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Abstract
Recently, numerous new data-driven methods have been proposed. But most of them focused on the innovation of models and
algorithms, and rarely discussed and optimized from the perspective of data and samples. However, the reliability of sample
quality directly determines the effectiveness of machine learning models. In this paper, a novel data-driven method based
on sample reliability assessment (SRA) and improved convolutional neural network (ICNN) for mechanical fault diagnosis
was designed. First, multinomial logistic regression (MLR) was conducted to construct the assessment model and a statistical
approach named influence function was used to compute the sample weights efficiently. Then, ICNN with the improved loss
function was proposed based on the strategies of sample weights, class weights and early-stopping. Compared with traditional
deep learning models, ICNN can better eliminate the negative impact of the problems during the model training including
sample quality imbalance, class imbalance, and overfitting phenomenon. Therefore, the fault diagnosis performance can be
improved. Finally, the trained ICNN can automatically extract the fault characteristics and achieve the fault diagnosis with
the input of compressed time–frequency images. Experiments on a benchmarking dataset and a gear dataset from a practical
experimental platform verified the superiority of the proposed fault diagnosis method.

Keywords Data-driven · Sample quality · Fault diagnosis · Sample weight · Convolutional neural network

Introduction

Rolling bearings and gears are key components in industrial
production. Since they are often in a harsh working environ-
ment, damage and faults are easy to occur and threaten the
safety of equipment and personnel (Lei et al., 2020; Zhao
et al., 2019). Benefit from the development of sensor tech-
nology and data analysis theory, data-driven fault diagnosis
methods for mechanical equipment can effectively recognize
the health status of the equipment, which attracted a lot of
attention in recent years (Chen et al., 2019; Liu et al., 2018;
Mao et al., 2021).

Traditional data-driven models such as support vector
machine (Cui et al., 2021; Yin & Hou, 2016) and principal
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component analysis (Cao et al., 2021) keep a simple archi-
tecture and low requirements of sample amount. But their
shallow structures also result in the poor extraction effect
of sophisticated fault characteristics. As an alternative, deep
learning methods have attracted many researchers’ attention
due to the superior ability of feature extraction and classifi-
cation (Hoang & Kang, 2019; Hu et al., 2022; Zhou et al.,
2021). Several deep learning methods such as deep auto-
encoder (Zhang et al., 2020a, 2020b), deep belief network
(Zhang et al., 2020a, 2020b), and convolutional neural net-
work (CNN) (Hu et al., 2021; Jing et al., 2017) have been
widely used for mechanical fault diagnosis. Among them,
CNN is a classical deep learning method, which has been
studied and accomplished many applications in the field
of fault diagnosis. Benefitting from its multi-layer convo-
lution and pooling operation, CNN can better analyze the
obscure fault information. Based on the difference in net-
work structure and form, CNN can be divided into two types,
i.e. one-dimensional CNN (1DCNN) (Kiranyaz et al., 2021)
and two-dimensional CNN (2DCNN) (Wen et al., 2018). The
main difference between 1 and 2DCNN is that the input of
the former is one-dimensional series, while the latter is a
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two-dimensional image. Also, the scale of the convolution
kernel of 1DCNN is one-dimensional, while 2DCNN adopts
a two-dimensional convolution kernel. Previous research
shows that 2DCNN can extract more useful information than
1DCNNbecause 2DCNNcanbe designed to analyze the con-
structed time–frequency or grey images that contain more
intuitive fault characteristics (Zhou et al., 2020).

Along with the development of deep learning methods,
some challenges also emerged. On the one hand, data is
the core and driving force of data-driven methods, but the
obtained data cannot be ideal in many cases. On the other
hand, the effectiveness of deep learning models depends
heavily on how well the models were trained. Thus, insuffi-
cient or unreliable data has a negative impact on the accuracy
and generalization ability of deep learning models. Gener-
ally, there are three common situations about the type of
non-ideal data in fault diagnosis: (1) The imbalance of the
training set or the problem of small samples can easily lead
to the model’s under-learning of the faulty samples. To solve
these types of problems, transfer learning (Zhao et al., 2020),
data augmentation (Li et al., 2018) and the small sample clas-
sifier (Kumar et al., 2021) with a specially designed structure
havebeenpresented. (2) In the actual fault diagnosis scenario,
external interferences can easily cause the non-ideal data dis-
tribution, such as low signal-to-noise ratio (SNR), partial data
points missing. And the quality of the obtained signals is
uneven. Some signal processing methods such as wavelet
transform (Wang et al., 2018) and variational modal decom-
position (Li et al., 2019a, 2019b) can be used for denoising
to improve the availability of the noisy samples to a certain
extent. (3) Human data collation errors or subjective mis-
judgments may lead to incorrect training labels, which can
largely reduce the effectiveness of model training. Aiming at
this problem, a solution to implement fault diagnosis under
noisy labels is proposed in (Zhang et al., 2021a, 2021b).
Moreover, some research of data cleaning can process known
types of outliers effectively, but a uniform standard has not
been established to quantitatively describe the reliability of
samples (Wang et al., 2020; Xu et al., 2020).

