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Abstract
Work-related musculoskeletal disorders are a very impactful problem, both socially and economically, in the manufacturing
sector. To control their effect, standardised methods and technologies for ergonomic assessment have been developed. The
main technologies used are inertial sensors and vision-based systems. The former are accurate and reliable, but invasive and not
affordable for many companies. The latter use machine learning algorithms to detect human pose and assess ergonomic risks.
In this paper, using data collecting by reproducing the working environment in LUBE, the major Italian kitchen manufacturer,
we propose SPECTRE (Sensor-independent Parallel dEep ConvoluTional leaRning nEtwork): a fully sensor-independent
learning model based on convolutional networks to classify postures in the workplace. This system assesses ergonomic risks
inmajor body segments throughDeepLearningwith aminimal impact. SPECTRE’s performance is evaluatedusing established
metrics for imbalanced data (precision, recall, F1-score and area under the precision-recall curve). Overall, SPECTRE shows
good performance and, thanks to an agnostic explainable machine learning method, is able to extrapolate which patterns are
significant in the input.

Keywords Computer vision · Deep learning · Ergonomic risks · Human-centered manufacturing · Posture recognition ·
Work-related musculoskeletal disorders
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Introduction

One of the major challenges for health in manufacturing
environments is finding ways to prevent musculoskeletal dis-
orders. Work-related musculoskeletal disorders (WMSDs)
are the most prevalent occupational health problem affect-
ing roughly three out of every five workers in the EU-28
of all sectors and occupations (European Agency for Safety
and Health at Work, 2019). Its incidence is rapidly increas-
ing due to workforce ageing. WMSDs have a multifactorial
nature (i.e., physical, organisational, and psychosocial risk
factors) and affect several anatomical regions such as the
back, neck, shoulder, andwrist. In addition to pain, functional
limitations, impairment, absence from work, etc. they have
a significant socio-economic impact on companies, society
at large, and workers’ personal lives (Korhan & Memon,
2019). In particular, the manufacturing sector shows high
levels of sick leave and an high rate of absenteeism due to
WMDS. The back and upper limbs (e.g. wrists and elbow)
are themost affected body areas.Moreover, according to data
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by economic sectors, the manufacturing sector suffers the
highest economic losses due to MSDs. For instance in Ger-
many, there are about EUR 6.45 million loss of production
and EUR 10.63 million loss of gross value added (Euro-
pean Agency for Safety and Health at Work, 2019). The
need for awareness, regulatory pressure, and workers’ com-
plaints have led to the development and spread of numerous
standardised methods and tools (Ovako Working posture
Analysing System, Rapid Entire Body Assessment, Rapid
Upper Limb Assessment, etc.) for assessing the risks of
WMSDs. They were designed for use by ergonomists, health
and safety inspectors, occupational doctors, etc. and they
usually require the assignment of scores based on the direct
observation of workers while performing their work or video
recordings. Some methods also require a discussion with
stakeholders to better interpret results, understand the causes,
hypothesise interventions, and define how to put them into
practice. However, they often need a discussion with workers
to arrive at the most objective scores possible (Malchaire et
al., 2011). The subjectivity or the evaluator bias are the main
limitations of these approaches, in addition to the monitoring
of limited periods of time (temporal instants or snapshots).
From these considerations arises the need for objective evalu-
ation tools (i.e., direct measurement), which allow for a long
duration of data collection and aremore accurate. They could
be used to improve human ergonomics in dynamic scenarios,
providing real-time feedback to workers or adapting work-
ing conditions (e.g., human-robot collaboration). They could
be sensor-based or vision-based systems. The former refers
to the emerging use of wearable inertial sensing technol-
ogy in occupational ergonomics. It includes several sensors
such as accelerometers, inclinometers, gyroscopes, mag-
netometers, and inertial measurement units (IMUs). Their
use in lab settings prevails, whereas applied industrial set-
tings still lag. Lim and D’Souza, in their review (Lim &
D’Souza, 2020), point out the following interesting issues
to deal with: full-body measurement (17 body-worn iner-
tial sensors) can be obtrusive and affect wearability; inertial
sensors tend to lack the context of the performed tasks
needing the incorporation of additional methods (e.g., direct
observations, self-reported measures); and few studies offer
real-time feedback functionality. Moreover, accurate and
complete motion capture systems, including the relative soft-
ware, could be too expensive to be affordable, for example,
by small and medium-sized enterprises. The latter include
software (tools) that allow real-time detection of joints and
body parts from digital images and videos (Fernández et al.,
2020) and skeleton-free approaches that predict body joint
angles from a single depth image (Abobakr et al., 2019).
These systems usually employ Machine Learning (ML) or
Deep Learning (DL) algorithms to predict the human pose.
Although these systems have proved to be less invasive and
energy-independent (no need for batteries), the accuracy of

