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Abstract
With the high demand and sub-nanometer design for integrated circuits, surface defect complexity and frequency for semicon-
ductor wafers have increased; subsequently emphasizing the need for highly accurate fault detection and root-cause analysis
systems as manual defect diagnosis is more time-intensive, and expensive. As such, machine learning and deep learning
methods have been integrated to automated inspection systems for wafer map defect recognition and classification to enhance
performance, overall yield, and cost-efficiency. Concurrent with algorithm and hardware advances, in particular the onset of
neural networks like the convolutional neural network, the literature for wafer map defect detection exploded with new devel-
opments to address the limitations of data preprocessing, feature representation and extraction, and model learning strategies.
This article aims to provide a comprehensive review on the advancement of machine learning and deep learning applications
for wafer map defect recognition and classification. The defect recognition and classification methods are introduced and
analyzed for discussion on their respective advantages, limitations, and scalability. The future challenges and trends of wafer
map detection research are also presented.

Keywords Wafer Map · Semiconductor manufacturing · Machine learning · Deep learning · Defect recognition · Defect
classification

Introduction

Integrated circuits (IC) are the fundamental electronic com-
ponent for many electronic devices and are developed on
semiconductor wafer substrates. As the electronics indus-
try demands for high levels of innovation, development, and
competition (Ebayyeh & Mousavi, 2020), ICs are contin-
uously developed and scaled to state-of-the-art design and
complexity. With such growth, defect complexity and fre-
quency have increased, which has subsequently warranted
the greater need for accurate and real-time quality monitor-
ing and control to promote high yield, cost-efficiency, and
performance.
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The onset of unknown/rare, mixed, and complicated
defects ultimately results in increased costs, low product
yield and deteriorated fabrication process stability. As such,
utmost importance has been set upon defect detection and
root-cause analysis (RCA) as defect patterns can indicate
the potential causes of process variation. With the accuracy
and time constraints of manual detection and the advances in
algorithms, hardware, and data availability, machine learn-
ing (ML) and deep learning (DL) have been increasingly
adapted and integrated into various domain applications (i.e.,
medical, manufacturing, finance), including surface defect
detection for semiconductorwafer surfaces.During thewafer
and IC fabrication processes, defects arise from process
and equipment instability, as well as environmental fac-
tors such as airborne particles. Traditionally, wafer maps
(WM)—which are visual representations of circuit probe
[electrical] testing data—were used by engineers with high-
level domain knowledge for manual defect recognition and
classification. However, with the increase in design complex-
ity and sub-nanometer IC design, automated detection and
recognition is increasingly sought after (Liu & Chien, 2013).
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Fig. 1 Mind map illustrating overall structure of paper

With recent developments in computer vision andML/DL
techniques, defect recognition and classification algorithms
were further enhanced, wherein the respective applications
focused on improving overall performance, cost-efficiency,
and runtime. Even reinforcement learning has been leveraged
as a search algorithm for optimal parameters and architec-
tures (Baker et al., 2017; Bello et al., 2017; Shon et al.,
2021). Various model architectures, algorithms and learning
mechanisms have been explored to achieve state-of-the-art
performance. As such, this paper concentrates on the vari-
ous ML and DL applications for WM defect recognition and
classification. This paper introduces and compares the var-
ious wafer map defect detection algorithms, along with the
discussion of their respective advantages, and limitations.
The current challenges and future research trends of WM
defect recognition and classification are also presented.

The rest of this paper is organized as follows:
SectionBackground presents the background into fabrication
processes, as well as the fundamental components for wafer
map defect recognition and classification. Section Method-
ologies and learning strategies provides the details, analysis,
and discussion of the advances of WM defect learning and
detection algorithms. Finally, the conclusions are drawn in
Section Discussion and conclusion, along with challenges
and future trends. The mind map in Fig. 1 illustrates the
structure of the paper.

Background

The current and future trends for wafer fabrication, specifi-
cally the evolving technologies and design standards, affect

Fig. 2 General wafer and IC fabrication processes

the production yield, defect complexity, and effectiveness
of quality inspection technologies. Similarly, with the pro-
gression of ML, DL, and computer vision, the algorithms
for wafer map defect detection (WMDD) have incorpo-
rated thesemethods to enhancemodel performance regarding
accuracy, computational load, run-time, and learning capa-
bility. This section introduces the semiconductor wafer
fabrication and inspection processes, as well as the fun-
damental components of the ML/DL applications for WM
defect recognition and classification.

Semiconductor wafer fabrication and inspection

Semiconductor wafers are the silicon-based substrates used
to fabricate ICs. The application and scale of ICs require
precise manufacturing and strict quality control. The general
wafer and IC fabrication line is shown in Fig. 2, including
the quality inspection checkpoints. Themajor stages ofwafer
fabrication and inspection are briefly described below.

Wafer fabrication starts at silicon ingot growth and extrac-
tion. Mono-crystalline or poly-crystalline silicon is used for
silicon growth. In practice, silicon ingots are typically grown
using the Czochralski (CZ) method or alternatively, the float-
zone (FZ) method (Airaksinen et al., 2015; Cuevas & Sinton,
2018). Note that the growth method may impact production
costs, and material properties, such as thermal stress resis-
tance. After ingots are grown, they are extracted and cropped
to remove the non-cylindrical ends. The silicon ingot is then
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sliced into thinwafers by (diamond)wire cutting. For the pur-
poses of wafer tracking, wafers are marked with characters
to indicate manufacturing information (i.e., identification,
dopants, orientation) (Airaksinen et al., 2015). Afterwards,
using a profiled diamond wheel, the wafer edges are grinded
to a standardized or customized edge profile to adjust diam-
eter, and minimize risk of slipping and chipping (Airaksinen
et al., 2015). Resulting from the prior cutting process, the
wafer surface is susceptible to large total thickness varia-
tions (TTV), which disposes the surface to additional process
variations from downstream processes. As such, lapping or
single-sided grinding is conducted to achieve TTV, surface
roughness, and thickness measures within acceptable stan-
dard ranges. Residual mechanical damage may develop on
the surface and/or edges after the lapping and grinding opera-
tions (Airaksinen et al., 2015). To remove the damage and any
remaining impurities, chemical etching (alkaline or acidic)
is conducted. Subsequently, the wafers undergo polishing
to achieve desired thickness, TTV, and flatness. Then the
polished wafers undergo a cleaning sequence and quality
inspection prior to IC fabrication. Quality inspections for
wafers involve measuring the physical, material, and chemi-
cal properties of the finished product with respect to standard
and design specifications (Airaksinen et al., 2015; Cuevas &
Sinton, 2018). For surface inspections, wafer defect detec-
tion systems leverage WM images, or wafer images. WM
images are the spatial results from electrical testing, which
illustrate individual die functionality, such that defect pat-
terns are clusters of faulty dies. Wafer bin maps (WBM) are
the resulting binarized WM images. Wafer images are gen-
erated from automated visual or electron beam inspection
systems (Patel et al., 2020). Automated visual inspection sys-
tems typically utilize optical imaging techniques, including
scanning acoustic tomography (SAT) (Chen, 2020), scanning
electron microscopy (SEM) (Kim & Oh, 2017; Cheon et al.,
2019), and charged-coupled device (CCD)-based imaging
(Chen et al., 2020a, 2020b; Wen et al., 2020).

IC fabrication consists of photolithography, assembly, and
packaging. Photolithography is used to pattern the wafer, and
involves a repetition of various steps: masking, exposure, and
etching. Mask design is used to develop the desired patterns
for masking; inverse-lithography technologies (ILT) deter-
mine the optimal mask to achieve the desired wafer patterns,
and is emerging as a prominent researchfield (Shi et al., 2019,
2020). Masking involves the application of photoresist, and
photomask alignment to the wafer. Then the wafer is exposed
to ultraviolet (UV) light through the photomask to reveal
the patterns, which is followed by etching. Using chemical
processes, etching develops and removes the exposed pho-
toresist and exposed oxide layer. To create the desired IC
patterns, photolithography is repeated in cycles for pattern
and structure development. After the dies (also known as
chips) have been developed, wafers undergo a sorting test,

which involves electrical testing to determine die function-
ality. As part of assembly and packaging, the wafer is sliced
into individual pieces, in which the faulty dies are discarded,
and the remaining dies are forwarded to packaging.

The current technologies and design standards for IC
fabrication are evolving, specifically for photolithography
and IC design. Current designs and lithography technolo-
gies are at the sub-10 nm scale, specifically with extreme
ultraviolet (EUV) lithography (Hasan & Luo, 2018; Preil,
2016). With competition and fast-evolving technologies, the
future trends for IC fabrication include sub-5 and sub-3 nm
scale lithography. As these future trends and technologies
are realized, defect frequency and complexity increase, sub-
sequently increasing the emergence of unknown, rare, and
mixed-type defects; rendering defect detection more diffi-
cult, and emphasizing the need for more robust and reliable
detection methods. The wafer production and IC fabrication
processes, associated defects and causes are summarized in
Table 1.

Table 1 Summary of processes and associated defects

Defect Associated
process/stage

Cause

Random Clean room Environmental
conditions of clean
room may induce
particles and debris
onto wafer surface

Loc Lapping, grinding
Polishing

Non-uniform surface
Uneven cleaning

Edge-Loc Lapping, grinding
Polishing

Non-uniform surface
Uneven cleaning

Center Polishing Non-uniform surface
during chemical
mechanical
process (CMP)

Edge-Ring Lapping, grinding
Photolithography

Non-uniform surface
Layer-to-layer
misalignment
Chemical etching
issues

Scratch Assembly, packaging
Polishing
Clean room

Mishandling
Hardening of
polishing pads
Agglomeration of
particles

Near-full – Agglomeration of
multiple systematic
and random defects

Donut Lapping, grinding
Polishing

Non-uniform surface
Equipment
handling or
hardening of
polishing pads
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Data

The data is the input used to train, validate, and test the mod-
els. They originate from real-world fabrication lots or are
simulated via generative modeling. Generative models learn
the probability distribution of the data, such that data can be
generated by sampling from the learned distribution (Kingma
et al., 2014; Ruthotto & Haber, 2021). With the advent of
powerful, and deep generative models, many studies have
applied generative modeling for the purpose of wafer map
data generation (Ji & Lee, 2020; Lee & Kim, 2020; Wang
et al., 2019). Wafer map data generation can also be used
as a data augmentation tool to tackle class imbalance and
is introduced later in-depth in Section Enhanced learning
strategies.

Across the wafer map defect detection literature, two
defect classes have been identified as random, and system-
atic. Random defects are caused by environmental factors
within the manufacturing space, such as air particles and are
globally distributed across the wafer surface. They have no
identified association to fabrication processes, and as such are
typically removed during image preprocessing. Systematic
defects are caused by process deviations and have localized
spatially correlated patterns. The root causes for systematic
defects have been identified and associated to specific fabri-
cation processes (Table 1).

Single-type defectwafermaps reflect the presence of a sin-
gle defect pattern, in which labels indicate the most salient
defect pattern. Mixed-type defects are the agglomeration of
randomdefects and two ormore systematic defect patterns. It
is important to note that majority of past works have focused
on the detection of single-type systematic defects. However,
with the onset of complex defects, recent works have shifted
focus onto mixed-type defect recognition and classification.
Shown in Fig. 3 are various examples of normal, single-
type and mixed-type defects from the MixedWM-38 dataset
(Wang et al., 2020). Wafer maps labeled as normal are with-
out defects.

