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Abstract
Ensuring quality production is essential in additive manufacturing processes such as selective laser sintering (SLS). Deep
learning based automated systems may provide a better way for real time monitoring to ensure quality production. These
systems are usually trained in a fully supervisedmanner which require large amount of labeled data. Obtaining labeled training
data in large quantities is a tedious and time consuming process. To overcome this, a novel semi-supervised deep learning
approach is proposed in this work, which can be trained using both labeled and unlabeled data, and hence, reducing the
manual labeling efforts needed to train the system. Experimental results on a SLS powder bed defect detection dataset show
that the proposed approach is the new state-of-the-art, and shows its potential as a standalone real time monitoring system for
SLS. In this dataset the proposed approach beats the state-of-the-art accuracy of 98% with only 25% of the labeled training
data compared to other approaches. In addition, an extensive set of experiments were conducted on three additional public
defect inspection datasets (NEU steel surface defects, KolektorSDD surface images of plastic electronics commutators, and
surface textures) to show the applicability of the proposed approach on other computer integratedmanufacturing environments
for quality inspection. In all of these datasets the proposed approach beats the state-of-the-art results with relatively small
amounts of training data compared to other approaches, which shows the effectiveness of the proposed approach for real time,
automated, and accurate quality inspection.

Keywords Additive manufacturing · Computer-integrated manufacturing · Semi-supervised learning · Surface defect
recognition

Introduction

Selective laser sintering (SLS) is one of the most popu-
lar rapid additive manufacturing process which produces
complex and accurate prototypes for various industrial appli-
cations including aerospace, electronics, and medical. In
SLS, a laser is used as the power source to melt and fuse
powdered material (e.g., Nylon or Polyamide) in a layer by
layer manner based on the computer-aided designed (CAD)
model of a part. Here, a thin layer of metal powder is spread
over a build plate, and then a laser is used to selectively melt
the powder in locations corresponding to a 2D slice of a 3D
part (Scime & Beuth, 2018). After the completion of one
layer, the build plate is lowered, and another layer of pow-
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der is spread over the existing powder bed, and the process
repeats until all the layers of the 3Dpart are fabricated (Scime
& Beuth, 2018).

Ensuring part quality is an essential process in SLS. The
quality of the parts fabricated by SLS is not only determined
by the fusion of the powder particles of successive layers, but
also by the integrity of the powder bed and the stability of the
powder application (Xiao et al., 2020). Although a uniformly
distributed powder bed, without irregularities, is desirable
for a good part quality (Westphal & Seitz, 2021), various
irregularities known as powder bed defects may present at
different stages of the fabrication process, which include for-
eign bodies (Westphal&Seitz, 2021), powder accumulations
(Westphal & Seitz, 2021; Chen et al., 2021), and incomplete
powder spreading (Scime & Beuth, 2018; Xiao et al., 2020).
These defects may lead to defective parts production, which
will significantly waste materials, and increase the produc-
tion cost. If the defects are detected in its early stages, timely
actions could be taken to ensure quality production.
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In Computer-Integrated Manufacturing, various auto-
mated vision based monitoring systems have been proposed
for different industrial applications, including, additive man-
ufacturing (Westphal & Seitz, 2021; Baumgartl et al., 2020;
Gobert et al., 2018; Scime & Beuth, 2018; Xiao et al., 2020),
steel surface inspection (He et al., 2019; Tao et al., 2018;
Liu et al., 2020; Di et al., 2019; Lv et al., 2020; Soukup &
Huber-Mörk, 2014; Zheng et al., 2020; Gao et al., 2020), fab-
ric/texture inspection (Mei et al., 2018; Zheng et al., 2020),
tile inspection (Rudolph et al., 2020), Aluminum profile sur-
face inspection (Liu et al., 2021), inspection of electronic
commutators (Tabernik et al., 2019; Xu et al., 2020). These
monitoring systems aim to provide real time monitoring and
alarm the production line if they found any defects, and
hence, they provide a way to ensure quality of the produc-
tion, reduce wastage of the materials, and therefore, increase
the profit. However, the majority of the work proposed for
this purpose (e.g. Westphal & Seitz, 2021; Baumgartl et
al., 2020; Gobert et al., 2018; Scime & Beuth, 2018; Tao
et al., 2018; Xiao et al., 2020; Liu et al., 2020; Soukup &
Huber-Mörk, 2014; Tabernik et al., 2019) are supervised
approaches, which require large amount of annotated data for
training the system. Obtaining annotations in large quantities
is a tedious, time consuming, expensive process, and requires
expert knowledge. Semi-supervised learning approaches, on
the other hand, can be used as an alternate for this purpose
as they can be trained with little amount of labeled and large
amounts of unlabeled data.

In this work, a simple, and efficient semi-supervised
Convolutional Neural Network (CNN) based deep learning
approach for the real-time inspection of powder bed defects
in SLS is proposed. The proposed approach uses a loss
function that minimizes both the entropy of the labeled and
the weighted pseudo-labeled data, and in addition, applies
entropy regularization. The selection of highly-confident,
less noisy pseudo-labels plays an important role in determin-
ing the success of the pseudo-label based semi-supervised
learning approaches. Therefore, this work investigates differ-
ent approaches for weighting the contribution of unlabeled
samples for semi-supervised learning based on their predic-
tion confidence. A margin based weighting scheme (Sect. 3)
is proposed to determine how well the samples are pre-
dicted and weights are applied for each unlabeled sample
based on this. Experiments on a public SLS powder bed
defect inspection dataset (Westphal & Seitz, 2021) show the
effectiveness of the proposed approach compared to the state-
of-the-art. In addition, extensive amount of experiments on
three other defect detection datasets [(NEU surface defects
(Song & Yan, 2013), KolektorSDD surface images of plastic
electronics commutators (Tabernik et al., 2019), and Sur-
face Textures (Huang et al., 2020)] were conducted to show
the applicability of the proposed approach to other computer
integratedmanufacturing environments. New state-of-the-art

results were obtained on all of these datasets, particularly
with small amount of labeled data used for training compared
to other approaches. The experiments prove the potential of
the proposed approach for a real time accurate monitoring
system for quality inspection.

This paper significantly extends the preliminary work of
Mayuravaani and Manivannan (2021). It sets the proposed
method in the context of the related literature, describes it in
more detail, presents extensive experiments on four public
defect recognition datasets and summarizes the performance
in experimental comparisons with other methods.
I claim the following contributions:

– To the best ofmyknowledge, thiswork is the first pseudo-
labeling based deep semi-supervised learning approach
for powder bed defect inspection in SLS.

– A novel semi-supervised deep learning approach for the
classification of surface defects for industrial automation.

