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Abstract
An accurate prediction of the machining tool condition during the cutting process is crucial for enhancing the tool life,
improving the production quality and productivity, optimizing the labor and maintenance costs, and reducing workplace
accidents. Currently, tool condition monitoring is usually based on machine learning algorithms, especially deep learning
algorithms, to establish the relationship between sensor signals and tool wear. However, deep mining of feature and fusion
information of multi-sensor signals, which are strongly related to the tool wear, is a critical challenge. To address this issue, in
this study, an integrated prediction scheme is proposed based on deep learning algorithms. The scheme first extracts the local
features of a single sequence and a multi-dimensional sequence from DenseNet incorporating a heterogeneous asymmetric
convolution kernel. To obtain more perceptual historical data, a “dilation” scheme is used to extract features from a single
sequence, and one-dimensional dilated convolution kernels with different dilation rates are utilized to obtain the differential
features. At the same time, asymmetric one-dimensional and two-dimensional convolution kernels are employed to extract
the features of the multi-dimensional signal. Ultimately, all the features are fused. Then, the time-series features hidden in
the sequence are extracted by establishing a depth-gated recurrent unit. Finally, the extracted in-depth features are fed to
the deep fully connected layer to achieve the mapping between features and tool wear values through linear regression. The
results indicate that the average errors of the proposed model are less than 8%, and this model outperforms the other tool
wear prediction models in terms of both accuracy and generalization.

Keywords Heterogeneous asymmetric convolution kernel · DenseNet · Depth-gated recurrent unit · Feature extraction · Tool
wear prediction · Dilated convolution kernel

Introduction

With the continuous development of information technology,
increasingly complex and intelligent machinery and equip-
ment are being employed in the manufacturing industry and
workshops (Karomati et al., 2020). To meet the fast-growing
consumer demand of products, the efficiency and quality of
products are particularly important. In the production work-
shop, tools are an essential part of the cutting process, and
their wear seriously restricts the quality and accuracy of
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workpieces. Continuous tool wear is often accompanied by
changes in the contact state between the cutting edge and the
workpiece, and if the tool is not changed in time, it can even
cause theworkpiece to be scrapped and the equipment to stop,
which may eventually lead to substantial economic losses
and heavy casualties. According to the statistics, tool failure
accounts for 7–20% of themillingmachine’s total downtime,
and the costs of tools and tool changes account for 3–12% of
the total processing cost. Reasonable and timely tool changes
can increase the production efficiency by 10–60% (Yang
et al., 2019; Zhou & Xue, 2018). Therefore, the tool condi-
tion monitoring (TCM) technology is vital for reducing the
equipment downtime, improving production efficiency, and
lowering processing costs. Commonly used TCM methods
are categorized into direct and indirect measurement meth-
ods. In the direct measurement methods, the flank wear is
measured through a specific technique after shutdown, while
in the indirect measurementmethods, amapping relationship
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is established between the tool wear and wear-related signals
(Mohanraj et al., 2020). Obviously, the data-driven indirect
measurement methods do not need to stop the machine, and
they are more suitable for real-timemonitoring of tool status.

The data-driven TCM methods are based on advanced
sensor technology (Peltier and Buckley, 2020), industrial
big data (Rousseaux, 2017), and digital twin (Qiao et al.,
2019) to achieve online monitoring. Different sensors are
installed during processing, and the collected signals are
often analyzed in the time-domain, frequency-domain, and
time–frequency domain to extract features that are strongly
related to the tool wear such as mean, variance, kurtosis,
spectrum, cepstrum, and wavelet coefficients (XuTing et al.,
2020); the extracted features are based on a certain wear
recognition method, such as Kalman filter (Tiwari et al.,
2018), hidden Markov model (Li & Liu, 2019), support vec-
tor machine (Jurkovic et al., 2018; Qu et al., 2020) and other
machine learningmodels. However, suchmethods have some
drawbacks. On the one hand, these statistical features require
appropriate feature extractionmethods, which are often time-
consuming and labor-intensive, and they entail professional
knowledge and skills in related fields. In the era of big data
manufacturing, feature extraction based on experience is still
challenging (Wang et al., 2019). On the other hand, the
features obtained by signal processing methods only con-
tain shallow information. To adapt to the stricter conditions
and realize a more accurate monitoring during processing,
shallow information is often not enough, and in-depth infor-
mation may be needed to characterize the complex structure
in the original data. Further, the signals collected during the
machining process are sequential. If they are ignored, a large
amount of information related to tool wear can be lost. The
above limitations can be surmounted by using deep learning
methods.

Deep learning achieves autonomous feature learning on
input signals, transforms the initial "low-level" feature rep-
resentation into "high-level" features, and avoids manual
feature extraction, so it has received widespread attention,
especially in tasks such as speech recognition (Dokuz &
Tufekci, 2021), image classification (Choudhary et al., 2019;
Pin et al., 2021), and natural language processing (Alireza
et al., 2020). Typical deep learning techniques have been
used to monitor the state of machinery and equipment.
Jaini et al. (2020) proposed a multi-layer perceptron (MLP)
feedforward neural network (FF-NN) model for multi-class
classification of tool status, Cao et al. (2019) combined
derived wavelet frames and convolutional neural network
(CNN) to establish a method for identifying tool wear sta-
tus using machine spindle vibration signals. Cooper et al.
(2020) used a two-dimensional deepCNN to extract informa-
tion from acoustic signals for TCM. To better detect bearing
faults, Liu et al. (2021) proposed a variational autoencod-
ing generative adversarial network, which expanded the data

of a small number of fault categories. The results showed
that the generated data was similar to the original sample,
and the data-enhancing ability and diagnostic performance
of the proposed method was better than those of traditional
methods. The above studies realized TCM based on deep
learning methods. However, compared with monitoring the
state of machinery and equipment, predicting the state of
equipment is more meaningful for big data-driven intelligent
manufacturing (Huibin et al., 2019).

