centroid1 92.6629 44.6966 81.6067 168.1573 62.1573 8.5281 166.6292 41.3596 20.4270

Centroid2 97.0000 47.5000 79.5000 150.5000 55.0000 5.5000 192.0000 40.5000 22.5000

Centroid3 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111

Centroid4 87.5000 40.0000 69.0000 164.0000 69.0000 7.0000 150.0000 44.5000 19.0000

Att.10 Att.11 Att.12 Att.13 Att.14 Att.15 Att.16 Att.17 Att.18

Centroid1 147.7416 187.5955 429.7079 175.2584 73.0337 5.3371 10.5169 188.5730 195.2921

Centroid2 148.0000 209.5000 609.5000 195.0000 82.5000 8.0000 7.0000 180.0000 182.5000

Centroid3 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111 121.1111

Centroid4 134.5000 169.5000 336.0000 160.5000 77.0000 2.5000 5.5000 186.5000 191.0000

Moreover, the proposed AAOAmethod is evaluated using
two statistical analysis analyses Carrasco et al. (2020) (i.e.,
Wilcoxon rank-sum test and Friedman test) to check if there
are significant differences betweenAAOAand the other algo-
rithms or not at p-value< 0.05. The results for all datasets are
listed in Tables 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, and 28. From the results of the Wilcoxon test, we can
see that there are significant differences between AAOA and
all compared methods in all datasets except for the PSO in
Vowels dataset. The results of the Friedman test also showed
the superiority of the AAOA. It achieved the first rank in all
datasets, followed by PSO, GWO, and AOA, respectively,
whereas the MPA obtained the last rank.

Furthermore, to summarize the performances of all meth-
ods overall datasets, the AAOA obtained the first rank in
all measures, followed by the PSO, GWO, AOA, WOA,
SCA, and SSA, whereas the MPA obtained the last rank (see
Table 30 and Fig. 8). These results confirm that the AAOA

can solve various clustering problems and get better results
than the compared algorithms with good stability and low
errors. According to the Friedman rank test, the proposed
AAOA method got the first rank compared to other compar-
ative methods. Followed by PSO, GWO, AOA, SCA, WOA,
SSA, and MPA.

In addition, Fig. 9 shows the results of the clustering anal-
ysis as the coloring of themultiplication signs (objects) into k
clusters (cycle sign). Figure 10 shows the convergence behav-
ior of the comparativemethods overall in the tested clustering
datasets. This figure shows that the AAOA reached the best
fitness values than other methods in all datasets except for
the Glass dataset, which ranked second. The AAOA also
showed an excellent updating behavior of the search domain
to explore new spaces to escape from trapping in a local opti-
mum.
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Table 26 The results of the comparative methods using Vowels dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 1.5322E+02 2.5125E+01 1.5328E+02 1.5322E+02 1.5330E+02 1.5260E+02 1.5337E+02 2.1032E+01

Average 1.5238E+02 2.0461E+01 1.3654E+02 1.5281E+02 1.5311E+02 1.5192E+02 1.5299E+02 1.9709E+01

Best 1.5205E+02 1.5568E+01 1.2764E+02 1.5244E+02 1.5301E+02 1.5125E+02 1.5246E+02 1.8498E+01

STD 4.7472E-01 5.4304E+00 1.0038E+01 2.9677E-01 1.2004E-01 4.9462E-01 3.6989E-01 1.0411E+00

P-value 5.4830E-17 9.6543E-01 5.3209E-09 3.4316E-17 2.5986E-17 5.9773E-17 3.9959E-17 NaN

h 1 1 1 1 1 1 1 NaN

Table 27 Determining centroid
of each cluster for the Vowel
dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7