– Investigation of different sample weighting schemes to
weight the contribution of each unlabeled sample for
semi-supervised training.

– A novel way to weight the contribution of each unla-
beled sample for semi-supervised training based on how
well that sample is predicted for the pseudo-labeled class
compared to other classes.

– Significant amount of experiments on four public datasets
to validate the proposed system.

Experiments show that the proposed system beats other state-
of the-art systems with relatively small amount of labeled
data used for training on all the four public datasets compared
to other approaches.

In the following, first the related work is summarized in
Sect. 2, and then the proposed methodology is explained in
detail in Sect. 3. Section 4 reports the datasets, summarizes
the experiments and the results with discussion. Section 5
concludes this work.

Related work

The amount of work focusing on automated approaches for
defect inspection in additive manufacturing is relatively low
compared to the approaches proposed for other manufactur-
ing environments such as steel or fabric manufacturing. In
this section, the work related to automated surface inspection
in additive and other manufacturing domains and the recent
semi-supervised approaches proposed in Computer Vision
literature are reviewed.
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Defect inspection in additive manufacturing

Various machine learning approaches were explored in addi-
tive manufacturing for different problems including quality
assessment and defect classification. This section mainly
focuses on powder bed defect detection in SLS.

The majority of the approaches proposed for powder bed
defect detection are fully-supervised approaches. Both hand-
designed features (Gobertetal, 2018; Scime & Beuth, 2018)
and deep learning approaches (Westphal & Seitz, 2021;
Scime & Beuth, 2018; Zhang et al., 2018; Xiao et al., 2020;
He et al., 2016; Kwon et al., 2020) were explored for this
purpose. Gobert et. al. 2018 proposed an approach based on
different filters and Support Vector Machine (SVM) classi-
fiers for defect inspection duringmetallic powder bed fusion.
Scime and Beuth 2018 used a filter-bank based approach
to classify powder bed images into six categories such as
recoater, hopping, recoater streaking, debris, super-elevation,
part failure, and incomplete spreading. Here, a set of filters
were used for feature extraction, and the extracted features
were then clustered to build a dictionary using a k-means
clustering algorithm. Classification was done based on com-
paring the test features with the dictionary.

Inspired by the success of deep learning for image
classification, recently, different deep learning based fully
supervised approaches were explored for powder bed defect
inspection. For example, a CNN based classification method
is proposed in Westphal and Seitz (2021) to classify pow-
der bed images into either defective or defect-free. Different
CNN architectures such as VGG-16 and Xception were
explored for this purpose. A system to detect anomalies of
melt tracks based on the features extracted from CNN and a
SVM classifier was proposed in Zhang et al. (2018). Multi-
scale and multi-stage CNN approaches were also explored:
e.g.,Amulti-scaleCNN is proposed inScime andBeuth 2018
which uses image patches of multiple scales as the input to
CNN for powder bed anomaly classification. In Xiao et al.
(2020) a two stage CNN model is proposed to detect defects
such as warpage, part shifting, and short feed. Here, a Resid-
ual neural net (ResNet He et al., 2016) was used to extract
features at different scales, and then this multi-scale features
were processed by a region proposal net to generate potential
defective regions, and finally a fully connected layer is used
to get the final prediction.

Only a few semi-supervised deep learning approaches
were explored compared to the fully supervised approaches
for powder bed defect classification. In Okaro et al. (2019) a
Gaussian Mixture Model (GMM) based approach was pro-
posed, where the GMM was first trained using both the
labeled and unlabeled data, and then a Bayesian classifier
was used for classification. The � model from the Temporal
Ensemble method (Laine & Aila, 2016) was used in Yuan

et al. (2019) as a semi-supervised approach for Monitoring
SLS process.

Defect inspection in other manufacturing domains

Various image processing and shallow learning based
approaches were initially explored for defect detection in
various manufacturing domain such as aluminum (Win et
al., 2015), fabric (Mallik-Goswami & Datta, 2000; Shumin
et al, 2011), electronics (Bai et al., 2014), steel (Song &Yan,
2013), etc. E.g., a contrast adjustment thresholding method
was proposed for defect detection in aluminum surfaces in
Win et al. (2015). A morphological based image processing
approach was proposed for fabric defect detection in Mallik-
Goswami and Datta (2000). In shallow learning, first a set of
hand designed features were extracted from the images and
then amachine learning classifierwas used to predictwhether
the given image contains defect or not.Various hand designed
features such as Local Binary Patterns (Song & Yan, 2013),
Histogram of Oriented Gradients (Shumin et al., 2011) and
classifiers such as Nearest Neighbor Song and Yan (2013),
Support Vector Machines Shumin et al. (2011) and Song and
Yan (2013) were explored for this purpose. These traditional
approaches usually contain many parameters which require
expert knowledge to determine, and do not workwell in prac-
tice compared to themodern deep learning based approaches.

Deep learning based approaches, particularly CNNs, have
the ability to learn complex decision boundaries, therefore,
perform significantly better than the traditional image pro-
cessing and shallow learning based approaches, and report
state-of-the-art results in various domains including com-
puter aided manufacturing. However, they often rely on large
quantities of training data. To overcome this, transfer learn-
ing based approacheswere explored,which takes a pretrained
CNNmodel (e.g., trained on a large scale image dataset such
as ImageNet Tan et al. (2018)) and fine tune it to suit for
the target application. CNN based approaches have already
been explored for different manufacturing applications (Xu
et al., 2020; Liu et al., 2020; Soukup & Huber-Mörk, 2014;
Cha et al., 2018; Lv et al., 2020; Tabernik et al., 2019; Ren
et al., 2018), including, defect detection in motor commu-
tators (Xu et al., 2020), defect detection in steel surfaces
(Soukup & Huber-Mörk, 2014), weld defect detection (Ren
et al., 2018), wood defect detection (Ren et al., 2018), etc.
These approaches either propose new or use off-the-shelf
CNN architectures. However, most of these approaches are
supervised approaches, requiring labeled training data. As
discussed in Sect. 1 obtaining large amount of labeled data
for training is a difficult and time consuming task. To over-
come this, semi-supervised learning approaches were also
explored for automatic surface inspection, which include dif-
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ferent learning strategies (Wang et al., 2021; Gao et al., 2020;
Hajizadeh et al., 2016; Guo et al., 2020), and CNN architec-
tures (Zheng et al., 2020; Rudolph et al., 2020).