In the recent years, deep learning methods have also
been applied for the prediction of tool wear and remain-
ing useful life. Chen et al., (2018) proposed a deep belief
network (DBN) based on deep learning methods to predict
the flank wear of cutting tools. Aghazadeh et al., (2018)
proposed a hybrid feature extraction method using wavelet
time–frequency transformation and spectral subtraction to
extract the features from current signals and used CNNs
to predict the tool wear. Huang et al. (2019) proposed a
multi-domain feature fusion method based on a deep CNN
to predict tool wear. This method fused multiple sensors
features and achieved better overall performance than the
methods based on the extraction of single sensor features.
Compared with traditional machine learning methods, the
above methods exhibited significantly improved prediction
accuracy, but the time-varying features of tool wear were not
considered, which could lead to information loss. For captur-
ing the nonlinear dynamical features in time series data, it is
necessary to retain the memory of historical information. For
the prediction of time series data, recurrent neural network
(RNN) is introduced to solve the storage problem of histor-
ical input data in the model, which can quickly reflect the
dynamical changes in the input data. Yu et al. (2020) used an
autoencoder scheme based on bidirectional RNN for the pre-
diction of remaining useful life (RUL). The results showed
that the proposed method provided more robust and reliable
RUL predictions than any independent algorithm on all the
studied datasets. However, with the advent of big data, pre-
dictive models should be able to capture long-term memory.
Due to the single internal structure of the conventional RNN,
a large amount of data is gradually forgotten, so it cannot cap-
ture long-term dependencies in the data. To overcome these
limitations of conventional RNN, long short-term memory
network (LSTM) has been developed as a variant of RNN
for modeling temporal sequences (Hochreiter & Schmidhu-
ber, 1997). As a simplified version of LSTM, the GRU has
a more straightforward structure (Cho et al., 2014). Com-
pared with LSTM, GRU has fewer parameters, so it can be
trained faster. Youdao et al. (2020) reviewed the performance
of RNN and its variants in the prediction of RUL. It was
observed that the LSTMs and gated recurrent unit (GRU)
networks were superior to the basic RNNs. LSTM and GRU
are specially designed to deal with the disappearance of gra-
dients, and it effectively captures the long-term dependencies
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in the sequential data, making it quite effective in various
prediction tasks. Cai et al. (2020) proposed a hybrid infor-
mation system based on LSTM in which stacked LSTM was
used to extract deep features contained in the time-series of
multi-sensor acquisition signals for toolwear prediction.This
system exhibited good performance under different working
conditions. Wang et al., (2019) proposed a hybrid prediction
scheme to predict the tool wear, which was realized by a
newly developed deep heterogeneous GRU model and local
feature extraction. The experimental results showed that the
method achieved significant performance in the multi-step
prediction task and the long-term prediction task.

Deep learningmethods have achieved great success in pre-
dicting the state of equipment (Liu & Zhu, 2020; Skordilis &
Moghaddass, 2020;Xia et al., 2020) but some issues still need
to be resolved. For example, although CNNs can effectively
extract the local features of signals, they have been rarely
utilized to capture historical information. Richer historical
features are usually extracted by increasing the receptive
fields, but the conventional convolution operation has lim-
ited receptive fields under the same parameters. To increase
the perceptual view in the historical field, only a large con-
volution kernel can be used, which leads to an increase in the
computational complexity. Compared with a single sensor
signal, the multi-sensor signal can reveal the variation trend
of tool wear more accurately and completely (Zhang et al.,
2015). It has been confirmed that the convolution kernels of
different receptive fields can extract richer features (Szegedy
et al., 2014), but few researchers have used them in multi-
sensor information fusion. Further, RNNs and variants can
handle time series problems, but they do not consider spatial
dependence. The above problems can cause the loss of infor-
mation, so the model cannot be fully utilized. Therefore, the
effective mining of the fusion features of multiple sensors is
still a challenging problem.

In this study, a deep learning integratedmodel (HACDNet-
GRU) based on DenseNet stacked with heterogeneous asym-
metric convolution kernel and GRU is proposed for tool
wear prediction. With its jump connections and dense con-
nections, the DenseNet network can “widen” the filters of
each layer of the model while learning fewer parameters and
exhibits excellent performance at the same time. Therefore,
to deeply mine the fusion features of sensors, different het-
erogeneous asymmetric convolution kernels are used in the
dense blocks of different signal lengths to extract the features
of single signal and multi-dimensional signal. For extracting
the features of a single signal, two convolution kernels with
different expansion rates are used to increase the perceptual
historical field. For extracting multi-dimensional signal fea-
tures, different one-dimensional (1D) and two-dimensional
(2D) convolution kernels are used. Finally, they are stitched
together, which indicates the fusion of features at different
scales. Through adaptive learning, the loss of information in

the traditional manual feature extraction process is avoided
to overcome the challenges in modeling large-scale datasets.
During the process of tool wear prediction, the wear value
that has a strong correlation with the current moment must be
near this moment, i.e., the closer it is to the current moment,
the more valuable the wear data. Therefore, to capture the
temporal pattern in the extracted feature sequence, the adap-
tively extracted fused features are used as the input of the
GRU, and the number of hidden units corresponds to the
amount of information memorized between the time steps
(hidden state). The time-series features are captured through
the conversion of update and reset gates and selective input.
Finally, the tool wear values are output by linear calcula-
tion of different hidden units in the fully connected layer.
The experimental results indicate that the proposed model
is superior to the traditional methods for tool wear predic-
tion.