For data sourcing, there are publicly available and pri-
vate datasets. The WM-811K data (Wu et al., 2015) is a
prominently used public dataset and is heavily featured in
past works. TheWM-811K dataset consists of 811,457wafer
bin maps from 46,393 real-world fabrication lots, and other
manufacturing process data, including die size, lot name and
wafer index. The labels are single-type defects; however, it is
important to note that the labels reflect themost salient defect
pattern, despite the presence of mixed-type defects. The
exploratory data analysis for this dataset (Fig. 4, top) revealed
majority of the data is unlabeled, and amongst the labeled
wafer maps, a majority are labeled as Normal. Another pub-
licly available dataset is the Mixed WM-38 (Wang et al.,
2020). The Mixed WM-38 dataset consists of 38,015 wafer
bin maps of mixed-type defects. This dataset includes 38

defect classes, which consists of 29 mixed-type defects of
2-, 3-, and 4-mixed types, 8 single-type defects, and normal
(non-defect). Exploratory data analysis (Fig. 4, center) has
shown that most mixed-type wafer maps have two to three
defect types. In Fig. 4 (bottom), the distribution of defect
classes with respect to defect types is shown. Pleschberger
et al. (2019) collected a total of 1000 wafer maps from
five lots, which included five different classes of simulated
defect patterns with varying degrees of Gaussian noise. Each
WM is described to contain approximately 17,000 devices
(dies), in which the (x, y) spatial coordinates are given, along
with their respective electrical testing results. Beyond the
public datasets, many developments obtained private WBM
datasets directly from semiconductor manufacturing compa-
nies (Adly et al., 2015b; Bella et al., 2019; Hwang & Kim,
2020; Tello et al., 2018). As wafer map labelling is manually
conducted by domain engineers, which is time consuming
and expensive, majority of the provided data were limited in
size and types of defects. Note that wafer map datasets typ-
ically have two limitations: (1) severe class imbalance, and
(2) lack of labels. Class imbalance is the unequal propor-
tions of data examples for each class. Severe class imbalance
persists in the datasets as wafer defects appear at lower
frequencies than normal wafer maps. As such, datasets typi-
cally lack labels and have an abundance of unlabelled wafer
maps. It should be noted that with manual annotation, there
exists incorrect and/or uncertain labelling due to human error
(Northcutt et al., 2021; Park et al., 2020).

Features

Features capture the intrinsic information from the input data
and are a critical component as feature learning can bot-
tleneck model performance. Respective to the model and
learning strategy, features are derived from feature gener-
ation or feature extraction.

Feature generation is the process in which features are
engineered from raw data transformations. Prior to the onset
of neural networks, past works relied on manual feature
generation for effective features as input data to classifiers
(Mohanaiah et al., 2013; Ooi et al., 2013; Saqlain et al., 2019;
White et al., 2008; Wu et al., 2015; Yu & Lu, 2016). These
past works have included generated features such as: (a) geo-
metrical features, (b) Radon projection features, (c) density
features, (d) texture features, and (e) gray features, which are
described in Table 2. Through manual feature generation,
original features are obtained and used for model training.
The main advantages of manual feature generation are that
these features require minimal storage and computation, and
that domain knowledge can be instilled during feature engi-
neering, which can be especially beneficial for well-known
and heavily studied defect patterns (Saqlain et al., 2019).
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Fig. 3 Normal, single-type, and mixed-type defects with image dimensions of (52, 52) from Wang et al. (2020)
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Fig. 4 Defect class distribution for WM-811 K (top) and Mixed WM-38 (center, bottom) datasets
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Table 2 Summary of generated feature types and usage in literature

Class Papers Feature Description

Geometrical White et al. (2008)
Chang et al.
(2012)
Wu et al. (2015)
Fan et al. (2016)
Wang and Ni
(2019)
Saqlain et al.
(2019)
Kang and Kang
(2021)

Area Reflects the area of the defect pattern, typically the most salient
region (single-type) is considered. Also expressed as ratio of
defect pattern area to wafer map area

Perimeter Defines the perimeter of the defect pattern. Also expressed as ratio
of defect pattern perimeter to radius of wafer map

Convexity Indicates the convexity of a defect pattern, and is expressed as the
ratio of the convex hull’s perimeter to the total perimeter of the
defect

Length of Major/Minor
Axes

Computes the length of the major/minor axes of the approximated
ellipse that surrounds the defect pattern (most salient region)

Eccentricity Describes the outline shape of the approximated ellipse that
surrounds the defect pattern

Solidity Estimates the proportion of defective die in the convex hull of the
defect pattern

Hough Transform Identifies edges and lines in defect patterns

Hu Invariant Moments Set of seven values for central image moments. Image moments can
recognize patterns independent of size, position, and orientation
(Hu, 1962)

Projection Wu et al. (2015)
Yu and Lu (2016)
Piao et al. (2018)
Saqlain et al.
(2019)
Kang and Kang
(2021)

Radon Transform Image projections at various angles are collected as a 2D
representation of the wafer map. Projections obtain
geometric/structural information specific to defect patterns

Density Fan et al. (2016)
Saqlain et al.
(2019)
Kang and Kang
(2021)

– Reflects the computed failed die density distribution. Involves
dividing the wafer map into multiple segments, and computing the
defective die density per segment

Texture Yu and Lu (2016) – Describes and extracts surface textural features from images using
the statistical method, gray level co-occurrence matrix (GLCM).
Examples of textural features are correlation, entropy, energy,
contract, and uniformity (Mohanaiah et al., 2013)

Gray Yu and Lu (2016) – Reflects the pixel distribution in images. Is typically expressed with
various statistical features, including mean, variance, skewness,
and kurtosis

However, this advantage also poses as a caveat to gener-
ating effective, handcrafted features because the degree of
domain knowledgemay not be sufficient to represent and dif-
ferentiate the different defect patterns (Kang & Kang, 2021;
Yu & Lu, 2016). This also imposes a limitation in detecting
rare/unknown defects in regards to forming features: impor-
tant characteristics of these defects may not be known or
understood to generate effective features for detection and
classification.

In contrast to feature generation, feature extraction can
be applied to raw data, such as the wafer map images. Fea-
ture extraction includes dimensionality reduction techniques,
and representation learning. Dimensionality reduction tech-
niques, like principal component analysis (PCA) and linear

discriminant analysis (LDA) are applied to extract the crit-
ical features for a lower dimensional representation (Wang
& Ni, 2019; Yu & Liu, 2020). As information is lost when
transforming into a lower dimensional space, PCA aims
to minimize the number of features while maximizing the
amount of variance captured by set of features. A major
limitation of PCA is that it does not consider spatial rela-
tions within the data, such that the underlying patterns are
not effectively captured. On the other hand, LDA weakly
maintains spatial relations by using class labels to instill
low-level discriminatory power in separating classes in the
lower dimensional subspace (Wang et al., 2014). Despite
these limitations, dimensionality reduction techniques can
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reduce computational complexity, and improvemodel perfor-
mance. Additionally, research into non-linear dimensionality
reduction (manifold learning) techniques have demonstrated
improved retention of spatial relations, including autoen-
coders (AE), t-distributed stochastic neighbor embedding
(t-SNE), locally linear embedding (LLE), multi-dimensional
scaling (MDS), and isomap (Faaeq et al., 2018).

Representation learning is automated feature extraction.
Deep learning models, like convolutional neural network
(CNN)—which are neural networks that employ nonlinear
kernels for learning shared weights for input feature maps,
have been highly used in various computer vision tasks due to
the automated feature extraction ability (Nakazawa&Kulka-
rni, 2018; Park et al., 2020; Shen&Yu, 2019). The automated
feature extraction learns rich and highly descriptive fea-
tures at each convolution layer. Similarly, representation
learning can also be conducted via inference models. Proba-
bilistic generative models, such as variational autoencoders
(VAE) and generative adversarial networks (GAN), leverage
inference methods to approximate and learn latent feature
representations of the data via latent variable(s) z (Kingma
et al., 2014;Kong&Ni, 2020a). It is important to note that the
latent space embeds the input to a compact, and non-linear
representation. Depending on the learning approach, auto-
mated feature learning can be executed with labeled and/or
unlabeled data.With representation learning, raw data can be
used, and can gain high discriminatory power as the under-
lying structure of the data can be learned, demonstrating
capability with complex patterns and data structures (Khas-
tavaneh & Ebrahimpour-Komleh, 2020; Zhong et al., 2016).
The significance of representation learning is demonstrated
with transfer learning (Section Enhanced learning strate-
gies), wherein the feature extractor networks (backbone) of
pretrainedmodels have gained strong feature extraction capa-
bilities to extract meaningful features (Chien et al., 2020;
Ishida et al., 2019; Shen & Yu, 2019). However, the capacity
of representation learning is constrained by model complex-
ity, as performance is dependent on whether the model is
suited to the respective data complexity and problem.

With the onset of neural networks, research has shifted
from manual feature generation to feature representation
learning as leveraging feature learning algorithms has proven
to generatemoremeaningful and effective features for down-
stream tasks, especially for problems with complex data
structures.

Algorithms for wafer map defect detection

The algorithms are the learning strategies in which the model
learns and trains from the input data. In this section, the
three learning strategies that we will focus on are introduced:
supervised, unsupervised, and semi-supervised learning. The
main algorithms forwafermap defect detection are discussed

Table 3 Selection of prominent machine learning and deep learning
algorithms for wafer map defect detection

Algorithm Approach Paper

Supervised Conventional ML
Classifiers (i.e., SVM,
decision trees,
ensembles)

Piao et al. (2018)
Saqlain et al.
(2019)
Kang and Kang
(2021)

Neural Networks Kyeong and Kim
(2018)
Nakazawa and
Kulkarni (2018)
Kim et al. (2021)
Wang et al.
(2020)

Unsupervised Mixture Models Kim et al., (2018)
Ezzat et al.
(2021)

Density-based
(DBSCAN, OPTICS)

Jin et al. (2018)

Semi-supervised Pretraining-Finetuning Yu (2019)
Shon et al.
(2021)

Generative Modelling Kong and Ni
(2018)
Hu et al. (2021)
Yu et al. (2019b)
Yu and Liu
(2020)
Lee and Kim
(2020)
Kong and Ni
(2020a)

Enhanced
Learning

Model Optimization Bello et al. (2017)
Jang et al. (2020)
Shon et al.
(2021)

Incremental Learning Shim et al. (2020)
Kong and Ni
(2020a)

Data Augmentation Wang et al. (2019)
Saqlain et al.
(2020)

Transfer Learning Shen & Yu (2019)
Ishida et al.
(2019)
Chien et al.
(2020)

in-depth in SectionMethodologies and learning strategies. In
Table 3, the prominent works for each main algorithm used
in wafer map defect detection are listed.

Supervised learning utilizes labels for model training, and
loss functions, which measure the error between the predic-
tions and ground truth. The labels are factored into the loss
function, and acts as the supervisory signal for the model
to learn the mapping for an input and the respective desired
model output. Loss functions are optimized by finding the
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global minimum or optimal local minimum. It should be
noted that loss functions are dependent on the downstream
task, and their mathematical optimization is constrained by
the convexity. The problem for supervised wafer map defect
detection is defined as classification, in which the algorithms
aim to learn the mapping from input to output to predict spe-
cific defect patterns. Early literature has transitioned from
conventionalmachine learning classifiers to neural networks.
Conventional machine learning classifiers typically require
extensive preprocessing and manual feature generation and
have mainly been applied for single-type defect detection.
Common classifiers used in WM defect detection include
SVM, decision trees, and ensembles (Fan et al., 2016; Piao
et al., 2018; Saqlain et al., 2019; Wu et al., 2015). Neural
networks are prominently used throughout the literature and
have demonstrated capability for single-type andmixed-type
defect classification.

