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Abstract
Fault diagnosis is an important technology for performing intelligent manufacturing. To simultaneously maintain high man-
ufacturing quality and low failure rate for manufacturing systems, it is of great value to accurately locate the fault element,
evaluate the fault severity and find the fault root cause. In order to effectively and accurately perform fault diagnosis for rotat-
ing machinery, a novel feature selection method named unified discriminant manifold learning (UDML) is proposed in this
research. To be specific, the local linear relationship, the distance between adjacent points, the intra-class and inter-class vari-
ance are unified in UDML. Based on these, the local structure, global information and label information of high-dimensional
features are effectively preserved by UDML. Through this dimension reduction method, homogeneous features become more
concentrated while heterogeneous features become more distant. Consequently, mechanical faults could be diagnosed accu-
rately with the help of proposed UDML. More importantly, local linear embedding algorithm, locality preserving projections
algorithm, and linear discriminant analysis algorithm could be regarded as a special form of UDML. Moreover, a novel
weighted neighborhood graph is constructed to effectively reduce the interference of outliers and noise. The corresponding
model parameters are dynamically adjusted by the graywolf optimization algorithm to find a subspace that discovers the intrin-
sic manifold structure for classification tasks. Based on the above innovations, a fault diagnosis method for rotating machinery
is proposed. Through experimental verifications and comparisons with several classical feature selection algorithms, rotating
machinery fault diagnosis can be more accurately performed by the proposed method.
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Introduction

Nowadays, with the maturity of technologies such as the
internet of things and big data, predictive maintenance (Ding
et al., 2020) has emerged formechanical and electrical equip-
ment. This technology can not only performbig data analysis,
monitor equipment in real time, and perceive equipment fail-
ures, but also can troubleshoot potential failures in advance.
Predictivemaintenancemakesmaintenancemore intelligent,
operation more reliable, and both more economic. Predic-
tive maintenance has become a general trend in industry
(Ma et al., 2019). And for which, fault diagnosis is an
important part. This technology collects the state signals of
each mechanical part of the equipment through sensors, then
extracts the features, and finally performs fault identification
(Alavi et al., 2022). As is known to all, rotating machin-
ery play a key role in many equipment and industrial fields.
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Once the rotating machinery fails, it may lead to the fail-
ure of the entire mechanical system or even accident. The
intelligent fault diagnosis method of rotating machinery can
generally be divided into three stages: data acquisition, fea-
ture selection and fault type identification (Li et al., 2022).
It is a critical stage to select representative fault features
from redundant state features considering the data volume
and dimension is becoming larger and larger as the big data
challenge evolves. Vibration signal is usually used as input
data for mechanical fault diagnosis because it contains a
wealth of fault information. But the original vibration signal
is usually non-stationary and redundant, and contains com-
plicated components, so feature extraction should be firstly
performed for further processing. Wavelet transform inher-
its the localization ability of short-time Fourier transform,
and overcomes the adaptivity inefficiency of the traditional
signal processing methods. But this method has limitations
such as difficulty in selecting wavelet basis and constant
resolution problem. Empirical mode decomposition (Unver
& Sener, 2021) could adaptively decompose the vibration
signal into several intrinsic mode functions. Each compo-
nent represents different meaningful physical information.
However, it hasmodal confusion, end effect, over- and under-
envelope problems. Gilles combined the idea of empirical
mode decomposition and the wavelet analysis, and proposed
the empirical wavelet transform (Gilles, 2013). In this algo-
rithm, the frequency spectrum of the signal is adaptively
divided by designed empirical orthogonal wavelet filter bank
to extract Amplitude Modulation-Frequency Modulation
(AM-FM) components. Since empirical wavelet transform
is a method established under the wavelet framework, its
theory is solid and the problems in empirical mode decom-
position could be avoided. With feature extraction methods,
high-dimensional feature set containing fault features can be
obtained. But these fault features still contain a lot of noise
and redundant information generated by the coupling of dif-
ferent features. Consequently, it’s essential and beneficial to
perform feature selection to obtain a fault feature set with
lower redundancy and better clustering characteristics.

Feature selection and dimension reduction methods
could be classified into supervised/unsupervised or lin-
ear/nonlinear types. Principal component analysis (Lee et al.,
2020) and linear discriminant analysis (Yang et al., 2019)
are classical linear dimensionality reduction methods. Prin-
cipal component analysis can preserve the global information
of the dataset by finding orthogonal bases and maximizing
the total variance. Linear discriminant analysis considers the
label information of input data. With the label information,
linear discriminant analysis simultaneously minimizes intra-
class variance and maximizes inter-class variance to produce
the optimal discriminant projection. But when the number
of samples is smaller than the dimensionality of samples,
the corresponding intra-class scatter matrix is not reversible

which makes the algorithm unable to solve the problem (Li
et al., 2006). And it is difficult for these traditional dimen-
sionality reduction methods to find the nonlinear structure or
local features of the high-dimensional dataset.