In summary, the main contributions of this article are as
follows:

• To meet the requirements of adaptability and autonomous
decision-making in intelligent manufacturing in the case
of big data, an integrated model based on deep learning
methods is developed to predict tool wear in real-time,
which can be used to maintain the safety of operators and
reduce production accidents.

• The multi-signal fusion method is adopted to reflect the
tool wear status. Considering the information loss that
may be caused by manual feature extraction, the original
time-domain signal is collected as the input of the model
during the cutting process. A heterogeneous asymmetric
convolution kernel is added to extract the features of sin-
gle sequence signal and multi-dimensional signal, which
are merged to indicate the influence of multi-dimensional
signals on tool wear. At the same time, a GRU is added for
mining the sequence’s time pattern.

• To evaluate the model’s predictive performance, the data
from American Society of Prediction and Health Man-
agement (PHM) is used as the experimental dataset. The
results verify that the model is superior to other traditional
models.

Framework for tool wear prediction

In this study, an effective method is proposed for predicting
the toolwear duringmachining, focusing on the time-varying
trend of tool wear, and its framework is shown in Fig. 1. It
is extremely challenging to observe tool wear online during
processing, but processing parameters such as force, vibra-
tion, and acoustic emission signals can be acquired online.
Let the signal collected at time t be Xt . After the tool pass
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Fig. 1 Tool wear prediction framework

is completed, the tool wear is measured and marked offline
by a microscope. The predicted tool wear value after the tool
pass is denoted by Yt . Xt and Yt can be expressed as follows:

Xt � [X1
t , X

2
t , X

3
t , . . . , Xi

t ]
T

(1)

Yt � F(Xt ) (2)

where F(·) is the mapping from the input value to the output
value of this model, Xi

t is a (1× d) tensor, i is the dimension
of the cutting parameter, and d is the length of the sequence
signal.

In the initial state of HACDNet-GRU, the weight of each
parameter is not determined. Therefore, the historical data
is used to train the model. According to the model’s perfor-
mance in predicting tool wear value, the model’s parameters
are determined through continuous iteration and adjustment.
To improve the model’s accuracy and generalization ability,
the number of hidden layer neurons and the time step, the
convolutional layer parameters, the pooling layer, the fully
connected layer, and the model depth are reasonably opti-
mized. The key features of HACDNet-GRU are described in
detail in the next section.

Proposedmodels

In this section, the structure of HACDNet-GRU is described.
In this model, DenseNet incorporates heterogeneous asym-
metric convolution kernels to extract single signal features
andmulti-dimensional signal features related to the tool wear
and then fuses them together. The deep GRU is used as the
back end to extract sequential time-series features. Finally,
the features are mapped to the tool wear values through the
regression layer. The workflow and structural framework of
the model are shown in Fig. 2.

The system comprises three parts: the data acquisition
module, the deep learning feature extraction module, and

the tool wear prediction module. The implementation steps
are summarized as follows:

Step 1: The signal collected from the multiple sensors is
transformed into a 7 × 1000 time-domain signal after pre-
processing.

Step 2: The preprocessed time-domain signal extracts the
local features of a single signal andmulti-dimensional signals
through DenseNet integrating heterogeneous asymmetric
convolution kernels (HACDNet), and then the extracted fea-
tures are connected in series to achieve information fusion of
multi-channel sensors. Based on the structural advantages of
DenseNet, high-dimensional and low-dimensional features
are continuously extracted as the next layer of the network’s
input.

Step 3: The designed deep GRU extracts the time-series
features from the multi-sensor fusion information.

Step 4:Adeep, full-connected regression layer is designed
to realize the mapping between the features and tool wear
values.

Data preprocessing

If the complete time-domain signal of each sample is used as
the model’s input, the amount of data will be too large, and
the model training efficiency will be significantly reduced.
Therefore, the length of the time-domain signal must be
reduced. Figure 3b shows the time-domain signals of milling
force in three directions with an average flank wear value of
91.8 μm. The data collected by the sensor fluctuates due to
the feed and retraction of the tool during the milling process.
The milling force at this stage is unstable. However, the sig-
nals in the other stages show periodic changes (see Fig. 3a).
To obtain a highly reliable signal of cutting process parame-
ter, we remove this part (Ezugwu & Wang, 1997). Next, we
further reduce the data sampling length. The window func-
tion is used to process the remaining intercepted signal. The
number of windows selected in this article is 1000. Because
different tool wear values correspond to different lengths of
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Fig. 2 Model structure and prediction process

collected signals during the cutting process, the window size
is selected according to the length of the intercepted sig-
nal. Finally, the sampled data of each window is averaged to
obtain the signal length (An et al., 2020), which is a tensor
with 1000 values, as shown in Fig. 3c.