Semi-supervised approaches proposed in computer
vision

Although Semi-supervised deep learning approaches were
not well explored for defect inspection in automated manu-
facturing, they are heavily explored in computer vision and
machine learning literature for various problems such as
image recognition (Berthelot et al., 2019; Sohn et al., 2020),
Natural LanguageProcessing (Liang, 2005), etc.Consistency
regularization and Pseudo-labeling are two prominent cate-
gories of semi-supervised learning approaches (Rizve et al.,
2021) among the others (Van Engelen & Hoos, 2020).

Consistency regularization techniques enforce the output
predictions of an input and it’s augmented/perturbed versions
to be similar to each other. Several methods were used to pro-
duce perturbed inputs, Dropout (Srivastava et al., 2014) and
random data augmentations (Sohn et al., 2020; Sajjadi et al.,
2016) are nameda few.MixMatch (Berthelot et al., 2019) uses
theMixup (Zhang et al., 2017) data augmentation technique
for consistency regularization. Temporal ensembling (Laine
& Aila, 2016) forces the output predictions of an input to be
consistent over epochs. However, consistency regularization
techniques heavily rely on domain-specific data augmenta-
tions, which are not easy to generate for all data modalities
(Rizve et al., 2021).

On the other hand, pseudo-labeling is a technique which
augments the labeled training data by automatically labeling
the unlabeled data and add them with the original training
data. Here, first amodel is trained using only the labeled data,
and then it was used to predict the labels (pseudo-labels) of
the unlabeled data.Next a newmodel is trained or the existing
one is updated using the combination of the original labeled
and the pseudo-labeled data. Here, all the pseudo-labeled
data or the pseudo-labels with high-confident predictions
were used. Usually the quality of the pseudo-labels are more
important than their quantity (Sohn et al., 2020). Therefore,
different approacheswere proposed and they differ fromeach
other in the way the pseudo-labels are generated and selected
for training. For example, in Lee (2013) the pseudo-labels
were calculated using a single network trained using the
labeled data, and then the network was updated by consider-
ing all the pseudo-labeled data regardless of their confidence.
Since the pseudo-labels are often noisy, training the net-
work using all the pseudo-labels will lead to noisy training
(Rizve et al., 2021). Hence, only the pseudo-labels with high
confidence predictions (confidence above a threshold) were
widely considered for better training (Rizve et al., 2021;
Sohn et al., 2020). Instead of these hard-thresholding, vari-
ous soft-thresholding based approaches were also proposed,

which apply weights for each input based on its prediction
confidence (Mo et al., 2021; Shi et al., 2018; Ren et al.,
2020); E.g., in (Mo et al., 2021) an Information Entropy
based technique was used to determine the weights; In Shi
et al. (2018) the density of the local neighborhood around
each sample was considered when determining the weight as
outliersmay lie in the lowdensity areas compared to informa-
tive samples. Recently, an uncertainty aware pseudo-labeling
selection method was proposed in Rizve et al. (2021) and
reported improved performance over many other pseudo-
labeling techniques including MixMatch (Berthelot et al.
2019). Here the uncertainty estimation of a particular image
was computed based on a set of predictions obtained from
the network for that image.

Compared to the above approaches, this work pro-
poses a pseudo-labeling based semi-supervised deep learning
approach with a margin-based criteria to weight the unla-
beled samples for training the deep learningmodel and shows
state-of-the-art performance on different defect inspection
datasets.

Proposedmethodology

Assume that the training set comprised of a set of labeled
(DL ) and a set of unlabeled (DU ) images. Let xi be an image
and yi = {0, 1}C be the one-hot representation of its label,
if xi is from the labeled data, and its label is unknown if it is
from the unlabeled data, whereC represents the total number
of classes. Lets assume that pi = [pi1, pi2, . . . , piC ] be the
probability of the image xi belonging to different classes, and
it is obtained from the CNN classifier by applying a softmax

function on the corresponding outputs, i.e., pi j = exp(zi j )∑
k exp(zik)

,
where, zi = [zi1, . . . , ziC ] is the output of the network for
xi .

The predicted label (pseudo label), ŷi , of xi is obtained as
the class which gives the maximum probability, and there-
fore, the cth element of ŷi can be given as:

ŷic =
{
1, if c = argmaxc′ {pic′ }
0, otherwise

(1)

In addition, assume that p̂i be the maximum probability of
xi over all the classes.

p̂i = max (pi1, pi2, . . . , piC ) (2)

Loss function

The parameters of the CNN are usually learned in a fully
supervised manner using the following Cross Entropy loss
function.
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LL = − 1

|DL |
C∑

c=1

uc
∑

i∈DL

yic log pic (3)

where, DL = {xi , yi } be the labeled training set, uc is the
class weight associated with the class c to handle imbal-
anced number of training samples from different classes, and
it could be set as the inverse of the image frequencies of each
class.

However, as the training data comprised of both labeled
and unlabeled images, the following loss function is mini-
mized.

L = LL + LU + αR (4)

where, LU = − 1

|DU |
C∑

c=1

uc
∑

i∈DU

wi ŷic log pic (5)

and R = − 1

|DL | + |DU |
N∑

i=1

C∑

c=1

pic log pic (6)

This loss function contains three terms. The first term (LL )
minimizes the cross entropy of the labeled images (Eq. 3).
The second term (LU ) is based on the unlabeled data, which
minimizes the cross entropy of the pseudo-labeled images.
Here, the pseudo-labels of the unlabeled images were con-
sidered as if they were true labels, and the probabilities of
the images belonging to these pseudo-classes aremaximized.
Based on these probability values, the weight (wi ) of each
unlabeled image is calculated, and this weight determines
how much an image contributes to this loss. The last term
(R) is an entropy regularization term proposed in Tanaka
et al. (2018) to concentrate the probability of each image on
a single class. This term penalizes the images which have flat
probability distributions (similar probabilities for belonging
to different classes), and therefore, encourages each image
to focus on a single class to improve the probability of that
image belonging to that class. In this way the images will
be pushed away from the decision boundary between differ-
ent classes to improve the network training. In Eq. 4 α is
a parameter which controls the contribution of the entropy
regularization term on the overall loss (refer Sect. 4.4.2 for
the effect of this parameter on the classification results).

Weighting schemes

In Eq. 5, wi is the weight which indicates the confidence on
the pseudo-label of an unlabeled image xi . The following
sections explain different ways to determine these weights.

Fig. 1 Weight for different unlabeled images (I1, . . . , I4) determined
by different weighting schemes, where C1, . . . ,C5 represent different
classes.