the calculation of the joint angles is not adequate despite
the initial promising results. To further improve accuracy,
researchers should enhance (vision-based) models and look
to implement personalised ML/DL models and support pre-
vention activities (Chan et al., 2022). Moreover, existing
research works recognise vision system setup, data fusion
algorithms, and self or object occlusion as the main prob-
lems to be faced when considering a real scenario (Kim et
al., 2021; Bibi et al., 2018). Occlusion cases are due to the
workstation layout, the movement of operators and produc-
tion systems (e.g., robots), or their interaction. This issue
can be partially overcome by multi-view capture systems;
however, they require a complicated cameras calibration
and synchronisation process, as well as high-performance
computing. Despite the progress and use of ML techniques
for primary prevention of WMSDs will likely continue to
increase at a rapid pace and the development of real-time
worker risk monitoring systems seems to be the most pop-
ular area of research (Chan et al., 2022), features coming
from vision-based systems are rarely fed to a ML algorithm
for assessing the risk related to WMSDs. In this context, the
present work aims at giving a further contribution to the state
of the art by proposing SPECTRE (Sensor-independent Par-
allel dEep ConvoluTional leaRning nEtwork): a completely
sensor-independent learning model based on a parallel archi-
tecture for identifying and classifying postures in working
environments. SPECTRE uses a vision library only to seg-
ment frames (in pre-processing) and, once trained, it runs
without special cameras thus being used by any company.
The major contributions are summarised as follows:

• the application of DL to data collected simulating a real
manufacturing scenario in a controlled environment, also
addressing the problem of occlusion

• the use of an agnostic explainable Machine Learning
(xML) approach, during the testing phase, to understand
how the networks recognise the frame’s labels, i.e. which
are the significant/meaningful pixels

• the assessment of DL-aided ergonomic risks related to
the main body segments, in addition to the global risk
index

• the development of a low-cost smart enterprise system
for WMSDs prevention, enhancing its accessibility and
applicability.

The paper is organised as follows. Section Related work
provides an overview about the state of the art of sensors-
based and AI-based solutions for the WMSDs; Section Case
study scenario presents the case study and the adopted
solution; results are given in Section Results and, finally,
Section Discussion and conclusions critically reviews the
work highlighting both strengths and weakness and suggest-
ing future works.
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Related work

The literature highlights that the adoption of objective eval-
uation methods and tools for ergonomic risk assessment is
increasingly needed. For this reason, different solutions, in
terms of hardware and software, have been investigated.

Sensor-based solutions

IMUs are one of the most common devices used in manu-
facturing contexts for collecting data from workers. IMUs
are wearable devices, composed of multiple sensors (i.e.,
tri-axial accelerometers, gyroscopes, and magnetometers),
that can capture and record movements and postures recreat-
ing the position and the orientation of the body segments
they are attached to. In the last few years, these systems
have improved in terms of accuracy and precision, so they
have been widely used for ergonomic assessment (Battini
et al., 2022). Several studies experimented the use of iner-
tial motion capture systems for ergonomic evaluation in real
work environments. Merino et al. (2019) evaluated the mus-
culoskeletal risks in a banana harvesting activity through
objective measures using inertial sensor motion capture
(Xsens). Vignais et al. (2013) presented an IMU-based sys-
tem to assess ergonomic risk in real-time according to Rapid
Upper Limb Assessment (RULA) method, also providing
visual and auditory feedback to workers. Battini et al. (2014)
proposed a full-body integrated system for the ergonomics
evaluation in warehouse environments based on inertial sen-
sors. Peppoloni et al. (2016) developed awearable system for
ergonomic risk assessment for the upper body part. The sys-
tem is composed of IMUs and electromyography sensors to
calculate both joint angles and muscles’ strain. Thanks to the
wide employment of inertial motion capture systems, these
devices can be considered reference systems for ergonomic
assessment. However, they are invasive and obtrusive for the
operator (thus they cannot be worn for the entire work shift)
(Yadav et al., 2021), they have limited battery life, and their
cost is not always affordable for companies (Diego-Mas et
al., 2017). Moreover, using the motion capture system in real
working environments and for dynamics tasks, recurring cal-
ibrations of IMUs may be necessary to assure reliable and
accurate measurements (Vlasic et al., 2007).