Local feature extractionmodule

DenseNet: dense convolutional neural network

The proposed model is based on the DenseNet (Huang
et al., 2016) framework. DenseNet is one of the recently
improved networks following the milestone innovation of
ResNet (He et al., 2016). It incorporates the essential part
of the ResNet framework and includes additional innovative
characteristics. DenseNet introduces two gradients to enable
down-sampling in model. The first one is called densely con-
nected block, which is multiple densely connected, as shown
in Fig. 4, and the other one is called the transition layer,
which is used for convolution and aggregation. Therefore,
each layer of the DenseNet can be directly connected to all
the preceding layers to facilitate feature reuse. Simultane-
ously, each layer in the network has a narrow width, which
can deepen the network while learning fewer feature maps
to reduce redundancy. Since each layer is connected to all
the previous layers in the channel dimension and used as the

input of the next layer, the total number of dense block con-
nections with the L layer is l(l + 1)/2. This can be expressed
as follows:

xl � Hl
([
x0, x1, x2, . . . , xl−1

])
(3)

where Hl (·) is a nonlinear combination transformation func-
tion, including a series of BN, ReLU, and convolution
operations.

Multi-information fusion feature extraction

The raw time-domain signal Xt collected during the pro-
cessing is preprocessed. Then, through the convolutional
layer and themaximumpooling layer. Themaximumpooling
layer can reduce the network scale and improve the model’s
robustness and generalization ability. The reduced tensor
uses DenseNet to further extract features. To reflect the influ-
ence of a single signal and a multi-dimensional signal on the
tool wear, a heterogeneous asymmetric convolution kernel is
added to the dense block to extract the features of sequential
signal and multi-dimensional signal. Here, we use the con-
volution kernel of Filter ∈ RH×W×C . The heterogeneous
asymmetric convolution kernel structure is H × 1, 1 × W ,
and H ×H . The input is Input ∈ RU×V×C , which represents
the featuremapwith the number of channels asC and the res-
olution asU×V , and the output is Output ∈ RZ×T×D . Since
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Fig. 3 Original signal of the milling force in X-dimension with VB � 91.8 μm and the processed signal
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Dilation rate=1 Dilation rate=3Dilation rate=2

Fig. 5 Dilation kernels with different dilation rates (where rate � 1 is
the original convolution operation)

theminingof long-historydomain information is essential for
the accurate prediction (Chadha et al., 2021), the “dilation”
scheme is adopted on the 1D convolution kernel to obtain
more historical information. Yu and Koltun (2016) initially
proposed to extend the convolution filter. The dilated con-
volution filter can capture a large context while preserving
the details, so it is often used for semantic segmentation. The
WaveNet model was proposed in 2016 (Oord et al., 2016).
This network analyzes time series of thousands of samples
through 1D dilated convolution. In this paper, two dilated
convolution kernels with different dilation rates are used to
mine the features of the 1D time series. W is the dilation
length and W decreases with the shortening of the extracted
feature length. For the feature length of 3, 5, and 7, the dila-
tion rate is 1, 2, and 3, respectively. Figure 5 shows the dilated
convolution kernelswith different dilation rates for univariate
time series. For multi-dimensional signals, H×1 and H×H
convolution kernels are used. The use of different sizes of
convolution kernels implies different sizes of receptive fields,
and the final stitching indicates the fusion of different scale
features.

For the jth filter, the structure of the heterogeneous asym-
metric convolution kernel feature extractor is shown in the
Fig. 6, and the convolution operation is shown in Eq. (4)

Output :, :, i � f

(
C∑

k�1

Input :, :, k ∗ Fi
ilter :, :, k + βi

)

(4)

where * is the convolution operation, Input :, :, k is the input
feature map of the kth channel, and Fi

ilter :, :, k is the convolu-
tion kernel of the ith filter on the kth channel, Output :, :, i is
the output feature map of the ith filter, βi is the bias of the
ith filter, f(·) is the ReLU function, which can be expressed
as follows:

ReLU (x) �
{
0, x < 0
x , x > 0

(5)

Convolution operation reduces the spatial dimensional-
ity. Extracting in-depth information can also cause a loss
of input features. To ensure that the resolution of the
multi-dimensional feature map after convolution operation
is consistent with the resolution of the input feature map, the
boundary of the input feature matrix is filled with zeros, and
the length of the output characteristic matrix (O) after filling
is shown in Eq. (6)

O � (w − k + 2p)

s
+ 1 (6)

where s is the sliding step size, w is the length of the input
featurematrix, p is the size of zero paddings, and k is the filter
size. Further, to accelerate the learning process and prevent
the gradient from disappearing and exploding, batch normal-
ization is performed on the extracted featurematrix, as shown
in Eq. (7).

Input: Values of x over a mini-batch:B � {x1 . . . xN };
Parameters to be learned:γ,β
Output:

{
yi � BNγ, β(xi ) }

δB ← 1

N

N∑

i�1

xi (7)

σB ← 1

N

N∑

i�1

(xi − δB)2 (8)

x̂i ← xi − δB√
σ 2
B+ ∈

(9)

yi ← yx̂i + β ≡≡ BNy, B(xi ) (10)

where δB and σB are the mean and deviation of the small
batch, respectively.