Equal weights for all the unlabeled images (Wa)

A recent work (Gao et al., 2020) for defect classification
assumes that the pseudo-labels obtained for all the unla-
beled images are correct, and sets wi = 1,∀i . This approach
considers all the unlabeled images and their correspond-
ing pseudo-labels regardless of their prediction confidence.
However, sometimes the pseudo-labels of the unlabeled
images could be noisy. For example, the pseudo-label of the
image I1 in Fig. 1 could be a wrong one as it has very sim-
ilar probabilities for belonging to the classes C2 and C3. If
the pseudo-labels of many unlabeled images are noisy, the
network may learn a wrong decision boundary leading to
performance drop.

Selection of a subset of unlabeled images based on p̂i (Wp)

To avoid having wrong pseudo-labels for training, only the
unlabeled images with larger p̂i values can be considered.
i.e., the weights are determined by applying a threshold t
on p̂i , i.e., wi = 1 if p̂i > t , and 0 otherwise. Here, some
unlabeled images may not contribute to learning as they have
low prediction probabilities than the threshold. In addition,
the selected set of samples based on this scheme is sensitive
to the threshold value. For example, although I1 and I2 of
Fig. 1 have similar prediction probabilities, only the image
I1 will be selected due to hard thresholding (when t = 0.5).

Soft-weighting based on p̂i (Ws)

In this case the weights are defined using the following func-
tion to avoid the problems associated with hard thresholding:

wi = 1

1 + e−β( p̂i−t)
(7)

where, β and t control the softness of the weights. In this
scheme the prediction confidences belonging to different
classes were not considered. E.g., the images I3 and I4 of
Fig. 1 have the same weights by this scheme, although they
have different prediction confidences. I define the prediction
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confident as how well an image is predicted as one class
compared to the others.

The proposed soft-weighting scheme which uses a margin
criteria (Wm)

Determining the weights just based on p̂i (Sects. 3.2.2 and
3.2.3) may not be a good idea. Instead, the weights must be
determined based on how well an image is predicted as one
class compared to the other classes.

Lets consider the images I1 and I2 (Fig. 1).As they are pre-
dictedwith similar probability ( p̂) values they receive similar
weights by the weighting scheme Ws . However, image I2
should be considered as a high confident prediction than
image I1 as the probability of image I2 belonging to other
classes (other than its pseudo-label class) are very small.
Similarly, I4 should receive a higher weight than I3, as I4
is predicted with higher confident. Therefore, I define the
weight as:

wi = 1

1 + e−β(d−t)

where, d = p̂i − p̂′
i

(8)

where, p̂′
i is the second maximum probability for the image

xi , and the softness of the weights are defined by the param-
eters β and t .

Entropy based weighting(We)

According to Information theory, information entropy is a
measure of uncertainty. Entropy has a value close to zero
for high confident predictions, and its value increases with
prediction uncertainty. Therefore, entropy can be used to
determine sample weights. An information entropy based
sample weighting scheme was recently proposed in Mo et
al. (2021) for semi-supervised learning. The sample weights
are determined as follows:

wi = 1 − E(pi )
log(C)

(9)

where, pi = [pi1, . . . , piC ] is the probability of image xi ,
and C represents the number of classes. The entropy of pi ,
i.e., E(pi ), can be defined as:

E(pi ) = −
C∑

i=1

pic log(pic) (10)

where pic is the probability of image xi belonging to class c.
However, this approach does not provide reasonable

weights. For example, a high weight value is given by this
approach to image I1 (Fig. 1) compared to image I2 (0.57 vs

0.14), even though image I2 has a high confident prediction,
and image I1 has a very noisy prediction having approxi-
mately equal probabilities to two different classes. In this
scenario, image I1 must receive a weight close to zero, and
this weight must be very smaller compared to the weight of
image I2. However, this entropy based weighting assigns a
very high weight to image I1, and a lower weight to image I2
which are very much inappropriate. Similarly, a high weight
is assigned for image I3 than image I4, although the weights
should be assigned in the other way. In addition, although the
image I4 is predicted with a higher probability value com-
pared to image I1, this scheme provides a high weight value
to image I1 than image I4, proving its inefficiency in deter-
mining sample weights.

The direct use of these entropy-basedweights (Eqn 9)may
lead to worst classification performance, particularly, for the
datasets which have large number of classes. This is mainly
because when the predictions become sparse, the entropy
term becomes smaller. In addition, the denominator term
becomes large for the datasets which have large number of
classes. In this scenario, all the weights, regardless of predic-
tion score become arbitrarily high. This leads to the selection
of large number of noisy labels, and hence, worst classifica-
tion performance. To avoid this, in the reported experiments a
threshold function was applied on these weights to get binary
weights (0 or 1), and then these binary weights were used
when optimizing the semi-supervised loss.

Summary of the weighting schemes

From Fig. 1 we can see thatWa (Sect. 3.2.1) considers all the
samples regardless of their prediction confidence, and assign
equal weights. In the experiments it is found that this scheme
leads to worse classification performance, and therefore the
results based on this scheme are not reported in Sect. 4. Wp

(Sect. 3.2.2) neither make use of all the images, nor consider
prediction confidence of different classes when determin-
ing weights. Ws (Sect. 3.2.3) assigns similar weights to the
images I1 and I2 (and also I3 and I4), although each of them
is predicted with different prediction confidence.We assigns
high weights to image I1 although its prediction is noisy.
In addition, it assigns high weight to image I3 compared
to image I4, although image I4 should get high weight as
it is predicted with high confidence. Compared to all the
other approaches, the proposed approach (Wm in Sect. 3.2.4)
weights the images based on their prediction confidence and
gives higher weights to the images which are predicted with
high confident, and low weights on the other hand.

The training procedure of the proposed approach

The proposed self-learning approach initially uses a fully
supervised training to learn the parameters of CNN, i.e., only
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Fig. 2 Threshold over epochs

the labeled training data is used to train the CNN with the
loss function defined in Eq. 3 for the first e1 epochs (e.g.,
e1 = 75). After that, the prediction probability of each of
the unlabeled sample is calculated, and then each unlabeled
sample is weighted using the proposed approach given by
Eq. 8. Theseweighted unlabeled samples are then addedwith
the labeled samples to update the network with the proposed
loss function defined in Eqn 4. At each epoch e, the weights
are recalculated again. Instead of applying a fixed threshold
t in Eq. 8, here, an alternative approach is used to determine
the value of t to enable a smooth training. In this approach, a
high threshold (i.e, t = 1) was set immediately after the fully
supervised training (i.e., e = e1), and then this value was
linearly reduced until it reaches the specified value T (e.g.,
T = 0.9), at the end of e2 epochs. In the experiments, e2 is set
as the first milestone (refer Table 2), where the learning rate
was reduced by a factor of 0.1. The threshold at the epoch e,
te, can be given as,

te =
{

(T−1)(e−e1)
e2−e1

+ 1, e1 < e < e2
T , e ≥ e2

(11)

This procedure is illustrated in Fig. 2. Here, the threshold
is set to 1 for supervised training as no unlabeled data is
included, and then the threshold is linearly reduced to the
target value to progressively include high confident pseudo-
labeled data, which enables a smooth training procedure.

