
Journal of Intelligent Manufacturing (2023) 34:3039–3052
https://doi.org/10.1007/s10845-022-01992-3

A digital apprentice for chatter detection in machining
via human–machine interaction

Xiaoliang Yan1 · Shreyes Melkote1 · Anant Kumar Mishra2 · Sudhir Rajagopalan2

Received: 7 October 2021 / Accepted: 6 July 2022 / Published online: 4 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Regenerative chatter in machining operations such as milling is a common process anomaly that limits productivity and
part quality, which in turn lead to increased manufacturing costs. The industrial relevance of the problem has sparked many
research efforts over the recent decades, with a growing interest in real-time chatter detection and suppression. Inspired by
learning from human demonstration frameworks, this paper proposes a new approach to milling chatter detection via effective
human–machine interaction, which facilitates knowledge transfer from an experienced machine tool operator to a “Digital
Apprentice.” The proposed chatter detection approach acquires chatter-specific knowledge through a learnable skill primitive
(LSP) algorithm designed to establish a robust chatter detection threshold from few-shot real-time demonstrations by an
experienced human operator. In this work, digital audio data were acquired from milling experiments through a microphone
mounted inside the milling machine. During the training phase, data for the human operator’s natural reaction to chatter
were collected via a specially designed human–machine interface. The learned chatter detection thresholds were obtained via
the LSP algorithm by temporally mapping the reaction time data to the audio signal. During the testing phase, experiments
were conducted to validate the detection accuracy and detection speed of the learned chatter detection thresholds under
different cutting conditions. The experimental validation results of the learned thresholds indicate an average chatter detection
accuracy of 94.4%, with 55.6% of chatter cases detected before chatter marks are produced on a 4140 Steel workpiece, thus
demonstrating the effectiveness of human–machine interaction in chatter detection.

Keywords Real-time process monitoring · Human–machine interaction · Learning from demonstration · Machining chatter

Introduction

Regenerative chatter is a common process anomaly that
occurs in machining operations such as milling (Tobias,
1964). Chatter occurs when the cutting tool engages the
wavy surface left by the previous tooth pass, where the
phase shift under certain conditions amplifies the instanta-
neous variation in chip load, causing the cutting force to vary
dynamically, resulting in large amplitude vibrations (Smith
& Tlusty, 1991). Machining chatter negatively impacts part
surface quality and productivity in milling operations, which
in turn lead to increased manufacturing costs. According to
(Quintana & Ciurana, 2011), a major European automotive
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engine manufacturer estimated the added cost due to chatter
during engine cylinder block machining to be 0.35 Euros per
engine block, which is significant when scaled over 3 mil-
lion engines produced in a year. For these reasons, research
efforts over the past five decades have focused on develop-
ing solutions for chatter avoidance (Altintaş & Budak, 1995;
Tlusty & Polacek, 1968) and chatter suppression (Altintas &
Chan, 1992; Delio et al., 1992). Chatter avoidance through
off-line identification of the system dynamics to construct the
stability lobe diagram remains the primary approach (Alt-
intaş & Budak, 1995; Duncan et al., 2000; Smith & Tlusty,
1993), where the oriented transfer function of the machine-
tool holder-cutting tool system and the cutting stiffness of the
workpiecematerial are required. However, such system iden-
tification requires specialized equipment, knowledge, and
skills that may not be readily available to all machine tool
users. On the other hand, on-line chatter detection and sup-
pression methods offer an alternative approach to off-line
chatter avoidance (Quintana & Ciurana, 2011).
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On-line chatter detection and suppression involves moni-
toring the dynamic stability of themachining process through
sensors and chatter detection algorithms without explicit
identification of the machining system dynamics (Caixu
et al., 2019; Quintana & Ciurana, 2011). Various sensor sig-
nals such as vibration (Kuljanic et al., 2008; Yesilli et al.,
2020; Yuqing et al., 2015), strain (Cen et al., 2018; Luo
et al., 2018; Ma et al., 2014), sound (Cao et al., 2017; Delio
et al., 1992; Schmitz et al., 2002), cutting force (Liu et al.,
2017; Ma et al., 2013; Nguyen et al., 2016), and current
(Aslan & Altintas, 2018; Lamraoui et al., 2015; H. Liu et al.,
2011) have been researched as potential measurands for chat-
ter detection. Chatter detection methods based on frequency
domain analysis (Delio et al., 1992; Jardine et al., 2006; Liao
& Young, 1996; Nguyen et al., 2016), time domain analysis
(Berger et al., 1997; Khorasani et al., 2014; Ma et al., 2013),
and machine learning techniques (Rahimi et al., 2021; Shi
et al., 2020; Tran et al., 2020; Yao et al., 2010; Zhang et al.,
2010) have demonstrated varying levels of success, but can
suffer fromexcessive false positives and late chatter detection
after damage to theworkpiece or themachine tool has already
occurred (Quintana & Ciurana, 2011). Because cutting sig-
nals acquired from the machining operation vary with sensor
types and locations, cutting tools, and machining conditions,
to achieve acceptable detection accuracies and speed, on-
line chatter detection algorithms that utilizemachine learning
methods such as support vector machine (Yesilli et al., 2020)
and logistic regression (Ding et al., 2017) require a large
number of costly chatter experiments for training; frequency
and time domain chatter detection methods require an effec-
tive chatter detection threshold, which is an engineering
parameter that must be tuned by engineers through similarly
costly trial-and-error experiments to obtain the desired detec-
tion accuracy, speed, and robustness (Bachrathy et al., 2021;
Faassen et al., 2006;Maet al., 2013;Wright&Bourne, 1988).
Tuning of the chatter detection threshold, which involves
setting a numerical value using specialized equipment, is
non-trivial. Research engineers who have the experience and
skills for tuning are not always available on the shopfloor, and
machine tool operators typically do not possess the necessary
skills for tuning the threshold (Wright & Bourne, 1988). For
these reasons, on-line chatter detection methods have not
found widespread acceptance in real production settings.