As an important part of the thriving brain-inspired arti-
ficial intelligence algorithms (Nieh et al., 2021), Manifold
learning algorithms are utilized for dimensionality reduc-
tion recently (Siblini et al., 2021;). Representative manifold
learningmethods include isomap (Anowar et al., 2021), local
linear embedding (Liu et al., 2021), locality preserving pro-
jections (He et al., 2005), local tangent space alignment
(Kumar & Kumar, 2016), etc. Manifold learning has been
widely used in mechanical fault diagnosis. Ding and He
(2016) proposed a new type of feature extraction method
based on time–frequency manifold learning for fault diagno-
sis, in which the part of dimensionality reduction method is
local tangent space alignment algorithm and it has achieved
good results. Xu et al. (2021) proposed the multi-manifold
joint projections to reflect the essential characteristics within
and between different patterns. Li et al. (2008) proposed
the locally linear discriminant embedding algorithm. It com-
bined the constraints of local linear embedding andmaximum
margin criterion to achieve high recognition accuracy. Sun
et al. (2019) proposed an enhancedmanifold learningmethod
to reduce the dimension of fault features. The number of data
neighbors and the connection weight are adaptively deter-
mined by the kernel sparse representation. However, these
methods also have several shortcomings:

(1) Conventional manifold learning algorithms tend to be
disturbed by noise and outliers, which could affect the
feature selection performance for further fault diagno-
sis.

(2) Generally, only single constraint is considered in con-
ventional manifold learning algorithms, for instance:
the goal of local linear embedding algorithm is to pre-
serve the local linear relationship, but the algorithm
does not consider local features such as distance (Sha
& Saul, 2005). Locality preserving projection algorithm
preserves local information bymaintaining adjacent dis-
tance, but the global information is not considered. Zhu
et al. (2018) proposed the local and global structure
preservation algorithm. But in this algorithm, the label
information is not utilized.

(3) Label information could be utilized to improve the fea-
ture selection performance such as in linear discriminant
analysis (Yang et al., 2019), locally linear discriminant
embedding (Li et al., 2008) and so on.

Accordingly, a novel weighted neighborhood graph con-
struction method and unified discriminant manifold learning
(UDML) algorithm are proposed in this research. With this
method, local linear relationship and local distance as well
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as label information could be effectively utilized for feature
selection. And it is also worth noting that local linear embed-
ding, locality preserving projections, and linear discriminant
analysis algorithms could be considered as special form of
proposed UDML algorithm.

In summary, the main contributions of this work could be
summarized as follows:

(1) A novel weighted neighborhood graph construction
method is proposed based on q-Rényi kernel. As q-Rényi
density function (Zhang et al., 2020) has the ability to sup-
press the disturbance of both Gaussian and non-Gaussian
noise, it is utilized for nearest neighbor distance calcula-
tion, and the interference of outliers and noise is effectively
restrained.

(2) A novel manifold learning algorithm is proposed for
feature selection and fault diagnosis. The local linear recon-
struction coefficient, the distance between adjacent points,
intra-class and inter-class variance are simultaneously con-
strained in proposed UDML algorithm. With this operation,
the local structure, global information and label informa-
tion of high-dimensional features are effectively preserved
by UDML.

(3) A rotating machinery fault diagnosis method based on
the novel neighborhood graph and proposed UDML algo-
rithm is proposed. The vibration signal of rotatingmachinery
is firstly decomposed by empirical wavelet transform and
features are extracted to form a high-dimensional feature set.
Then, the fault features are selected by UDML. During this
stage, the parameters of UDML are optimized by gray wolf
optimization algorithm (Mirjalili et al., 2014) to improve
its generalization performance. Finally, the low-dimensional
fault feature sets are input to the k-nearest neighbor clas-
sifier (KNN) for fault type identification. As demonstrated
by the experimental verifications, the fault diagnosis model
proposed in this paper is suitable and effective for rotating
machinery fault diagnosis.

This paper is organized as follows: The fault extraction
method is described in Sect. 2. The proposed novel neighbor-
hood graph, UDML algorithm and the rotating machinery
fault diagnosis approach are shown in Sect. 3. Experimental
results are shown in Sect. 4. Finally, conclusions are given
in Sect. 5.

Fault feature extraction

In order to effectively extract fault feature, multi-component
signals are conventionally decomposed into several compo-
nents. Among the widely utilized methods, the adaptability
of empirical mode decomposition and the theoretical frame-
work of wavelet analysis are combined in empirical wavelet
transform (Gilles, 2013). Considering its superior ability
to obtain the condition related information for rotating

Table 1 Time-domain and frequency-domain features

Time-domain features Frequency-domain
features

T1 �
T∑

t�1
ci (t)

T T5 �
T∑

t�1
(ci (t))4

NT 4
4

F1 �
K∑

k�1
s(k)

K

T2 � max|ci (t)| T6 � T3|T1|
F2 �

K∑

k�1
fk s(k)

K∑

k�1
s(k)

T3 �

√
T∑

t�1
(ci (t))2

T

T7 � T2|T1|
F3 �

√
√
√
√
√
√

K∑

k�1
f 2k s(k)

K∑

k�1
s(k)

T4 �

√
T∑

t�1
(ci (t)−T1)2

T

F4 �√
√
√
√
√
√

K∑

k�1
( fk−F2)2s(k)

K∑

k�1
s(k)

machinery under instantaneous working conditions, the
empirical wavelet transform is utilized in this research for
feature extraction.

