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Abstract
The continuous development ofmetal additivemanufacturing (AM) promises the flexible and customized production, spurring
AM research towards end-use part fabrication rather than prototyping, but inability to well control process defects and
variability has precluded the widespread applications of AM. To solve these issues, process monitoring and control is a
powerful approach. Recently, a variety of monitoring methods have been proposed and integrated with metal AM machines,
which enables a large volume of data to be collected during the process. However, the data analytics faces great challenges due
to the complexity of the process, bringing difficulties on developing effective models for defects detection as well as feedback
control to improve quality. To overcome these challenges, machine learning methods have been frequently employed in the
model development. By using machine learning methods, the models can be built based on the collected dataset, while it
is not necessary to fully understand the process. This paper reviews the applications of machine learning methods in metal
powder-bed fusion process monitoring and control, illuminates the challenges to be solved, and outlooks possible solutions.

Keywords Additive manufacturing · Machine learning · Feedback control · Process monitoring

Introduction

Additive manufacturing (AM) also known as “3D print-
ing” builds parts from computer-aided design (CAD)models
directly through stackingmaterials layer-by-layer (Technolo-
gies & Terminology, 2012). It opens new avenues to building
parts with complex structures that are difficult or even impos-
sible to be manufactured by other machining processes.
Besides, it needs little lead time (Waterman&Dickens, 1994)
and reduces material waste. Owing to these advantages,
AM opens up new possibilities in manufacturing industry.
Currently metal AM is approaching a paradigm shift from
prototyping to end-use part fabrication. This makes quality
assurance become a prominent and urgent issue to be solved.
In the study we focus on powder-bed fusion (PBF) process,
one category of metal AM processes, including selective
laser melting (SLM) and electron beam melting (EBM). The
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PBF process can obtain good feature resolution and accuracy,
making it appealing for precision applicationswhere elimina-
tion of process defects and variability is of vital importance.
To improve part quality, the National Institute of Standards
and Technology (NIST) in the US reported the needs for the
development of monitoring and control methods in the year
of 2015 (Mani et al., 2015). In the last 5 years, a variety of
monitoring methods have been proposed in both academic
and industrial communities. Most of the companies selling
PBFmachines have developed their ownmonitoring systems
and integrated with their advanced machines, such as EOS,
SLMSolutions, Concept Laser andRenishaw. These systems
commonly detect optical emissions, including visible light
emission and infrared light emission which is highly related
to temperature information. Besides, some other monitoring
systems have been developed for feasibility exploration and
further process understanding, including acoustic monitor-
ing system (Eschner et al., 2018), X-ray assistant monitoring
system (Calta et al., 2018), acoustic spectroscopymonitoring
system (Dryburgh et al., 2019) and interferometric monitor-
ing system (DePond et al., 2018).

Equipped with the monitoring systems, a large amount
of data can be acquired in PBF process. On one hand, the
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researchers analysed the acquired data and expected to dis-
cover some variation rules and to link some sudden changes
of the process signatures to the generation of process defects
or variability (Bisht et al., 2018; Coeck et al., 2019; Fisher
et al., 2018). Commonly a single process signature is selected
and studied which is however insufficient due to the com-
plexity of the process. On the other hand, machine learning
is adopted to build the models, which reveal highly non-
linear relationships between all process signatures and the
defects and variability with little expertise on the process.
Several reviewpapers onPBFprocessmonitoring and control
have been published. For example, Tapia and Elwany (2014)
and Everton et al. (2016) reviewed the in-situ monitoring
methods in metal AM, including powder bed fusion process
(PBF) and directed energy deposition (DED) process, mainly
introducing the sensing and setup configurations. Spears and
Gold (2016) also reviewed sensing and setup configurations
in LPBF process. They all highlighted the importance of
establishing correlations between process parameters, pro-
cess signatures and quality metrics, and put forward the great
challenge onmanaging a large volume of data in PBF process
monitoring. Similarly,Grasso andColosimo (2017) reviewed
the monitoring methods both in academic and industrial
communities. In addition, they summarized possible part
defects in PBF process. Later they further updated the review
paper which summarized the detectable defects with dif-
ferent sensing methods (M. L. G. Grasso et al., 2021). D.
Chen et al. (2021) reviewed the application of the state-of-
the-art sensing techniques in PBF process and mentioned the
application of using intelligent algorithms for anomaly detec-
tion. McCann et al. (2021) reviewed the possible process
defects, sensing techniques and process control methods.
They emphasized the requirements for real-time control and
listed the application of machine learning in process control.
However, a systematic and detailed introduction and compar-
ison on different machine learning methods in AM process
monitoring and defect detection is still lacking. Therefore,
this paper reviewed the processmonitoring and controlmeth-
ods focusing on the application ofmachine learningmethods.
Moreover, this paper reviewed the sensing methods accord-
ing to the spatial scale as it is important to estimate the
possible information contained in the sensing data.

Machine learning (ML) has been developed for sev-
eral decades (Jordan & Mitchell, 2015; Shalev-Shwartz &
Ben-David, 2014), since the term ‘machine learning’ was
proposed byArthur Samuel in 1952. There have been numer-
ous machine learning initiatives to date, promoting machine
learning to evolve to a great extent. It did not take off until the
late 1990s. The chess computer beat Kasparov, proving that
machines were indeed capable of human-like intelligence.
Since then, many scientists and researchers have devoted
extensive efforts on machine learning and developed various
new programs and algorithms. Machine learning has merged

as the method of choice for computer vision, speech recog-
nition, natural language processing, robot control and other
applications. The algorithms can be categorized into three
main classes: supervised learning, unsupervised learning and
semi-supervised learning. The methods have been widely
applied in fault diagnosis, condition monitoring and remain-
ing life prediction in industrial equipment and systems (Liu
et al., 2018; Stetco et al., 2018). For example, Ali et al. (2019)
proposed a practical machine learning-based fault diagno-
sis method for induction motors using experimental data,
and they used three classification algorithms for fault clas-
sification and provided nearly 100% classification accuracy.
C. Yang et al. (2019) developed a reconstruction modeling
technique combining support vector regression and sliding-
time-window approaches. Residuals between the observed
signal and the reconstructed signal are utilized to indicate
whether the desired quantity is different from its normal oper-
ation condition or not. The developed model demonstrated
improved performance in detecting wind turbine faults. J.
Zhang, Hong, et al. (2018) studied the Long Short-Term
Memory (LSTM) network to track the system degradation
and to predict the remaining useful life, and they showed that
compared with other machine learning techniques, LSTM
turns out to bemore powerful and accurate in revealing degra-
dation patterns.