As a result, manufacturers continue to rely heavily on
the experience of human machine tool operators to monitor
and control the machining process. However, the operator’s
expertise and cognitive capabilities are not easily scalable or
directly transferrable, and the industry continues to face dif-
ficulty in replacing experienced operators when they retire
or leave.

Ultimately, the current state-of-the-art methods for on-
line chatter detection require either a large number of chatter
examples for training (Rahimi et al., 2021; Shi et al., 2020;

Tran et al., 2020) or extensive trial and error experiments
for tuning the chatter detection threshold, both of which
are costly. Inspired by advances in learning from human
demonstration in the field of robotics, where the potential to
significantly reduce the amount of training data needed for
learning a particular skill has been shown (Knox & Stone,
2009), this paper proposes human–machine interaction to
effectively reduce the number of chatter examples needed to
learn the chatter detection threshold. Analogous to human
apprenticeship, an interactive learning agent is proposed,
referred to here as the “Digital Apprentice”, to capture the
underlying chatter detection knowledge from experienced
human operators for effective and robust chatter detection via
human–machine interaction. The Digital Apprentice com-
prises a sensor (e.g. microphone,) a Learnable Skill Primitive
(LSP) algorithm for chatter detection, and a human–ma-
chine interface (HMI). The sensor corresponds to the human
apprentice’s natural perception ability, the LSP emulates the
human’s cognitive ability to distinguish chatter from stable
cutting, and the HMI facilitates demonstration of the skill by
an experienced operator to the Digital Apprentice. The paper
seeks to answer two specific questions: (1) Is it possible for
the Digital Apprentice to learn to detect chatter from expe-
rienced human operator’s demonstrations? and (2) What is
the accuracy and speed of such a chatter detection method?
Because repeated occurrences ofmachining chatter are costly
and may result in damage to the part and/or machine tool, the
objective is to learn to detect chatter from few-shot demon-
strations by an experienced machine tool operator.

The rest of the paper is organized as follows. “Chatter
detection and learning from demonstration (LfD)” section
frames the chatter detection threshold training problem as
a learning from demonstration problem. “Learnable skill
primitive (LSP) for chatter detection” section introduces
the Learnable Skill Primitive (LSP) algorithm by which
the correspondence problem between the human operator’s
perception of chatter and the Digital Apprentice’s ability
to perceive chatter is addressed. “Experimental verifica-
tion” section presents experimental validation of the LSP
algorithm. The paper concludes with an evaluation of the
effectiveness of the approach and provides recommendations
for future work.

Chatter detection and learning
from demonstration (LfD)

While the use of human–machine interaction techniques is
comparatively new in the field of manufacturing process
monitoring, LfD techniques (Knox & Stone, 2009; Schaal,
2006; Schaal et al., 2003; Warnell et al., 2018) have been
successfully employed in the fields of interactive computing
and robotics (Chernova & Thomaz, 2014).
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Fig. 1 Chatter detection as an
LfD problem: knowledge space
and perception mapping between
experienced human machine tool
operator and the Digital
Apprentice