Centroid1 0.4710 7.0383 0.4678 −3.1934 1.8720 −0.5156 0.5210

Centroid2 0.4250 6.1750 0.3500 −3.1934 1.8949 −0.5146 0.4171

Centroid3 0.4118 7.1176 0.5882 −3.4777 2.2712 −0.1866 0.3826

Centroid4 0.6000 7.8000 0.4000 −3.4682 2.1974 −0.0996 1.0998

Centroid5 0.0000 5.5000 1.0000 −4.2820 2.1710 −0.3720 0.4030

Centroid6 −0.0163 −0.0163 −0.0163 −0.0163 −0.0163 −0.0163 −0.0163

Centroid7 1.0000 13.0000 1.0000 −3.2225 2.6240 −0.8660 0.4395

Centroid8 0.3333 5.6667 0.3333 −3.1283 2.1487 −0.6443 −0.0007

Centroid9 0.3655 0.3655 0.3655 0.3655 0.3655 0.3655 0.3655

Centroid10 0.2500 5.7500 0.5000 −3.3218 1.8913 −0.6438 0.2060

Att.8 Att.9 Att.10 Att.11 Att.12 Att.13

Centroid1 −0.3057 0.6303 −0.0046 0.3326 −0.3115 -0.0637

Centroid2 −0.3255 0.6695 −0.0026 0.3729 −0.1158 -0.2150

Centroid3 −0.4152 0.5574 −0.0078 0.5652 −0.3841 -0.1117

Centroid4 −0.3642 0.1776 −0.4032 0.2580 0.0364 0.1116

Centroid5 0.3330 0.5160 0.1025 0.3350 −0.6840 -0.0670

Centroid6 −0.0163 −0.0163 −0.0163 −0.0163 −0.0163 -0.0163

Centroid7 −0.4815 0.3120 0.1410 0.0040 0.2845 0.4595

Centroid8 −0.4857 0.9243 −0.1177 0.3147 −0.1757 -0.2087

Centroid9 0.3655 0.3655 0.3655 0.3655 0.3655 0.3655

Centroid10 −0.2190 0.7103 0.4260 0.4153 −0.1330 -0.4373

Table 28 The results of the comparative methods using Water dataset

Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Worst 3.9137E+03 1.6579E+03 2.9127E+03 4.0195E+03 3.9427E+03 3.9077E+03 3.9788E+03 3.6338E+02

Average 3.8662E+03 1.2010E+03 2.5181E+03 3.9070E+03 3.8730E+03 3.8315E+03 3.8355E+03 3.0833E+02

Best 3.7822E+03 8.0508E+02 2.1992E+03 3.7867E+03 3.7247E+03 3.7692E+03 3.4247E+03 2.4818E+02

STD 5.4891E+01 3.3875E+02 3.2870E+02 9.2422E+01 9.0230E+01 5.0155E+01 2.3108E+02 4.1722E+01

P-value 3.5566E-14 3.8353E-04 4.0312E-07 7.0898E-13 6.5262E-13 2.4726E-14 6.7417E-10 NaN

h 1 1 1 1 1 1 1 NaN
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Table 29 Determining centroid
of each cluster for the Water
dataset

Centroids Computed centroids
Att.1 Att.2 Att.3 Att.4 Att.5 Att.6 Att.7

Centroid1 13.1263 2.287 2.3924 19.3486 99.9714 2.3206 2.0867

Centroid2 12.9434 2.4162 2.3655 19.5935 99.6364 2.2969 2.0091

Centroid3 12.859 2.2494 2.3106 19.5806 99.4839 2.2332 1.9497

Att.8 Att.9 Att.10 Att.11 Att.12 Att.13

Centroid1 0.353 1.5934 5.2231 0.9617 2.6307 786.8571

Centroid2 0.3703 1.5608 4.934 0.9545 2.6088 730.8961

Centroid3 0.361 1.66 4.9935 0.9552 2.5758 696.3871

Table 30 The results of the
Friedman ranking test for the
comparative methods using all
the used datasets

Dataset Metric Comparative methods
AOA PSO GWO SCA MPA WOA SSA AAOA

Cancer Ranking 7 2 3 4 6 8 5 1

CMC Ranking 4 2 3 5 8 7 6 1

Glass Ranking 5 2 3 6 8 4 7 1

Iris Ranking 4 2 3 5 6 7 8 1

Seeds Ranking 5 2 3 4 6 8 7 1

Statlog (Heart) Ranking 5 2 3 8 6 4 7 1

Vowels Ranking 5 2 3 6 8 4 7 1

Water Ranking 6 2 3 8 7 4 5 1

Summation 41 16 24 46 55 46 52 8

Mean rank 5.125 2 3 5.75 6.875 5.75 6.5 1

Final ranking 4 2 3 5 8 5 7 1

Fig. 8 Ranking of all the
comparative methods using all
the tested datasets

Conclusion and potential future works

In recent years, different metaheuristic (MH) optimization
algorithms have been widely employed for solving various
engineering and optimization problems. A new optimiza-
tion algorithm inspired by math operations was recently
proposed, namely the Arithmetic Optimization Algorithm
(AOA). The exploration and exploitation trends of the AOA

require more improvements to address more complex opti-
mization tasks. To this end, in this paper, we propose an
ensembleAOAby applying two searchmechanisms, namely,
Lévy Flight distribution opposition-based learning (OLB), to
boost the search mechanism of the traditional AOA. The new
variant is called AAOA, which was evaluated using different
benchmark functions and datasets. To assess the AAOA as a
global optimizer, twenty-three CEC2005 benchmark func-
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Fig. 9 The results of the clustering analysis are shown as the coloring of the multiplication signs (objects) into k clusters (cycle sign)
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Fig. 10 Convergence behaviour of the comparative methods using the tested clustering datasets
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tions were used. Besides, we used eight UCI datasets to
evaluate the AAOA as a data closeting method. We consid-
ered extensive comparisons to the well-known optimization
algorithms in all evaluation experiments, such as the tradi-
tionalAOA,PSO,GWO,SCA,MPA, andSSA.Experimental
statistics and outcomes have confirmed the superiority of the
developed AAOA over other optimization methods, includ-
ing the original AOA.

According to the superior performance of the AAOA,
it can be considered a promising optimization method that
could be further leveraged to address different optimization
tasks, such as fog computing scheduling, image segmenta-
tion, and feature selection.
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