The success of usingmachine learning for industrialmoni-
toring depends on several significant factors: sensingmethod,
dataset preparation, feature selection and modeling algo-
rithm. This paper reviews current status and challenges on
these aspects in PBF process as well as data fusion and feed-
back control which are the next crucial steps towards high
quality assurance after the development of monitoring sys-
tem. The framework is shown in Fig. 1.

The paper includes the following sections. “Sensingmeth-
ods” section introduces the sensing methods in PBF process;
“Type of defects and dataset preparation” section introduces
the possible types of defects and data preparation methods;
“Machine learningmodeling” section introduces themachine
learningmodelingmethods; “Data fusion” section introduces
data fusion methods; “Feedback control” section introduces
feedback control methods; the seventh introduces the future
directions; and the last section draws the conclusions.

Sensingmethods

Sensing is the first step toward the development of moni-
toring system, which is also significant for final monitoring
performance as this step determines the information and data
to be collected. Different from the previous papers that clas-
sified these sensing methods according to the type of sensors
and setup configurations, we classify these sensing methods
according to the spatial scale as it is important to estimate
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Fig. 1 The framework on PBF process monitoring and control

the possible information contained in the sensing data. Thus,
we classify these sensing methods into three categories: melt
pool-scale sensingmethods, layer-scale sensingmethods and
volume-scale sensing methods.

Melt pool-scale sensingmethods

The melt pool-scale sensing methods refer to the methods
that measure the dynamic variation of melt pool both directly
and indirectly. The direct sensing methods mean that the
melt pool dynamic process can be observed directly, such
as high-speed photographing or X-ray assistant high-speed
photographing. To fully understand the mechanisms during
the process, the direct melt pool sensing systems have been
developed in several advanced labs, including the Argonne
National Laboratory (Zhao et al., 2017) and Lawrence Liv-
ermore National Laboratory (Calta et al., 2018) in USA,
and Heriot-Watt University in UK (Bidare et al., 2017).
These provide significant information for discovering novel
phenomena and revealing the physical mechanisms on the
melting and cooling process. Particularly, the particle spatter-
ing by the entrainment effect of ambient gas (Ly et al., 2017;
Matthews et al., 2016), vapor depressions during the transi-
tion from the thermal conduction mode to ‘keyhole’ mode
(Cunningham et al., 2019), pore motion and elimination
(Hojjatzadeh et al., 2019), pore dissolution and dispersion by
laser re-melting (Leung et al., 2018), and large ejecta forma-
tion and interactions with melt pool formation (Nassar et al.,
2019), have been observed and explainedwith unprecedented
detail.

Although these advanced directmelt pool sensing systems
aremeaningful for process understanding and ultimately pro-
viding effective solutions for quality improvement, they are

not suitable for online sensing in industrial applications,
because they are high-cost and difficult to be integrated with
commercial PBF machines. Therefore, several indirect melt
pool sensing methods were also proposed and their feasibil-
ity for online applicationwere studied. The indirectmelt pool
sensing methods detect the radiation signal during laser-melt
pool interaction or the auxiliary signal after interacting with
themelt pool. The detected signal reflects partial information
on melt pool status, and then by virtue of the information
melt pool status can be estimated. The commonly detected
indirect signal of melt pool is optical radiation (as shown
in Fig. 2), especially thermal optical radiation as it can be
calibrated to temperature information that affects the forma-
tion ofmicrostructure, thermal stress, and finally part quality.
The optical radiationwaveband is in awide range, so the opti-
cal sensors sensitive to different wavebands were employed,
including the visible waveband, near infrared waveband and
infrared waveband. The sensors used contain photodiode
(Berumen et al., 2010), pyrometer (Furumoto et al., 2013),
CMOS camera (Clijsters et al., 2014), thermal camera (M.
Grasso et al., 2018) and spectrometer (Dunbar et al., 2016).
Apart from optical radiation, the acoustic emission is also
studied. The acoustic emission is generated by the vibration
of melt pool, ‘keyhole’ and ejected vapor, so it contains the
information on melt pool dynamics and melt pool vaporiza-
tion that are also related to the final part quality. The acoustic
sensing systems have also been developed recently (Koester
et al., 2018). Additionally, the interferometric imaging sys-
tem (as shown in Fig. 3) was developed by Kanko et al.
(2016) and DePond et al. (2018), and it is capable of sensing
the information on melt pool morphology.
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Fig. 2 Optical set-up of melt pool monitoring system (Clijsters et al., 2014)

Fig. 3 Interferometric imaging system set-up (Kanko et al., 2016)

The melt pool-scale sensing method collects signals at the
minimum scale among the three categories of sensing meth-
ods. It provides high-resolution information both in spatial
and in temporal, so it is suitable for the detection of small
local defects which are generated transiently in the process,
such as internal pores, cracks and inconsistent microstruc-
tures.

Layer-scale sensingmethods

The layer-scale sensing methods collect the information on
the whole platform before or after the scanning of each
layer. The commonly used sensors for these methods are
high-resolution visual cameras or high-resolution thermal
cameras. The methods can detect the information on pow-
der deposition condition, built surface morphology, as well

as built surface thermal distribution. zur Jacobsmühlen et al.
(2013) indicated that the sensing system with a visual cam-
era can detect the super-elevation of part contours, missing
powder and low energy input. Later they further discussed
the possible spatial error and demonstrated that a repeated
calibration is necessary for this sensing system (zur Jacob-
smühlen et al., 2014). Foster et al. (2015) made it progress by
considering the influence of lighting schedule in the cham-
ber. Pagani et al. (2020) developed an edge segmentation
approach to detect the out-of-control deviations from the
nominal geometry, as shown in Fig. 4. Krauss et al. (2014)
indicated that the sensing system with a thermal camera
can identify hot spots in an early stage during solidification
process. Furthermore, Rodriguez et al. (2015) developed a
temperature calibration method aiming at detecting absolute
surface temperature based on this sensing system.
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Fig. 4 Example of image segmentation for the layer signalled as out-of-
control by the control chart for sample 1A; the color bar indicates the
deviations from the nominal geometry along the reconstructed contour
(Pagani et al., 2020) (Color figure online)

Apart from the sensing systems mentioned above, the fea-
sibility of some novel layer-scale sensing methods was also
studied. For instance, Zhang et al. (2016) developed a vision
sensing method through capturing the fringe projection (as
shown in Fig. 5) and demonstrated it can obtain the height
maps of the powder-bed. Rieder et al. (2015) studied the
ultrasonic sensing method and indicated that it can be used
for process quality assessment by evaluating the backwall
signals and the ultrasonic velocities. Smith et al. (2016) pro-
posed a sensing method named spatially resolved acoustic
spectroscopy (SRAS), which is a technique formaterial char-
acterization based on robustlymeasuring the surface acoustic
wave velocity. Their work showed that this method has the
potential for the detection of internal pores and cracks. Z.