Experiments and results

Dataset, experimental settings, results and discussion are
summarized in this section.

Datasets and experimental setting

Four public datasets were used to show the effectiveness of
the proposed approach. Please refer Table 1 for more details
about these datasets. Figures 3, 4, 5 and 6 show sample
images from different categories of these datasets.

SLS powder bed dataset

This dataset contains images of powder bed surface from an
SLS printing system, and was introduced and well studied in
Westphal and Seitz (2021). This dataset contains two cate-
gories of images: defective and defect-free. Sample images
from each of these categories are shown in Fig. 3. The images
were preprocessed in Westphal and Seitz (2021) by remov-
ing the unwanted background information and resized to
180×180. The training and the test sets respectively contain
1000 and 500 images per category.

Northeastern University dataset (NEU)

The NEU dataset (Song & Yan, 2013) contains six types
of steel surface defects: crazing, inclusion, patches, pitted
surface, rolled-in scale, and scratches. Each category of this
dataset contains 300 grayscale images of size 200 × 200
pixels. Following (He et al., 2019) 60% of the images from
each category were considered for training and the rest were
used for testing.

KolektorSDD dataset

This dataset (Tabernik et al., 2019) contains a total of 399
surface images of plastic electronics commutators, among
them 52 images show clear visible defects and the rest (347
images) are defect-free. Each image is in gray scale, and has
a size of approximately 1408× 512 pixels. The images were
resized to have a size of 352×128 pixels, and 2

3 of the images
were used for training and rest were used for testing.

Surface textures dataset

This dataset (Huang et al., 2020) contains a total of 8, 674
images from 64 classes, which is collected in Huang et
al. (2020) from three public datasets; KTH surface dataset
Caputo et al. (2005) (3, 194 images from11classes),Kyberge
dataset (Kylberg, 2011) (4, 480 images from 28 classes), and
UIUC dataset (Lazebnik et al., 2005)) (1, 000 images from
25 classes). The classes include wood, blanket, cloth, leather,
so forth, and they are very commonly seen in surface inspec-
tion problems (Huang et al., 2020). The number of images in
each class varies from 40 to 513. Each image in this dataset
has a size of 331 × 331 pixels. In this work, all the images
were converted to grayscale as only a few portion of the orig-
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inal images are in color. Following Huang et al. (2020) half
of the images were considered for training and the rest were
used for testing.

For all the above datasets only the image level labels were
considered, and no color information was used.

Data augmentation and dropout

To avoid overfitting and to improve the generalization abil-
ity of the CNN, an extensive amount of data augmentation
and dropout were used at the training stage, and neither data
augmentation nor dropout were used at the testing stage.
Data augmentation includes, randomhorizontal, vertical flip-
ping, random rotations (±180◦), color jitter (brightness,
contrast, saturation and hue were changed) and random
Affine transformations (scaling and translation). However,
for the KolektorSDD dataset, all the above augmentations
were used except±180◦ rotations, instead, rotations of±20◦
were applied as the shape of the images are not square. For
the SLS dataset as following Westphal and Seitz (2021) ran-
dom horizontal flipping, random rotations (±20◦), random
shifting by a factor of±0.2 and random scaling by a factor of
±0.15 were used. In addition, for all the datasets a dropout
layer (with a probability of 0.5) was used immediately before
the fully connected layer of the network. Images were nor-
malized (zero mean and unit variance) before feeding them
to the CNN.

Network architecture, training and evaluation
measures

An ImageNet pretrained ResNet (He et al. 2016) architecture
with 10 layers and 18 layers were used as the baseline CNN
architectures for the smaller (NEU and KolektorSDD) and
the larger (Surface Textures) datasets respectively. Although,
the proposed approach can be applicable to any CNN archi-
tecture, ResNet was chosen as it is widely used. Stochastic
Gradient Descent was used to optimize the network weights.
Table 2 lists the settings used for training the CNN; E.g., for
the NEU dataset, the learning rate was initially set to 0.01
for the first 150 epochs, and then it was reduced by a factor
of 0.1 from 150 to 200 epochs and again it was reduced by
the same factor after 200 epochs, while the total number of
epochs was set to 250. In the case of semi-supervised train-
ing, the network is trained for the first 75 epochs in a fully
supervised manner, and then unlabeled images were added
as explained in Sect. 3.3.

Accuracy for the NEU and Surface Texture datasets, and
Average Precision for the KolektorSDD dataset were used
as the evaluations measures as they were widely on these
datasets (Di et al., 2019; He et al., 2019; Gao et al., 2020;
Huang et al., 2020; Xu et al., 2020) to compare different
methods. Each experiment was repeated three times (unless
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Fig. 3 Sample powder bed
images from the SLS dataset

Fig. 4 Sample images from the
NEU dataset

Fig. 5 Example images and
their corresponding
segmentation masks from the
KolektorSDD dataset. Note that,
the segmentation masks are
shown here only to illustrate the
defective regions, and are not
used in any of the experiments

otherwise specified), and the mean and the standard devi-
ation of the evaluation measures over these iterations were
reported. In all the semi-supervised learning based experi-
ments, t and β (Eq. 8) were set to 0.9 and 30 respectively.
The regularization parameter (α, Eq. 4) was set to 1, 1, 0.1,
and 10 respectively for the SLS, NEU, KolektorSDD, and
the Surface Texture datasets. These parameters were selected
based on some initial experiments conducted on a part of the

training set. Please refer Sect. 4.4.2 for the effect of these
parameters on the classification results.

In all of the following experiments, s% of training images
were randomly selected as the labeled training set, and the
restwere used as the unlabeled dataset, where s is varied from
5% to 100% (Table 1). For the unlabeled images the original
labels were discarded, and only the images were considered.