After the signal is decomposed, the fault features need
to be extracted. The state of the system can be reflected
by multi- domain distribution information of the vibration
signal. As illustrated in Table 1 and Eq. (1)-(4), 7 time
domain statistical features, 4 frequency domain statistical
features (Gilles, 2013), 4 autoregressive coefficients and
Shannon entropy are considered, which means altogether 16
multi-domain features are calculated and utilized for feature
extraction in this study.

As shown in Table 1, ci(t) are the signal components
extracted by the empirical wavelet transform(i � 1,…,N).
s(k) is the spectrums(k � 1,…,K). f k is the frequency value.
The time domain features are represented by T1-T7 . The
frequency domain features are represented by F1−F4 (Su
et al., 2015).

Given that the autoregressive coefficients (Al-Bugharbee
& Trendafilova, 2016) can reflect the characteristics of the
system and are sensitive to the condition change of impact
characteristics, they are also used for feature extraction. The
autoregressive model can be established as follows:

ci (t) �
m∑

j�1

ϕi j ci (t − j) + ei (t) (1)

ϕij (j � 1,…,m) are m order coefficients. ei(t) is the resid-
ual error. In this research, A � [ϕ1, ϕ2, ϕ3,ϕ4] is extracted as
4 fault features.

Instantaneous amplitudeShannon entropy (Su et al., 2015)
is a common information entropy used to evaluate signal
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uncertainty. Fault feature can be represented by Shannon
entropy because it reflects the characteristics and distribution
of the vibration signal. The instantaneous amplitude ai(t) is
shown as follows:

ai (t) �
√
c2i (t) + ĉ2t (t) (2)

ĉi (t) � 1

π

∞∫

−∞

ci (t)

(t − π )
dτ (3)

ĉi (t) is the Hilbert transformation of ci(t). The Shannon
entropy of the instantaneous amplitude is shown as follows:

Si �
N∑

t�1

(
|ai (t)|2 log(|ai (t)|2)

)
(4)

Unified discriminant manifold learning

The conventional manifold learning methods such as local
linear embedding and locality preserving projection achieve
feature selection by retaining the local linear relationship or
adjacent distance on the data manifold. However, they fail
to consider these constraints simultaneously. More impor-
tantly, these methods are local and unsupervised algorithms,
and they ignore global and label information during the
dimensionality reduction process. On the other hand, when
the neighborhood graphs are constructed for these manifold
learning algorithms, the relationship between adjacent points
could be easily disturbed by noise and outliers, which may
lead to the failure of the local relationship extraction.

In order to improve the feature selection performance for
further fault diagnosis, a novel supervised manifold learn-
ing algorithm named unified discriminant manifold learning
(UDML) is proposed in this research: Firstly, a newweighted
neighborhoodgraph is designed.Theq-Rényi kernel function
is used to improve the neighborhood graph, and the inter-
ference of outliers and noise is effectively reduced. Then,
the local linear relationship, the distance between adjacent
points, intra-class and inter-class variance are unified in the
proposed discriminant manifold learning (UDML) model.
Thismodel could effectively preserve both the local structure
(linear relationship and adjacent point distance) and global
structure (label information) of high-dimensional features.
Then the homogeneous features become more concentrated
while heterogeneous features becomemore distant. The con-
ventional manifold learning algorithms such as local linear
embedding, locality preserving projections and linear dis-
criminant analysis could be regarded as special case of
proposed UDML with proper parameter setting. Gray wolf

optimization algorithm is used to adjust themodel parameters
to improve the generalization ability. To cope with differ-
ent data distribution, the weights of local linear relationship,
nearest neighbor distance andglobal relationship (label infor-
mation) could be adjusted adaptively. The notations used in
this article are shown in Table 2.

Novel weighted neighborhood graph

Constructing neighborhood graph is the key step to establish
the point-to-point relationship for high dimensional datasets.
In order to constrain the influence of noise and outliers, a
novel weighted neighborhood graph construction method is
proposed in this research.