Li et al. (2018) and Kalms et al. (2019) respectively built
a sensing system with a projector and two cameras, which
achieves the measurement of surface morphology.

Compared with melt pool-scale sensing method, layer-
scale sensing method can detect the geometric signatures
of built region, making it suitable for the detection of part
geometry variation (Imani et al., 2019). Additionally, layer-
scale sensing method also has the potential for internal pores
and cracks, however, its resolution is limited by the camera
resolution and it is only able to detect the surfacemorphology
defects after their generation rather than to detect the dynamic
information during the melting and cooling process.

Volume-scale sensingmethods

While no direct volume-scale sensing method has been pro-
posed to date, the melt pool-scale sensing method and the
layer-scale sensing method are both available for provid-
ing volume-scale information due to the layer-by-layer-built
trait of AM processing. A variety of features extracted from
the melt pool-scale or layer-scale sensing signals have been
mapped into three-dimensional space to study their feasi-
bility for the volume-scale defect detection. For instance,
Clijsters et al. (2014) used the melt pool area as an indicator
and mapped it to show the internal void detection results.
They demonstrated that the void detection result is consis-
tent with the X-ray measurement result on the position of
void occurrence. Kriczky et al. (2015) mapped several indi-
cators, including thermal gradient at the solidus-to-liquidus
region, the maximum temperature in the melt pool, the melt
pool area, and the length-to-width ratio of melt pool, for an
L-shaped part. they found several anomalous trends based on
their mapping results when using different process parame-
ters, but they did not correlate their mapping results to any
specific internal defects. Mahmoudi et al. (2019) employed

Fig. 5 a Set up of fringe projection system, b image on height map collected by fringe projection system (Zhang et al., 2016)
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Fig. 6 Overlay of XYZ point cloud from processed melt pool monitor-
ing data (black) with the results from the CT scan (red) for a 10 × 10
× 10 mm sample (Coeck et al., 2019b) (Color figure online)

Gaussion process (GP) to generate a melt pool indicator
based on the melt pool images detected by two thermal cam-
eras, and then they mapped the indicator and successfully
detected the internal pores they intentionally created. Cheng
et al. (2019) extracted acoustic signal intensity as an indica-
tor, and the mapping result showed that two kinds of defects,
metal defect and dried paste defect, can be identified. Gobert
et al. (2018) extracted features from the layer-scale images
as indicators, and the mapping result demonstrated that the
internal pores can be detected. Coeck et al. (2019) used the
melt pool event, the abrupt fluctuation in themelt pool signal,
as an indicator for lack of fusion porosity prediction. They
quantified the prediction sensitivity for the internal voidswith
different volume values. Their results showed that although
the void prediction sensitivity is high, the false positive count,
i.e., the events that are predicted as a defect by the mapping
result but did not lead to a real defect as observed in the
XCT measurement result, is also rather high, especially for
the voids with small volumes, as shown in Fig. 6.

In summary, the preliminary works on volume-scale sens-
ing are mostly based on mapping of the melt pool-scale
or layer-scale sensing results. Therefore, the final defect
detection performance depends on the melt pool-scale or
layer-scale sensing performance. Currently, most of volume-
scale defect sensing works focus on internal pores detection,
and the performance still need to be improved for the pores
with small sizes.

Type of defects and dataset preparation

Using machine learning for process monitoring, the model
is built based on a prepared dataset that includes the input
variables and the corresponding output responses. Here, the
input variables are the signals collected by the sensing meth-
odsmentioned above, and the output responses are the defects
that are expected to detect during the process. As different
types of defectsmaybe generated, before dataset preparation,
which type of defect to be detected should be determined.
Then the model should be built based on the defect gen-
eration mechanism. Therefore, this paper reviews possible
defects and their generation mechanisms. According to the
information volume required in the time range, the defects
are categorized into two main categories: local defects and
global defects. The local defects are generated in a short time
due to some transient process variants. The global defects are
formed as an accumulation effect of multiple layers.

Local defects

Porosity

Porosity is a dominant defect in the as-built parts and has
detrimental effect on all mechanical properties, especially
on fatigue tolerance (Edwards et al., 2013; Leuders et al.,
2013; Sterling et al., 2016; Yadollahi et al., 2017). The inves-
tigations on characterizing porosity in the as-built parts and
analysing the influence of processing parameters on poros-
ity have been widely conducted (Gu et al., 2013; Slotwinski
et al., 2014). Two types of pores are commonly observed
using the X-ray Computed Tomography (XCT) measure-
ment: spherical pores and non-spherical pores (Fig. 7). The
spherical pores are formed because the gas bubbles are
entrapped in the part instead of being released during the
solidification process (Khairallah et al., 2016a; Weingarten
et al., 2015). The gas bubbles could be generated due to
different reasons: (1) the vaporization of low melting point
constituents within the alloy (Gong, Gu, et al., 2014); (2)
the collapse of ‘keyhole’ (Khairallah et al., 2016a); and (3)
the gas entrapped in the powder particles during the atom-
ization process (Murr et al., 2009). The non-spherical pores,
also seemed as ‘cracks’ for those with large sizes, commonly
appear at the connection positions of tracks and layersmainly
caused by insufficient energy input as well as the resultant
unstable melt flow (Qiu et al., 2015; Tammas-Williams et al.,
2015). It is worth noting that not all the pores generated dur-
ing the process can be detected in the as-built parts as some of
themmaybe released in the next layer ofmelting that re-melts
a prior layer (Gong et al., 2014). Another possible reason on
non-spherical pore generation is the removal of large parti-
cles attached on the top surface during the recoating process
(Gong et al., 2014).
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Fig. 7 The pores under different energy densities. a Non-spherical pores; b no obvious pores; c near-spherical pores (Kasperovich et al., 2016)

Fig. 8 Cracks initiated at the grain boundaries in the DS superalloy substrate (Zhong et al., 2005)

Cracks

Cracking is known as the result of competition between
the mechanical driving force to cracking and the mate-
rial’s intrinsic resistance to cracking (Zhong et al., 2005)
(Fig. 8). The cracking phenomenon on different materi-
als were characterized and the cracking mechanisms were
explained (Carter et al., 2012; J. Yang et al., 2015; Zhou
et al., 2018). The liquation cracking behaviour was studied
for Inconel 718 and it was found that the cracks initiate from
the weak site near the fusion line in the pre-deposited layer
and propagates along the interdendritic region with the fur-
ther deposition proceeding layer by layer (Chen et al., 2016).
Wang et al. studied the solidification cracks in single crystals
and low angle bi-crystals, and they demonstrated that solidi-
fication cracking preferentially appears above a critical grain
boundary angle, which produces a supercritical film length

(N. Wang et al., 2004). Wei et al. studied the ductility dip
cracking (DDC) of ERNiCrFe-7A Ni-based alloy, and con-
cluded that theDDCsusceptibility increaseswith the increase
of grain misorientation in the local texture (Wei et al., 2016).