Vision-based solution

In recent times, vision-based solutions are slowly starting
to join the more classic sensor-based methods. These solu-
tions can be classified according to different aspects such
as space (2D and 3D), sensing-modalities, pipelines (single-
person and multi-person), learning methods, etc. Different
technologies are available to detect the human body from
images or videos and estimate skeleton and joints. Damle

et al. (2015) used OpenCV coupled with Haarcascade and
Adaboost to quickly evaluate human features. The result, in
this case, is quite accurate but only two-dimensional images
can be elaborated. As such, the posture analysis proves rather
difficult. One of the most common alternatives is OpenPose,
as described by Slembrouck et al. (2020). OpenPose allows
combining the output from several cameras in order to obtain
three-dimensional skeleton tracking. This proves to be better
than the previous method but occasionally it has some flaws
when coupling data from different cameras and the accuracy
for assessing humankinematics still remains unknown (Clark
et al., 2019). Tu et al. (2020) achieved an improved identifi-
cation by using VoxelPose, which directly operates in a 3D
space and as such avoids the coupling problem described
before. Nonetheless, the accuracy still proves to be not good
enough for a reliable ergonomic evaluation.

In addition, some works, developed recently, focused on
the detection of the user’s skeleton through video process-
ing and DL. These works, based on Convolutional Neural
Networks (CNNs), aimed at designing a skeleton detection
and tracking system and integrating it with a recommenda-
tion system for postures (Li et al., 2017; Yoshikawa et al.,
2021; Piñero-Fuentes et al., 2021). However, video process-
ing using CNNs requires significant computational resources
to provide a real-time response. Moreover, vision-based
approaches have been criticized due to limited site coverage
by cameras and the high likelihood of occlusions as pointed
out by two recently published works (Xiao et al., 2022; Seo
& Lee, 2021).

Vision-based systems are becomingan advance formarker-
less ergonomic assessment, since they allow evaluating
postures by images and videos taken from common RGB
cameras, enhancing their accessibility and feasibility. Both
motion capture systems based on RGB (e.g., standard web-
cams) and RGB-D cameras are low cost if compared with
marker and sensors solutions. Ergonomic analyses do not
require high accuracy for tracking the human body, since
a small deviation in detecting joint position generally does
not change the calculated index. For these reasons, vision-
based systems could be sufficiently accurate and affordable
to performan ergonomic assessment (Regazzoni et al., 2014).
These systems mainly rely on an approach that combines the
following steps to obtain a full-fledged ergonomic evalua-
tion:

• Skeleton identification, i.e., cameras useML/DL to detect
the human skeleton and its joints locations

• Posture analysis, i.e., the detected skeleton and its joints
angles are used for the actual ergonomic evaluation.

Table 1 summarizes the most interesting articles on the
topic specifying input modalities and methods. For exam-
ple, Nayak and Kim (2021) estimated RULA body posture
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scores from 2D kinematic joint locations obtained from a
deep learning algorithm using Euclidean distance and the
cosine of the angle between 2D vectors. Some papers per-
form pose estimation on the RGB images using OpenPose.
Liu et al. (2020) presented a framework for skeleton-based
posture recognition by applying a 3D CNN.