The premise of LfD is that learning a skill from scratch
without any prior knowledge is challenging and imprac-
tical (Schaal, 1997). The specific objective of LfD is to
enable a learning agent to learn a policy π , which is a
mapping between states S and actions A, from a single or
very few human demonstrations (Schaal, 1997). The policy
π : S → A selects the actions based on the states observed
by the learning agent (Argall et al., 2009). In the context of
machining, the experienced machine tool operator is respon-
sible for recognizing the state of the process (e.g. chatter or
stable cutting) and executing the necessary corrective action,
which include adjusting the cutting conditions in real time
or halting the process to prevent damage to the part and/or
the machine tool. As illustrated in Fig. 1, the operator per-
ceives the cutting signals using his/her natural senses, and
the learning agent i.e. the Digital Apprentice learns from
the human operator and perceives the state of the machin-
ing process through suitable sensors. In this paper, the policy
π learned by the Digital Apprentice is a value of the chat-
ter detection threshold of the audio signal that discriminates
the audio signals emitted by the milling process into either
unstable (chatter) or stable cutting; the frequency and ampli-
tude of the audio signal represent features of states S, and
the actions A correspond to classification of the milling pro-
cess as either unstable (chatter) or stable. An extension of
this policy would be to expand the set of actions to include

a corrective control policy to suppress chatter. The focus of
this paper, however, is to learn a chatter detection thresh-
old from human demonstration, which is a prerequisite for
chatter suppression.

Another challenge in modelling chatter detection as a LfD
problem is the temporal correspondence problem between
the human’s perception of chatter and the learning agent’s
perception via sensors and suitable signal processing algo-
rithms (Nehaniv & Dautenhahn, 2002). Since chatter is a
process anomaly that can develop and grow rapidly, and
because a humanoperator’s response to chatter is delayed due
to his/her reaction time, by the time the human operator per-
ceives chatter and reacts to it, the process state S has already
changed significantly. Effective LfD requires mapping the
human operator’s perception of chatter to the corresponding
states of the sensor signal. This requires the learning process
to account for the operator’s delayed reaction. A similar cor-
respondence problem is discussed by Knox and Stone (2008)
who address the shaping problem in psychology and apply it
to interactive learning in robotics. In their work, the human
trainer provides a positive or a negative reward using a clicker
to evaluate the robot’s actions. By accounting for the delay
in the human trainer’s clicker signal via a credit assigner,
the human reward is mapped to a set of corresponding state-
action pairs, which allows the human to interactively shape a
learning agent’s policy (Knox & Stone, 2009). In the context
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of machining chatter, the Digital Apprentice must pinpoint
the time instance at which the operator first perceives chatter.
The learning agent can then temporally identify the corre-
sponding sensor signal and set a chatter detection threshold
by accounting for the delay in the operator’s demonstration.

Evaluating the correspondence problem in chatter
detection

A pre-requisite for accurate and timely detection of chatter
when learning from the operator’s demonstration is to deter-
mine the correspondence between the occurrence of chatter
marks on the workpiece and the human operator’s observa-
tion of chatter. To solve this correspondence problem, we
first estimated human operators’ reaction times to the onset
of chatter bymeasuring the distance between the start of cut at
the edge of the workpiece to the location of the chatter marks
produced in actual milling experiments. These reaction times
were then compared to the same operators’ reaction times
to synthetically generated sounds that emulate chatter. The
experimental procedures employed are as follows.

Milling experiments were conducted to obtain the oper-
ators’ reaction times to chatter marks during milling oper-
ations. The experiments were performed on a 3-axis CNC
milling machine (Okuma MILLAC 44 V) using a 12.7 mm
diameter four flute solid carbide end mill of 25.4 mm cutting
length (Niagara Cutter Series C430, Single End, TiAlN Fin-
ish, Spiral Flute, 30° Helix), which was held in an Iscar CAT
40 toolholder. A USB studio style condenser microphone
(Blue Yeti model number 988-000101) was mounted inside
the milling machine as shown in Fig. 2. Multiple passes of
dry slot end milling experiments, i.e. 100% radial immer-
sion, were conducted on a AISI 4140 Steel workpiece (Cold
FinishedASTMA108Steel bar, 84.1HRBRockwellBHard-
ness) at different axial depths of cut (ap) and spindle speeds
(N ) to generate various chatter and stable cutting signals dur-
ing operator demonstrations. The feed per tooth was fixed
at 0.0330 mm. The selected microphone provides compara-
ble frequency responses across a wide range of frequencies

from 20 Hz to 20 kHz, which is suitable for chatter monitor-
ing. The HMI for operator demonstrations comprises control
buttons, a microcomputer, and a display for visualization. A
Raspberry Pi 4Model B (CanaKit) was selected as themicro-
controller to process signals acquired from the microphone.
The Raspberry Pi Unit in this work has 4 GB of RAM and a
quad-core processor, making it suitable for complex on-line
signal processing and visualization. The 16-bit digital audio
signals sampled at 48 kHz were acquired through the Rasp-
berryPi’s default advancedLinux sound architecture (ALSA)
and PyAudio, an open-source python audio processing pack-
age (Pham, 2006). The 16-bit digital signals were converted
into a series of integers ranging between−215 and

(
215 − 1

)
.