Microstructural heterogeneities

The PBF process is characterized by high temperature
gradients and cooling rates that lead to rapidly solidified, non-
equilibrium microstructures. Any process variations may
give rise to inconsistent local temperature gradients and cool-
ing rates, resulting in heterogeneousmicrostructures (Fig. 9).
Microstructural heterogeneity contains the differences in
morphology, size, orientation, and chemical compositions of
phases and grains (Kok et al., 2018). The influence of hetero-
geneous microstructures on mechanical properties is still an
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Fig. 9 EBSD phase maps (a, c,
e) and IPF maps (b, d, f) on
longitudinal cross-section at
different heights of as-EBM-built
rod showing variation in phase
composition and grain
morphology: a, b top region, c, d
center region and e, f bottom
region (Sun et al., 2015)

open issue. The related studies have been conducted to inves-
tigate the influence of microstructures on tensile properties
(Carroll et al., 2015; Z. Wang et al., 2016), hardness (Hrabe
& Quinn, 2013; Tucho et al., 2017) and fracture toughness
(Cain et al., 2015; Van Hooreweder et al., 2012) for different
materials.

Global defects

Geometric variations

A variety of geometric variations have been observed and
reported in literature, containing the phenomena of shrink-
age (Sharratt, 2015; Thomas, 2009), warpage (Mercelis &
Kruth, 2006), curling (Mousa, 2016; Sharratt, 2015), oversiz-
ing (Thomas, 2009) and edge elevating (Kleszczynski et al.,
2012; Yasa et al., 2009) (Fig. 10). The geometric variations
are commonly caused by the accumulation of thermal stress.
The rapid melting and solidification process bring large ther-
mal gradients between the different layers and the substrate.
This leads to large thermal stress in the part, ultimately result-
ing in the geometric variations (Paul et al., 2014).

Delamination

Delamination is the effect of crack initiation and growth. The
cracks can be generated due to several reasons as mentioned
in Sect. 3.1. The thermal stress in the part could aggra-
vate the propagation of the initial cracks. When the thermal
stress exceeds the binding ability between the adjacent lay-
ers, delamination occurs (Zäh & Lutzmann, 2010), as shown
in Fig. 11. Consequently, the final part is a failure and the
process has to be terminated.

Surface defects

Surface defects could lead to high surface roughness, and
finally affects part quality. In SLM processed objects, the
reasons of surface defect include melt pool instability, spat-
ter attachment and semi-melt particle attachment. Melt pool
instability is caused by improper parameter selection, which
is susceptible to Plateau-Rayleigh instability. This melt pool
instability leads to rolling surface morphology (Han et al.,
2018; Yadroitsev & Smurov, 2011), as shown in Fig. 12,
whichmayaffect surface quality of the next layers, andfinally
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Fig. 10 Geometric variations: a edge-elevating, b curling (Mousa, 2016),c warpage

Fig. 11 Delamination (Zäh & Lutzmann, 2010)

results in rougher surface. Spatter attachment, especially
some large-size spatter attachment, is another key reason to
form rolling surface morphology. These spatters are caused
by the recoil pressure and gas entrainment (Khairallah et al.,
2016). They are ejected from the melt pool region and may
fall back to the as-built surface to form surface defects. Semi-
melt particles get attached to the surface (Strano et al., 2013),

which is especially detrimental to the surface roughness of
the side surfaces and down-skin surfaces (D. Wang et al.,
2013). The poor surface roughness will result in poor fatigue
performance.

Label of defects

In terms of machine learning modeling, especially for super-
vised and semi-supervisedmachine learningmethods, object
labelling is a key step to determine the model performance.
False label or missing label will affect the accuracy and reli-
ability of the model. Many machine learning methods that
have been applied for SLM process monitoring labelled the
built quality with the energy input (Caggiano et al., 2019;
Shevchik et al., 2018). That is, different energy inputs corre-
spond to different part qualities. This is the simplest labelling
approach that can verify the effectiveness of the proposed
methods, but it is not quite rational to build models for defect
detection in practical applications. Because energy input is
commonly optimized and kept constant during the process-
ing, while some defects occur randomly. The generation of
the defects is not fully determined by the energy input. In
addition, another simple labelling approach is also frequently
applied in some studies, which is to label the defects through
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Fig. 12 Surface morphology with high surface roughness (Han et al., 2018)

Fig. 13 Defects labelled by direct observation. a Recoater streaking, b Part failure (Scime & Beuth, 2018a)
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direct observation by eyes (Baumgartl et al., 2020; Imani
et al., 2019; Scime & Beuth, 2018a) (Fig. 13). However, the
method is only appliable to some macro-defects (delamina-
tion, part failure, recoating defects and so on) that can be
observed and distinguished easily.

In addition to the two simple labelling methods, some
other methods have also proposed. Gobert et al. (2018) and
Seifi et al. (2019) labelled the ground truth of internal pores
based on the CT scan results. While CT scan is a powerful
postprocessing tool for internal defect detection, it is high-
cost and time-consuming.Yuan et al. (2019) proposed to label
thewidth of a single track through their developed image pro-
cessing method based on height measurement results. This
method aims at labelling a single-track quality rather than a
part quality. Up to now, the labelling of defects or quality in
PBF is still an open problem. For different defect categories,
more rational and feasible methods for effective labelling are
necessary.

Machine learningmodeling

Once monitoring data has been collected and labelled, the
next step is to build a correlation between the monitoring
data and the defects or quality. Since the correlation is highly
complex, nonlinear and not fully understood yet, machine
learning modeling is a suitable and efficient method to help
build the correlation. A general procedure on machine learn-
ing modelling contains several steps: (1) data collection;
(2) data pre-processing; (3) feature extraction; (4) feature
selection; (5) pattern recognition; (6) model validation. Now
in PBF process monitoring, many efforts have been made
on feature extraction, feature selection and pattern recogni-
tion/model regression.