Other works focus on activity recognition using monoc-
ular RGB cameras, which represent the most common
approach. Andrade-Ambriz et al. (2022) developed a tem-
poral CNN that uses spatio-temporal features to analyze
and recognize human activities through a short video as
input. Similaliry, Zhu et al. (2019) proposed a fast model
that fuses spatial and temporal features to recognize human
action. Their system extracts temporal information using
RGB images achievinghighperformance.The rapid develop-
ment of 3D data capture devices (RGB-D cameras) is leading
to testing their application even for action recognition. Al-
Amin et al. (2021) proposed a system of skeletal data-based
CNN classifiers for action recognition. The system is com-
posed of six 1-channel CNN classifiers and each is built with
one unique posture-related feature vector extracted from the
time series skeletal data, recorded by the Microsoft Kinect.

As shown in Table 1 most of the articles mainly concern
activity recognition and pose estimation, without carrying
out the ergonomic evaluation. The works that consider the
ergonomic risk index (e.g., RULA)use bodypoints’ positions
and joint angles. Theproposed approachwants to standout by
adopting a skeleton-free approach for ergonomic evaluation,
without the joints angles calculation. Based on the classifi-
cation proposed by Gamra and Akhloufi (2021), SPECTRE
can be defined as a one-stage 3D pose estimation approach,
which regresses the 3D pose directly from the image through
a parallel CNN architecture.

Case study scenario

Our approach has been developed considering themainman-
ual activities that characterise the working environment in
LUBE, the major Italian kitchen manufacturer. Specifically,
in this case study, some manual operations that the worker
generally carries out in a collaborative robotics cell were
reproduced in the laboratory: manual handling of products,
assembly, and quality inspection. The goal was to collect data
and then use it to train the neural network. This approach
allows considering different scenarios in LUBE workplaces
and also generalising themethod to use it inmultipleworking
environments.

Dataset images (frames) acquisition and labelling

Firstly, the neural network needs to be trained using a wide
dataset of different human postures. For this reason, two dif-

ferent recordings were captured at the same time: a motion
capture system for movements acquisition that operates as a
ground reference, and a camera for video recording to provide
data to the neural network. To synchronize the two acquisi-
tions, both systems were set to record at the same framerate
(60 fps) and the first few frames of the video recording also
showed the frame counter of the motion capture software. In
this way, it was possible to match the two recordings after
the acquisition. Figure 1 shows the labelling process for the
classification of collected postures.

During the acquisition, the user was equipped with 18
Xsens MTw (Wireless Motion Tracker) for full-body mon-
itoring. The Xsens MVN inertial motion capture system
allows recording the movements of the user and exporting
anthropometric measures, body segments, and joint angles.
In this way, it is possible to evaluate the movements of the
body for each recorded frame in an accurate and objective
manner. Indeed, all the output data is functional for the main
anatomical joint angles calculation, which are used for the
ergonomic assessment. Specifically, the following body parts
have been chosen, considering left and right body sides sep-
arately:

• Upper Arm: considering flexion and abduction
• Lower Arm: considering flexion and hand position
related to the body’s midline

• Wrist: considering flexion, deviation, and rotation
• Neck: considering flexion, lateral bending, and rotation
• Trunk: considering flexion, lateral bending, and rotation.

These angles and positionswere calculated using specifically
developed algorithms that allow elaborating data recorded by
the motion capture system. For example, the hand location
is determined by calculating the position of the wrist related
to the shoulder. This is achieved by using the composition of
the joint angles rotation matrices of shoulder and elbow and
the measures of the related segments. For each body part, a
specific threshold, based on the RULA method (McAtam-
ney & Nigel, 1993), has been defined to evaluate the related
ergonomic risk. The body part is classified as “KO”/“OK” if
the score is higher/lower than the following thresholds:

• Upper arm: 4
• Lower arm: 3
• Wrist: 4
• Neck: 4
• Trunk: 4

Simplifying, “OK” means “ergonomic position” and, on the
contrary, “KO” means “non-ergonimic position”. The clas-
sification resulting from the RULA assessment has been
coupled with each video recorded frame in order to have
an image data-set of which postures are correct and which
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Fig. 1 Frame labelling process