Figure 7 shows the structure of each transition layer and
the third densely connected layer inHACDNet. In the densely
connected block, the number of output feature maps used for
each convolutional layer is very small, and it is 128 after
the fusion of different scales. Since fewer parameters are
learned, the network based on the DenseNet framework has
a regularization effect, i.e., it has a certain inhibitory effect
on overfitting. The Concat operation is used to concatenate
all the previous layer outputs as the input of the next layer,
i.e., the features of each layer are reused. The transition layer
is used between two densely connected layers to reduce the
number of channels passed to the next densely connected
layer. After three densely connected blocks, each dense block
contains two dense layers. Finally, through global Max pool-
ing, a feature vector of dimension 320 is generated for each
multi-dimensional input signal, which is used for subsequent
processing.
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Fig. 6 Feature extraction based
on heterogeneous asymmetric
convolution kernel

Fig. 7 Structure of the third dense block layer and transition layer

Extractionmodule of time-series features

Gated recurrent unit

RNNs can use previous information to process current infor-
mation for capturing the sequence’s time pattern. In theory,
RNN can capture all the previous information. However, the
principal eigenvalue of the weight matrix of the RNN in the
backpropagation process is less than 1, and the gradient can
disappear (Sepp Hochreiter, 1998). Therefore, RNN cannot
capture the long-term dependencies in the information. To
solve this problem, LSTM and GRU have been developed.
However, GRU has one less "gate unit" than LSTM, and the
parameters are reduced, while the function is equivalent to
LSTM, which significantly reduces the training time of the
model. As shown in Fig. 8, the GRU has two gate control
units: the reset gate and the update gate. Specifically, the
reset gate determines how to combine newly entered infor-
mation with previous memories. When the reset gate is close

Fig. 8 A GRU cell
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to 0, the hidden state is forced to ignore the previous hid-
den state and is reset with the current input only. The update
gate determines howmuch previous memory is retained, i.e.,
it controls how much information from the previous hidden
state is transferred to the current hidden state.

Update gates, reset gates, memory cells, and new hidden
states are calculated as follows:

u pdategate � sigmoid
(
WugXt +Uught−1

)
(11)

rest gate � sigmoid
(
WrgXt +Urght−1

)
(12)

h̃t � tanh
(
(rest gate)t ⊗Uht−1 +WXt

)
(13)

ht � (u pdategate)t ⊗ ht−1 +
(
1 − (

u pdategate
)
t

) ⊗ h̃t ,
(14)

where Wug , Wrg , W , Uug , Urg , U are the weight matri-
ces of different gates. u pdategate controls how much ht−1

is retained and converted to ht , i.e., it decides which infor-
mation is discarded and which new information is added.
rest gate determines the contribution of ht−1 to h̃t . If rest gate
is set to zero, it reads the input sequence and forgets the
previously calculated state. h̃t is the new information at the
current moment, and rest gate is the control to retain the pre-
vious memory. ht contains the relevant information of the
previous node, and it is obtained by adding ht−1 and h̃t , and
their weights are controlled by u pdategate.

Time-series features extraction

Since tool wear is sequential, the current state of the tool is
related to the past state. Therefore, the proposedmodel incor-
porates deep GRUs based on adaptive feature extraction. The
extraction process of sequential features is shown in Fig. 9.
At time t, the fusion features extracted by the HACDNet
are fed into the GRU of the first layer. Each feature is non-
linearly expressed, stored, and selected by the GRU through
its gate mechanism. Then, the hidden state is sequentially
passed among hundreds of GRU cells. The information is
appropriately selected to ensure that the important informa-
tion is transmitted and redundancy is avoided. According to
Eqs. (11)–(14), the hidden state vector propagating forward
from left to right can be obtained. The output hidden state
vector of each cell continues to be the input of the second
layer GRU, where the GRU uses the last hidden state as the
final extracted feature vector. Finally, the hidden state vector
of the last GRU that includes all previous GRU information
is output, which means that the GRU effectively captures the
time-series features related to tool wear. At different times,
this vector can be expressed as follows:

−→
F �

[−→
h T1 ,

−→
h T2 ,

−→
h T3 . . .

−→
h Ti

]
(15)

Full-connected regression layer

The features extracted by the GRU network are used as the
input of the fully connected network to realize the mapping
between the features and the tool wear value. Each neuron
in this network is linked with all the neurons in the previous
layer. The fully connected neural network has three layers,
and the output can be expressed as follows:

ŷi � wk Ai−1 + bk (16)

where Ai−1 is the input feature vector; wk and bk are the
weight matrix and bias vector of the fully connected layer,
respectively. The parameters are updated through back prop-
agation.

Model training and evaluation indicators

The various parameters in the HACDNet-GRU model are
obtained through model training. In theory, a deeper network
means higher accuracy, but it also means that the network
needs to train more parameters, which increases the amount
of calculation, and the generalization will also be affected.
So, a lot of experimentation is needed to find the right number
of network layers. To evaluate the performance difference
between different networks, the performance of the model
is evaluated by two performance indicators. They are the
root mean square error (RMSE) and the mean absolute error
(MAE). The expected value of MAE and RMSE is zero,
which is the optimal model. For a signal of length n, the
mean square error and root mean square error formulas are
shown in Eqs. (17) and (18).

MAE � 1

n

n∑

i�1

|̂yi − yi | (17)

RMSE �
√√√√1

n

n∑

i�1

(ŷi − yi )2 (18)

where yi and ŷi denote the actual value and prediction value,
respectively.

Deep learning model training relies on large-scale
datasets, but in TCM, it is difficult to obtain a large number
of datasets for training because tool wear during processing
is a long process. Here, the Adam optimizer (Kingma & Ba,
2014) is used to minimize the loss function. To avoid over-
fitting in the training model, L2 regularization technique is
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Fig. 9 GRU feature extraction

implemented in the model. The loss function for introducing
L2 regularization is defined as follows:

loss � 1

n

n∑

i�1

(ŷi − yi )
2 +

1

2
λwTw (19)

wherew is theweight vector andλ is the regularization factor.