Feature extraction and feature selection

High-quality feature extraction and feature selection ensure
that all useful features are selected without redundancy. This
can be done by experts who understand the collected data and
the process physics, so that appropriate featureswith physical
foundation can be selected. For instance, Gobert et al. (2018)
proposed a method to obtain the second derivatives of voxel
intensity as a feature for discontinuity detection. Coeck et al.
(2019b) used “melt pool signal event” to represent the pro-
cess abnormality. “Melt pool signal event” is the melt pool
light emission abnormality. Clijsters et al. (2014) extracted
the melt pool area from the melt pool image as a key fea-
ture to detect process abnormalities. M. Grasso et al. (2018)
extracted the plume area and plume intensity, and analysed
their characteristics for different energy inputs. Repossini
et al. (2017) developed methods to extract spatter-related
features, including laser heated zone area, spatter number,

average spatter area, and convex hull area. Y. Zhang, Hong,
et al. (2018)) also developed an image processing method to
exact the plume-related features and melt pool-related fea-
tures simultaneously.

Unfortunately, the PBF process is rather complex, and still
faces uncertainties and randomness. Even most experts can
hardly select all the appropriate features with clear physi-
cal meaning that can lead to accurate detection for defects
or process abnormalities. Therefore, except for the features
with physical meaning, some features were also extracted
based on mathematical methods. Scime and Beuth (2018a)
utilized 37 image filters to convolve with the original image
to extract different image features (Fig. 14). Okaro et al.
(Okaro et al., 2019) applied singular value decomposition
(SVD) to extract the features of time history data from
two types of photodiode. Montazeri and Rao (2020) used
graph Fourier transform coefficients as features for porosity
detection. Scime and Beuth (2019) employed scale invari-
ant feature transform (SIFT) to extract features from melt
pool images. Although these mathematical features do not
have corresponding physical meaning, they are still able to
reveal relationships with the built quality through machine
learning methods. To reduce computational complexity and
improve model performance, feature selection methods are
often adopted to reduce feature dimension and select highly
related ones. In PBF process monitoring, principle compo-
nent analysis (PCA) (Y. Zhang, Hong, et al., 2018; Zhang,
Wang, et al., 2018) and spectral graph theoretic approach
(Montazeri &Rao, 2018) have been applied in related works.

In addition, the popular deep learning methods were also
frequently used in PBF process monitoring (Caggiano et al.,
2019; Scime & Beuth, 2018b; Shevchik et al., 2018). Deep
learning methods can extract representative features auto-
matically through training process, and this reduces the work
load on feature selection by researchers. However, these fea-
tures are extracted in a black box, so their interpretability and
reliability are poor.

Melt pool state and defects identification

For a typical machine learning modeling process, the next
step after feature extraction and feature selection is usually
pattern recognition or model regression. In SLM process
monitoring, some machine learning methods have been
applied to recognize the pattern of melt pool or defects.
Table 1 lists the methods used in recent publications. The
machine learning methods include supervised methods,
semi-supervised methods, unsupervised methods and rein-
forcement methods. The most commonly used method is
supervised convolutional neural network (CNN) due to its
popularity and outstanding performance on image processing
and speech recognition. Besides, some traditional machine
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Fig. 14 Flowchart of feature extraction and machine learning process implemented in Scime and Beuth (2018a)

learning methods were also applied for quality classifica-
tion, such as the Support vector machine (SVM), K-nearest
neighbors (KNN), Decision tree (DT), and so on. The semi-
supervised learning methods used include semi-supervised
CNNand semi-supervisedGaussianMixtureModel (GMM).
The unsupervised learning methods used include K-means
clustering and Self-Organizing Maps (SOM). Duman and
Özsoy (2022) and Li et al. (2021) tried to explore the appli-
cation of transfer learning for process defects and quality
classification with limited training data.Wasmer et al. (2019)
attempted to employ reinforcement learning methods for the
identification ofmelt pool state under different energy inputs.
In addition, Knaak et al. (2021) proposed to use reinforce-
ment learning for feedback control model development and
they demonstrated the effectiveness of their proposedmethod
for in-process parameter optimization.

Although the above-mentioned ML methods have been
applied in PBF process monitoring, most of these works just
use the mature algorithms and examine their feasibility on
quality identification. In practice, the algorithm selection and

improvement for a particular problem is crucial,which highly
depends on the characteristics of the dataset collected. For
example, Bayes classifier originated from classical math-
ematical theory, has a solid mathematical foundation. It
performswell on small-scale databases, and it is less sensitive
to missing data. KNN commonly can obtain a high accuracy
and is insensitive to outlier. The KNN theory is simple and
easy to implement, but KNN requires a lot of computing
memory. For data sets with large sample sizes, the compu-
tation load is relatively large. DT is easy to understand and
interpret, but it is prone to over fitting. SVM has a strong
generalization ability, but it is sensitive to missing data.
Seifi et al. (2019) proposed an approach for layer-wise qual-
ity classification. They extracted key process features based
on layer-wise melt pool images and used principle compo-
nent analysis (PCA) for feature selection. Then the selected
features were classified by SVM as healthy and unhealthy
conditions with an accuracy of 94%. Khanzadeh et al. (2018)
compared the performance of identifying pores and normal
melt pools by several different traditional machine learning
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methods, including KNN, SVM and DT. KNN results in the
highest rate of accurately classifyingmelt pools.DT results in
the lowest rate for incorrectly identifying normal melt pools
as pores. Neural network (NN) can fully approximate the
complex nonlinear relationship and obtain high accuracy,
but it is a black box and requires a large amount of data.
Gaikwad, Giera, et al. (2020) extracted low-level features
representative of themelt pool dynamics from pyrometer sig-
nal and high-speed video. The sequential extracted features
were used as the input of a NN model to classify a single
track quality. They found that the proposed approach out-
performs purely data-driven models, such as convolutional
neural networks and recurrent neural networks.