123



3100 Journal of Intelligent Manufacturing (2023) 34:3091–3108

Fig. 6 Example images from
different categories of the
Surface Texture dataset

Table 2 Network training details (SS - semi-supervised learning)

Dataset batch size initial learning rate no. of supervised epochs for SS milestones total no. of epochs

SLS 64 0.01 25 50,80 100

NEU 64 0.01 75 150,200 250

KolektorSDD 64 0.05 75 125,170 180

Surface Textures 64 0.005 75 150,200 225

Table 3 Performance comparison of fully supervised (FS) vs. semi-supervised (SS) approaches on different datasets

Dataset Backbone FS/SS Overall accuracy (%) for different number of training samples per class

5% 10% 25% 50% 100%

SLS Resnet-10 FS 76.40 ± 6.02 92.45 ± 0.95 97.50 ± 0.34 97.50 ± 0.26 98.01 ± 0.02

SS 82.63 ± 0.59 96.91 ± 0.52 97.57 ± 0.03 98.00 ± 0.03 −
NEU Resnet-10 FS 91.69 ± 1.52 97.00 ± 0.09 99.45 ± 0.26 99.67 ± 0.17 99.86 ± 0.11

SS 98.34 ± 0.36 99.50 ± 0.12 99.75 ± 0.14 99.82 ± 0.05 −
KolektorSDD Resnet-10 FS 79.94 ± 4.37 85.59 ± 1.13 100 ± 0.00 100 ± 0.00 100 ± 0.00

SS 85.10 ± 2.24 88.60 ± 0.69 100 ± 0.00 100 ± 0.00 −
Textures Resnet-18 FS 86.71 ± 0.45 93.58 ± 0.38 96.62 ± 0.32 99.09 ± 0.05 99.52 ± 0.13

SS 89.52 ± 0.48 95.33 ± 0.28 98.60 ± 0.20 99.50 ± 0.01 −
The best scores are marked with bold

Results and discussion

Table 3 compares the fully supervised baseline with the pro-
posed semi-supervised approach on all the three datasets. The
proposed semi-supervised approach gives significant boost in
performance compared to its fully supervised counterpart on
all of these datasets. For example, ∼ 6%, ∼ 7%, 6% and 3%
performance improvements were obtained respectively on
the SLS, NEU, KolektorSDD and Surface Texture datasets,
when 5% of the labeled training data is used for training.
On the NEU dataset, the proposed semi-supervised approach

obtains an accuracy of 98.34± 0.36 only with 5% of labeled
data, which is comparable with the accuracy (99.45 ± 0.26)
obtained by the full supervised approachwith 25% of labeled
data. On this dataset, the proposed semi-supervised approach
achieves an accuracy of 99.50 ± 0.12 only with 10% of
labeled training data. Similarly, on the Surface Textures
dataset, the semi-supervised approach obtains an accuracy of
95.33±0.28with only10%of the labeled trainingdata,which
is comparable with the accuracy (96.62± 0.32) obtained by
the fully supervised approachwith 25% labeled training data.
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Table 4 The performance of
fully supervised (FS) and the
proposed semi-supervised (SS)
approaches with and without
pretraining (PT) and/or data
augmentation (Aug)

PT Aug FS/SS Overall accuracy (%) for different number of training samples per class

9 (5%) 18 (10%) 45 (25%) 90 (50%) 180 (100%)

✗ ✗ FS 80.88 ± 0.85 86.84 ± 0.16 94.86 ± 0.24 97.72 ± 0.09 99.45 ± 0.06

SS 79.70 ± 0.80 89.88 ± 0.45 96.27 ± 0.12 98.46 ± 0.70 −
✗ ✓ FS 88.90 ± 0.01 91.48 ± 0.52 94.86 ± 0.22 98.90 ± 0.09 99.62 ± 0.03

SS 89.33 ± 0.62 93.28 ± 0.17 96.52 ± 0.10 99.14 ± 0.04 −
✓ ✗ FS 91.20 ± 0.96 95.83 ± 0.11 98.62 ± 0.28 99.32 ± 0.02 99.75 ± 0.06

SS 94.28 ± 2.20 98.96 ± 0.03 99.13 ± 0.15 99.54 ± 0.26 −
✓ ✓ FS 91.69 ± 1.52 97.00 ± 0.09 99.45 ± 0.26 99.67 ± 0.17 99.86 ± 0.11

SS 98.54 ± 0.36 99.50 ± 0.12 99.75 ± 0.14 99.82 ± 0.05 −
The best scores are marked with bold

Table 5 Effects of different
parameters on the NEU dataset
when 5% of the labeled training
data is used with the proposed
semi-supervised learning
approach

(a)Effect of t and α when β is fixed to β = 30
α 0 0.1 1 10
t

0.95 94.93 ± 0.51 96.11 ± 0.71 97.32 ± 1.1 84.61 ± 7.69

0.9 96.71 ± 0.22 95.87 ± 1.10 98.34 ± 0.36 92.18 ± 1.98

0.8 97.31 ± 0.42 97.45 ± 0.57 98.48 ± 0.20 87.56 ± 6.85

0.5 98.05 ± 0.32 97.92 ± 0.66 98.45 ± 0.46 82.71 ± 6.32

(b)Effect of β when α = 1 and t = 0.9
β Accuracy

0.1 97.65 ± 0.55

1.0 97.93 ± 0.51

10.0 98.46 ± 0.53

30.0 98.34 ± 0.36

50.0 97.94 ± 0.78

Effect of data augmentation and network pretraining

The effect of parameters

This section investigates the effect of parameters involved in
the proposed approach. The results are reported in Table 5,
which investigate the effect of t , β (Eq. 8) and α (Eq. 4) on
the classification accuracy of theNEUdataset. FromTable 5a
we can see the importance of the regularization term used
in Eq. 4. Adding this term to the loss function improves the
classification accuracy when t is fixed. However, larger value
of α (i.e., α = 10) degrades the classification performance
on this dataset as more weight is given for regularization
than classification (Eq. 4). When t is considered, there is a
trade-off between the number of samples which are selected
from the unlabeled data in the pseudo-labeling process and
their correctness. A smaller t value (e.g., t = 0.5) allows the
CNN to select a larger number of pseudo-labeled data, on the
other hand, a larger t (e.g., t = 0.95) value allow to select
relatively small number, but highly accurate labeled data. I
found that t = 0.9 is a good trade-off parameter when all the

three datasets are considered, although, on the NEU dataset
(Table 5a) smaller t values lead to better classification results.
Table 5b reports the accuracy values when changing β, while
fixing the other parameters constant. β = 10 and 30 give
improved results than the others.

Comparison of the weighting schemes

Figure 8 compares different sample weighting schemes that
are discussed in Sect. 3.2 on the Surface Textures dataset.
Here, the network was trained in a fully supervised manner
for 75 epochs with 5% of labeled training data, and then
the trained CNN was used to predict the rest of the images
in the training dataset. The sample weights for these test-
ing images based on different sample weighting approaches
(Wm , Ws and We) were calculated, and different threshold
values were applied to these weights to calculate the accu-
racy of the images which pass this thresholding criteria. The
results are reported in Fig. 8, which shows that the pro-
posed approach selects more correctly labeled images than
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Fig. 7 Training loss and the
testing accuracy over different
training epochs under different
setting of the NEU dataset with
10% of labeled training data.
(Best viewed in color.)