Experiments

Experimental setup

To evaluate the performance of the proposed HACDNet-
GRU model, the data of tool wear competition held by the
American PHM Association in 2010 (PHM Society Con-
ference Data Challenge; see https://www.phmsociety.org/
competition/phm/10) is used. A schematic of the experi-
mental platform is shown in Fig. 10. The high-speed CNC
machine tool runs under dry milling condition, where the
spindle speed is 10,400 rpm, and the feed speed in the X-
axis direction is 1555 mm/min. The cutting depths in the
Y-axis and Z-axis directions are 0.125 and 0.2 mm, respec-
tively. A 6 mm three-flute ball nose tungsFten carbide cutter
is used in the milling process, and the workpiece material is
stainless steel (HRC52).

To obtain tool wear-related data, a Kistler three-
component dynamometer is installed between the worktable
and theworkpiece tomeasure the cutting force. Further, three
Kistler piezoelectric accelerometers and a Kistler acoustic
emission sensor are installed on the workpiece to measure
the vibration signal in the three directions and the ultra-
high frequency stress wave pulse signal released by cutting
deformation. By reasonably arranging the sensors, the force,

vibration, and acoustic emission signals collected during the
cutting process are amplified by the Kistler signal amplifier,
and then a data acquisition device (NI DAQ, PCI1200) is
used to collect the original time-domain signals. The signal
sampling frequency is 50 kHz. Finally, a seven-dimensional
signal is obtained. During the machining process, the tool
cuts 108 mm in the X direction, and then a microscope
(LEICA MZ12) is used to measure the side wear of the tool.

Data preparation

Three tool life tests are conducted on the test bench, which
are denoted as C1, C4, and C6. Each test data contains 315
data samples. Simultaneously, the average wear value of the
flank surface of the tool corresponding to each sample is used
as a label, as shown in Fig. 11.Here, any two datasets are used
for model training, and the other is used as a test set. The data
used for testing does not appear in the training set. Finally,
three sets of data are used to evaluate the performance of the
model. The details of the datasets are shown in Table 1.

Experimental results and discussion

To examine the performance of the model, the same dataset
is used to compare five methods: support vector regression
(SVR), heterogeneous asymmetric convolution combined
with GRU (HACNN-GRU), GRU, CNN (DenseNet), and the
combination ofCNNandGRU(DenseNet-GRU).Here, SVR
is a traditional machine learningmethod, while the other four
are deep learning methods. The initial learning rate, maxi-
mum number of iterations, and batch size of the proposed
method are set to 0.001, 100, and 256, respectively; the reg-
ularization coefficient is 0.0008. The essential parameters of
the comparison model are set as follows:
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Fig. 11 Flank wear of the cutting tool C4

Table 1 Parameter settings of training set and test set

Symbol Training set Test set

S1 C4, C6 C1

S2 C1, C6 C4

S3 C1, C4 C6

• SVR: The time-domain, frequency-domain, and time–fre-
quency domain features of the original signal are extracted.
The time-domain analysis reflects the changes in thewave-
form of the cutting process parameter along the time
axis, and the features of the time-domain signal are more
comprehensive. As shown in Table 2, ten time-domain sta-
tistical features are calculated such as mean, root mean
square, peak value, and so on. The time-domain signal

is converted to the frequency-domain signal through fast
Fourier transformation, which can reflect other features
related to the tool wear. There are ten frequency-domain
statistical features, which include mean value, skewness,
kurtosis, etc., as shown in Table 3 (XuTing et al., 2020).
The time–frequency domain signal reflects the relation-
ship between signal frequency and time. In this study,
the wavelet packet energy entropy index is constructed
throughwavelet packet decomposition to examine the vari-
ations in thewavelet packet’s energy in different frequency
bands (Li et al., 2008). The energy entropy of the wavelet
packet is defined in Eq. (20).

H � −
2 j∑

k�1

p(k)log2 j p(k) (20)

where p(k) � E(k)/
∑2 j

k�1 E(k),E(k) � ∑n
i�1(x(i)

2), k
is the frequency band number, i is the number of discrete
points contained in each frequency band signal, and x(i)
is the amplitude of the discrete points of the signal.

A matrix of all the statistical features in the time-
domain, frequency-domain, and time–frequency domain is

constructed as E ′
f �

(
E ′

f1
, E ′

f2
, E ′

f3
, . . . , E ′

f147

)
. How-

ever, all the extracted features are not sensitive to the tool
wear. To reduce redundant features, E ′

f is converted to a
low-dimensional matrix through principal component anal-
ysis (PCA). In this study, the feature matrix includes ten
principal components. The features that reflect tool wear are
extracted by PCA and recorded as: Fp � (Fp1, Fp2, Fp3,
. . . Fp10). The SVR kernel function is linear. Finally, Fp is
used as the input of the SVR model to predict tool wear.

• GRU: The model uses a GRU with two hidden layers of
100 neurons to predict the toolwear. Themodel structure is
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Table 2 Time-domain features

Feature Formula Feature Formula

Mean Xmean � 1
N

∑N
i�1xi RMS

Xrms �
(

1
N

∑N
i�1x

2
i

)1/2

Standard deviation
Xsd �

(∑N
i (xi−Xmean )