K-means clustering and SOM are two typical clustering
methods which have been applied in PBF process monitor-
ing. For clustering methods, the dataset does not need to
be labelled. K-means clustering follows a simple and easy
way to classify a given data set through a certain num-
ber of clusters. The centroids in these clusters move after
each iteration during training. For each cluster, the algo-
rithm calculates the mean of all its data points and becomes
the new centroid. K-means clustering is easier to imple-
ment and faster thanmost other clustering algorithms.Grasso
et al. (2017) used k-means clustering to group the descrip-
tors extracted from process images. Their results showed
that the in-control process and out-of-control process can
be identified. Taheri et al. (2019) tried to apply k-means
clustering to classify identified acoustic signatures into four
different process conditions and showed its potential for pro-
cess monitoring. However, k-means clustering has a major
shortcoming that the researchers need to specify the number
of clusters (k value) and in most cases it is not easy to deter-
mine a good value for k. Additionally, k-means clustering
commonly performs poorly on high-dimensional data. For
high-dimensional data, an alternative unsupervised learning
method is SOM. SOM has three layers. The last Kohonen
layer is usually designed as two-dimensional arrangement of
neurons that maps n-dimensional input to two dimensional.
In the two-dimensional space, the relations of the dataset
in the original space can also be kept. SOM has a charac-
teristic of self-organization providing a topology-preserving
mapping from the input space to the clusters. Khanzadeh
et al. (2019) used SOM to analyse two-dimensionalmelt pool
image streams to identify similar and dissimilar melt pools.
Then they predicted the location of porosity based on melt
pool identification results and obtained a prediction accuracy
of almost 96%.

Deep learning methods were also frequently applied in
PBF process monitoring as its superior performance com-
pared to traditional machine learning methods. The most
commonly used method is convolutional neural network
(CNN) due to its popularity and outstanding performance

on image processing. The input of CNN model is gener-
ally a melt pool image or a powder-bed layer-wise image.
A typical CNN structure contains several stacked convolu-
tional layers and pooling layers for feature learning followed
by one or two fully connected layers for classification, such
as AlexNet, VGG-Net, GoogleLeNet, and ResNet. Some of
these typical structures have been applied in PBF process
monitoring. Imani et al. (2019) used AlexNet CNN structure
to detect surface flaws based on layerwise images after scan-
ning. Similarly, Scime andBeuth (2018b) usedAlexNetCNN
structure to detect powder spreadingflawsbased on layerwise
images after spreading. Both of their results showed AlexNet
CNN structure can obtain a higher detection accuracy com-
pared to traditional machine learning methods. Yazdi et al.
(2020) proposed a hybrid deep neural network to classify dif-
ferent process conditions with different energy densities. The
hybrid deep neural network contains two branches between
input and output layers. One branch is created based on
VGG-16 structure to extract features automatically. Another
branch is developed based on statistical features extracted by
wavelet transform and texture analysis and perceptron neu-
ral network (MLP). The proposedmodel demonstrated better
performance compared to traditionalmachine learningmeth-
ods.

Except for the typical CNN structures, some CNN struc-
tures specifically designed for PBF process monitoring were
also proposed. Shevchik et al. (2018) used a spectral con-
volutional neural networks (SCNN) structure to classify
acoustic features into poor, medium and high part qualities.
Caggiano et al. (2019) proposed a bi-stream CNN struc-
ture and selected the optimal convolution kernels to extract
features from both images collected after powder recoating
and laser scanning. Their results showed that the method
achieved an accuracy as high as 99.4% for defective con-
dition identification. Zhang et al. (2019) proposed a hybrid
CNN structure which contains two CNN models. The first
CNN model is used to learn the spatial features from a
single melt pool image. The second CNN model is used
to learn temporal information from several sequential melt
pool images. The proposed method demonstrated superior
performance compared with traditional methods with hand-
crafted features on process condition recognition. Baumgartl
et al. (2020) used a depthwise-separable CNN structure to
achieve the detection of delamination and splatter defects
with an accuracy of 96.8%. The depthwise-separable CNN
is based on the Inception module, but the order between
1 × 1 convolution and 3 × 3 convolution is inverted, which
extracts the spatial information first before a new feature
map is created. Snow et al. (2021) designed a CNN structure
through selecting appropriate number of layers, kernel sizes
and pooling options to obtain highest average classification
accuracy. Their proposed CNN model demonstrated signif-
icantly better performance than traditional neural networks
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across all tasks. In addition, the CNN model demonstrated
improved generalizability, which means it can generalize
to more diverse data than either the training or valida-
tion data sets with well performance. Kwon et al. (2020)
explored to use CNN for laser power prediction based on
melt pool images and showed more accurate results than tra-
ditional neural networks. The number of convolutional layers
was fixed as 4 in their CNN structure. The filter size was
selected based on its performance. R. Wang et al. (2022)
proposed a deep learning approach based on an encoder-
decoder network. The approach incorporated a detail-aware
dilated convolutional neural network with a fine details fea-
ture map extractor designed to obtain final fine semantic
features. Compared with the typical CNN structure, the pro-
posed approach yielded better results.

The application of other deep learning methods is much
less studied than that of CNN. Preliminary exploration of
using deep belief network (DBN) and stacked auto-encoder
(SAE) has been conducted. A typical DBN structure is com-
posed of a stack of restricted Boltzmann machines (RBMs)
and a neural network (NN) layer for classification. RBM is
a kind of Boltzmann machine with no internal layer con-
nection within both visible and hidden layers. The key idea
of DBN is to initialize the RBMs with unsupervised pre-
trainingwith unlablled data. Then theweights of the top-most
layer of RBMs are used as the initial weights of the NN.
The NN is fine-tuned or trained using labelled data. Ye et al.
(2018) applied DBN for identification of five process condi-
tions based on acoustic emission. The results demonstrated
that DBN can obtain higher classification accuracy com-
pared to traditional machine learning methods by using the
raw data as the input without any pre-processing. The SAE
is an unsupervised deep neural network with multiple lay-
ers by stacking autoencoders. A typical autoencoder is a
three-layer neural network consisting of an encoder and a
decoder for learning effective representations. The encoder
transforms the input data into the feature space with a lower
dimension. The decoder reconstructs the input data from the
feature space. Then the features can be extracted from high-
dimensional data. Fathizadan et al. (2021) used convolutional
auto-encoder (CAE) neural networks to learn representative
features from melt pool images. The learned features were
grouped by a clustering algorithm to detect anomalies. Com-
pared with handcrafted features, the CAE learned features
showed better performance of anomaly detection.

In summary, the classification performance of traditional
machine learning methods highly depends on the features
extracted and selected by the researchers. However, deep
learning methods is capable of automatically learning rep-
resentative features through training process, which saves
the researchers’ effort on feature extraction and selection. In
addition, the classification performance is generally better
than traditional machine learning methods. Therefore, deep

learning methods show great potential on PBF process mon-
itoring. However, a disadvantage of deep learning methods
is that it requires a large amount of data. Label of these data
is time-consuming and expensive.