Although the latter two types of non-ideal data mentioned
above can be handled separately in different ways, the solu-
tion generally limits to a known type of non-ideal data. If
a general paradigm about evaluating the non-ideal data can
be established, non-ideal data of different types can be mea-
sured by the same metric, i.e., the sample reliability value.
Predictably, the processing procedure of the non-ideal data
will be simplified based on a uniform standard. Although
(PangWei Koh, 2017) did not directly study the above issues,
it still provides a direction to inspire other research. It con-
verts the reliability of the training samples into the influence
on the recognition effects of the test samples. To simplify the
solution, influence function (IF) (Cook & Weisberg, 1980;
Debruyne et al., 2008) was also adopted as an estimation tool

to avoid using the “leave one out” retraining strategy (after
removing a sample from the training set, retrain and verify
the model each time), which greatly reduces the computa-
tional complexity. As a result, the IF values can be used as
an approximate measure of training sample reliability. How-
ever, how to effectively use the sample reliability values to
optimize the model training process still needs further explo-
ration, especially in the background of imbalanced data.

In this paper, a new data-driven method based on sample
reliability assessment (SRA) and improved CNN (ICNN) is
proposed to solve the fault diagnosis problem with non-ideal
data. The proposed method is designed to adapt the three
situations of non-ideal data mentioned above. To the best of
our knowledge, it is the first attempt to optimize the model
performance for mechanical fault diagnosis from the per-
spective of sample reliability. The main contributions of this
article are as follows: (1) The traditional training process
considers rarely the sample quality imbalance, so the model
is more likely to learn the wrong information of non-ideal
samples. The proposed sample reliability assessment model
based on multinomial logistic regression (MLR) (Cannarile
et al., 2019) can achieve a general sample evaluation process
andoptimize the learningprocess of the fault diagnosismodel
by the obtained sampleweights. (2)The sampleweight canbe
computed fast and approximately by the influence function,
which is an innovation in the field of fault diagnosis. Thus,
the computational overhead of the SRAcan be reduced. (3) In
the case of sample quality imbalance and class imbalance, the
improved loss function combining sample weights and class
weights can improve the fault identification performance of
ICNN. At the same time, the early-stopping is used to avoid
the model overfitting.

The remainder of this paper is organized as follows.
Section “The proposed new data-driven fault diagnosis
method” introduces the main process and the implementa-
tion details of the proposed approach. Experimental results
are given and discussed in sections “Experimental valida-
tion” and “Discussion”. Finally, the conclusions are drawn
in Section “Conclusions”.

The proposed new data-driven fault
diagnosis method

In this study, a new data-driven fault diagnosis method based
on SRA and improved CNN is developed. The general pro-
cedure of the proposed method is displayed in Fig. 1, which
can be divided into four parts. (1) Sample acquisition: Sam-
ples are constructed at a certain sampling length from the
raw signals and divided into a training set, a validation set
and a test set; (2) Sample reliability assessment: In order to
achieve the reliability assessment of the samples, the MLR
algorithm is used to construct the assessment model with
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Fig. 1 Procedure of the proposed fault diagnosis method

analyzing the time–frequency input of the original samples.
It can effectively analyze the impact of sample quality on val-
idation accuracy with a simple structure. And the statistical
method of influence function is introduced to further acceler-
ate the process of sample assessment. As a result, the sample
weight (SW) vector can be established based on the obtained
RAVs; (3) Construction and training of ICNN: To better uti-
lize the feature mining performance of the CNN, continuous
wavelet transform (CWT) (Gou et al., 2020) is employed to
transform the one-dimensional samples into time–frequency
images that can also be further compressed. In the design
of the loss function of ICNN, sample weight can help the
model focus more on high-quality samples and ignore low-
quality samples. Moreover, to solve the problem of model
accuracy degradation under class imbalance, the strategy of
class weight (CW) is also introduced into the loss function.
And the overfitting phenomenon can also be solved to some
extentwith the help of early-stopping; (4) Fault classification:
Compared with traditional CNN, the trained ICNN model
can better mine fault characteristics under the background of

non-ideal data and improve the identification reliability for
mechanical fault diagnosis.