Table 2 Precision, Recall and
F1-Score for each body area

Body part Class Precision Recall F1-score

LUA OK=0 0.92± 0.09 0.97± 0.016 0.94± 0.046

KO=1 0.96± 0.017 0.89± 0.138 0.92± 0.078

LLA OK=0 0.98± 0.014 0.94± 0.045 0.96± 0.019

KO=1 0.84± 0.113 0.92± 0.09 0.88± 0.055

LW OK=0 0.87± 0.086 0.96± 0.035 0.91± 0.037

KO=1 0.91± 0.07 0.66± 0.268 0.73± 0.193

RUA OK=0 0.96± 0.055 0.9± 0.107 0.9± 0.052

KO=1 0.83± 0.152 0.9± 0.156 0.84± 0.085

RLA OK=0 0.88± 0.083 0.98± 0.022 0.9± 0.04

KO=1 0.89± 0.086 0.53± 0.373 0.59± 0.359

RW OK=0 0.87± 0.062 0.99± 0.022 0.92± 0.027

KO=1 0.16± 0.253 0.18± 0.402 0.17± 0.376

NECK OK=0 0.99± 0.008 0.95± 0.047 0.97± 0.024

KO=1 0.90± 0.074 0.98± 0.016 0.94± 0.042

TRUNK OK=0 0.98± 0.01 0.96± 0.022 0.97± 0.01

KO=1 0.93± 0.032 0.96± 0.021 0.94± 0.019

LLA = Left Lower Arm, LUA = Left Upper Arm, LW = Left Wrist, RUA = Right Upper Arm; RLA =
Right Lower Arm, RW = Right Wrist

are not. The classification process, which has been scripted,
is divided in five parts:

1. Each video frame is extracted from the video itself.
2. The initial and final video frames in which no posture is

performed are removed.
3. The corresponding frame row from the Xsens output file

is selected.
4. The video frame is saved as picturewith the frame number

and the Xsens output (OK or KO) in its name.
5. The operation is repeated for each body parts, which are

supposed to have different classifications.

As such, eight classification groups are created (shown in
table 2) and each of them will be used to train a separate DL
network.

SPECTRE architecture

SPECTRE, the architecture we propose in this paper, is fully
shown in Fig. 2. As shown in Fig. 2a we see two sequentially
connected layers: the first layer, or segmentation layer, is
given by the Python library Mediapipe1 and represent the
network for pre-processing the frame, the second layer, or
parallel convolutional layer, consists of 8 parallel CNNs -
one for each body part we want to monitor - and is used
for binary posture classification, see Fig. 2b. Each network
in the parallel CNN architecture, shown in Fig. 2, is made
by 5 convolutional layers (CONV), five max-pooling layers
(MAX POOL) and six dense layers (DENSE). CONV layers
are described by a triple N @ W × H and by a 2D vector
(kx , ky). N is the number of kernels, W the layer width, H
is its height and kx and ky are the kernel size; MAX POOL

1 https://github.com/google/mediapipe.
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Fig. 2 SPECTRE architecture
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Fig. 3 a A frame extracted by the video. b The same frame after the
segmentation procedure

layers are characterised only by the above triple whereas
DENSE layer only by its number of neuron X . Rectified
linear unit (Relu) activation functions are used in each layer,
but in the last one (DENSE), where a sigmoid activation
function is used. Networks were implemented using Python
3.8 and TensorFlow 2.7. Each network is trained separately
for 50 epochs using a batch of 32 images and a binary cross-
entropy as loss function. Tests were performed in a platform
using 6 GPUs NVIDIA A100 with 1TB RAM.

Results

In this section, we present the results of our work both in
terms of evaluation metrics and xML for all CNNs in SPEC-
TRE.

Data and evaluationmetrics

The labelling system in Fig. 1 produced a dataset consisting
of 4601 RGB frames (size 500 × 300), labelled “OK” or
“KO” depending on the score and on the body part being
considered. Hence, it is worth noticing that for each body

part we have an unbalanced distribution between the two
classes.