To solve this issue, transfer learning and semi-supervised
learning are also introduced. Transfer learning adopts the
knowledge learned from a prior assignment to the prediction
of a new task. A reduced amount of data is required on train-
ing the new task because of the reuse of a pre-trainedmodel. J.
Li et al. (2021) explored the feasibility of using transfer learn-
ing to identify the part quality based on layer-wise images.
They used a pre-trained VGG16 model as the basic model
for transfer learning. The parameters of Conv and pooling
layers are all frozen, and only the parameters of the last three
fully connected layers are changed during the training pro-
cess. They obtained classification accuracy as high as 99.89%
with a total of 8895 images by the proposed transfer learn-
ing model. Pandiyan et al. (2022) proposed to use transfer
learning method to learn similar features between different
materials based on acoustic emission. They first trained a
CNN model for quality classification based on the dataset
collected during the processing of stainless steel. Then the
trained model is re-trained using transfer learning for a sim-
ilar classification task based on the dataset collected during
the processing of bronze. Their results demonstrated thatwith
only half of the bronze data it can obtain a well classification
performance by the transfer learning model.

Semi-supervised leaning uses a small amount of labelled
data for supervised learning and a large amount of unlabelled
data for unsupervised learning. It provides the benefits of both
unsupervised and supervised learning and avoids labelling
a large amount of data. Yuan et al. (2019) used temporal
ensemble method to achieve semi-supervised learning based
on melt pool video information to classify the single-track
quality. The temporal ensemble method takes two passes for
data training. The supervised loss is still the standard cross
entropy loss, and the unsupervised loss is themean square dif-
ference between two passes’ output layers. The unsupervised
portion helps to extract representative features and reduces
the effect of overfitting to the small labelled dataset. The
proposed method with a reduced number of labelled training
data obtains a comparable accuracy with that of a supervised
learningmethodwith a large number of labelled training data.
Pandiyan et al. (2021) proposed a semi-supervised method
to identify process anomalies based on acoustic emissions.
Only the normal data were labelled and used for a variational
autoencoder model training. Then they determined a recon-
struction loss threshold value based on the training results.
Any reconstruction loss corresponding to a signal more than
the threshold value was classified as a process anomaly. The
proposed method obtained a classification accuracy as high
as 96%.
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Although a wide variety of machine learning methods
have been applied in PBF process monitoring, the relevant
studies on algorithm selection and improvement are still lack-
ing. In addition, the current ML models in PBF process are
all developed for object classification (e.g. classifying into
different defect categories or classifying a specimen into nor-
mal or defective), and it is still necessary to develop more
regression models on predicting the quality or defect levels.
Furthermore, ML methods can be used for data analysis to
find the underlying mechanisms for defects generation and
identification. Reinforcement learning is also a powerful tool
for developing the feedback control model for PBF process.
These are worthy of further studies in the future.

Besides, physics-informed ML is emerging recently as
it makes the training more efficient. Physic-informed ML
allows researchers to use the prior knowledge to help the
training of the neural network work, which means it will
need fewer samples to train it well or to make the training
more accurate (Karniadakis et al., 2021). Physic-informed
ML also has been applied in metal AM. For example, R.
Liu et al. (2021) developed a physics-informed machine
learning model for porosity prediction. Their model inter-
prets machine settings into physical effects, such as laser
energy density and laser radiation pressure, and then these
physical machine-independent effects are combined with a
data-driven model for porosity prediction. The model proved
to achieve good performances with the prediction error of
10–26%. Zhu et al. (Zhu et al., 2021) provided a physics-
informed neural network framework that fuses both data
and first physical principles, including conservation laws of
momentum, mass, and energy, into the network to inform
the learning processes. They showed that the framework can
accurately predict the temperature and melt pool dynamics
during metal AM processes with only a moderate amount
of labelled data-sets. Kats et al. (Kats et al., 2022) devel-
oped a neural network model to identify the correlation
between the local thermal features and their correspond-
ing grain structure characteristics. The inputs and outputs
of the neural network model are selected based on the gov-
erning physics. The model can quickly predict the grain
structure for thin-wall builds, and the predictions are in good
agreement with the numerical simulation results. In addi-
tion, physics-informed ML is explored to combine with the
sensing data for in-process monitoring. Tian et al. (2020)
proposed a physical-informed machine learning architecture
for porosity prediction. Their model incorporated the melt
pool features extracted from thermal images and melt pool
features extracted from thermal simulations as the predic-
tion model input. Their model can significantly improve the
prediction performance for pore occurrence and size. Thus, it
can be seen physic-informedML is a powerful and promising
method to overcome some limitations in data-only machine
learning models. However, the relevant studies are still at

an infant stage. To make physics-informed ML realize the
full potentials in PBF monitoring process, a lot of efforts are
required.

Data fusion

Data fusion is a powerful tool to combine information from
different sources tomake comprehensive assessment. It helps
improve the accuracy and reliability of decision-making
models. Data fusion has been widely applied for fault diag-
nosis/condition monitoring in manufacturing systems. In the
PBF process, the relevant studies are still at an infant stage.
This is because (1) most PBF machines are not equipped
with multiple sensors; (2) the data fusion algorithms are still
lacking in the PBF process monitoring. To solve these prob-
lems, some initial works have been done. Gökhan Demir
et al. (2018) constructed amonitoringmodule which consists
of three sensors with co-axial configuration, namely, visual
camera, near-infrared camera, and a photodiode detecting the
back-reflected laser emission. They analysed the characteris-
tics of signals collected from the three sensors, respectively.
Montazeri and Rao (2018) also collected signals from three
types of sensors, including a photodiode, a visual camera
and an infrared thermal camera. They showed the result
about build condition classification based on the signals from
the three sensors. Grasso, Gallina, et al. (2018)) proposed
a method for the monitoring of multiple signals associated
with the powder recoating operation, including pulse values
from powder flow sensors, the rake current and rake posi-
tions, temperature, and so on. Then they fused the features
from these signals. Using the SVM, they achieved the suc-
cessful identification of out-of-control state. Y. Zhang, Hong,
et al. (2018)) extracted features from the melt pool, plume
and spatters, and also fused these features for the melt pool
state classification. They demonstrated that feature fusion
can improve the classification accuracy.

Until now, the works related to data fusion in the PBF
process are very rare. However, more and more sensors and
monitoring methods have been applied; in other words, more
and more information can be obtained in the PBF process.
Then data fusion is a necessary method to help us sufficiently
utilize the information, so the development of data fusion
method is necessary to advance the PBF process monitoring
forward.