Gaussian kernel function is usually used to measure the
distance information on the nearest neighbor graph.When the
data set contains a variety of noise points and pseudo neigh-
bors, the performance of neighborhood graph algorithmwith
conventional kernel functions, such asGaussian kernel, could
be affected. When q � 1, the q-Rényi distribution becomes
Gaussian distribution. When q increases from small to large,
the q-Rényi distribution changes from pulse shape to Gaus-
sian distribution, and finally to uniform distribution (Zhang
et al., 2020). q-Rényi kernel is defined as:

κq , σ (xi , x j ) �
[

1 −
(

q − 1

3q − 1

)∥
∥xi − x j

∥
∥2

σ 2

] 1
q−1

(5)

The shape of the kernel is determined by q. σ is the kernel
width. With the change of q, quadratic kernel, tricube kernel,
Epanechnikov kernel and uniform kernel could be expressed
by the q-Rényi kernel. The q-Rényi kernel function is used to
define the edge of the nearest neighbor graph, which could
effectively reduce the interference of noises and abnormal
outliers. The edge of the nearest neighbor graph is defined
as:

zi j �
[

1 −
(

q − 1

3q − 1

)∥
∥xi − x j

∥
∥2

σ 2

] 1
q−1

, x j ∈ Ni (xi ) (6)

When xi � [xi1, xi2]T , xj � [0,0]T , the surface of the zij
with xi1 and xi2 is shown in Fig. 1. The closer xi and xj are,
the value of the edge zij between them tends to be 1.When zij
is close to the optimal value, the gradient could be reduced
by adjusting q to reduce the disagreement.When zij is further
away from the optimal value, the gradient can be adjusted by
different q to avoid fluctuations caused by abnormal values.

Therefore, the novel weighted neighborhood graph with
q-Rényi kernel is more robust and generalized. Distance
information could be accurately retained and the disturbance
of noise or outliers could be effectively restrained.
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Table 2 Notations and
descriptions Notation Description Notation Description

X High dimensional dataset x The single sample of X

Y Low dimensional dataset y The single sample of Y

m Dimension of X d Dimension of Y

A Transformation matrix α, β, γ Weight factor of constraint

z Edge of nearest neighbor graph w Neighborhood reconstruction coefficient

Sb Inter-class variance matrix Sw Intra-class variance matrix

Fig. 1 The surface of the zij with xi1 and xi2

The goal of UDML

Assume the m dimensional feature set X (x1, …, xn) ∈ Rm is
composed of n vectors. Themanifold learning algorithms are
utilized to calculate the optimal transformation matrix A that
maps the n feature vectors to feature set Y (y1,…, yn) ∈Rd (d
<m). This operation stands for the features selection process
to obtain feature set with better intra-class clustering and
inter-class discrimination characteristics. The features with
higher representativeness could be retained and the redundant
information will be removed.

To effectively perform feature selection for further fault
diagnosis, a novelmanifold learning cost function is designed
in this research, the designed pluralistic cost function is
composed of multiple constraints including the local lin-
ear relationship, the neighbor points distance, the intra-class
variance and the inter-class variance. The corresponding
manifold learning cost function is presented as follows:

min

⎧
⎪⎨

⎪⎩
α

∑

i

∥
∥
∥
∥
∥
∥
yi −

k∑

j�1

wi j y j

∥
∥
∥
∥
∥
∥

2

+β
∑

i , j

∥
∥yi − y j

∥
∥2zi j − λ(Sb − Sw)

⎫
⎬

⎭

s.t ., YY T � nI , 0 <α, β, γ < 1,α + β + γ � 1 (7)

where wij is the reconstruction coefficients between node i
and node j (Liu et al., 2021). zij is distance information of

the nearest neighbor (Shikkenawis & Mitra, 2016). Sb is the
inter-class variance matrix and Sw is the intra-class variance
matrix (Yang et al., 2019).

In this cost function, the first term is used to maintain the
local linear relationship on the datamanifold (Li et al., 2008).
By minimizing the following loss function, the weights on
the edges are obtained:

min
∑

i

∥
∥
∥
∥
∥
∥
xi −

∑

j∈Ni (xi )

wi j x j

∥
∥
∥
∥
∥
∥

2

s.t .,

⎧
⎪⎪⎨

⎪⎪⎩

k∑

j�1

wi j � 1, if x j ∈Ni (xi )

wi j � 0, if x /∈ Ni (xi )

(8)

where Ni(xi) denotes the k nearest neighbors of point xi.
With the obtained weights wij, the local linear feature

could be preserved by maintaining the linear representation
relationship (Li et al., 2008). The objective function is as
follows:

J1(Y ) � min
∑

i

∥
∥
∥
∥
∥
∥
yi −

k∑

j�1

wi j y j

∥
∥
∥
∥
∥
∥

2

s.t .,

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i�1

yi j � 0

Yd×nY
T
d×n � nId×d

(9)
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The second term of the proposed cost function is used
to preserve the neighborhood distance, where zij is obtained
from Eq. (6). The local information could also be maintained
by nearest neighbor point distance (Shikkenawis & Mitra,
2016), which is modeled by the following constraint:

J2(Y ) � min
∑

i , j

∥
∥yi − y j

∥
∥2zi j (10)

With Eq. (10), the nearest neighbor points are kept close
after dimensionality reduction.