It is important to note that the classification problem can
be multi-class or multi-label. In multi-class classification,
there are a distinct number of classes that the classifier learns
and models. Each data sample belongs to a single class, and
the classifier predicts the probability across all classes that
the data sample belongs to a particular class. Multi-label
classification is a multi-output algorithm, such that the data
examples can be annotated with multiple target classes. For
multi-class neural networks, the softmax function is used in
the final output layer to compute the decimal probabilities,
which add up to 1.0. On the other hand, multi-label neural
networks utilize the sigmoid function in the final output layer
to predict the probabilities (between 0 and 1) for each class.
Mixed-type defect detection can be framed as a multi-class
or multi-label classification problem. As a multi-class clas-
sification problem, mixed-type defects are segmented into
multiple single-type defect patterns and are subsequently
classified with a network of binary classifiers (Kong & Ni,
2019, 2020b; Kyeong & Kim, 2018). On the other hand, as a
multi-label classification problem, mixed-type defect detec-
tion aims to recognize the different patterns and predicts the
probability per class label for a single wafer map (Lee &
Kim, 2020; Wang et al., 2020).

Unsupervised learning algorithms leverage unlabeled data
to learn their underlying patterns, and structure. For wafer
map defect detection applications, the main unsupervised
learning tasks are clustering, and pretraining. Clustering
focuses on self-organization to cluster data based on similar-
ity and dissimilarity distances. Popular clustering algorithms
for wafer map defect detection include density-based spatial
clustering of applications with noise (DBSCAN), ordering
point to identify the cluster structure (OPTICS), and mix-
ture models, such as Gaussian mixture models (GMM) and
infinite warped mixture models (iWMM) (Ezzat et al., 2021;
Fan et al., 2016; Iwata et al., 2013; Kim et al., 2018). Spa-
tial clustering applications in WMDD aim to segment the

different defect patterns for both single-type and mixed-type
defects. Unsupervised methods have also been leveraged for
pretraining to supplement supervised methods with unsu-
pervised feature representation learning using autoencoders
(Shon et al., 2021; Yu, 2019). By taking advantage of the
plethora of unlabeled data, unsupervised pretraining meth-
ods operate to learn general feature representations to better
initialize the model weights for supervised training (relative
to zero or random initialization) via reconstruction errors.

Semi-supervised learning leverages both labeled and unla-
beled data for the model training process. During the training
process, the labeled data is utilized in the same manner as
supervised learning, whereas the unlabeled data is leveraged
for transduction-based inference learning. This is reflected
in the loss function, where a combined, and weighted loss
function is defined to account for both labeled and unla-
beled data. With transduction-based inference learning, all
available data is observed to enhance the learned data rep-
resentations for inferring missing labels. Relative to the
former learning strategies, development of semi-supervised
algorithms is growing to overcome the limitations imposed
by supervised and unsupervised learning. For WMDD,
pretraining-finetuning and semi-supervised generative mod-
els have been implemented to tackle the real-world issue of
limited annotated wafer maps. For pretraining-finetuning,
unsupervised pretraining methods are followed by super-
vised finetuning. Semi-supervised generative models are
probabilistic methods, which include the models: variational
autoencoders (VAE), and modified Ladder networks (Kong
& Ni, 2020a; Lee & Kim, 2020). These methods have been
applied towards both single-type and mixed-type defect pat-
terns.

Beyond the model training algorithms, enhanced learn-
ing algorithms and techniques have been applied for wafer
map defect detection to boost performance, and to address
the issues with labeled data availability, class imbalance,
rare/unknown defect detection, and model sensitivity. These
algorithms and techniques have been introduced as data aug-
mentation, incremental learning, transfer learning, andmodel
optimization (Bello et al., 2017; Jang et al., 2020; Ji & Lee,
2020; Shim et al., 2020).

Evaluation

Evaluation methods are used to assess the performance, and
can be conducted at validation, or the final testing stage. The
results from the validation stage drive hyperparameter tuning
and model optimization. The evaluation methods are depen-
dent on the data and learning approach. Across thewafermap
defect detection literature, the common performance evalu-
ation indices have been identified and summarized in Table
4 below (Hwang & Kim, 2020; Kim et al., 2018; Lee &
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Table 4 Summary of common
performance evaluation indices Learning approach Performance Evaluation Index Equation

Supervised,
Semi-supervised

Accuracy (Top-1) Acc = T P+T N
T P+FP+T N+FN (1)

Precision Pre = T P
T P+FP (2)

Prei = T Pi
T Pi+FPi

(3)

Recall Re = T P
T P + FN (4)

Rei = T Pi
T Pi+FNi

(5)

F-Measure F1 = 2 × Pr ecision × Recall
Pr ecision + Recall (6)

Micro-precision
MPre =

∑N
i=1

∑C
j=1 y

j
i ŷ

j

i
∑N

i=1
∑C

j=1 y
j
i

=
∑

j T P j
∑

j T P j+∑
j F P j
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Exact match ratio
EMR = 1
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(9)
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(10)

Unsupervised Rand Index RI = a+b(n
2
) = T P+T N

T P+FP+FN+T N
(11)

Adjusted Rand Index ARI = RI−E[RI ]
1−E[RI ] (12)

Normalized mutual information NMI = I (X;Y)√
H(X)H(Y)

(13)

Adjusted mutual information AMI = MI − E[MI ]
max(H(U ), H(V )) − E[MI ] (14)

Purity
Purity = 1

N

k∑

i=1
max j

∣
∣ci ∩ t j

∣
∣

(15)

Kim, 2020; Li et al., 2021; Saqlain et al., 2019). In Table 4,
the variables TP, TN, FP, and FN represent True Positives,
True Negatives, False Positives, and False Negatives respec-
tively.

The evaluation methods for supervised learning algo-
rithms indicate how well the model has learned by the
number of correct and incorrect predictions. The (top-
1) accuracy, precision, recall, and confusion matrix are
the metrics typically used to evaluate and compare mod-
els. Equations (1) to (5) represent the (top-1) accuracy,
precision, and recall. The accuracy indicates the total num-
ber of correctly identified wafer maps; precision signifies
the total correctly identified wafer maps from all identi-
fied wafer maps, and recall indicates the total number of
correctly identified wafer maps within a given set. Note
that Eqs. (2) and (3), as well as Eqs. (4) and (5) rep-
resent the same equation, but are qualified by the given
class i, such that the precision and recall are computed
for each respective class i. The F-1 metric is the weighted

average of precision and recall (Eq. 6), such that its respec-
tive score indicates how close the predicted and ground
truth values are. These metrics are used to evaluate the
multi-class classification performance for wafer map defect
detection.

In the context of multi-label classification problems, exact
match ratio (EMR), micro-precision (MPre), micro-recall
(MRe), and Hamming loss can be used (Lee & Kim, 2020;
Santos &Canuto, 2012;Wang et al., 2020). MPre (Eq. 7) and
MRe (Eq. 8) differ from their multi-class counterpart by con-
sidering partially correct predictions, as each correct target
label is counted for each sample i ∈ N , where N represents
the total number of samples, and each class j ∈ C , where
C represents the total number of known classes labels. On
the other hand, EMR (Eq. (9)) is computed similarly to accu-
racy and reflects all fully correct predictions. Note that yi
and ŷi represent the true labels and predicted labels respec-
tively, whereas yi j and ŷ j

i are the per class label equivalents.
Hamming loss reflects the proportion of incorrectly predicted
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labels to the total number of labels at the individual label-
level. As shown in Eq. (10), the indicator function evaluates
to 1whenpredicted labels donotmatch theground truth label.
Like MPre and MRe, N and C represent the total number of
samples and total number of known classes respectively.

As semi-supervised algorithms leverage unlabeled data
for label imputation, and feature representation learning dur-
ing training, the performance is evaluated like supervised
algorithms. Evaluation methods like accuracy, EMR, etc. are
calculated on the labeled data.

For unsupervisedwafermap defect detectionmethods, the
performance indices typically evaluate the defect clustering
results. The following have been identified and described by
Eqs. (11) to (15) as the commonly used evaluation metrics
for unsupervised defect detection algorithms: (i) Rand Index
(RI), (ii) adjusted Rand Index (ARI), (iii) normalized mutual
information (NMI), (iv) adjusted mutual information (AMI),
and (v) Purity. Thesemetrics focus on comparing the clusters
via similarity, and shared information.

RI is the ratio of the number of correct similar pairs (a),
and correct dissimilar pairs (b) to all possible combination
pairs, where n represents the number of samples. ARI is the
RI, but adjusted, such that independent of the number of clus-
ters and samples, randomly clustered samples are closer to 0,
and highly similar samples are closer to 1. In Eq. (12),E[RI ]
indicates the expected RI value. NMI (Eq. 13) is the normal-
ization of mutual information (MI), which results in scores
between 0 and 1. For Eq. (13), I (X; Y), H(X) and H(Y)

represent the mutual information between X and Y, and the
entropy of X and Y respectively. AMI is mutual informa-
tion adjusted, such that permutations of the class and cluster
labels would not affect the score. Lastly, purity (Eq. (15))
measures the accuracy of cluster assignments by tallying the
number of correctly assigned samples and dividing by the
total number of samples (N ).

Methodologies and learning strategies

In this section, the recent developments in AI applications
for WM defect recognition and classification are introduced,
analyzed, and discussed. This section is organized into (1)
preprocessing, (2) supervised learning, (3) unsupervised
learning, (4) semi-supervised learning, and (5) enhanced
learning strategies.

Preprocessing

The purpose of the data preprocessing stage is to preprocess
and prepare the wafer map images for feature extraction and
model training. Data preprocessing typically includes a mul-
titude of operations for image transformations, and spatial

filtering. Preprocessing operations include image size stan-
dardization, binarization, and denoising.

Image size standardization is to reshape the raw wafer
maps to a single, uniform size, and utilizes interpolation algo-
rithms to minimize quality loss. Interpolation algorithms are
subject to the pixel neighborhood size for approximation,
such that with increasing sizes results in longer rendering
times and higher quality. The bicubic interpolation algorithm
is typically used due to the optimal quality and time trade-
off. Binarization is used to convert wafer maps to wafer bin
maps, in which individual die functionality is indicated by
0 s and 1 s.

Image denoising (outlier detection) and filtering refers to
the process of removing random defects. It is typically con-
ducted to enhance model performance and accuracy as the
removal of random defects enhances the systematic defects.
Past works have utilized spatial filtering and clusteringmeth-
ods to remove noise and isolate the systematic defects (Chien
et al., 2013; Liu & Chien, 2013; Wang, 2008, 2009; Yuan
et al., 2010). Spatial filtering algorithms focus on how to
effectively differentiate between the random defects and the
dies that belong to systematic defects. Spatial clustering algo-
rithms focus on forming a separate cluster for each different
defect patterns. The input to these methods has already fil-
tered the defect patterns. Support vector clustering (SVC)
has been used in Wang (2009) and Yuan et al. (2010) for
defect denoising, and identification of systematic defect pat-
terns. SVC demonstrated robustness against noisy data, but
high sensitivity to defect complexity as clustering efficiency
decreases with more complex defect patterns (i.e., multiple
defects). Similarly, the k-nearest neighbors (kNN) algorithm
is also used to differentiate between defective dies that belong
to systematic defect patterns (Huang, 2007). The spatial ran-
domness filter is a statistical method that checks the spatial
independence of adjacent dies. The spatial independence is
computed by taking the logarithm (Log) of the odds ratio
(θ̂), in which the resulting Logθ̂ determines whether the
wafer map is spatially random, contains a defect cluster, or
repeating patterns (Chien et al., 2013; Liu & Chien, 2013).
Although the filtering results indicate which wafer maps
should be used for classification, as the spatial independence
test is computed for the dies and not the pattern, misclassi-
fication can occur. Median filtering is a popular denoising
method that replaces each die’s value with the median value
of the neighboring dies, and has been used in many works
for image preprocessing (Kong & Ni, 2020a; Wang et al.,
2006; Yu & Lu, 2016; Yu, 2019). Median filtering can be
effective in removing the random defects, however, may also
remove important pattern information as some of the sys-
tematic pattern dies may be removed. The thin geometries of
the Scratch, and Edge-Ring defects are particularly sensitive
to median filtering (Fig. 5). It is important to note that poor
spatial filtering and spatial clustering can significantly affect
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Fig. 5 a–d Original wafer maps, e–h Wafer maps after median filtering

downstream tasks as the filtered systematic defect pattern
quality is damaged.