Fig. 8 Comparison of different weighting schemes: X-axis represents
threshold values, and Y-axis represents accuracy

the others, proving its effectiveness in selecting more cor-
rectly labeled samples from the unlabeled training images.
The prediction accuracy of all the predicted images (with-
out applying a threshold, i.e., t = 0) by this trained CNN
(Wa , in Sect. 3.2.1) was also evaluated, and found that only
∼ 60% of images were correctly predicted. This shows the
ineffectiveness of the weighting scheme Wa . Note that, this
weighing scheme is used by a recent work, PLCNN (Gao et
al., 2020), for surface defect recognition, and in Table 8 I
show that the proposed approach outperforms PLCNN with
a significant margin on the NEU dataset.

Fig. 9 Box plot comparing different weighting schemes

In Fig. 8 when the threshold is set to a very high value
(e.g. 0.99) all the methods performs equally well, but note
that, when the threshold is very high only few samples will be
selected, which will slow down the semi-supervised training.
On the other hand, a small threshold value (e.g., 0.5) will
select a very large number of less accurate samples, which
will lead to noisy training. Therefore, the selection of the
threshold is a trade-off between the amount of pseudo-labeled
samples selected and their correctness.

Figure 9 reports the Box plot to compare different weight-
ing schemes on the Surface Texture dataset, when 5% of
labeled training data are considered. This Box plot sum-
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Fig. 10 Weights assigned by
different weighing schemes for
the unlabeled images of the
NEU dataset. Here, y, ŷ and p̂
represents the true label,
pseudo-label, and the probability
of the particular image
belonging to ŷ respectively

maries the results of five repeated experiments. We can
observe that the proposed approachWm performs better than
other approaches, suggesting its suitability for the selection
of more accurate samples from the unlabeled data for semi-
supervised training.

Figure 10 shows some of the correctly classified and
wrongly classified images with their corresponding weights
assigned by different approaches. Although the predicted
probabilities are same (first two and the last two images
of Fig.10a) the proposed weighting scheme assigned dif-
ferent weights by considering the top two probabilities of
each image. However,Wp assigns the sameweights for these
images as it is only based on the top probability. On the
other hand, We assigns large weights to the wrongly classi-
fied images compared to Wm and Ws .

Comparison with the state-of-the-art approaches

In this section, the proposed approach is compared with the
� − model (Laine & Aila, 2016) - a widely-used consis-
tency regularizationbased semi-supervised approach, and the
Uncertainty-AwarePseudo-LablingSelectionmethod (Rizve
et al., 2021)—a recently proposed pseudo-labeling based
semi-supervised approach which reports better performance
than many other semi-supervised approaches in Rizve et al.
(2021). In addition, the proposed approach is also compared

with the approaches proposed in the computer aided manu-
facturing literature to show that the proposed approach is the
new state-of-the-art for defect detection in computer aided
manufacturing.
� − model (Laine and Aila 2016) is one of the well-known
approach, which makes the outputs of different augmented
versions of inputs to be similar to each other, and uses the
following loss function for optimization.

L = LL + δ(t) Lc (12)

where, LL is the supervised cross-entropy loss defined in
Eq. 3, and Lc is the consistency regularization term, defined
as:

Lc = 1

N

N∑

i=1

‖pi − p′
i‖2 (13)

where, pi and p′
i are the output probabilities obtained for two

different augmentations of the same image. In Eq. 12 δ(t) is a
trade-off parameter, determined as δ(t) = exp

[−5(1 − T )2
]

Laine and Aila (2016), and in the experiments it was set to
T = t

100 .

Uncertainty-AwarePseudo-LablingSection (UPS) (Rizve
et al. 2021) is a recent method which selects less noisy
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pseudo-labels based on an uncertainty estimation. In addi-
tion, this method also uses negative labels for training. The
loss function used by UPS for a pseudo-labeled image is
given as:

Li = − 1

si

C∑

c=1

gic
[
ŷic log(pic) + (1 − ŷic) log(1 − pic)

]

(14)

where, gic ∈ {0, 1} determines whether the pseudo-label of
the i th image belonging to class c (i.e., ŷic) is selected or not,
and si = ∑

c gic is the number of selected pseudo-labels for
sample i . gic is defined as:

gic = 1
[
u(pic) ≤ κp

]
1

[
pic ≥ τp

]

+1 [u(pic) ≤ κn]1 [pic ≤ τn] (15)

Here, u(pic) is the uncertainty associated with pic. A pos-
itive pseudo-label is selected if its probability score is high
(pic ≥ τp) and certain (u(pic) ≤ κp). Conversely, a negative
pseudo-label is considered, if the network is sufficiently con-
fident of a class’s absence (i.e., pic ≤ τn and u(pic) ≤ κn).
In Rizve et al. (2021) dropout was used during the inference
time to estimate the uncertainty of the prediction of a par-
ticular sample. The uncertainty was obtained as the standard
deviation of the network’s predictions for 10 forward passes
of that sample. The values for κp, τp, κn and τn were set to
0.05, 0.9, 0.005 and 0.05 respectively. To have a fair compar-
ison, first the model was trained in a fully supervised manner

(Eq. 3), and then updated in a semi-supervised manner by
using loss functions defined in Eqs. 14 and 3.

Table 6 reports the comparative results on the NEU
dataset, while all the other experimental settings were
fixed (e.g. CNN backbone is fixed to ResNet-10). Both
the � − model and UPS improve the classification per-
formance over the fully supervised baseline. However, the
proposed approach performs significantly better than both of
them, proving its efficiency (both in selecting high-confident
pseudo-labels and the loss function). Note that, UPS requires
several forward passes of the same image through the net-
work to determine the uncertainty value, and similarly, the
�−model requires to get the predictions of augmented ver-
sions of the input images, both of which are time consuming.
On the other hand, the proposed approach is simple and yet
gives better performance.