The third term of the cost function (Sb-Sw) is used tomain-
tain the label information and global structure. Specifically,
two reliable measures: inter-class variance Sb and intra-
class variance Sw are used to ensure the smallest intra-class
distance and largest inter-class distance. With this, homoge-
neous features could be concentrated while heterogeneous
features become distant after dimensionality reduction.

In this research, the n samples x1, …, xn are assumed to
belong to c classes. The number of samples in the i-th class
is ni. xi jdenotes the i-th sample in the j-th class, i � 1,…,nj,
j � 1,…,c. The inter-class variance matrix Sb and intra-class
variance matrix Sw are as follows (Yang et al., 2019):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sb � 1

n

c∑

j�1

n j
(
μ j − μ

)(
μ j − μ

)T

Sw � 1

n

c∑

j�1

n j∑

i�1

(
x j
i − μ j

)(
x j
i − μ j

)T

s.t ., μ � 1

n

n∑

i�1

xi ,μi � 1

n j

n j∑

i�1

x j
i

(11)

Based on the inter-class and intra-class variance matrix,
the objective function for utilizing discriminant and global
information is given by:

J3(Y ) � max(Sb − Sw) (12)

As shown in Eq. (7), to leverage the ability of the afore-
mentioned constraints, three loss functions J1, J2 and J3 are
unified in the proposed UDML method, which means the
local linear reconstruction coefficients, adjacent points dis-
tance, intra-class and inter-class variance are simultaneously
considered, therefore the local–global-label information of
high-dimensional features are effectively preserved.

Mappingmatrix construction

In order to construct the mapping matrix for the proposed
UDML model, the objective functions J1 and J2 could be
transformed into appropriate forms as follows, derivation of

which can be found in (He et al., 2005; Li et al., 2008).

J1 (Y )

� min

⎛

⎝yi −
k∑

j�1

wi j y j

⎞

⎠ = min (Y − WY )T (Y − WY )

� min tr
(
YMYT

)

(13)

where M � (I-W )T (I-W ), I � diag(1, …,1).

J2(Y ) � min
∑

i , j

∥
∥yi − y j

∥
∥2zi j

� min
(
tr

(
Y DY T

)
− tr

(
Y ZY T

))
� min tr(Y LY T )

(14)

where Z � [zij]n×n, D � diag{D11,…,Dnn},Dii � ∑
n j �

1zij, L � D-Z .
Then the proposed novel manifold learning model could

be utilized to calculate the embedding feature set as: Y �
ATX. To find the optimal transformation matrix A, according
to Eq. (9), Eq. (10) and Eq. (12), the following conditions
should be satisfied:

⎧
⎪⎪⎨

⎪⎪⎩

min tr(AT XMXT A)

min tr(AT XLXT A)

max tr
(
AT (Sb − Sw)A

)

s.t.AT X XT A � nI

(15)

Equation (15) could be transformed to the following con-
strained problem:

min tr
{
AT

(
αXMXT + βXLXT − γ (Sb − Sw)

)
A
}

s.t., AT X XT A � nI , 0 <α, β, γ < 1,α + β + γ � 1
(16)

The impact of different constraints can be adjusted by the
weights α, β and γ . Then, Lagrange multipliers are used to
solve the corresponding optimization problem:

∂

∂A
tr

⎧
⎪⎨

⎪⎩

AT
(
αXMXT + βXLXT − γ (Sb − Sw)

)
A

−λ
(
AT X XT A − nI

)

⎫
⎪⎬

⎪⎭
� 0

(17)

Then Eq. (17) could lead to the following equation:

(
αXMXT + βXLXT − γ (Sb − μSw)

)
A � λXXT A (18)

where λi is the generalized eigenvalue of Eq. (18), Ai is the
corresponding eigenvector. Therefore, the optimal mapping
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matrixA could be obtainedwith the eigenvectors correspond-
ing to the first d smallest eigenvalue.

The proposed UDML is a novel generalized model as
it constrains multiple objectives including the ones used in
local linear embedding, locality preserving projection and
linear discriminant analysis, whichmakes these conventional
methods special cases of proposed UDML.

Parameter optimization

In order to enhance the adaptivity of the proposed UDML
model, the model parameters could be adjusted for specific
applications, such as the kernel parameter q, the number of
nearest neighbors k, the weight of constraints α, β, and λ.
With this, the generalization ability and robustness of the
proposed UDML method could be ensured.

Gray wolf optimization algorithm is a swarm intelligence
multi-objective optimization algorithm based on gray wolf’s
rank and group hunting behavior (Mirjalili et al., 2014). Dur-
ing the hunting (optimization) process, α wolves, β wolves
and δ wolves are in charge of guiding ω wolves to track and
hunt prey. The main hunting processes of wolves includes:
tracking and approaching, chasing and harassing, surround-
ing and attacking. The candidate solutions are distributed in
a random circle defined by the three levels of wolves. Firstly,
different levels of wolves evaluate the location of the prey,
and then the rest of the individuals in the group use this as
a reference and randomly update their positions around the
prey. The process is repeated until the optimization result is
achieved.