Wang and Chen (2019) proposed using three masking fil-
ters to preprocess wafer maps and extract rotation-invariant
features for defect pattern classification. To address the lim-
its of traditional spatial filtering methods for curvilinear and
edge patterns, polar, line, and arc masks were applied at var-
ious angles to real-world wafer maps to extract features of
concentric, linear, and eccentric patterns. Used to train vari-
ous classifiers (i.e., neural networks, random forest, SVM),
the masking filters demonstrated effectiveness with high
defect recognition rates, but limited recognition for defect
patterns with complex geometry (i.e., Scratch, Reticle).

The king-move neighborhood (Chien et al., 2013; Hsu
et al., 2020; Wang, 2008; Wang & Ni, 2019), and Moore
neighborhood (Jin et al., 2019) are utilized to compute the
spatial correlation weights for the adjacent dies. Although
both the king-move neighborhood and Moore neighborhood
filters consider the eight surrounding dies, the Moore neigh-
borhood filter also considers the center die. Typically, a
global threshold criterion is applied to the spatial correla-
tion weights, such that dies are removed if the criterion is
not met. The downfall of using a global threshold criterion is
that it does not consider the geometries and typical defect die

densities of each defect, in particular the Scratch and Edge-
Ring defects. According to Jin et al. (2019), their proposed
DBSCAN-based algorithm considers defect pattern type for
outlier detection. The outliers are completely removed for
most defects (i.e., Loc, Donut, Random), and either care-
fully removed for the Scratch and Edge-Ring defects. The
authors recommended to not completely remove the outliers
for the Scratch and Edge-Ring defects as defect pattern qual-
ity would deteriorate.

The above filtering methods have demonstrated limita-
tions towards the Scratch and Edge-Ring defects due to their
thin and elongated shapes. As such, Kim et al. (2018) pro-
posed the connected-path filtering (CPF) algorithm. TheCPF
algorithm uses depth-first search (DFS) to explore all pos-
sible paths between two defective dies, and recognizes the
connected paths that are longer than a threshold criterion to
represent the identified defective die connected paths. Note
that the CPF algorithm relies on the optimal threshold cri-
terion to effectively detect systematic defects, which can
be determined by parameter-tuning or domain experts. The
authors utilized domain experts to set a global threshold cri-
terion of 12 for all defects, in which distances greater than
12 are recognized as systematic defects. The advantage of
the CPF algorithm is that the threshold criterion allows for
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the detection of the Scratch defect. The limitation of apply-
ing a global threshold criterion for all defect-types is that the
local spatial information, such as defective die density and
distribution, defect-type geometry, and disjoint connection
paths [due to randomdefects], is not considered. Specifically,
the defective dies that are not associated with a connected
path are completely disregarded.Additionally, defining a uni-
versal threshold for all defect-types cause scalability issues
for real-world applications as the onset of complex, and
mixed-type defects would require domain experts and fre-
quent updates to threshold values.

To address the limitations of the CPF algorithm, the
graph-theoretic approach for adjacency clustering (AC) was
developed by Ezzat et al. (2021). Based on graph theory, this
algorithm represents the dies and the neighborhood connec-
tions on the wafer map as the graph nodes, and graph edges.
Although the AC algorithm is executed as a spatial clustering
task, it functions as a spatial filtering method by leveraging
spatial correlation information between adjacent dies to clus-
ter the defective dies into two groups: random and systematic
defects. The authors compared the AC and CPF algorithms,
and demonstrated the improved performance of AC in fil-
tering high complexity defects, and overall improved impact
to the defect recognition task. The authors have noted that
too small or too large separation loss would result in unde-
sired filtering results (i.e., weak to absent filtering effect,
same label wafer maps), and cross-validation may be used
to determine the optimal weight trade-off. In comparison to
existing preprocessing methods, this algorithm fully utilizes
the available spatial information (i.e., spatial dependency of
adjacent dies), demonstrating state-of-the-art performance.

Supervised learning

Supervised learning utilizes labels as a supervisory signal
for training. Early literature for wafer map defect detection
mostly consists of supervised machine learning algorithms,
including common models such as artificial neural network
(ANN), random forest (RF), and support vector machines
(SVM). Note that in wafer map defect detection applica-
tions, multi-class classification is more popular and widely
developed than multi-label learning. The methodologies dis-
cussed in this section are structured into three categories: (i)
conventional machine learning, (ii) deep learning, and (iii)
specialized modules.

Conventional machine learning algorithms used for
WMDD include SVM, decision trees, and ensembles.
Although a bit antiquated due to the onset of neural networks
and deep learning, conventional ML algorithms can remain
competitive. In related works, SVM and decision trees were
prominently used for single-type WM defect classification
as the classifiers are relatively computationally inexpensive,
stable, and canworkwell with high-dimensional data (Chang

et al., 2012; Hsu & Chien, 2007; Kim et al., 2020b; Li &
Huang, 2009; Liao et al., 2014; Ooi et al., 2013). These
methods reported a high overall detection accuracy (approxi-
mately > 90%), however demonstrated lowdetection rates for
geometrically complex defect patterns (i.e., Donut, Scratch,
mixed-types), and diminished effectiveness with imbalanced
datasets. To boost overall classification accuracy, Jin et al.
(2020) incorporated error-correcting output codes (ECOC)
and SVM for single-type WM defect classification using
CNN-based feature extraction.

Yu and Lu (2016) proposed the joint local and non-local
linear discriminant analysis (JLNLDA) framework, which
utilizes manifold learning to extract highly discriminative
features. With the aim to preserve defect geometry at lower
dimensional space, four neighborhood graphs: two graphs
for local and non-local spatial information, and two penal-
ization graphs that apply penalties to promote maximizing
between-class separation, and minimizing within-class sep-
aration. Geometry, gray, texture, and radon-based features
were generated, followed by dimensionality reduction and
feature extraction. For wafer defect detection, JLNLDA was
extended to construct JLNLDA-FD, a Fischer discriminant-
based recognition model to compute the discriminant func-
tion value of a wafer map belonging to the defect classes,
such that wafer maps are classified as the defect class with
the maximum probability.

Saqlain et al. (2019) proposed a soft voting ensemble
(SVE) classifier for wafer defect recognition and classifica-
tion. Using the WM-811K dataset, three multi-type features
(geometry-based, density-based, radon-based) are extracted,
and used as inputs to train the base classifiers of the ensem-
ble. The authors used four state-of-the-art ML classifiers for
the ensemble: logistic regression, gradient boosting machine
(GBM), ANN, and random forest. To train the proposed
ensemble, the base classifiers are trained individually using
the extracted features, and then in a soft voting ensemble
approach, the results of the base classifiers are combined to
output the final defect prediction. Soft voting uses weighted
averages to determine the final prediction; based on perfor-
mance, better performing classifiers have higher weights for
voting. The authors reported defect classification accuracy of
95.87%, proving the ensemble classifier achieves improved
performance relative to a single individual base classifier.
Although both JLNLDA and SVE achieved high defect clas-
sification rates, their performance is contingent on manually
generated features, which can bottleneck performance.

Extensions of supervised ANNs have featured in WMDD
literature, including multilayer perceptron (MLP), and gen-
eral regression network (GRN) (Adly et al., 2015a, 2015b;
Huang, 2007; Huang et al., 2009; Tello et al., 2018). In
(Huang, 2007) and (Huang et al., 2009), self-supervised
MLP models were trained to recognize clusters of defec-
tive dies, however, classification was restrained to predicting
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good and bad wafers, such that limited details of the defect
were learned. GRNs utilize Gaussian kernels as activation
functions in the hidden layer. Adly et al., (2015b) applied a
randomized bootstrapping technique to train an ensemble of
GRN models, such that each model would learn from a ran-
dom, independently sampled data to decrease variance, and
increase detection accuracy. Similarly, Adly et al., (2015a)
extended the previousworkwith a data dimensionality reduc-
tion technique, which employed Voronoi diagrams for data
partitioning and K-means for clustering to represent the data
at a reduced size. As the Voronoi diagrams portion the data
into a vector space; smaller regions reflect different defect
patterns, andK-means clusteringwasused tofind the centroid
for each region in the vector space, which was subsequently
used for training. Both the GRN-based models demonstrated
high accuracy, but by applying the data reduction technique,
computational time complexity was reduced. As these pre-
vious works considered only single-type defects, Tello et al.
(2018) combined the randomized GRN (RGRN) model with
a CNN model. By using information gain theory to sepa-
rate the data into single-type and mixed-type defects, RGRN
andCNNclassify single-type andmixed-type defects respec-
tively, achieving an overall accuracy of 86.17%. Although
mixed-type defect detectionwas investigated, a limited range
of mixed-type defects were considered.

Deep learningmodels employCNNs and additional layers
for training. Due to the automated feature extraction capabil-
ity, deep learning has been heavily applied for image-based
tasks, including wafer map defect recognition and classifi-
cation. Deep learning models typically have more than three
layers, and with each progressive layer, the model extracts
higher level features. Many related works utilize CNNs for
single-type, and mixed-typeWMDD. In (Batool et al., 2020;
Bella et al., 2019; Du&Shi, 2020;Kim et al., 2020a;Maksim
et al., 2019; Nakazawa & Kulkarni, 2018; Yu et al., 2019a),
CNNs with customized model architecture were trained for
single-type WM defect classification. For example, the cus-
tom CNN architecture by Nakazawa and Kulkarni (2018)
for multi-class defect pattern classification achieved an over-
all test accuracy of 98.2%, and considered 22 defect classes
(Fig. 6), in whichmany classes were variations of fundamen-
tal defect patterns. It should be noted that in the case of class
distinctiveness, many classes were quite similar, such that
misclassification rates were high as the model had difficulty
differentiating between the similar-looking defect patterns.
Additionally, in multi-class classification methods, mixed-
type defect detection is difficult as the most salient defect
pattern is typically predicted, disregarding the other present
defects.

The related works for mixed-type WM defect detection
framed the problem as multi-label classification (Devika &
George, 2019; Hyun and Kim (2020); Wang et al., 2020)
or multi-class classification (Byun & Baek, 2020; Kim

et al., 2021; Kong & Ni, 2019, 2020b; Kyeong & Kim,
2018; Zhuang et al., 2020). For multi-label classification of
mixed-type defects, CNN models used sigmoid activation to
compute the probability for each defect label. On the other
hand, for multi-class classification of mixed-type defects,
Kyeong and Kim (2018) proposed the use of CNNs for
mixed-type defect pattern classification by training multiple
binaryCNNs (Fig. 7). EachCNN is built to detect the absence
or presence of a distinct pattern (Scratch,Ring,Circle, Zone),
and then the CNN outputs are combined. By leveraging
multiple CNNs, this method has the advantage of adaption,
as new defect patterns can be easily trained and added to
the existing framework. Compared to SVM and multilayer
perceptron (MLP), the proposed CNN achieved superior
classification accuracy, recall and precision of 0.910, 0.945,
and 0.949 respectively. Similarly, in (Zhuang et al., 2020), a
network of deep belief networks (DBN) was used to classify
six defect patterns for single-type andmixed-type defect clas-
sification.Kong andNi proposedmixed-type defect detection
by pattern segmentation, such that overlapped defect pat-
terns are processed into multiple single patterns, which are
then classified using multiple binary CNNs (Kong & Ni,
2019, 2020b). Both proposed models achieved comparable
classification performance as other high performing models
and demonstrated how pattern segmentation of overlapped
mixed-type defects can improve recognition and classifica-
tion accuracy. Kim et al. (2021) applied the object detection
algorithm, single shot detector (SSD), to effectively recog-
nize, segment and classify the multiple instances of defect
patterns within a mixed-type defect sample. As object detec-
tion frameworks require bounding box (BB) information (for
the desired object instances), an automatic BB generator was
designed to utilize digital image preprocessing techniques
and libraries (i.e. PIL, spatial filters) to obtain the BBs. The
SSD algorithm simultaneously solves the object classifica-
tion and localization problems,which subsequently improves
run-time, and performance. The SSDmodel utilized pretrain-
ing from large-scale image datasets, and fine-tuned the last
output layer on a selection of theWM-811K data. Compared
to theCNNmodel, the proposedSSDmodel achieves a higher
accuracy for single-type and mixed-type defects.