Here we denote the true time instance when a chatter mark
first appeared on the workpiece as tc. The distance between
the first chatter mark and the start of cut was measured and tc
was calculated from the feed rate and the time instance of tool
entry into the workpiece. Figure 3 shows the correspondence
between tc and the chatter marks.

During the slot milling experiments, human operators
were instructed to react to the sound of chatter by providing a
pushbutton signal, fromwhich a corresponding time instance
ts was recorded (see Fig. 2). The experimentswere conducted
per the Georgia Institute of Technology Institutional Review
Board (IRB)ProtocolH20340 (Melkote, 2020). In total, three
human operators with different levels of machining experi-
ence were recruited (see Table 7 in Appendix). Prior to each
milling experiment, the human subjects had no knowledge of
the selected process parameters i.e. spindle speed and depth
of cut, or whether chatter would occur or not. The order of
milling experiments was randomized. Table 1 lists the opera-
tors’ experimental reaction times to occurrence of chatter, rc,
and its corresponding sample mean and standard deviation;
rc is defined as:

rc = ts − tc (1)

Based on the experimental data given in Table 1, the mean
reaction time determined from actual slot milling experi-
ments is 0.345 s with a sample standard deviation of 0.240 s.

Fig. 2 Experimental setup, HMI,
and data flow
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Fig. 3 Chatter mark time instance tc relative to the time instance the
operator signals chatter ts ; the time series shown is bandpass-filtered
and normalized amplitude,Pband (t), as described in “Filter, transform,
and normalize the audio signal” section

Table 1 Experimental operator reaction times to occurrence of chatter

Operator N (RPM) ap(mm) rc(s)

A 750 3.5 − 0.199

A 2000 2 0.370

A 2000 2.5 0.675

B 750 3.5 0.206

B 2000 3 0.447

C 1000 2.5 0.376

C 1000 3 0.430

C 1750 2 0.484

C 1750 2.5 0.319

Mean 0.345

Standard deviation 0.240

Although the above experiments can be conducted in a lab-
oratory environment, in practice, the experiments required
to evaluate the operator’s reaction time to chatter could be
time consuming and costly since the chatter marks need to
be physically measured to determine tc. Assuming operators
primarily utilize their hearing ability to detect chatter, a sim-
pler approach is to estimate the operator’smean reaction time
to chatter offline through synthetically generated sounds at
the relevant chatter frequencies as described next.

Here we denote r as the human operator’s reaction time
to a synthetically generated sound simulating specific chatter
frequencies. Research on human subjects reaction times in

Fig. 4 Time and frequency domain representations of the 2000 Hz syn-
thetically generated sound

visual search problems has shown that it can be described by a
probability density function such as Gaussian, ex-Gaussian,
ex-Wald, or the Gamma distribution (Palmer et al., 2011).
The auditory reaction time r in this paper is assumed to
be described by a Gaussian distribution. The operators were
instructed to wear a headphone, through which samples of
computer-generated sounds mimicking different chatter fre-
quencies lasting one second each were played. The synthetic
sounds were generated using PyAudio (Pham, 2006), which
is an audio processing library for the Python programming
language, with a specified frequency and duration. The oper-
ators were asked to respond to the sounds by depressing
a control button like that shown in Fig. 2 as soon as they
heard the sound. The exact time instance of the synthetically
generated sound was recorded. Each operator responded
to 90 samples of synthetically generated sounds that sim-
ulated three chatter frequencies of 500 Hz, 2000 Hz, and
3500 Hz, which are in the range of milling chatter frequen-
cies reported in the literature (Delio, 1989). The samples of
synthetically generated sounds were played in randomized
order with randomized pause intervals ranging from 2 to 4 s
between samples. This randomization ensured that the oper-
ators had no anticipation of when a synthetic sound would
be played. Figure 4 is an example of the computer-generated
time domain audio signal and the corresponding Fast Fourier
Transform (FFT). Figure 5 shows a histogram of the reaction
times obtained from the 90 samples collected from a repre-
sentative operator.

Based on the experimental data given in Table 2, the
mean sample reaction time (for all operators) obtained from
the synthetically generated sound experiments was 0.341 s
with a sample standard deviation of 0.070 s. These statistics
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Fig. 5 Reaction time distribution based on 90 reaction time samples
from Operator C

compare favorably with the mean operator reaction time of
0.345 s and sample standard deviation of 0.240 s obtained
from the actual slot milling chatter experiments reported in
Table 1. We therefore conclude that human subject exper-
iments with simulated chatter sounds offer an inexpensive
method to obtain a sufficiently accurate estimate of an expe-
rienced operator’s mean reaction time to chatter, which we
employ in our methodology for learning the chatter detection
threshold.