In this section the proposed approach is compared with
the approaches proposed for the defect detection in com-
puter aided manufacturing. Tables 7, 8, 9 and 10 compare
the performance of the proposed approach compared to the
state-of-the-art approaches on the SLS powder bed, NEU,
KolektorSDD, and theSurfaceTextures datasets respectively.
On all of these datasets, the proposed approach achieves the
state-of-the-art results with relatively low amount of labeled
data for training. For example, on the NEU dataset, the
state-of-the-art result was obtained with only 10% of labeled
training data. Note that, on the same dataset, the Generative
Adversarial Network (GAN) based approach cDCGAN (He
et al., 2019) generates additional images, and train the system
using all the labeled (100%) and the generated images. How-

Table 6 Comparison with
�−model and UPS on the NEU
dataset with different percentage
of labeled training data

Method 5% 10%

FS 91.69 ± 1.52 97.00 ± 0.09

� − model (Laine and Aila, 2016) 95.22 ± 0.71 97.74 ± 0.25

UPS (Rizve et al., 2021) 96.61 ± 0.71 98.57 ± 0.23

Proposed 98.34 ± 0.36 99.50 ± 0.12

The best scores are marked with bold

Table 7 Comparison with the state-of-the-art approaches on the SLS dataset

Method % labeled Acc Precision Recall F1 score ROC-AUC

Proposed (FS) 5% 76.40 ± 6.02 .851 ± .134 .665 ± .007 .742 ± .048 .854 ± .052

Proposed (SS) 5% 82.63 ± 0.59 .930 ± .030 .708 ± .014 .803 ± .002 .870 ± .017

Proposed (FS) 10% 92.45 ± 0.95 .992 ± .001 .851 ± .003 .916 ± .001 .983 ± .007

Proposed (SS) 10% 96.91 ± 0.02 .986 ± .001 .929 ± .001 .956 ± .001 .996 ± .001

Proposed (FS) 25% 97.50 ± 0.26 .963 ± .001 .988 ± .006 .975 ± .003 .996 ± .002

Proposed (SS) 25% 98.00 ± 0.03 .965 ± .001 .982 ± .001 .976 ± .001 .996 ± .002

Proposed (FS) 100% 98.01 ± 0.03 .963 ± .001 .990 ± .002 .975 ± .001 .996 ± .001

VGG-16 (Westphal & Seitz, 2021) (FS) 100% 97.1 .963 .980 .972 .993

Xception (Westphal & Seitz, 2021) (FS) 100% 89.4 .876 .918 .897 .934

The best scores are marked with bold
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Table 8 Comparison with the state-of-the-art approaches on the NEU dataset

Methods Overall accuracy (%) for different number of training samples per class

9 (5%) 18 (10%) 45 (25%) 90 (50%) 180 (100%)

Supervised learning

Zhou et. al. (2017) − − 78.09 80.00 86.64

Li et. al. (2016) − − 82.81 85.39 95.00

Ren et. al. (2018) − − − 90.88 92.04

He et. al. (CAE-SGAN) Di et al. (2019) − − − − 98.96

He al. el. (cDCGAN) He et al. (2019) − − − − 99.56

Wang et. el. (MMGCN) Wang et al. (2021) − − − − 99.72

Proposed 91.69 ± 1.52 97.00 ± 0.09 99.45 ± 0.26 99.67 ± 0.17 99.86 ± 0.11

Semi-supervised learning

He et. al. (CAE-SGAN) Di et al. (2019) − − 85.83 94.87 −
He el. al. (cDCGAN) He et al. (2019) − − 89.58 96.06 -

Gao et. al. (PLCNN) Gao et al. (2020) − − 90.7 − −
Wang et. al. (MMGCN) Wang et al. (2021) − − 98.06 98.75 −
Proposed 98.54 ± 0.36 99.50 ± 0.12 99.75 ± 0.14 99.82 ± 0.05 −
The best scores are marked with bold

Table 9 Comparison with the state-of-the-art approaches on KolektorSDD dataset

Method AP for different number of positive training samples

5 10 33

Segmentation based approaches which use both image and pixel level labels for training

Jakob et. al. (2020) 96.71 99.31 100

Tabernik et. al. (2019) 95.80 98.80 99.00

Cognex ViDi (commercial software) Tabernik et al. (2019) 89.20 95.60 99.00

Image level labels only

Xu et. al. (2020) − 98.0 99.50

Proposed 88.60 ± 0.69 100 ± 0.00 100 ± 0.00

The best scores are marked with bold

Table 10 Comparison with the state-of-the-art approaches on Surface Textures

Method Accuracy for different percentage of labeled training images

25% 50% 100%

Huang et. al. (2020) − − 99.33

Proposed 98.60 ± 0.20 99.50 ± 0.01 99.52 ± 0.13

The best scores are marked with bold

ever, it is interesting to see that the proposed approach, which
uses only 5% of labeled training data beats this GAN based
approach with a significant margin, proves its efficiency. On
the KolektorSDD dataset, proposed approach achieves the
state-of-the-art results with 25% of labeled training data.
Note that, the approaches (Božič et al., 2020) and (Tabernik
et al., 2019) (Table 9) use both the image and the pixel-level
labels for training the system. But the approach proposed, on
the other hand, uses image-level labels only. In addition, on
the Surface Textures dataset, the state-of-the-art results were
achieved with only 50% of the labeled training data.

Discussion

The proposed approach is efficient in terms of the required
amount of human annotations, computational time, memory
requirements, and classification performance. For example,
on the SLS powder bed dataset the approach proposed in
Westphal and Seitz (2021) reports an accuracy of 97.1%
when trained with 2000 labeled training images and with
VGG-16model which contains approximately 138M param-
eters to train. On the other hand, the proposed approach
beats the approach proposed in Westphal and Seitz (2021)
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Fig. 11 Sample images from
the SLS powder bed dataset
which are misclassified by the
proposed approach

with only 500 labeled images (and 1500 unlabeled images)
for training and with a much simpler ResNet-10 model
which contains only ∼ 5.17M parameters, thereby reducing
the computational and memory requirements. The pro-
posed approach requires only 0.9 seconds to process 1000
images on a NVidia P100 GPU with a memory of 16GB
enabling a real time defect monitoring system. Some of the
miss-classified images from the SLS powder bed dataset
by the proposed approach are shown in Fig. 11. These
miss-classifications are reasonable, as in this figure, the non-
defective images contain some patterns which make them
look like defective, and in the defective images there is no
visible defective patterns.

Conclusion

In this work, a novel semi-supervised deep learning approach
is proposed for the detection of powder bed defects in additive
manufacturing. The selection of highly-confident pseudo-
labels plays an important role in determining the success of
pseudo-labeling based semi-supervised learning approaches.
Therefore, a margin-based weighing scheme is proposed to
weight the contribution of the unlabeled samples based on
their prediction confidence and showed that it performs better
than other weighting schemes. Extensive experiments with
four public datasets (SLS powder bed, NEU steel surface
defects, KolektorSDD surface images of plastic electronics
commutators and Surface Textures) show the effectiveness
of the proposed approach, and its applicability to other com-
puter integrated manufacturing environments. The proposed
approach achieves the new state-of-the-art results on all of
these datasets with relatively little amount of labeled training
data compared to other approaches and enables an automated,
accurate, real time surface defect monitoring.
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