The methods categorized as specialized modules inte-
grate advanced model elements different from standardized
model components, which can encompass specialized loss
functions, modified kernel functions, etc. Park et al. (2020)
proposed a Siamese network integrated with an uncertainty-
reducing technique for class label reconstruction via G-
means clustering (Fig. 8). For discriminative feature learning,
the Siamese network learns feature embeddings based on
similarities between the input image pairs, and aims to min-
imize the contrastive loss, such that embeddings for similar
images are closer together, and embeddings for dissimilar
images are farther apart. G-means clustering leverages the
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Fig. 6 Structure of proposed CNN by Nakazawa and Kulkarni (2018)

learned feature embeddings from the Siamese network to
enable enhanced class label reconstruction and outlier detec-
tion. The results demonstrate that the proposed model can
segment mixed-type defects, however, has difficulty with
controlling the degree of pattern segmentation, and differ-
entiating between the unknown cases from the known cases.
By leveraging class label reconstruction, uncertainty associ-
ated with the wafer map labels can be mitigated.

Modified convolutional blocks were proposed by Wang
et al. (2020), Tsai and Lee (2020a), Hyun and Kim (2020),
andAlawieh et al. (2020).Wanget al. (2020) useddeformable
convolution networks (DCN) for multi-label classification,
which demonstrated enhanced performance as deformable
convolutional layers can learn and recognize the geometric
variations of defect patterns. Deformable convolutional units
learn the two-dimensional offsets to learn different deforma-
tions of the filter sizes and geometric characteristics, which

are subsequently added to a standard convolution (Fig. 9)
(Dai et al., 2017; Zhu et al., 2019). The authors compared
the proposed DCN to state-of-the-art mixed-type defect clas-
sification models on the Mixed WM-38 dataset, in which
the results demonstrated the superior performance of DCN
in the detection of complex mixed-type defects. Similarly,
Tsai and Lee (2020a) incorporated depth-wise separable
convolutions to improve run-time and reduce overfitting
as they have fewer parameters than standard convolutions.
By using depth-wise separable convolutions, the proposed
model achieved a 96.63% classification accuracy based on
single-type defect patterns. Another development of modi-
fied convolutional blocks was introduced by Hyun and Kim
(2020); a memory module to keep track of a fixed number of
rare occurrences for each class to mitigate class imbalance
issues. The memory module is used to learn high quality
representative samples in latent space for each defect class.

Fig. 7 Proposed mixed-type
defect classification model in
Kyeong and Kim (2018)
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Fig. 8 Proposed Siamese
network with class label
reconstruction in (Park et al.,
2020)

To learn the low dimensional representations of the data
within the CNN structure, this method utilized triplet loss
for training. Compared to CNN and SVMvariations, the pro-
posed memory module achieved comparable test accuracies
on three different datasets.

Alawieh et al. (2020) proposed a reject option for
CNN deep selective learning, such that misclassification of
unknown defects can be avoided. Deep selective learning is
leveraged when new defects emerge, change in class dis-
tribution, and resource allocation. The model is trained to
achieve an optimal trade-off between rejection and classifi-
cation, such that the model rejects prediction of select wafer
maps when the risk of misclassifying is high. This creates a
pool of samples to be examined for enhance understanding
and identification of new defects. The authors demonstrated
the use of deep selective learning can achieve superior perfor-
mance relative to conventional CNNs. Similarly, Cheon et al.
(2019) designed aCNNmodelwith an unknowndefect detec-
tion option.Using kNN, the anomalies (unknowndefects) are
recognized, compared to other known defect clusters, and
classified as unknown when determined as lacking cluster
membership.

Unsupervised learning

To leverage the abundance of unlabeled data, unsupervised
learning has been applied for clustering, as well as the auxil-
iary task of pre-training to supplement supervised learning.
In context of wafer map defect detection, the related unsu-
pervised learning works are introduced.

Clustering algorithms utilize similarity or distance mea-
sures to group data; they aim to minimize the distance
between intra-cluster samples (high intra-cluster similar-
ity), and maximize inter-cluster distances (low intra-cluster
similarity). Spatial clustering is applied for wafer map seg-
mentation, such that the defect patterns are separated into
clusters. In early works that utilized clustering algorithms,
adaptive resonance theory (ART) based models (Chen &
Liu, 2000; Choi et al, 2012; Hsu & Chien, 2007; Palma
et al., 2005) were prominently used. These ART-based mod-
els are recurrent models, demonstrating memory retention,
knowledge adaption and growth when identifying charac-
teristics of new or similar defect patterns. In (Taha et al.,
2018), spatial dependence across all mapswas considered for
the proposed wafer clustering algorithm, Dominant Defec-
tive Patterns Finder (DDPfinder). Similarly to Adly et al.,
(2015a), Voronoi diagrams are used to partition the defect

Fig. 9 Standard convolution
sampling (left) and deformable
convolution sampling (right)
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patterns, and to determine the respective spatial depen-
dence relative to the identified centroid defective die point.
Hierarchical clustering was used by Alawieh et al. (2018)
to minimize clustering sensitivity to outliers; incorporat-
ing various optimization methods to determine the optimal
number of clusters, optimal number of singular values for
noise removal, and optimal number of defect patterns. As
clustering algorithms are sensitive to initialization and hyper-
parameters (i.e., number of clusters), many suffered from
difficulty of determining the appropriate number of clusters
for defect patterns (Patel et al., 2015; Xu & Tian, 2015).

Related works (Hwang & Kim, 2020; Jin et al., 2019;
Kim et al., 2018) leveraged clustering algorithms for defect
detection. Kim et al. (2018) utilized connected-path filter-
ing, and then spatial clustering via infinite warped mixture
models (iWMM). iWMMs (originally introduced in (Iwata
et al., 2013)) apply a warping function to the defect clus-
ters, such that in the latent space, the clusters have Gaussian
shapes. In (Ezzat et al., 2021; Iwata et al., 2013; Kim et al.,
2018), the authors report iWMM as an effective clustering
algorithm due to its warping function, and ability to effec-
tively estimate the number of clusters, which circumvents
the influence of setting the number of clusters. However,
Kim et al. (2018) noted that iWMM had difficulty in appro-
priately isolating the partial-ring defect pattern due to its
complex and non-Gaussian geometry. Jin et al. (2019) intro-
duce DBSCANWBM, a novel DBSCAN-based clustering
method. DBSCANWBM inherits DBSCAN characteristics,
and was adapted to: (i) consider defect-type for outlier
detection, (ii) bypass the requirement to specify number of
clusters, (iii) parallelize outlier detection and defect detec-
tion, and (iv) detect both single-type and mixed-type defects.
By adjusting outlier removal relative to defect-type, the sys-
tematic defect geometries can be better preserved, which in
turn, can improve classification accuracy. Hwang and Kim
(2020) developed a one-step clustering method that com-
bines Gaussian mixture models and Dirichlet process (DP)
to a VAE framework. Within the proposed VAE framework,
DP is used to automate the updating of number of clus-
ters, and the GMMs are employed as a prior distribution
to learn the nuances of different wafer maps. Like iWMM,
and DBSCANWBM, this VAE framework works without
specifying the number of clusters in advance. The VAE
framework encodes and decodes latent feature representa-
tions that follow a Gaussian mixture distribution (Hwang &
Kim, 2020). The authors reported that their proposed clus-
tering framework estimated the number of clusters more
accurately than the comparison models, and achieved better
clustering performance relative to adjusted mutual informa-
tion and adjusted rand index. The clustering methods that
utilized generative models have demonstrated improved per-
formance as the models are built to learn effective feature
representations.

Unsupervised pre-training is typically conducted by train-
ing an autoencoder in an unsupervised approach to minimize
the reconstruction loss and learn latent feature represen-
tations of the data. For classification tasks, a classifier is
added to the trained encoder and fine-tuned; the fine-tuning
adjusts the encoder and classifier. The general process of
unsupervised pre-training is shown in Fig. 10. Shon et al.
(2021) applied unsupervised pre-training and data augmenta-
tion to improve CNN classifier performance based on limited
labeled wafer maps. Using the unlabeled data of WM-811K,
a convolutional variational autoencoder (CVAE) was trained
in efforts to better initialize the feature extraction layers of
the CNN classifier. Subsequently, the CVAE encoder and
CNN classifier are fine-tuned in an end-to-end manner by
minimizing the cross-entropy loss. The results showed that
the proposed method achieved high classification perfor-
mance at early epochs, indicating the benefit of unsupervised
pre-training. Although pre-training can improve downstream
classification performance, as theWM-811K data consists of
single-type defects, the proposedmodel is limited in complex
mixed-type defect recognition as CVAE may have difficulty
differentiating between the multiple defects with a single
discriminative network. Similarly,Yu (2019) proposed a two-
phase methodology for wafer map recognition: an enhanced
stacked denoising autoencoder (ESDAE) for feature learning
via unsupervised pre-training, and then supervised finetun-
ing. ESDAE consists of two autoencoders, which incorporate
manifold regularization such that intrinsic local and nonlocal
geometric information is preserved. ESDAE involves a cost-
sensitive layer-wise training procedure, in which each layer
is trained to minimize the reconstruction error, and assigns
different costs to different defect classes for misclassification
to address class imbalance. The experimental results on the
influence of manifold regularization demonstrate that perfor-
mance improved with the increasing degree of regularization
(γ). Compared to a typical stacked denoising autoencoder
(SDAE), logistic regression,DBN, and back propagation net-
work (BPN), ESDAE achieved the best defect recognition
accuracy of 97.03%. Despite the improved performance, the
proposed methodology involves feature generation of orig-
inal geometrical, gray, texture, and projection features for
model training; generally, as it is difficult to estimate the
effectiveness of manually generated features, model perfor-
mance may be hampered. Likewise to CVAE, ESDAE trains
on the single-type defects in WM-811K, and as such is inad-
equate against mixed-type defects.

Semi-supervised learning

The performance of supervised learning is limited by the
amount of available labels; on the other hand, without the
supervisory signal from labels, the performance of unsu-
pervised learning for defect classification is unsatisfactory
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Fig. 10 General unsupervised
pretraining using layer-wise
training of autoencoder with
layer-wise training (left) and
supervised finetuning with
classifier (right)

in comparison. Semi-supervised learning is introduced, and
addresses the limitations of supervised and unsupervised
learning. Regarding real-world applicability, with limited
available labels, a surplus of unlabeled wafer maps, and large
volumes of incoming unlabeledwafermaps, semi-supervised
learning can achieve better performance as it utilizes both
labeled and unlabeled data for model training. For semi-
supervised learning, the labeled wafer maps are used to learn
the relevant features for each defect pattern, and then the
unlabeled wafer maps are used to refine the feature repre-
sentations. To the best of our knowledge, semi-supervised
learning algorithms for wafer map defect recognition and
classification have been scarcely developed.