The outline of UDML

The steps of performing the proposed UDML method are
shown as follows:

Unified Discriminant Manifold Learning

Input: high-dimensional data set X , d, q, α, β, γ , k

Output: Mapping matrix A, low-dimensional data set Y

1: Establish weighted neighborhood graph

2: W and Z are obtained by weighted neighborhood graph

3: M is obtained according toM � (I-W )T (I-W )

4:L is obtained according to L � D-Z

5: Sb and Sw are obtained according to Eq. (11)

6: Matrix XMXT , XLXT and Sb-Sw are computed

7: A are obtained based on Eq. (18)

8: d dimensional embedding Y � ATX is obtained

Rotatingmachinery fault diagnosis based
on the proposedmethod

A novel rotating machinery fault diagnosis method based
on UDML is proposed, as is shown in Fig. 2. The vibration
signal collected by the sensor is complicated, and different
frequency bands contain various fault characteristic infor-
mation. Therefore, the vibration signal is firstly processed
by empirical wavelet transform and decomposed into several
components. The aforementioned statistical features, autore-
gressive coefficients and Shannon entropy are extracted from
the N components and the high-dimensional feature set is
obtained.

As there is abundant redundancy information in the high-
dimensional feature set, they may disturb the fault diagnosis
approach, the high-dimensional feature set is input to UDML
for feature selection and dimension reduction. To achieve
accurate fault diagnosis, the kernel parameter q, the number
of nearest neighbors k, the weight of constraints α, β, and
λ of UDML are optimized by gray wolf optimization algo-
rithm. When the diagnostic accuracy reaches 99.9% or the
maximum number of iterations is limited, the optimization is
completed. Then, the low dimensional feature set is obtained
through UDML with optimized parameters. KNN is a clas-
sical classification algorithm with strong robustness and is
often used in fault diagnosis (Bustillo et al., 2022). Finally,
the low-dimensional feature set is input to theKNNfor classi-
fication. In this way, an accurate fault diagnosis model could
be automatically obtained for different situations.

Application of rotatingmachinery fault
diagnosis

As two typical and important components of rotatingmachin-
ery, bearings and gears would be affected by various impact
loads during operation, which makes them most prone to
failure in all components. In addition, long-term friction,
corrosion, wear and other factors would also lead to bear-
ing and gear failure. Therefore, effective fault diagnosis of
bearings and gears could reduce the failure rate of mechani-
cal equipment and effectively improve production efficiency.
Many researchers have carried out fault diagnosis research
on bearings and gears (Medina et al., 2022). Accordingly, the
fault diagnosis of bearings and gears based on our proposed
novel manifold learning method is performed in this paper.

Case 1

The rolling bearing experimental data comes from Pader-
born University (Lessmeier et al., 2016; Hoang & Kang,
2020). The experimental ball bearing type is 6203. The spin-
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Fig. 2 The flowchart of the proposed rotating machinery fault diagnosis
method

dle speed of the test-stand is 900 rpm, the sampling frequency
is 64 kHz, load torque is 0.7 N·m and radial force is 1000 N.
As shown in Fig. 3, the experiment device consists of 5 parts.
Different types of bearings are installed in the rolling bearing
test device to obtain experimental data.

A total of 3 operating states of bearings: (I) normal state;
(II) outer race fault; (III) inner race fault are considered in
this research. The faults of the bearing inner ring and outer
ring are processed by electrical discharge machining, about
2 mm in size. There are 400 samples of vibration signals
in each state (a total of 1200 samples), among which 900
samples are considered as training dataset and 300 samples
are considered as testing dataset. In order to avoid overfitting,
thewhole dataset is divided into five parts for cross validation
and cross validation is repeated five times, then the accuracy
values are averaged.

Firstly, the original vibration signals of bearings are
decomposed by the empirical wavelet transform algorithm.
Altogether 11 statistical features, 4 autoregressive coeffi-
cients and Shannon entropy are extracted. Then the proposed
UDML is utilized to select features from high-dimensional
feature set. In the parameter optimization process, the num-
ber of the search agents is set to 50 and the number of the
iterations is 300. After optimization with the training dataset,
q � 0.2, α � 0.3, β � 0.3, γ � 0.4 and k � 6 are determined
for UDML. The parameter k is set to 3 for the KNN. The
embedded dimension d is set to 13. With these parameters,
the fault diagnosis accuracy reaches 99.5% on the testing
dataset. The standard deviation of each cross validation and
each fault type are shown inTable 2. To demonstrate the supe-
riority of the proposed method, it is compared with several
conventional dimensionality reduction algorithms, including
local linear embedding (LLE), locality preserving projection
(LPP), principal component analysis (PCA), linear discrimi-
nant analysis (LDA), stacked autoencoder (SAE) (Pang et al.,
2020) and self-organizing maps (SOM) (Moehrmann et al.,
2011). The parameters of the comparison dimension reduc-
tion method are determined by grid search and the optimal
parameters are as follows: The number of nearest neighbor
points k in LLE andLPP is set to 12. The layer of SAE is set to
13. Dimension size is set to [4 3] for SOM. The comparison
results are also shown in Table 3.