Specifically, the quantities used in the LSP algorithm pre-
sented next are the sample mean reaction time,r , and its
standard deviation,sr , obtained from each human operator.
In the training phase, the objective of the learning agent or
digital apprentice is to learn the key features of chatter from
few-shot demonstrations given by an experienced operator;
in the testing phase, the learning agent applies the learned
features to detect chatter on-line. The two features for the
learning agent to learn from the audio signal are the chatter
frequency and the chatter detection threshold.

Learnable skill primitive (LSP) for chatter
detection

Figure 6 is a flowchart of the LSP algorithm. The LSP takes
inputs from the audio microphone and an experienced oper-
ator’s demonstration of chatter detection and outputs the
dominant chatter frequency fchatter and the chatter detec-
tion threshold Pth . The key steps of the LSP algorithm are
described next.

Determining the dominant chatter frequency

The first step of the LSP algorithm is to determine fchatter
from the audio signal and the operator’s demonstration. A
sampling rate of 48 kHz was utilized to ensure that the entire
frequency range of human hearing (20 Hz–20 kHz) is cov-
ered. The audio signal was transformed into the frequency
domain using FFT, which enabled the extraction of frequen-
cies and their amplitudes as features. The frequencies and
amplitudes correspond to the human operator’s perception
of pitch and volume, respectively.

As noted earlier, the operator provided a demonstration
by pressing a push button switch, upon perceiving chatter
in the milling operation. Because our approach relies on an
experienced operator’s reaction to chatter, the learning algo-
rithm only attempts to search for a chatter frequency after
receiving the push button signal from the operator. It thus
eliminates the need to filter out the tooth passing frequency
and its harmonics to isolate the chatter frequency. At the
human signal time instance ts , the highest peak in the FFT
of the corresponding audio signal is taken as the dominant
chatter frequency. Figure 7 shows the FFT of the audio sig-
nal at ts during a dry slot milling experiment, which clearly
identified the dominant chatter frequency of approximately
774 Hz as the highest peak in the frequency spectrum of the
audio signal at ts . Note that the chatter frequency amplitude
has increased significantly at time ts due to the natural delay
in the human operator’s reaction to perception of chatter.

Filter, transform, and normalize the audio signal

Analogous to short-termmemory, in thiswork approximately
1 s duration of the audio signal was stored in the microcon-
troller of theHMI at any time instant. The stored time-domain
audio signalwasfiltered by a bandpass filterwith a bandwidth
of 200 Hz centered around fchatter identified in the previous
step. An FFT with a bin size of N = 2048 was sequentially
applied to the filtered signal to extract the frequency decom-
positions and amplitudes. Finally, themaximumvalue in each
bin of the FFT was collected as a time-series, which was nor-
malized by dividing it by 215 · N , where 215 is the maximum
amplitude of the 16-bit digital audio signal. The normalized
amplitude time-series is labelled as Pband(t). Figure 8 shows
a representative raw audio signal obtained in the milling

Table 2 Operator reaction time
statistics from synthetically
generated chatter sound
experiments

Operator A
r (s)

Operator B
r (s)

Operator C
r (s)

Average

Mean 0.306 0.323 0.395 0.341

Standard deviation 0.061 0.079 0.069 0.070
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Fig. 6 LSP algorithm flowchart

Fig. 7 Identifying chatter frequency at time instance ts . Dry slot end
milling (four flute solid carbide end mill, 100% radial immersion) of
4140 Steel, spindle speed N = 1000 RPM, axial depth of cut ap =
2.5 mm, and feed rate = 132 mm/min. The machine tool, workpiece
and cutting tool specifications are provided in the “Experimental veri-
fication” section

experiment of Fig. 7, the corresponding bandpass-filtered
signal, and their respective FFTs.

Determining the chatter detection threshold
via perceptionmapping

The next task is to determine the chatter detection threshold
Pth based on the operator signal instance ts and Pband(t).
As discussed in “Evaluating the correspondence problem in
chatter detection” section, because humans are subject to nat-
ural delay in reacting to an observed signal,ts corresponds to
the time instance when chatter has already developed signif-
icantly. Therefore, setting Pth = Pband(ts) will result in late
detection of chatter.