Kong and Ni (2018) trained a CNN-based Ladder net-
work in a semi-supervised manner to detect and classify
wafer map defects. The semi-supervised Ladder network
consists of a clean encoder, a corrupted encoder, and a
decoder, which were trained and tested separately on two
datasets with 22 classes of single-type defect patterns. The
encoders are responsible for learning the latent features of the
wafer maps. The latent features from the encoder layers are
shared with the decoder through skip connections to recover
additional spatial information. Given the noised latent fea-
tures from the corrupted encoder, the decoder reconstructs
the wafer maps with the aim to minimize the reconstruc-
tion error at each layer. Compared to supervised CNN with
varying amounts of labeled data, the authors established how
semi-supervised learning can improvewafermap defect clas-
sification accuracy. As the proposed framework trained on

two small datasets containing only single-type defect pat-
terns, the small class sample sizes most likely skewed feature
learning, such that the model had difficulty differentiating
between similar-looking pattern variations. This is shown by
the confusionmatrices reported in (Kong&Ni, 2018), which
divulge themisclassification rates of select defects.Addition-
ally, as the datasets contained only single-type defect wafer
maps, defect classification is limited and requires modifica-
tion and model re-training for mixed-type defects.

In (Yu & Liu, 2020), PCACAE, a novel semi-supervised
two-dimensional PCA-based convolutional autoencoder
with effective feature extraction capability is introduced. To
overcome class imbalance and preserve spatial information,
conditional two-dimensional PCA (C2DPCA) is proposed.
C2DPCA aims to find the optimal projection direction by
minimizing the reconstruction error, and as an image pro-
jection method, can effectively map the high dimensional
wafer maps into lower dimensional space. By transform-
ing the principal eigenvectors from 1 to 2D, C2DPCA-based
kernels are formed, such that discriminative principal com-
ponents are learned and used downstream for pretraining and
finetuning purposes. The authors compared PCACAEperfor-
mance to a pretrained deep learning models (i.e., AlexNet,
GoogleNet), stacked denoising autoencoder (SDAE), and
DBN. The results and visualizations reported in (Yu & Liu,
2020) indicate the usefulness of pretraining, and that the
C2DPCA-based kernels have effective, and powerful feature
learning capabilities. As the PCACAE framework trained
on the WM-811K dataset, defect recognition is limited to
single-defect patterns. With the use of pretraining, PCACAE
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Fig. 11 Proposed SVAE
methodology in (Kong & Ni,
2020a)

has shown reduced computational run-time (per iteration)
relative to the comparison models. Although C2DPCA has
demonstrated to be effective, it is limited regardingnon-linear
data, as it is essentially an orthogonal linear transformation
on the data.

Kong and Ni (2020a) also presented a semi-supervised
variational autoencoder (SVAE) with incremental learning
(Section Enhanced learning strategies) for wafer map defect
classification, which was trained and tested on two datasets
with 22 classes of single-type defect patterns. The proposed
SVAE framework (Fig. 11) comprised of three networks:
(i) inference network, (ii) discriminative network, and (iii)
generative network. The inference network is responsible
for approximating and learning the latent feature representa-
tions of the wafer map defects. The discriminative network
is used to predict the labels of the unlabeled WMs, includ-
ing WMs with rare/unseen defect patterns. The generative
network leverages the learned latent features and predicted
labels for the unlabeled wafer maps to reconstruct the orig-
inal wafer map. The authors compared the classification
performance of a CNN, and the supervised components of
SVAE, and semi-supervised Ladder network (Kong & Ni,
2018) with different percentages of supervised training data.
The results demonstrated the superior performance of the
semi-supervised approach as the Ladder network, and SVAE
consistently achieved higher classification accuracy than the
supervised CNN, particularly at lower percentages of super-
vised data. Despite the improved performance, the confusion
matrices showed some defect classes were prone to mis-
classification, which may have been attributed by the class
imbalance as the classes of the datasets were the defect
patterns and their respective variants. Yu et al. (2019b) pro-
posed a hybrid learning model, stacked convolutional sparse
denoising autoencoder (SCSDAE). Employing data sam-
plingmethods, SCSDAEhas demonstrated effective learning
of discriminative features from the single-type WM data;
with performance superior to deep neural networks. Simi-
larly to (Kong & Ni, 2018), the training and test datasets
contained only single-type defect patterns, which constrains

defect recognition and classification to single-type defects,
disregarding the onset of mixed-type defects.

A semi-supervised convolutional deep generative model
(SS-CDGMM), shown in Fig. 12, was proposed by Lee and
Kim (2020). In contrast to other semi-supervised models
which established multi-class classification for single-type
defect patterns, a multi-label configuration for mixed-type
defect classification was utilized. Kingma et al. (2014)
introduced new semi-supervised deep generative models
(SS-DGM), wherein the data is described as being gen-
erated by a latent class variable and a continuous latent
variable. As an extension of SS-DGM, SS-CDGMMconsists
ofmultiple discriminative networks structures, such that each
corresponding latent class variable is dedicated to one of the
fundamental defect-types. Like Kong and Ni (2020a), SS-
CDGMM consists of an inference network, discriminative
networks, and a generative network, however each discrim-
inative network is used to learn the absence and presence
of its respective single-defect pattern. Compared to various
models (i.e., CNN, multi-layer perceptron (MLP), SS-DGM,
unified VAEs), including the state-of-the-art, convolutional
ladder network (ConvLadder), the results showed compa-
rable or better performance to the state-of-the-art. Relative
to the comparison models, SS-CDGMM demonstrated how
it effectively uses labeled and unlabeled data, as well as
the effectiveness of using multiple discriminative networks.
However, as the training and test datawere generated and bal-
anced across the classes, the impact of class imbalance has
not been investigated or addressed. Additionally, only four
distinct single-type defect patterns were considered, disre-
garding the other known distinct defect patterns (i.e., Donut,
Near-full). Although more defect patterns may be consid-
ered, this would result in higher run-times as the marginal
log-likelihood component of the objective function requires
computation over all defect classes.

Moving away from generative modelling, self-supervised
pretraining is emerging as an effective pretraining method
for semi-supervised frameworks and classification tasks (He
et al., 2019; Chen et al., 2020b). Self-supervised contrastive
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Fig. 12 Proposed SS-CDGMM in (Lee & Kim, 2020)

learning has been increasingly leveraged as a feature learn-
ing method, wherein meaningful representations can be
learned fromunlabeled data and data augmentations.Hu et al.
(2021) proposed a contrastive learning framework for single-
type defect patterns, followed by supervised finetuning of a
classifier. Despite performance that is lower than other algo-
rithms, the reported results demonstrate detection rates on
par with state-of-the-art contrastive methods (i.e., SimCLR),
and great potential for contrastive learning.

Enhanced learning strategies

The methods included in this section focus on enhancing
model learning, and are used to elevate model performance.
They are organized into the following groups: (i) data aug-
mentation, (ii) incremental learning, (iii) transfer learning
and fine-tuning, and (iv) model optimization.

Data augmentation aims to reduce overfitting by increas-
ing the amount of data, and is typically used to mitigate class
imbalance issues, which neural networks and deep learning
models are particularly sensitive towards (Perez & Wang,

2017). Data augmentation can be executed in many ways,
such as resampling, data modification, and data generation.

Resampling methods function to balance the class distri-
bution of the existing data. Undersampling and oversampling
are subcategories of resampling methods. Undersampling
reduces the amount of data examples from the majority
classes by removing data, whereas oversampling increases
the amount of data examples by sampling from the minority
classes with replacement. Both subcategories of resampling
methods are effective for obtaining a more balanced class
distribution, however, have their share of limitations. Under-
sampling ultimately reduces the overall amount of data, and
may disregard critical data examples for the majority classes,
which may impede feature learning and model performance.
Oversampling may result in overfitting and increased gen-
eralization error, as well as increased computational time
as the overall amount of training data is increased. Due to
the limitations of resampling methods, data augmentation
via modification and generation are typically conducted as
they can increase and balance the amount of data, as well as
increase the data diversity.
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Data modification methods apply label-preserving oper-
ations to create synthetic variations of the existing data.
Considering the circular shape of the wafer maps and the
diversity of defect patterns, select geometric operations can
be applied to maintain the geometric characteristics, and
original labels. In Kang (2020) and Jang et al. (2020),
rotation and horizontal flipping operations were applied
to create diversified, rotation-invariant wafer maps, which
subsequently improved defect classification performance.
Similarly, Saqlain et al. (2020) applied random rotations of
10°, horizontal flipping, width shift, height shift, shearing,
channel shifting, and zooming to augment the data. These
operations are used as they diversify the data with changes
in orientation, position, and/or size. The different operations
used in data modification methods help improve model gen-
eralization as models are trained to be highly tolerant to the
diversified variations of defect patterns.

The data generation methods utilize generative models,
such as generative adversarial networks and autoencoders,
to supplement the existing collection of data by generating
new synthetic data. The generative models focus on learning
the latent feature representations and distributions of the data.
As the performance of many deep learning models are con-
tingent on the amount and distribution of labeled data, data
generationmethods are used to create realistic, new instances
of data. GANs consist of two convolutional neural networks:
a generator and discriminator (Fig. 13). The generator learns
to create authentic fake data, and the discriminator learns
to distinguish between the real and fake data. Variations of
GANs have been developed to improve the generative mod-
elling capability. Wang et al. (2019) proposed the adaptive
balancing generative adversarial network (AdaBalGAN), a
conditional categorical GAN that incorporates imbalanced
learning to generate a balanced set of synthetic data. In
addition to the generator and discriminator, AdaBalGAN
includes an adaptive generative controller, which recognizes
the minority defect classes by considering defect class size,
as well as the recognition accuracy difference between each
defect class and the majority defect class. By recognizing the
imbalanced class distribution, the adaptive generative con-
troller automatically adjusts the number of synthesizedwafer
maps for each defect-type. Ji and Lee (2020) developed a
deep convolutional GAN, which compounds the image pro-
cessing capabilities of multiple convolutional layers, for data
augmentation. Aside from GANs, there are many types of
autoencoders, including variational, convolutional, denois-
ing, stacked, and sparse; the fundamental components of
autoencoders are the encoder and decoder. The encoder com-
presses the input into latent space representation, and the
decoder uses the latent representation to reconstruct the input.
Shawon et al. (2019) and Tsai and Lee (2020b) utilized a con-
volutional autoencoder (CAE) to generate new instances of

denoised training data to improvemodel training of deep con-
volutional neural networks. Similarly, in (Lee &Kim, 2020),
the authors employed the trained VAE to generate labeled
wafer maps by leveraging the learned class latent variables
for each defect-type. Data augmentation via generation can
create highly diverse and realistic data, however, requires
substantial computational time and power to effectively train
the generative models.

Incremental learning (IL) aims to increase model per-
formance by extending and adapting an existing model’s
knowledge base with new training data. In context of real-
world wafer fabrication, labels are expensive to obtain,
and have limited availability, which bottlenecks model per-
formance. Additionally, as defect complexity evolves and
new, unseen defect patterns emerge, model efficiency may
decrease overtime. As such, IL methods are employed to
enhance model performance in the long-term against evolv-
ing wafer map data and defect patterns. Popular methods
include active learning, and pseudo-labeling.

Active learning utilizes a querying strategy to select infor-
mative unlabeled data for manual annotation to fine-tune and
further train an existing model (Fig. 14). It is important to
note that there are many querying strategies (Settles, 2009),
including uncertainty sampling, information gain, query-
by-committee, expected error reduction, and total expected
variance minimization. Shim et al. (2020) proposed a CNN
with active learning via uncertainty sampling for wafer map
defect classification. Uncertainty sampling selects the most
ambiguous unlabeled data examples; least confidence, mar-
gin, and entropy are common estimators for uncertainty. In
addition to the common uncertainty estimators, the authors
compared mean standard deviation, variation ratio, Bayesian
active learning by disagreement (BALD), and predictive
entropy as uncertainty estimationmethods. Their results indi-
cated that BALD and mean standard deviation provided the
best performance for defect classification via CNN with
active learning. On the other hand, Kong and Ni (2020a)
employed active learning using information entropy for their
semi-supervised models, such that the unlabeled wafer maps
with the maximum information entropy were selected for
labeling and model fine-tuning. When investigating the sig-
nificance of active learning, and pseudo-labeling, the results
demonstrated improved classification accuracy. Although
active learning strategies have helped in improving model
performance, they are vulnerable to class imbalance, and
catastrophic forgetting. Class imbalance introduces sampling
bias in query sampling, which skews the querying towards
the newer classes (Ren et al., 2020), and brings on catas-
trophic forgetting. In the process of finetuning the model
with the new labeled data, catastrophic forgetting can occur
when the previously learned information is degraded, and
significantly lowers model generalization (Luo et al., 2020).
The effectiveness of active learning methods is sensitive to
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Fig. 13 AdaBalGAN framework structure from (Wang et al., 2019)

Fig. 14 General procedure for
active learning

the querying and model updating strategies, which warrants
careful consideration for model implementation.