IR: inner-race fault; OR: outer-race fault.
It can be known from Table 3 that when UDML is used

as the feature selection algorithm, the bearing fault could be
accurately distinguished from each other. When performing
dimensionality reduction on the bearing fault dataset in this
experiment, more weights are imposed on the distance of
the intra-class and inter-class constraints (the third term in
cost function). In each verification, the standard deviation of
UDML is also relatively low, which shows that UDML could
stably and accurately select fault features.

In the experimental results, the recognition accuracy of
the data set through LDA dimensionality reduction is higher
than LPP and LLE, which shows that considering intra-class
distance and inter-class distance is helpful (Su et al., 2015).

Fig. 3 Rolling bearing
experiment device
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Table 3 Comparison result of
proposed method and baseline
methods

Method Normal IR OR Accuracy

UDML 98.8 ± 0.7 100.0 99.8 ± 0.4 99.5 ± 0.3

LLE 94.4 ± 2.3 90.8 ± 1.9 98.8 ± 0.4 94.7 ± 1.3

LPP 75.4 ± 5.0 84.8 ± 2.6 98.4 ± 1.0 86.2 ± 1.2

PCA 79.0 ± 2.7 92.8 ± 3.2 92.8 ± 0.4 88.2 ± 1.6

LDA 99.0 ± 0.6 98.4 ± 1.0 100.0 99.1 ± 0.3

SAE 94.8 ± 1.5 97.4 ± 2.4 99.0 ± 0.9 97.1 ± 1.2

SOM 99.6 ± 0.4 99.6 ± 0.4 36 ± 5 78.4 ± 4.8

However, the fault diagnosis accuracy through the proposed
UDML is higher than LDA, which also demonstrates the
importance of retaining local structural information during
dimensionality reduction. The global features, label informa-
tion and specific local information are not preserved by LPP
and LLE, so the accuracy of fault diagnosis is affected (Li
et al., 2008). The local information and label information of
the data are not preserved byPCA, so the fault features are not
accurately selected, which results the low accuracy of fault
diagnosis (Li et al., 2015). SAE is an unsupervised neural
network algorithmwithmultiple hidden layers.When select-
ing fault features through SAE, label information is ignored,
which results lower fault diagnosis accuracy of SAE than
LDA and UDML. SAE could not construct explicit mapping
between input and output dataset, so it is difficult to general-
ize the results of training samples to new samples (Pang et al.,
2020). SOM is an unsupervised algorithm based on neural
network, which is composed of cell grid neurons on the map.
The algorithm is too sensitive to the initial data when deal-
ing with small sample problems. And because of the lack of
label information, the features of bearing outer ring fault are
not accurately selected by SOM algorithm. The generaliza-
tion ability of SOM is poor as this algorithm also could not
construct explicit mapping between input and output dataset
(Moehrmann et al., 2011).

Case 2

The experimental data was gathered from a two-stage gear-
box experiment system (Cao et al., 2018; Shao et al., 2019),
as shown in Fig. 4. The first stage input shaft consists of
32-tooth pinion and 80-tooth gear. The 48-tooth pinion and
64-tooth gear are mounted on the second stage input shaft.
The gear speed is controlled by the motor. The sampling fre-
quency is 20 kHz.

The monitoring signal of different pinion gear states on
the input shaft is collected. The states of gear include 5 types,
as shown in Fig. 5. 208 samples are collected for each state
and a total of 1040 samples are collected, among which 800
samples are training samples and 240 samples are testing
samples. The dataset is also divided into five parts for cross

Fig. 4 Gearbox experiment system

validation and the cross validation is repeated five times, then
the accuracy values are averaged.

The original vibration signals of gears are firstly decom-
posed by the empirical wavelet transform algorithm. Then 11
statistical features, 4 autoregressive coefficients and Shannon
entropy are extracted. The number of the search agents is set
to 50 and the iterations number is 300 for the optimization
algorithm. After optimization, q � 1.6, α � 0.1, β � 0.1,
γ � 0.8 and k � 11 are determined. The embedded dimen-
sion d is set to 16 by trial-and-error test. Then the proposed
UDML is utilized to select features from high-dimensional
feature set. And the low-dimensional feature set is input to
the KNN (k � 3) for classification. It is verified that the fault
diagnosis accuracy is 96.8%. UDML is compared with other
algorithms, includingNPE, LPP, PCA, LDA, SAE and SOM.
And the parameters of the comparison dimension reduction
method are determined by grid search and the optimal param-
eters are as follows: The k of LLE and LPP is set to 5 and 21,
respectively. The layer number of SAE is set to 8. Dimen-
sions size is set to [8 8] for SOM. The comparison results are
shown in Table 4.