N−1

)1/2 Shape factor Xs f � Xrms
1
N

∑N
i�1|xi |

Kurtosis value
Xkv � 1

N

∑N
i�1(xi−xmean )4

(
1
N

∑N
i�1(xi−xmean )2

)2
Skewness

Xskew � 1
N

∑N
i�1(xi−xmean )3

(
1
N

∑N
i�1(xi−xmean )2

)3/2

Peak value X pv � max |xi | Crest factor Xcf � X pv/Xrms

Impulse factor Xi f � X pv
1
N

∑N
i�1|xi |

Clearance factor Xcf � X pv
(

1
N

∑N
i�1

√|xi |
)2

Table 3 Frequency-domain features

Feature Formula Feature Formula

Mean of frequency Xmean f � 1
L

∑L
l�1yl Root variance of frequency

Xrv f �
(
1
L

∑L
l�1(yl − Xmean f )2

)1/2

Maximum of frequency Xmax f � max(yl ) Minimum of frequency Xmin f � min(yl )

RMS of frequency
Xrms f �

(
1
L

∑L
l�1y

2
l

)1/2 Kurtosis value of frequency
Xkv f �

(
1
L

∑L
l�1(

yl−Xmean f
Xrv f

)
)4

Skewness value of frequency
Xsv f �

(
1
L

∑L
l�1(

yl−Xmean f
Xrv f

)
)3 Frequency center Xcf � ∑L

l�1( fl yl )/Xmean f

Skewness factor of frequency Xsk f f � Xkv f /X3
rv f Kurtosis factor of frequency Xsk f f � Xkv f /X3

rv f

I nput → GRU (100) → GRU (100) → FC(4096) →
FC(4096) → y.

• HACNN-GRU: The model structure is the same as
the method proposed in this article, but the connection
between the reused features is removed. The traditional
CNN with heterogeneous asymmetric convolution kernel
is used to predict the tool wear. The model structure is
I nput → HACNN → GRU (128) → GRU (128) →
FC(4096) → FC(4096) → y.

• DenseNet: The structure of this model is similar to that
of the local feature extraction module of the proposed
model. The DenseNet does not include a heterogeneous
asymmetric convolution kernel. The model structure from
top to bottom is I nput → Conv(64) → Maxpool →
DenseBlock → Transi tion → GMax Pooling →
FC(4096) → FC(4096) → y.

• DenseNet-GRU: The structure of this model is I nput →
DenseNet → GRU (128) → GRU (128) →
FC(4096) → FC(4096) → y.

All the above deep learning models use MSE as the loss
function and Adam as the optimization function. L2 regular-
ization technique is used to prevent overfitting and improve
the generalization ability of the model.

Figures 12, 13 and 14 shows the prediction results and the
error between the actual value and the predicted value for
the six models. MAE and RMSE are used to illustrate the
prediction performance of each method. The analysis results
are shown in Table 4.

Figure 15 shows the average RMSE and MAE of dif-
ferent models for the three experiments. It is clear that the
networks that incorporate CNN exhibit good prediction per-
formance. In particular, the effectiveness of convolution is
verified through the RMSE and MAE values of 7.82, 9.87,
10.36, 10.15 and 6.27, 7.91, 8.31, 7.75 for the proposed
method, DenseNet-GRU, HACNN-GRU, and DenseNet,
respectively. There is no significant difference between the
DenseNet and DenseNet-GRU in terms of RMSE and MAE.
Although GRU can capture local features extracted from
the DenseNet, the features extracted by single 1D convo-
lution operation cannot fully reflect the tool wear changes.
Therefore, the combination of DenseNet and GRU does
not capture too much time-series information related to
tool wear. The DenseNet-GRU network with heterogeneous
asymmetric convolution kernel can mine single signal and
multi-dimensional signal features, and the fused features can
comprehensively reflect the changes in tool wear. The mined
fusion features fed into theGRUcan capturemore time-series
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Prediction results of six different models for experiment number S1

(a) (b) (c)

(d) (e) (f)

Fig. 13 Prediction results of six different models for experiment number S2
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Prediction results of six different models for experiment number S3

Table 4 RMSEs and MAEs of
the compared methods Test data

S1 S2 S3

RMSE MAE RMSE MAE RMSE MAE

SVR 14.42 12.87 15.97 13.10 9.63 7.71

GRU 14.11 12.04 16.66 14.24 13.23 10.82

DenseNet 10.47 7.98 11.84 8.64 8.14 6.64

HACNN-GRU 11.06 9.23 10.76 8.64 9.27 7.06

DenseNet-GRU 10.02 8.04 10.89 8.95 8.70 6.75

Proposed method 7.21 5.86 9.31 7.80 6.94 6.33

features, so the proposed model outperforms the other mod-
els, and its RMSE andMAE are the lowest. Table 4 show that
the traditional machine learning algorithm, i.e., SVR is bet-
ter in some specific situations, but its generalization ability is
poor. The GRU without local feature extraction do not work
well. The average values of RMSE and MAE are 14.66 and
12.36, respectively. This is because it is difficult to capture
the timing information for a large amount of data without
considering the multi-sensor spatial information.

Further, we compared the accuracy of HACNN-GRU and
HACDNet-GRU. It can be seen that the method based on
DenseNet network structure is more effective than the tradi-
tional CNN. This can be attributed to the following reasons.

Firstly, one of the main advantages of DenseNet is that
the network is narrower, and there are fewer parameters.
This may be due to the design of this dense block. In this
paper, the number of output feature maps of each convo-
lutional layer in the dense block is very small (128), not
hundreds or thousands of widths like other networks. There-
fore, the network has a regularization effect, so it has a certain
inhibitory effect on overfitting. Overall, since the parame-
ters are reduced, the overfitting phenomenon is alleviated.
Secondly, the DenseNet network utilizes the connection of
features on the channel to reuse the features, which allows
the network to perceivemore features related to the tool wear.
At the same time, this connection method makes the transfer
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Fig. 15 Average values of RMSE
and MAE of the different models
in the three experiments
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of features and gradients more effective, and the network is
easier to train. However, the CNN network with the same
number of layers cannot achieve feature reuse, and the num-
ber of convolution kernels should be increased to learn more
features. Therefore, it can easily cause overfitting.