Figure 9a shows a graphical representation of the temporal
correspondence problem introduced by the operator reaction
time r . A solution is to evaluate t̂c, a naïve estimate of the true
tc, by subtracting the sample mean reaction time r (obtained
from the synthetic sound experiments described earlier) from
ts , as shown inFig. 9b.Therefore, the chatter detection thresh-
old Pth can be set to the value of Pband(tc) ∼= Pband

(
t̂c

) =
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Fig. 8 Signal processing example of the milling experiment in Fig. 7,
a raw audio signal and bandpass-filtered signal, b raw and bandpass-
filtered signal at ts , and c FFT of raw and bandpass-filtered signal at
ts
Pband(ts −r). The simplicity of the naïve estimate is appeal-
ing; however, because chatter marks have already appeared
on the workpiece at tc, the chatter detection threshold Pth
should ideally be adjusted such that the likelihood of detect-
ing chatter before chatter marks appear on the workpiece is
higher. Figure 10 illustrates an adjusted time instance θ such
that Pth = Pband(θ), where θ < t̂c. Specifically, instead of
using t̂c, which was calculated from the mean reaction time,
the learning agent assumes a uniform probability distribution
ftrace(tc) centered around t̂c. The range of the uniform dis-
tribution is specified as ts − r − 6 · sr ≤ tc ≤ ts − r + 6 · sr ,
where sr is the standard deviation of the reaction time r . The
uniform distribution can be expressed as:

Fig. 9 Graphical representation of the correspondence problem in chat-
ter detection and its solution: a two unknown variables r and tc in the
correspondence problem,b a naïve estimate to solve the correspondence
problem by (step 1) evaluating the mean reaction time r to synthetically
generated sounds and (step 2) evaluating the estimated chatter mark
instance t̂c

Pr(ts − r − 6 · sr ≤ tc ≤ ts − r + 6 · sr ) =
∫ ts−r+6·sr

ts−r−6·sr
ftrace(tc)dtc ∼= 1

(2)

The rationale for the range of uniform distribution in
Eq. (2) is as follows. Time instance ts − r + 6 · sr is approxi-
mately equivalent to the operator signal time instance, which
occurs too late and therefore corresponds to a cumulative
probability of chatter of 1. On the other hand, time instance
ts − r − 6 · sr is too early such that the cumulative proba-
bility of chatter before this time instance is approximately
0. Therefore, for time instance θ that lies in the range of the
uniform distribution, the cumulative probability of tc can be
rewritten as:

Pr(tc < θ) =
∫ θ

ts−r−6·sr
ftrace(tc)dtc (3)

A chatter detection threshold can now be established by
assigning it the value of Pband(t) at time instance θ to achieve
the desired cumulative probability of early chatter detection:
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Fig. 10 Pband (θ) as the chatter
detection threshold Pth

Pr(tc < θ) = k

Pth = Pband(θ) (4)

where k is a tunable parameter for the desired cumulative
probability of early chatter detection. A cumulative probabil-
ity of 0 will result in a chatter detection threshold that detects
chatter early but also triggers more false positives while a
cumulative probability of 0.5 is equivalent to the unadjusted
naïve estimate where Pth = Pband

(
t̂c

)
. In this work, sincewe

have deemed that chatter should ideally be detected before
chatter marks appear on the machined surface, k was set to
0.4. The mean values of Pth were obtained from demon-
strations given by each human operator and were used for
experimental verification of the LSP algorithm, which is
described next.

Experimental verification

Training and validation experiments

The training experiments were designed such that the human
operator would encounter both stable and unstable (chatter)
cutting conditions. When the operator judged a process to
be stable, he/she was instructed to do nothing; conversely,
when the operator detected chatter, he/she was instructed to
depress the push button switch that recorded the time instance
of chatter ts signaled by the operator. Regardless of the opera-
tor’s reactions, the training experiments were not interrupted,
which enabled post-mortem evaluation of the experimental
evidence of chatter marks on the workpiece. Although all
three operators were able to accurately discriminate between
chatter and stable cuts over the range of milling parameters
used in the training experiments, it should be noted that the
possibility of incorrect classification by the operator can be

Table 3 Chatter detection thresholds obtained from training experi-
ments

Operator N (RPM) ap(mm) Pth

A 750 3.5 0.020

A 2000 2 0.038

A 2000 2.5 0.209

Operator A Mean Threshold 0.089

B 750 3.5 0.036

B 2000 3 0.026

Operator B Mean Threshold 0.031

C 1000 2.5 0.013

C 1000 3 0.019

C 1750 2 0.035

C 1750 2.5 0.014

Operator C Mean Threshold 0.020

accounted for through post-mortem evaluations of the work-
piece for visual evidence of chatter marks, which serve as the
ground truth. Incorrect classifications by the operator can be
discarded and only verified classifications considered as valid
operator demonstrations for training the LSP algorithm.