Each frame is then segmented in order to avoid possible
interference of the background in the training phase; at the
same time skeleton is extracted and superimposed to the seg-
mented area. The result of described procedure is shown in
Fig. 3. When the segmentation procedure is not successful
in recognising the human figure in the picture or to superim-
posed the skeleton we discard that frame. The final data-set
consists in 4527 frames. We used a stratify 5-fold validation
for checking the network model chosen. Then, the data-set is
splitted in two parts: the 75% is used for training whereas the
remaining 25% for testing. The split is done for each body
part in a stratified fashion, i.e. the proportion between the
two classes is preserved both in training and in testing.

In order to evaluate our model we referred to the classical
confusion matrix containing the the numbers of True posi-
tives (TP), False Positives (FP), True Negatives (TN), False
Negatives (FN) obtained during the test phase ; however,
such an unbalanced scenario, given its criticality, need more
specific metrics as shown in Mancini et al. (2020); Bordoni
et al. (2021); Lopez et al. (2022):

• Precision = T P/(T P + FP)
• Recall = T P/(T P + FN )

• F1-score = 2 · (Precision · Recall)/(Precision+ Recall)

Moreover we used Area Under the Precision-Recall Curve
(AUPRC). The PR Curve shows the trade-off between preci-
sion and recall for different thresholds (of class prediction).
A high area under the curve represents both high recall and
high precision. High scores for both show that the classifier is
returning accurate results (high precision), as well as return-
ing a majority of all positive results (high recall). Table 2
and Fig. 5 show the values of the above metrics: the former
reports the results for the 5-folds validation whereas the lat-
ter displays the results of the best model. Table A general
look shows that all body parts on the right side of the body
(RUA, RLA, RW). Going into more detail, RW is the body
part with lowest scores; on the contrary, LUA is the one with
the highest scores.

Trusting theML

xML is used in order to gain awareness of the obtained results
and to check if SPECTRE learnt spurious associations or
the information content is really related to the posture of
the subject in the frame. We used the Local Interpretable
Model-Agnostic Explanations (LIME) method for explain-
ing SPECTRE (Ribeiro et al.,, 2016).
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Fig. 4 CNN architecture (detail). Three types of layer are present: convolutional (CONV), max-pooling (MAX POOL) and fully connected
(DENSE). Each layer shows its dimensions. CONV layers also report the kernel size

LIME

Probably, “why such a prediction? and which variables are
mostly involved the prediction?” are the FAQs about ML
model results. LIMEwas developed for attempting to answer
such questions. It is model-agnostic, i.e. it is able to explain
any model by treating it as a black box, and locally-faithful.
The main idea behind LIME is “reading” (explaining) the
model perturbing the features values, and weighted them
using a proximity function, in the neighborhood of the fea-
tures to be explained. This creates a linear model that is
able to understand the impact of the output (Ribeiro et al.,,
2016; Guidotti et al., 2018). Those models are called sur-
rogate models. LIME focuses on training local surrogate
models to explain individual predictions thus providing local
model interpretability. Other model interpretability tech-
niques address the above questions only by accounting the
entire data-set; for instance, feature ranking works on a data-
set level, on the trained model, but it is hard to use it to
diagnose precise model predictions. The idea behind LIME
is quite intuitive. First of all, one needs to forget about the
training data and imagine to have a black boxmodel to be fed
by input data points thus getting the predictions of the model.
The final goal is to understand why the machine learning
model made a certain prediction. LIME tests what happens
to the predictions when one perturbs data into the machine
learning model, e.g. modifying numerical values in tabular
data or varying the pixels in images. In order to do that,
LIME generates a new data-set by perturbing the original
one and uses the black-box model to obtain predictions from
this data. Then, an interpretable model (a linear model or

decision tree), weighted according to the proximity of the
sampled instances to the instance of interest, is trained on the
perturbed data. The learned model locally approximates the
black-box model. The intuition is that it is less complicated
to approximate a black-boxmodel by a simple model locally,
i.e. in the neighborhood of the prediction we want to explain,
instead of approximating a model globally. In particular, the
use of LIME to explain image predictions is based on creating
image variations, not at pixel-level, but using “superpixels”.
Superpixels are groups of pixels grouped according to their
color and obtained by segmenting the picture. The variations
are created by randomly excluding some of superpixels, i.e.
turning them off simply by replacing them using gray pixels
(Ribeiro et al., 2016).