Inspired byWang et al., (2019), to further verify the supe-
riority of this method, the training set and test set established
in Table 1 are used, and the observation model is the HACD-
Net network. At the same time, the actual tool wear value in
the time ranges from start to time t–n is used as the input, and
the actual wear value after n time steps is used as the output
to establish a deep GRU network for predicting the future
tool wear. To verify the long-term prediction performance of
the model, only the 30-step advance prediction is considered
here, and the result is shown in Fig. 16. Table 5 shows a com-
parison between the five deep learning methods in terms of
RMSE and MAE. It is evident that in addition to the good
fitting and advanced prediction performance of the proposed
method, the accuracy of the tool wear prediction is further
improved. Although the RNN and its variants can capture the
hidden information of time series, a single network structure
cannot reveal the hidden information in the spatial structure
data, and the valuable information is lost.

Through the above comparison, it is evident that the pro-
posed model is superior to the other models. The excellent
performance of the model can be ascribed to the follow-
ing aspects. Firstly, the hidden information of the spatial
structure data is effectively extracted by adding a hetero-
geneous asymmetric convolution kernel to the DenseNet
network. Particularly, dilated convolution kernels with dif-
ferent dilation factors are used to perceive more historical

features of a single sequence signal, and 1D and 2D con-
volution kernels with different receptive fields are used to
extract multi-dimensional sequence signal features. The fea-
tures extracted from different domains are fused, and these
fused features can fully reflect the changes in the tool wear.
While reducing the sequence length to mine more informa-
tion about the tool wear, it also reduces the noise of the
original signal through a large number of nonlinear opera-
tions, thus the features that are strongly related to the tool
wear can be easily captured by subsequent GRU units.

Secondly, considering the time-series of the sequence
signal, GRU is added to control the update of important
information, and finally more timing information related to
tool wear is captured. Overall, the proposed model can bet-
ter predict tool wear by combining local fusion features and
time-series features.

Figure 17 shows the calculation time of the four models:
DenseNet, DenseNet-GRU, HACNN-GRU, and HACDNet-
GRU. In this experiment, the CPU of the computer running
the deep learning algorithm is AMD Ryzen7 5800X. The
graphics processor of the computer is Nvidia GeForce RTX
3080. It can be seen that the running time of the combination
of DenseNet network and GRU is nearly similar to that of
the DenseNet, while the running time of the HACNN-GRU
network and the DenseNet-GRU model with the heteroge-
neous asymmetric convolution kernel is approximately 3–4
times higher that of the DenseNet-GRU network. It may
be noted that the main computational time of the model
is spent on mining multi-dimensional signal fusion infor-
mation. The HACDNet-GRU network takes a longer time
than the HACNN-GRU network because it needs to learn the
reusable features.
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Fig. 16 30-steps-ahead prediction results of the proposed method for the test datasets C1, C4 and C6

Table 5 Performance analysis of
different algorithms under 30
steps-ahead prediction

Test data

S1 S2 S3

RMSE MAE RMSE MAE RMSE MAE

GRU 14.05 11.86 27.86 21.39 11.95 9.05

DenseNet 10.12 6.87 14.31 9.54 11.17 8.17

HACNN-GRU 9.90 7.02 8.55 8.09 8.40 7.31

DenseNet-GRU 7.07 5.39 12.72 8.45 9.49 7.34

DH-GRU(Wang et al., 2019) 6.48 5.18 9.09 6.05 10.16 7.84

Proposed method 5.81 4.50 6.47 5.19 8.61 5.96

Fig. 17 Running times of
different prediction models
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Conclusion

In this study, a unique model, called HACDNet-GRU, was
proposed for tool wear prediction. The efficacy of the model
was validated through a large number of experiments and
comparison with conventional prediction models. The main
results of the study are summarized as follows:

• The multi-dimensional signal can reflect the variation
trend of tool wear to a certain extent. Compared with

the 1D convolutional DenseNet, the DenseNet with a het-
erogeneous asymmetric convolution kernel can facilitate
effective mining of fusion features of multi-dimensional
signals.

• Tool wear is a dynamic and time-varying process. Com-
pared with the original signal, by dilating the convolution
kernel to perceive the historical information of different
fields and combining the depth of different receptive fields
to mine the spatial information of the multi-dimensional
signal, the GRU can easily capture the fused information,

123



Journal of Intelligent Manufacturing (2023) 34:885–902 901

which can provide a more accurate prediction of the tool
wear trend.

• The obtained average values of RMSEs and MAEs are
7.82 and 6.27, which verified the feasibility and effective-
ness of the model in tool wear prediction. Further, it was
confirmed that the proposed prediction model is superior
to the conventional deep learning and machine learning
models.

During the cutting process, to avoid the loss caused by
premature or late tool change, TCM has become a research
hotspot in the machining field. Therefore, the data-driven
indirect methods to predict tool wear will continue to be
popular. With the advancement of sensor technology, cutting
process will produce a large amount of information related to
tool wear, and the integration of multiple models can provide
in-depth information on the tool status. The existing toolwear
prediction models are focused on constant working condi-
tions. However, to obtain better interpretability and stability,
data-drivenmethods should incorporate the characteristics of
the tool wear process, such as the variable conditions. This
forms the future scope of this study as it can boost the indus-
trial applications of the prediction model.
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