To facilitate subsequent introduction and discussion, some
notations are defined firstly. Let xtr

i (i � 1, 2, …, m) denote
training samples, xva

j (j � 1, 2, …, n) indicate validation
samples. And hθ (x) expresses the assessment model with
parameters θ , L(hθ (x)) is the model loss. L D(xtr

i , xva
j ) rep-

resents the loss difference of the assessment model on xva
j

after and before the deletion of xtr
i , as same as Eq. (1).

L D(xtr
i , xva

j ) � L(hθ
wo_xtr

i
(xva

j )) − L(hθ
w_xtr

i
(xva

j )), (1)

where hθ
w_xtr

i
(·) indicates that the model uses xtr

i in the train-

ing process, hθ
w_xtr

i
(·) means that xtr

i is not used.

Sample reliability assessment model construction

The role of the SRA model is to find those “unfavorable”
training samples. By computing the loss difference L D(xtr

i ,
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xva
j ) of the assessment model, the positive or negative influ-

ence of xtr
i on the recognition of xva

j can be expressed to
some extent. If the L D(xtr

i , xva
j ) value is a positive value, it

means that xtr
i has a positive effect on the recognition of xva

j .
To evaluate the training samples more comprehensively and
rigorously, the loss difference for the training sample xtr

i on
the validation set can be used as a sort of assessment norm,
which is shown as Eq. (2)

L D(xtr
i , xva

all ) �
n∑

j�1

L D(xtr
i , xva

j ), (2)

where xva
all means all validation samples. Thus, L D(xtr

i , xva
all )

expresses the influence of xtr
i on the recognition of the vali-

dation set.
For the improvement of calculation efficiency, the struc-

ture of the assessment model should be simple and effective.
Multinomial logistic regression method is a simple and
effective machine learning method, which is suitable for
constructing the SRA model. It is actually constructed from
several binary logistic regression (BLR) models. The output
of the BLR is a probability value, which is shown in Eq. (3),

hθ (x) � 1

1 + e−z
, (3)

z � θT x , (4)

where x is the input sample of the model, θT is the model
parameters. L-BFGSmethod was adopted to train the model,
and themaximum likelihood estimationwas used to construct
the cross-entropy loss function, as shown in Eq. (5),

L(hθ (x)) �
p∑

k�1

(yk log h(xk) − (1 − yk) log(1 − h(xk))),

(5)

where p is the number of input samples, yk is the predicted
category for the k th input sample xk .

To avoid underfitting, the key features should be further
extracted from the raw high dimensional signals. Generally,
the time domain and frequency domain features of raw sig-
nals can represent their main information effectively and
directly. And 10 time-domain and 13 frequency-domain sta-
tistical characteristics are widely used for feature extraction
in the field of fault diagnosis(Qu et al., 2016; Xiang et al.,
2020). In this part, these 23 characteristics are also used as
the model input. The detailed calculation equations of these
time–frequency statistical features are listed in Table 1.

Approximate estimation by influence function

To reduce the time consumption of model retraining, a statis-
tic tool named influence function is adopted to represent the
influence of training samples on model validation. In this
process, the assessment model does not to be retrained thus
the computational complexity is greatly reduced.

According to the formula derivation in (Pang Wei Koh,
2017), the influence value I F(xtr

i , xva
j ) can be used to

approximate the loss difference L D(xtr
i , xva

j ). And the defi-
nition of the influence function can be inferred as:

I F(xtr
i , xva

j ) � −s j∇θ L(hθ (x
tr
i )), (6)

s j � ∇θ L(hθ (x
va
j ))T H−1

θ
, (7)

H−1
θ

� 1

m

m∑

i�1

∇2
θ L(hθ (x

tr
i )), (8)

where H−1
θ

is the inverse of the Hessian matrix, s j is difficult
to calculate directly. Thus, Hessian-vector products are used
to approximate to it. More details can be found in (Pang
Wei Koh, 2017). Then, the influence function values matrix
(IFM) for all training samples can easily be computed and
established as below,

I F M �

∣∣∣∣∣∣∣∣∣∣∣

I F(xtr
1 , xva

1 ), · · · , I F(xtr
1 , xva

n )

I F(xtr
2 , xva

1 ), · · · , I F(xtr
2 , xva

n )

...
...
...