Explaining SPECTRE

Figure 6 shows the explanation of the predictions made
by each CNN in SPECTRE. Green means that part of the
image increases the probability for the label and red means
a decrease.

The first achievement is given by the groups of pix-
els (superpixels) involved in the predictions: only the areas
belonging to the segmented visible figure contribute to pre-
dict the status of the considered body part (excluding the
environment). Green pixels indicate that the position of the
considered body part increases the probability for the “OK”,
on the contrary red pixels mean a decrease for the same prob-
ability. The second noteworthy result is that the system also
infers the condition of one body part by taking advantage of
the position of the other body parts. This condition is visible,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5 a–h. Confusion Matrices for each convolutional neural network in SPECTRE. (i)–(p) PR Curves for each convolutional neural network in
SPECTRE

for example in RUA, LUA, NECK, TRUNK, as depicted in
Fig. 6. The most controversial results are those concerning
RW. In fact, the system is not able to identify RW’s posi-
tion properly, even by deriving it from the positions of other
areas of the body. This is probably due to the fact that, while

the other joints are somewhat dependent, the posture of the
wrists depends less on the relative position of the elements
of the joint chain.
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Fig. 6 LIME explanation of
predictions. Each picture shows
which part (which pixels) is
important for the final
prediction. Both the x-axis and
y-axis represent the pixels that
make up each picture. Green
pixels represent those pixels that
increase the probability for that
picture to be classifies as “OK”,
on the contrary red pixels are
involved in the decreasing of the
probability for the “OK”
postures. For instance, by
looking at the LEFT WRIST
frame it is possible to infer that
those pixels increase the
probability for the picture to be
classified as “OK” that, actually
means the picture is representing
a correct position. On the
contrary in TRUNK picture, the
red pixels decrease the
probability for that picture to be
classified as a correct position

Discussion and conclusions

SPECTRE, a parallel CNN for identifying and classifying
postures in working environments, is presented. The pro-
posed solution does not rely on ML/DL for identifying body
joints and anatomical angles but it exploits the power ofDL to
recognise patterns in data able to directly check whether the
workers’ posture is correct or not. SPECTREworks indepen-
dently for each body part of interest. This way, it is possible
to identify which body part is mainly exposed to risk and
suggest a healthier posture. Moreover, the chosen body parts
are the same as those used for assessing the ergonomic over-
all risk according to the RULA method, that is why using
SPECTRE it is also possible to obtain an overall risk score.
The usage of LIME is extremely interesting since it allows

to be aware what the system is looking at and trust the pre-
diction. Indeed, other methodologies exist but they are not
designed to deal with a large number of features (Biecek &
Burzykowski, 2021). Our solution is designed to be easy to
use and affordable for small andmedium companies. Indeed,
the absence of wearable sensors and the possibility to use
SPECTRE in any working environment increase usability
and lead to a reduction in instrumentation costs (hardware
and software). According to our knowledge, this is the first
attempt to use DL for preventing WMSDs in manufactur-
ing environments. Moreover, it is worth mentioning that
the unbalanced data-set is an intrinsic condition in such a
scenario: it is much more likely for a person to be in an
ergonomic position than in a non-ergonomic one. Given that,
we chose to not balance the two classes (“OK” and “KO”
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using methods such as the synthetic minority over-sampling
technique (SMOTE) (Chawla et al., 2002), but we managed
the unbalancing using suitable metrics as described in 4.1.
At the moment, our approach is deliberately not in real-time
because we focused on long-lasting postures that are poten-
tially more dangerous. Nonetheless, in the future, a real-time
solution could be of interest, as reported in Piñero-Fuentes et
al. (2021). Finally, we are aware that some limitations emerge
in our study; although the experiments were designed to be
as realistic as possible, they were conducted in controlled
environments, so testing SPECTRE in the field, i.e. in a real
working environment, could be important to increase its per-
formance; likewise, the possibility of optimizing the camera
angle, by collecting more data, in order to get a better view
of the hidden body parts (as the RW problem pointed out in
Section 4.4) could be investigated, as well as the ability to
overcome the limitation of single figure detection, in order
to allow our system to detect multiple subjects, could be a
valuable improvement especially for crowded workplaces.
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