Pseudo-labeling supplements the incremental training
data for model fine-tuning with predicted class labels for the
unlabeled data. As a semi-supervised learning strategy, this
method uses an existing trained model to assign the pseudo-
label as the class with the maximum predicted probability.
The pseudo-labels for the unlabeled data would increase
the overall training dataset size, however, it is important to
note that pseudo-labels may disturb model performance if

they are incorrectly predicted. Kong and Ni (2020a) imple-
mented pseudo-labeling with confidence level constraints.
The authors computed and compared the information entropy
for each unlabeled wafer map against a criterion threshold to
ensure highly confidentwafermapswere used formodel fine-
tuning. Similarly, to account for uncertainty, a 2:1 ratio for
the original labeled wafer maps and pseudo-labeled wafer
maps to diminish the potential disturbance from incorrect
pseudo-labels.

Transfer learning is the process of utilizing a pretrained
model for another task.As the pretrainedmodelswere trained
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Table 5 Comparison of pretrained models for wafer map defect detection

T-DenseNet
(Shen & Yu,
2019)

VGG
(Ishida et al.,
2019)

Faster R-CNN-KITTI (Chien et al.,
2020)

Faster R-CNN-COCO (Chien et al.,
2020)

Center 64.52% 88.80% 98.92% 97.81%

Donut 91.18% 89.00% – –

Edge-Loc 81.46% 86.90% – –

Edge-Ring 66.79% 83.90% – –

Loc 100.00% 72.60% 97.27% 98.50%

Scratch 72.60% 77.20% 98.32% 96.14%

Near-full 99.31% 90.50% – –

Random 65.52% 73.50% 99.26% 99.06%

None 85.45% 95.60% – –

on large, diverse image datasets (i.e., ImageNet, CIFAR-
10), it is presumed that the model effectively learned feature
representations and obtained powerful generalization capa-
bilities. The learned feature representations of the pretrained
models can be re-purposed to train a new classifier, or the pre-
trained models can be fine-tuned to fit to a specific dataset
and task. The application of transfer learning and fine-tuning
can significantly reduce training time, and achieve high per-
formance without requiring large volumes of data. Related
works have utilized pretrained models for wafer map defect
recognition and classification. Shen and Yu (2019) proposed
the T-DenseNet framework; the pretrained DenseNet model
was fine-tuned on the wafer map dataset, and then the refined
feature representations were used to set up an online testing
system for incoming unlabeled wafer maps. Similarly, the
pretrained VGG model (Ishida et al., 2019), and faster R-
CNN model (Chien et al., 2020) were utilized for wafer map
defect recognition and classification. In Table 5, the perfor-
mance of themodels in (Chien et al., 2020; Ishida et al., 2019;
Shen&Yu, 2019) for the test dataset is shown, and reflect how
effective deep transfer learning is despite the shorter train-
ing times, and how pretrained model selection may affect
performance on the downstream tasks.

Researchhas demonstrated the importanceofmodel selec-
tion and hyperparameter tuning as these design choices (i.e.,
conditional variables, objective function, architecture, etc.)
significantly influence performance (Banchhor & Srinivasu,
2021; Parsa et al., 2020; Ungredda & Branke, 2021). As an
enhanced learning strategy, model optimization concentrates
on the advanced strategies for optimizing model parameters.
For image tasks like wafer map defect recognition and classi-
fication, the design choices for model architecture can affect
performance and computational time. Standard optimiza-
tion techniques involve extensive hyperparameter tuning of
layer parameters (i.e., stride, filter size, etc.), training batches

and epochs, etc., which typically requires extensive man-
ual searching. As such, strategies for optimization policies
and network architecture engineering have been developed
to automate the design process.

Recently, reinforcement learning (RL) models have been
leveraged to parse optimization policies. Bello et al. trains a
recurrent neural network (RNN) controller with RL for neu-
ral optimizer searching (Bello et al., 2017). Essentially, the
performance of child networks trained with different sets of
optimizer update rules are compared to determine the opti-
mal set of updating rules for optimization methods (Bello
et al., 2017). Similarly, in (Shon et al., 2021), RL was used
to train a RNN controller to determine the optimal data aug-
mentation policy for wafer map transformation operations
(i.e., rotation, flipping, zooming). The general training pro-
cess for RNN controllers and search algorithms is shown
in Fig. 15. Architecture engineering is used to learn and
automate the design process of deep neural network design
selection. Related works, like (Baker et al., 2017; Zoph et al.,
2018) have also used RL to explore and discover high per-
forming network architectures relative to task and dataset.
In both applications, RL was leveraged for as a search algo-
rithm for optimal parameters and design, which improved
model training and performance, but required separate and
extensive training.

In contrast to various existing frameworks for global opti-
mization of hyperparameters and model parameters (i.e.,
grid search, random search, sequential search), Bayesian
optimization (BO) frameworks have demonstrated state-of-
the-art performance with high efficiency in computation-
ally expensive-to-evaluate applications (Snoek et al., 2012,
2015). As a black-box method, BO algorithms aim to prob-
abilistically model the unknown function—commonly with
Gaussian processes—and establish the posterior distribution
of the respective results for the explored hyperparameter set-
tings. By maintaining the resulting posterior distribution and
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Fig. 15 General training
procedure for child networks and
search algorithms

Fig. 16 General flowchart of Bayesian optimization framework

exploiting past observations, BO algorithms utilize an acqui-
sition strategy to make informed decisions about which best
set of function parameters to evaluate next. As demonstrated
in (Jang et al., 2020), Gaussian process-based BO was used
to tune the CNNhyperparameters, such as learning rate, filter
size, number of filters, and number of nodes in the fully con-
nected layers. The hyperparameter settings were evaluated
on the training data, and considered training time to prevent
overfitting attributed by high complexity model architecture.
In Fig. 16, the flowchart of the general BO framework is
shown.

Discussion and conclusion

The current status of semiconductor wafers and ICs have
reached sub-10 nm features, meanwhile the projected out-
look for their fabrication and process technologies indicate
the realization of sub-5 and sub-3 nm feature sizes. With the
advent and realization of these future trends, the expected

increase in defect complexity and frequency necessitates
the development of reliable and scalable defect detection
algorithms for efficient, and robust RCAand qualitymonitor-
ing. The advances in ML and DL have subsequently caused
immense progress in their application for wafer map defect
detection, with the aims to improve model accuracy, cost-
efficiency, and production yield.

For data, the wafer map datasets face limitations regard-
ing labeled data availability, class imbalance, and restricted
data access. It is known that manual annotation is expensive
and time-costly, and as a result, real-world datasets are either
small-sized, have a limited range of defects, and/or have a
plethora of unlabeled data. Class imbalance persists across
many datasets as wafer defects appear at lower frequencies
than normal wafer maps; similarly, defect patterns have var-
ied occurrence probabilities. With respect to algorithms that
leverage labeled data, the compounding effect of these lim-
itations impose difficulty in achieving robust learning and
high-level defect detection, particularly for unknown/rare
defect patterns, mixed-type defects, and minor classes. Due
to restricted data access, many works directly employ pri-
vate datasets from semiconductor manufacturing companies.
With limited access to real data, synthetic data genera-
tion is increasingly appearing in related works to develop
more effective models. However, with synthetic data, train-
ing generative models to produce realistic wafer maps that
are up-to-date on present design standards (i.e., wafer size,
IC node size), and similar to real-world defect patterns is
difficult and relatively time-costly.

Features are a critical component of ML/DL training. Past
works have demonstrated how manual feature generation
informed with high-level domain expertise can be advan-
tageous, however, may also lead the derived features to
miss hidden/underlying structures. Similarly, with respect
to new defects, manually generated features face limita-
tions as important characteristics of the defects may not be
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known or understood well-enough to generate effective fea-
tures. The onset of CNNs were prompted by the automated
feature extraction capability in which rich, descriptive fea-
tures can be learned. Similarly, with representation learning,
raw data can be used with minimal preprocessing, and can
gain high-level discriminatory power for complex patterns;
proving that feature representation learningmethods can gen-
erate more meaningful and effective features for downstream
defect pattern classification. However, the capacity of feature
representation learning is constrained by model complexity,
andwhether themodel is suited towards learning the complex
structure of the data and problem (task) at hand.

For supervised learning methods, although the use of
labels can help models achieve improved performance with
low computational cost, they are limited by the following: (i)
amount of labeled data, (ii) heavily influenced by class label
distribution and data splits, and (iii) overfitting. As the acqui-
sition of labels is expensive, limited amounts of high-quality
wafermaps are available for training and testing, inwhich the
limited amounts bottleneck classification performance, and
highlights limitations in terms of real-world scalability. To
tackle this limitation, related works have employed data aug-
mentation techniques to supplement the small-sized datasets,
however with the risk of increasing computational costs and
generalization error. Similarly, related works implemented
specialized modules and deep learning networks to improve
learning. With modified modules like the deformable con-
volutional unit and the usage of specialized loss functions
(i.e., contrastive loss, triplet loss), discriminative feature rep-
resentations were learned. However, these works focused
on single-type defects, or considered a limited degree of
diversity for the mixed-type defects. In face of new defects
and combinations, the performance of these algorithms may
decrease with the growth in number of defect classes as class
distinctiveness and imbalance may take a toll. As labels are
used as the supervisory signal for training, model perfor-
mance is sensitive to class label distribution, data splits, and
class distinctiveness. Class imbalance can induce overfitting
on the majority classes, with high misclassification on the
minority classes, andmay not be able to differentiate between
similar defect patterns. This is a critical issue as supervised
methods are highly susceptible to overfitting as training is
contingent on labels, such that careful considerations should
be made for model and training process parameters to pre-
vent overfitting. Relative to defect type,majority ofworks for
supervised algorithms are focused on the detection of single-
type defects, and are not suitable for recognizing mixed-type
defects, albeit the increasing relevance ofmixed-type defects.
Multi-label based mixed-type WMDD has limited develop-
ment and has not be extensively studied for scalability under
low resource settings, whereas for multi-class based mixed-
type defect detection, much more literature exists. It has
noted that additional computational power was required to

train the network of binary classifiers, which only considered
a limited range of defects, and required large amounts of data
for sufficient training. The prominent supervisedmethods are
summarized in Table 6.

As supervised methods face performance limitations due
to the amounts of labeledwafermaps, the unsupervisedmeth-
ods demonstrate how the plethora of unlabeled wafer maps
canbe leveraged.Despite achieving comparable defect detec-
tion performance, unsupervised clustering algorithms are
sensitive to kernel methods and their respective parameters,
and typically have high time complexity, resulting in long
run-times. These methods are sensitive to initialization and
hyperparameters, indicating the criticality of hyperparameter
optimization for performance (Samariya & Thakkar, 2021).
Relatedworks have recognized this difficulty of using pre-set
parameters (i.e., number of clusters), and in response adapted
clustering algorithms with the ability to estimate the num-
ber of clusters. However, as these methods involve inference
networks, computational complexity increases, attributing
long inference speeds which subsequently increases overall
run-time. It is important to note that despite the importance
of hyperparameter optimization, related works employed
simpler optimization frameworks, such as grid search or low-
level sensitivity evaluation. Based on reconstruction error,
unsupervised pretraining is utilized to improve the initializa-
tion of the model weights relative to random initialization,
such that training time is faster as the weights are closer to a
local optimum. However, in (Alberti et al., 2017), the authors
demonstrated how minimizing the reconstruction error for
layer-wise training of the autoencoder is not optimal for
downstream finetuning for classification tasks as the learned
feature representations may not necessarily be meaningful
(i.e., an identity function may be learned). The literature for
unsupervised pretraining methods demonstrates that repre-
sentation learning with unlabeled data can be advantageous
but needs an effective strategy to learn meaningful feature
representations without high computational costs. In Table
7, the performance of the prominent unsupervised clustering
algorithms is summarized.