Feedback control

Feedback control to improve build quality online is an ulti-
mate goal of the PBF process monitoring. However, the
implementation of feedback control faces so many diffi-
culties that only few works have been conducted. In terms
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of the melt pool scale feedback control, some works on
direct energy deposition, a similar process to the PBF but
mostly with much lower scanning speeds, have been car-
ried out. Melt pool width and height were measured online,
and then feedback controllers were designed to keep them
stable through controlling appropriate process parameters,
such as laser power or deposition flow rate (Mondal et al.,
2020; Sammons et al., 2018; Tang & Landers, 2011; Xiong
et al., 2016, 2019). In the PBF process, Craeghs et al. (2010)
and Kruth et al. (2007) proposed similar methods to design
feedback controller to keep melt pool optical emission and
melt pool area stable through controlling laser power. Koga
et al. (2020) developed a control method to drive melt pool
depth to the desired set point. Since the melt pool depth can-
not be measured directly in the PBF process, they proposed
the feedback control law by reconstructing the temperature
profile based on the measured interface position. However,
the methods face the response delay issue due to the higher
scanning speed than that of direct energy deposition, which
has to be solved in future work.

The alternative feedback control methods in the PBF are
layer-scale feedback control and part scale feedback control.
Yao et al. (2018) developed a layer scale feedback con-
trol model based on Markov decision process, as shown in
Fig. 15. They collected the layerwise image data to estimate
the state of defects in each layer and predict the future evo-
lution of defects from one layer to the next, and then they
modelled the layer-to-layer defect evolution as a Markov
process for the derivation of the optimal control. Garanger
et al. (2020) reported a novel method to control the part
stiffness based on measuring part width of each layer. They
built the control model and validated against the manufac-
turing experiment of a cantilever beam. Riano et al. (2019)
proposed a cloud-based AM feedback control architecture,
which included the part scale feedback control. Leveraging
the information collected in-process and the high computing
performance on the cloud, the feedback control model could
be built to correct part design and manufacturing planning.
Indeed, to achieve layer-scale and part-scale feedback con-
trol in the PBF, the efficiency of the control model is critical,
which highly depends on the understanding of the defects
and causes.More related controlmodels should be developed
with the mastery of defect mechanisms. Before a thorough
understanding of the defect mechanisms, machine learning
is a good way to build efficient control models, although
machine learning feedback control models are rare now.

Future directions

In this paper, various types of defects have been summa-
rized. However, the causes of some defects are still open
questions. To figure out the causes, advanced monitoring

methods, signal processing methods, as well as machine
learning modeling methods are required for data analytics.
Basedon the understandingof defect generation, databases of
the monitoring signals are necessary to build machine learn-
ing models for defect detection or feedback control. Most
of the reported datasets for machine learning modeling were
aimed at identifying a particular defect or a process anomaly.
A comprehensive database including all types of defect and
anomalies are needed to build different models to identify all
defects and process anomalies, as well as their correlations.
Then the precise feedback control models can be built based
on the thorough understanding of built status.

Although some progresses have been made on applying
machine learning algorithms in PBF process monitoring, the
synergy machine learning and PBF process is rather super-
ficial. Most studies used existing machine learning models
directly, and there lacks in-depth research on machine learn-
ing model structure and mechanism, as well as comparisons
between different machine learning algorithms. A compre-
hensive study should not only focus on the accuracy of the
proposed model. The hardware condition, specific applica-
tion situation, and the complexity of the model are supposed
to be considered as well. For example, the data collection
is easier under normal condition than under abnormal con-
ditions. Therefore, the machine learning models need to
consider how to train the imbalanced dataset.

Computation efficiency is also a major bottleneck of
achieving machine learning based online monitoring and
control. In the PBF process, a large volume of data can be col-
lected from various types of sensors. How to process the data
in real-time is a difficult problem. Thus, themethods on com-
press sensing, data reduction and fast modeling are required.
In addition, Adnan et al. (2019) proposed a fog computing
paradigm to achieve real-time layer-wise closed-loop process
control. In their paradigm, sensing data can be saved in local
machines while using the data analysis and training applica-
tions provided by high-performance cloud computing. With
the development of Internet of Things (IOT), clouding com-
puting, fog computing and edge computing are gradually
adopted in smart manufacturing. Therefore, it also a pow-
erful solution to handle the big data in the AM process.

Another barrier of the machine learning model applica-
tion is their poor performance on generalization. The models
that work well on one machine for some materials may not
perform well on other machines or for other materials. To
solve this, the combination of machine learning models with
physical-models are required. Recently, the digital twin con-
cept has been introduced in the AM process, which provides
a framework for the combination of the two types of models
(Gaikwad, Yavari, et al., 2020; C. Liu et al., 2020; L. Zhang
et al., 2020). In the framework, the data fusion methods on
the twomodels are essential, which should be further studied
in future work.
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Fig. 15 Flow diagram of feedback control methodology in Yao et al. (2018)

Fig. 16 Overview of the
cloud-based and deep
learning-enabled metal AM layer
defect analysis in C. Liu et al.
(2020)

The feedback control in the PBF is the ultimate goal of
onlinemonitoring. Asmentioned in Sect. 6, now themachine
learning feedback control model is still rare. However, to
achieve feedback control, especially for layer-scale and part-
scale feedback control, developing machine learning model
for decision making is an inevitable trend. Even the feedback

control model can be developed for part design optimization,
associated with the concepts of digital twin and cloud com-
puting (C. Liu et al., 2020; L. Zhang et al., 2020), as shown
in Fig. 16.
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Conclusions

To ensure the PBF built quality, online monitoring and feed-
back control system are highly required. Process sensing and
prior knowledge on defect generation are preconditions on
the system development, which are reviewed in this paper.
Based on the sensing methods, a large volume of data could
be collected during the PBF process, and then how to cor-
relate the sensing data with process defects, and how to
eliminate the defects to improve built quality are the crucial
issues. This paper reviews the relevant efforts on machine
learningmodeling.Although the efforts clearly demonstrated
machine learning is an effective way to achieve defect detec-
tion, more works on dataset preparation, feature extraction
and selection, algorithms selection and improvement are
still needed. Since several sensing methods using different
sensors have been developed, sensor fusion or data fusion
are required to help improve defect detection performance
through comprehensively analyzing these sensing signals.
To achieve the final goal of quality improvement, feedback
control is also an important issue worthy of extensive inves-
tigations. With the development of smart manufacturing, the
techniques on Internet of Things, digital twin, and clouding
computing can be introduced in the AM process monitoring
and control. They provide new concepts that may help han-
dle the large volume sensing data and improve the machine
learning model performance.
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