Using the LSP algorithm presented earlier, nine Pth
values were obtained from the training demonstration exper-
iments and are given in Table 3. The mean thresholds
obtained from each operator’s demonstrations were subse-
quently computed. The chatter detection thresholds obtained
from demonstration are assumed to work for a representative
cutting tool condition. This underlying assumption is valid
because the chatter frequencies are a function of the primary
modes of vibration based on the dynamics of the system. If
the dynamics of the machine tool-cutting tool system is sig-
nificantly altered (e.g. due to tool wear), the chatter detection
thresholds must be relearned and updated using the proposed
approach, which only requires a few demonstrations. After
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Table 4 Validation experiments
Workpiece
material

N (RPM) ap(mm) Pband (tc) Unstable cut
max(Pband )

Stable cut
max(Pband )

Unstable cutting conditions

4140 Steel 750 3.5 0.038 0.143 N/A

4140 Steel 750 3.5 0.032 0.170 N/A

4140 Steel 1000 2.5 0.024 0.174 N/A

4140 Steel 1000 3 0.033 0.191 N/A

4140 Steel 1000 3 0.051 0.215 N/A

4140 Steel 1000 3.5 0.044 0.282 N/A

4140 Steel 1000 4 0.068 0.279 N/A

4140 Steel 1250 3.5 0.017 0.055 N/A

4140 Steel 1500 3 0.041 0.234 N/A

4140 Steel 1750 2 0.038 0.044 N/A

4140 Steel 1750 2.5 0.015 0.307 N/A

4140 Steel 1750 2.5 0.085 0.456 N/A

4140 Steel 2000 2 0.056 0.092 N/A

4140 Steel 2000 2.5 0.039 0.451 N/A

4140 Steel 2000 3 0.036 0.386 N/A

Stable cutting conditions

4140 Steel 750 3 N/A N/A 0.013

4140 Steel 750 3 N/A N/A 0.021

4140 Steel 1000 2 N/A N/A 0.004

4140 Steel 1000 2.5 N/A N/A 0.003

4140 Steel 1250 3 N/A N/A 0.004

4140 Steel 1500 2.5 N/A N/A 0.025

4140 Steel 1750 2 N/A N/A 0.009

4140 Steel 2000 1.5 N/A N/A 0.003

4140 Steel 2000 2 N/A N/A 0.016

obtaining the mean chatter detection thresholds from the
slot milling experiments, validation slot milling experiments
listed in Table 4 were conducted. The milling experiments
presented in Tables 3 and 4 were conducted in randomized
order.

Performance evaluation

Four outcomes are possiblewhen evaluating the performance
of the Operator Mean Thresholds established in the training
experiments. These outcomes include early chatter detection,
late chatter detection, false positive, and false negative,which
are illustrated via an example validation test case shown in
Fig. 11. While both early and late chatter detection cases
indicate that chatter is accurately detected, it is ideal to detect
chatter before chatter marks appear on the workpiece so that
chatter can be suppressed before the workpiece is damaged.
When Operator Mean Threshold < Pband(tc), chatter was
detected before chatter marks appeared on the workpiece,
resulting in an early chatter detection classification. When

Operator Mean Threshold > Pband(tc), chatter was detected
after chatter marks appear on the workpiece surface, which
was classified as late chatter detection.

False negative and false positive classifications are both
undesirable and should ideally be eliminated. False negative
means that the milling process was falsely classified as a
stable process, which implies that Operator Mean Threshold
> max(Pband). On the other hand, a false positive classifi-
cation occurred when a stable milling process was falsely
classified as unstable, which implies that Operator Mean
Threshold < max(Pband). Each Operator Mean Thresh-
old was first compared with Pband(tc) and the max(Pband)
obtained in the unstable cuts, and then the Operator Mean
Threshold was compared with the max(Pband) obtained in
the stable cuts. Table 5 summarizes the experimental perfor-
mance of the Operator Mean Thresholds for each operator
and the average performance when applied to the respective
validation cases given in Table 4.

It can be seen that the chatter detection thresholds obtained
from the LSP algorithm are capable of detecting chatter
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Fig. 11 Examples of classificationoutcomeswhenvalidating the trained
chatter detection thresholds: a early detectionwith a threshold of 0.031
(Table 3, Operator B Mean Threshold) in a 4140 steel validation test at
2000 RPM, 2 mm axial depth of cut, b late detectionwith a threshold of
0.089 (Table 3, Operator A Mean Threshold) in a 4140 steel validation

test at 2000 RPM, 2.5 mm axial depth of cut, c false negative with a
threshold of 0.089 (Table 3, Operator AMean Threshold) in a 4140 steel
validation test at 1750 RPM, 2 mm axial depth of cut, d false positive
with a threshold of 0.020 (Table 3, Operator C Mean Threshold) in a
4140 steel validation test at 750 RPM, 3 mm axial depth of cut

Table 5 Experimental
performance of the chatter
detection thresholds

Operator A Mean
Threshold (%)