Semi-supervised algorithms address the issues of data
availability and ineffective feature learning from super-
vised and unsupervised methods; demonstrating how the use
of both labeled and unlabeled data can achieve improved
defect recognition and classification. In particular, the semi-
supervised deep generative modelling approach has shown
effective latent representation learning, and generative capa-
bilities, but at a relatively high computational cost. It is
important to note that with limited amounts of labeled
data, model selection is quite important for semi-supervised
learning to avoid overfitting and to promote effective rep-
resentation learning (Kingma et al., 2014). In comparison
to supervised and unsupervised methods, the literature for
semi-supervised is scarcely developed despite the promising
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Table 6 Summary of recognition
rates of prominent supervised
algorithms for wafer map defect
detection

Author Algorithm Data Results

Yu and Lu (2016) JLNDA WM-811K (Real) 0.9050

Tello et al. (2018) RGRN + CNN Real & Synthetic Single-type &
Mixed-type: 0.8617

Nakazawa and
Kulkarni (2018)

CNN Real 0.9820

Kyeong and Kim
(2018)

CNN Real & Synthetic Single-type: 0.8700
Mixed-type: 0.9000

Saqlain et al. (2019) Ensemble WM-811K (Real) 0.9587

Kong and Ni (2019) Segmentation + CNN Real & Synthetic
(Mixed-type)

EMR: 0.8775
Accuracy: 0.9575

Kong and Ni (2020b) Segmentation + CNN Real (Mixed-type) 0.9010

Wang et al. (2020) DCN Mixed WM-38 (Real) 0.9320

Alawieh et al. (2020) CNN WM-811K (Real) 0.9400

Zhuang et al. (2020) DBN Real Single-type: 0.9267
Mixed-type: 0.9120

Hyun and Kim (2020) CNN Synthetic (Mixed-type) 0.8320

Tsai and Lee (2020a) CNN WM-811K (Real) 0.9663

Jin et al. (2020) CNN-SVM-ECOC WM-811K (Real) 0.9843

Kim et al. (2021) SSD WM-811K (Real) Single-type: 0.8900
Mixed-type: 0.9200

Table 7 Summary of prominent unsupervised clustering algorithms for
wafer map defect detection

Author Algorithm Data Results

Kim et al. (2018) CPF-iWMM Real RI: 0.96
ARI:
0.92
NMI:
0.92

Taha et al. (2018)a DDPfinder Real &
Synthetic

0.9980

Hwang and Kim
(2020)

DPGMM Real ARI:
0.76
AMI:
0.76

aResult reflects the clustering accuracy, which is the algorithm’s ability
to correctly cluster defect patterns

results; indicating great potential in future developments. In
Table 8, the prominent semi-supervised methods are sum-
marized, including the methods that utilized unsupervised
pretraining and supervised finetuning.

Enhanced learning strategies were used to boost defect
recognition and classification performance. Data augmen-
tation methods utilized image transformations and/or gen-
erative models to mitigate class imbalance issues, and
subsequently increase data diversity. Although GANs have
advanced data generation capabilities, they require substan-
tial computational time to effectively train the generator and

Table 8 Summary of prominent semi-supervised algorithms for wafer
map defect detection1

Author Algorithm Data Results

Yu et al.
(2019b)2

SCSDAE WM-811K
(Real)

0.9883

Yu (2019) ESDAE WM-811K
(Real)

0.9703

Hu et al.
(2021)3

Semi-supervised
with contrastive
learning

WM-811K
(Real)

0.7790

Lee and Kim
(2020)4

SS-CDGMM Real &
Synthetic

0.9488

Kong and Ni
(2020b)

Semi-supervised
Ladder Network

Real 0.9020

Kong and Ni
(2020a)

SVAE Real 0.9030

Yu and Liu
(2020)

PCACAE WM-811K
(Real)

0.9377

Shon et al.
(2021)

CVAE + CNN WM-811K
(Real)

0.9689

1 Performance results here reflect the overall average recognition rates.
2 Based on performance with original dataset.
3 Performance notes the best overall accuracy.
4 Notes the highest EMR score from the labeled-unlabeled ratios.

discriminator networks. As GAN training involves a trade-
off between the generator and discriminator, the models are
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susceptible to getting stuck in local minima. For incremen-
tal learning strategies, techniques like active learning and
pseudo-labeling have demonstrated capability in boosting
model performance. However, are susceptible to catastrophic
forgetting, and hyperparameter sensitivity (i.e., querying
strategy, ratio of original to pseudo-labeled data). With the
help of transfer learning, many training processes have been
expedited to achieve relatively high accuracy with shorter
training times.However, asmodel complexity, data, andother
design choices can impact performance, model selection and
hyperparameter tuning need to be carefully considered. For
model optimization strategies, RL and BO frameworks are
used to bypass the extensive manual searching. These strate-
gies are important in understanding the sensitivities a model
may have to input/output, architecture, etc. Although RL
imposes extensive training to determine optimal parameters
and design, BO provides a more computationally efficient
alternative to tuning model hyperparameters. However, it
should be noted that for multi-objectives and increasing
number of observations, BO frameworks become more com-
putationally complex, which subsequently requires more
processing resources.

Challenges and outlook

In this article, we survey the literature of ML and DL
applications for wafer map defect recognition and classifi-
cation, which demonstrated superior performance, as well
as great potential and applicability for in-line integration.
However, despite the reported successes, many challenges
in implementing these methodologies have been identified,
including difficulty learning new defects, difficulty differen-
tiating between similar defect patterns, taxing computational
loads, and lack of robust detection of complex defects. With
respect to the surveyed literature, the following findings
emerged as the most prominent challenges in the WMDD
field: (i) data availability, (ii) mixed-type defects, and (iii)
high computational complexity. The field of WMDD is con-
tinuously developed, however, there is limited access to
databases that reflect the current design and complexity of
wafers and ICs. This is apparent in recent works that utilize
theWM-811Kdataset, which ismost likely outdated in terms
of wafer size, IC node size, etc. Similarly, as only private data
can properly reflect the present design standards, which has
restricted access, the innovation and research for WMDD
is slowed. Although simulated data is an option, there is
currently a gap in producing realistic, synthetic wafer maps
similar to real defect patterns. Majority of existing literature
focuses on single-type defects, despite the growing criticality
ofmixed-type defects. Althoughmixed-type defect detection
algorithms exist, many are limited in terms of labeled data
availability, range of defect pattern types, and computational
load.Many developments impose a high computational load,

which in turn, restricts scalability and potential deployment
for real-time implementation, and increases training time and
needed processing resources. As this industry will remain
competitive and continuously growing, computational com-
plexity should be reduced to bemore efficient. These existing
challenges impose on implementation, scalability, and adapt-
ability to new state-of-the-art designs and feature sizes.

With the plethora of unlabeled data available, recent
developments that leverage ML/DL for self-supervised, and
semi-supervised learning indicate potential to surpass super-
vised learning for efficient feature representation learning,
image recognition, and classification. To promote future
developments for defect detection, which allows researchers
and engineers to validate and test against new designs and
feature sizes, consideration towards building a database with
real-world defects is needed. Consolidating continuous inno-
vation, growth, and development indicates great promise
towards achieving efficient, and robust defect detection.
Based on the challenges, and current landscape of this field,
the future outlook of WMDD research is summarized as fol-
lows:

(1) Handling class imbalance: Asmanyworks have focused
on tackling the class imbalance issue, it is evident
that performance suffers with skewed data distribu-
tion. Development for more robust handling of class
imbalance is needed, particularly as mixed-type defects
become more critical.

(2) Effective unsupervised feature representation learn-
ing: As ML/DL, and computer vision applications are
increasingly developing self-supervised techniques for
image classification and pattern segmentation, these
methods should be investigated, especially in face of
limited labeled data and the limitations of pretraining
via reconstruction loss.

(3) Real-time Monitoring: Majority of developments are
offline systems. Consideration of model requirements
to meet the conditions needed for real-time monitoring
and operation.

(4) Computational Complexity: With respect to real-time
monitoring, more efficient and less computational com-
plex algorithms are needed to reduce the burden from
training and processing, memory requirements, and
scalability limitations.

(5) Model Optimization: Due to the complex parameter-
structure-performance relationship, calibrating model
selection and the optimal set of parameters is needed.
From the existing literature, there is limited exploration
and investigation into model optimization and joint
hyperparameter tuning.
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Appendix

Abbreviation Term

AC Adjacency Clustering

AdaBalGAN Adaptive Balancing Generative Adversarial
Network

AMI Adjusted Mutual Information

ANN Artificial Neural Network

ARI Adjusted Rand Index

BALD Bayesian Active Learning by Disagreement

BO Bayesian Optimization

BB Bounding Box

BPN Back Propagation Network

C2DPCA Conditional Two-Dimensional PCA

CCD Charge-Coupled Devices

CMP Chemical Mechanical Process

CNN Convolutional Neural Network

CPF Connected-Path Filtering

CVAE Convolutional Variational Autoencoder

CZ Czochralski

DBN Deep Belief Network

DBSCAN Density-based Spatial Clustering of Applications
with Noise

DCN Deformable Convolutional Network

Abbreviation Term

DCNN Deep Convolutional Neural Network

DDPfinder Dominant Defective Patterns Finder

DFS Depth-first Search

DL Deep Learning

DP Dirichlet Process

ECOC Error-Correcting Output Codes

EMR Exact Match Ratio

ESDAE Enhanced Stacked Denoising Autoencoder

EUV Extreme Ultraviolet

FAM Fuzzy ARTMAP

FD Fischer-discriminant

FZ Float-zone

GAN Generative Adversarial Network

GBM Gradient Boosting Machine

GMM Gaussian Mixture Model

GRN Generalized Regression Network

IC Integrated Circuit

IL Incremental Learning

ILT Inverse-lithography Technology

iWMM Infinite Warped Mixture Model

JLNLDA Joint Local and Non-local Linear Discriminant
Analysis

kNN k-Nearest Neighbors

LDA Linear Discriminant Analysis

LLE Locally Linear Embedding

LR Logistic Regression

MDS Multi-Dimensional Scaling

MI Mutual Information

ML Machine Learning

MLP Multi-Layer Perceptron

MPre Micro-Precision

MRe Micro-Recall

NMI Normalized Mutual Information

OPTICS Ordering Point to Identify the Cluster Structure

PCA Principal Component Analysis

PCACAE PCA-based Convolutional Autoencoder

RCA Root-cause Analysis

RF Random Forest

RGRN Randomized General Regression Network

RI Rand Index

RL Reinforcement Learning

RNN Recurrent Neural Network

SAT Scanning Acoustic Tomography

SCSDAE Stacked Convolutional Sparse Denoising
Autoencoder
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Abbreviation Term

SDAE Stacked Denoising Autoencoder

SEM Scanning Electron Microscopy

SS-CDGMM Semi-supervised Convolutional Deep Generative
Multiple Models

SSD Single Shot Detector

SVAE Semi-supervised Variational Autoencoder

SVC Support Vector Clustering

SVE Soft Voting Ensemble

SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbor Embedding

TTV Total Thickness Variation

UV Ultraviolet

VAE Variational Autoencoder

WBM Wafer Bin Map

WM Wafer Map

WMDD Wafer Map Defect Detection
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