State 1: health status; State 2: missing teeth; State 3: tooth
root cracks; State 4: spalling; State 5: chipping tip.
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Fig. 5 Five gears with different health conditions

Table 4 Comparison result of
proposed method and baseline
methods

Method State1 State2 State3 State4 State5 Average

UDML 95.4 ± 3.7 96.3 ± 2.3 97.9 ± 1.5 97.9 ± 2.9 96.3 ± 1.7 96.8 ± 1.4

LLE 92.5 ± 2.4 85.8 ± 7.3 95.4 ± 2.3 100 78.7 ± 1.7 90.5 ± 1.2

LPP 88.3 ± 5.4 90.8 ± 3.5 80.4 ± 9.8 89.2 ± 5.4 89.2 ± 5.6 87.6 ± 4.5

PCA 92.9 ± 2.4 89.6 ± 5.3 95.4 ± 2.7 99.6 ± 0.9 84.2 ± 6.4 92.3 ± 1.3

LDA 93.3 ± 2.3 91.2 ± 4.5 95.4 ± 4.6 100 94.6 ± 4.8 94.9 ± 1.0

SAE 92.1 ± 0.9 82.1 ± 9.2 94.2 ± 1.1 99.2 ± 0.8 73.3 ± 6.7 88.2 ± 3.1

SOM 92.9 ± 4.8 58.8 ± 7.8 93.3 ± 5.4 97.9 ± 1.5 45.8 ± 8.6 77.7 ± 3.6

It can be shown that the fault diagnosis accuracy of the
approach with the proposed UDML method is the highest
among all methods. For all fault types, fault features could
be accurately preserved byUDML.As themultiple constraint
weights of UDML can be adjusted, the dimension reduction
stability of UDML is better than the compared methods.

By using the label information, the fault features of gears
could be accurately selected by LDA. Local information is
ignored by LDA, so the accuracy of LDA is lower than that of
UDML (Zhao & Jia, 2018). LLE algorithm performs poorly
for chipping tip fault detection as this method ignores the
neighborhood distance information and label information (Li
& Zhang, 2011). Compared with other manifold learning
algorithms, the overall accuracy of LPP is relatively low,
which is because the local linear relationship and label infor-
mation is ignored (Shikkenawis & Mitra, 2016). Because
PCA is unsupervised, the accuracy of fault diagnosis through
PCA is lower than LDA (Yang et al., 2019). Because of the
lack of label information, the missing tooth fault features
and chip tip fault features could not be accurately selected
bySAEandSOM.SAEandSOMcould not construct explicit
mapping between input and output dataset, so it is difficult to
generalize the training results to new samples in fault diagno-
sis (Moehrmann et al., 2011; Pang et al., 2020). In summary,
the proposedUDMLcan adaptivelymaintain local andglobal
structure, as well as the label information, which improves
the feature selection ability for gear fault diagnosis approach.

Conclusion

A novel rotating machinery fault diagnosis method based on
the novel weighted neighborhood graph constructionmethod
and unified discriminant manifold learning (UDML) model
is proposed in this paper. The novel weighted neighborhood
graph is constructed to effectively reduce the interference of
outliers and noise. The proposed unified discriminant mani-
fold learning algorithm can simultaneously preserve the local
linear relationship, neighborhood distance, intra-class and
inter-class information for datasets. Therefore, it could be
used for rotating machinery fault diagnosis to accurately
select and preserve representative fault features. Local linear
embedding algorithm, locality preserving projections algo-
rithm, and linear discriminant analysis algorithm could be
regarded as special form of proposed UDML. Combined
with the swarm intelligence multi-objective optimizer, the
corresponding parameters can be adjusted adaptively, which
makes the proposed method applicable for various types of
fault datasets. As demonstrated by the experiments, the pro-
posedmethod is themost accurate one for rotatingmachinery
fault diagnosis. The UDML could also be used for fault diag-
nosis of other industrial systems. UDML is essentially a
manifold learning algorithm, which could effectively extract
low dimensional features from high-dimensional complex
data sets. It could also be used in: process monitoring (Tong
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et al., 2016; Xu et al., 2021), diesel engine fault diagnosis
(Wang et al., 2021; Xi et al., 2018), nuclear power plant
fault diagnosis (Li et al., 2018) and so on. In future research,
UDML will be used for wear detection of turning tools and
defect monitoring of additive manufacturing. UDML could
also be used to extract hybrid fault features and perform
multi-sensor information fusion. Moreover, considering the
linearity of the UDML algorithm, the incremental learning
could be achieved by the proposed method.
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