Operator B Mean
Threshold (%)

Operator C Mean
Threshold (%)

Average
performance (%)

Unstable cutting conditions

Early
detection

0.0 80.0 86.7 55.6

Late
detection

86.7 20.0 13.3 40.0

False
negative

13.3 0.0 0.0 4.4

Stable cutting conditions

True
negative

100 100 77.8 92.6

False
positive

0.0 0.0 22.2 7.4

Overall

Accuracy 91.7 100 91.7 94.4

accurately with 94.4% average overall accuracy, 4.4% false
negative rate, and 7.4% false positive rate. It is also evi-
dent that the chatter detection thresholds result in more early
detections (55.6%). It is evident that the worst performing
Operator Mean Threshold still resulted in a high accuracy of
91.7%but resulted in a trade-off between a false positive clas-
sification and the detection speed.A lower value of the chatter

detection threshold typically implies early detection but pro-
duces a higher rate of false positives. Taking the average
of more demonstrations from each operator can potentially
reduce the impact of outliers from poor demonstrations.
However, as shown here, even with a limited number of
demonstrations (≤ 4), a high chatter detection accuracy can
be achieved.
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Table 6 Comparison of the LSP algorithm with other machine learning
based chatter detection methods reported in the literature

Methodology Number of
training
samples

Testing
accuracy

Processes
and
materials

Learning from
Demonstration
(this paper)

≤ 4 94.4% Slot Milling
of 4140
Steel

ON-LSTM and
PBT (Shi et al.,
2020)

64 100% Milling of
2A12
Aluminum

Hybrid Machine
Learning and
Physics-based
model (Rahimi
et al., 2021)

355 96.86% Milling of
Aluminum
and Steel

Scalogram and
Deep
Convolutional
Neural
Network (Tran
et al., 2020)

28 100%
Unstable
Cutting
Conditions,
98.01%
Stable
Cutting
Conditions

Slot Milling
of
Aluminum

To further demonstrate the advantage of the proposed
methodology for chatter detection, a comparison of its perfor-
mance against othermachine learning based chatter detection
methods reported in the literature is shown in Table 6.
The metrics compared are the number of training samples
required and the corresponding testing accuracy. It is evident
that the proposed method demonstrates similar performance
compared to the state of the art albeit with significantly fewer
training samples.

The overall chatter detection accuracy of the human
operator trained LSP algorithm is promising, especially con-
sidering that each chatter detection threshold is obtained
from few-shot demonstrations by an experienced operator,
which is beneficial in a production setting. One potential
limitation of the LSP algorithm is that the learned chatter
detection thresholds are only applicable to the chatter fre-
quency demonstrated by the operator. To enable the detection
of chatter frequencies not previously demonstrated by the
operator during training, one potential solution is to apply
notch filters to the audio signals such that the noise and tooth
passing frequencies and harmonics are filtered out. In such
a case, the learned thresholds can be applied to the given
cutting system without additional training demonstrations.

Conclusion

This paper proposed a new approach to milling chatter detec-
tion that utilizes an interactive learning agent, termed the
Digital Apprentice in this paper, to efficiently learn a chatter
detection threshold from few-shot demonstrations provided

by an experienced human operator. The paper showed that
(1) it is possible to learn to detect chatter from only a few
(≤ 4) human operator demonstrations, and (2) the proposed
LSP algorithm is able to account for the human operator’s
reaction time to resolve the temporal correspondence prob-
lem, yielding chatter detection thresholds that demonstrate
high average chatter detection accuracies (94.4% for milling
of 4140 steel). These results indicate that learning from an
experienced operator’s demonstration to detect milling chat-
ter is effective. The fact that on-line chatter detectionmethods
have not seen widespread industrial acceptance due to the
specialized expertise required and the high cost of manu-
ally tuning chatter detection thresholds makes the proposed
method appealing, especially when experienced operator
demonstrations on the production floor are readily available.
As a natural extension of the Digital Apprentice proposed
herein, an interesting future research direction is to render
the Digital Apprentice more practical for industrial appli-
cations where preventing chatter is of utmost importance.
In such cases, a certain level of false classification must be
acceptable, so long as chatter marks are not produced on the
workpiece. By coupling chatter suppression techniques with
the proposed method for chatter detection, future work can
focus on preemptively adjusting the cutting conditions (e.g.
spindle speed and/or feed) utilizing thresholds optimized for
early detection of chatter in milling operations.
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Appendix

See Table 7.

Table 7 Experience level of human subjects used in the training exper-
iments

Machining experience Experience with
chatter

Operator A 2 years 0 year

Operator B 6 years 6 years

Operator C 3 years overall, 2 years of
professional experience

2 years
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