I F(xtr
m , xva

1 ), · · · , I F(xtr
m , xva

n )

∣∣∣∣∣∣∣∣∣∣∣

, (9)

and the total influence function (TIF) value for each training
sample on the verification set can be obtained by summing
the values from the corresponding row. Understandably, the
T I F(xtr

i ) value is an approximate solution to L D(xtr
i , xva

all )
in Eq. (2), which can reduce much computation burden. To
facilitate the subsequent discussion, a min–max normaliza-
tion operation is adopted for the T I F(xtr

i ) vector, (i � 1,
2, …, m), thus the R AV (xtr

i ) can be obtained. As a result,
the RAV with a range [0, 1] for each training sample can
be obtained and adopted as the final reliability assessment
norm. And the above can be summarized as:

R AV (xtr
i ) � T I F(xtr

i ) − min(T I F)

max(T I F) − min(T I F)
, (10)

T I F(xtr
i ) �

n∑

j�1

I F(xtr
i , xva

j ) ≈ L D(xtr
i , xva

all ), (11)

where min(.) and max(.) are respectively the minimum and
maximum values of the TIF vector.
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Table 1 Twenty-three time–frequency feature parameters

No Feature expression No Feature expression No Feature expression No Feature expression

1

I1 �
N∑

n�1
x(n)

N

7 I7 � I4
I3

13

I13 �
K∑

k�1
(p(k)−I11)3

K (
√

I12)3

19

I19 �
K∑

k�1
f 2k p(k)

√
K∑

k�1
p(k)

K∑
k�1

f 4k p(k)

2

I2 �

√
N∑

n�1
(x(n)−I1)2

N−1

8 I8 � I4(
1
N

N∑
n�1

√|x(n)|
)2

14

I14 �
K∑

k�1
(p(k)−I11)4

K (I12)2

20 I20 � I16
I15

3
I3 �

√
1
N

N∑
n�1

(x(n))2
9 I9 � I3

1
N

N∑
n�1

|x(n)|
15

I15 �
K∑

k�1
fk p(k)

K∑
k�1

p(k)

21

I21 �
K∑

k�1
( fk−I15)3 p(k)

K I 316

4 I4 � max|x(x)| 10 I10 � I4

1
N

N∑
n�1

|x(n)|
16

I16 �

√
K∑

k�1
( fk−I15)2 p(k)

K

22

I22 �
K∑

k�1
( fk−I15)4 p(k)

K I 416

5

I5 �
N∑

n�1
(x(n)−I1)3

(N−1)I 32

11

I11 �
K∑

k�1
p(k)

K

17

I17 �

√√√√√√

K∑
k�1

f 2k p(k)

K∑
k�1

p(k)

23

I23 �
K∑

k�1

√| fk−I15|p(k)
√

I16K

6

I6 �
N∑

n�1
(x(n)−I1)4

(N−1)I 42

12

I12 �
K∑

k�1
(p(k)−I11)2

K−1

18

I18 �

√√√√√√

K∑
k�1

f 4k p(k)

K∑
k�1

f 2k p(k)

x(n) is a signal series for n � 1, 2,…, N , where N is the number of sampling data points. p(k) is the frequency spectrum for k � 1,2,…,K , where
K is the length of spectrum, and fk means the frequency value of the k th spectrum line

Sample weight vector construction

In the above procedure, the TIF values obtained from our
assessment can reflect the negative or positive influence of
the sample on model training. A direct idea is to remove
all training samples with TIF < 0, but it is unrealistic in the
background of the small sample fault diagnosis. In this paper,
a sample weight vector is constructed based on the RAVs
to reflect different quality degrees of the training samples.
Therefore, the ideal training samples are givenbiggerweights
than the non-ideal samples, so that more useful information
can be learned during themodel training process.Meanwhile,
the influence of non-ideal samples on the training process is
weakened or even removed.

Since a few non-ideal samples have extremely negative
effects, the best way is to remove them from the training set.
In practical operations, it can be replaced by setting the sam-
ple weight to 0 for the non-ideal samples with quite lowRAV.
Although the RAVs of training samples may be not subject
to a normal distribution, we can still use Pauta Criterion as a
reference standard to determine whether the training samples
should be removed. After all, our purpose is to remove only
a few of the most extreme non-ideal training samples (which
have a large negative impact on model performance), while
removing all non-ideal samples is impossible. In practice,

the removing strategy can be determined by the model per-
formance on the validation set, but it is time-consuming and
laborious. Therefore, the Pauta Criterion is adopted as the
reference standard in this paper, although it may not be the
optimal choice. As a result, the weights of samples whose
RAVs are lower than μ − 3σ should be set to 0, where μ

and σ are the mean and standard deviation for all training
samples’ RAVs, respectively. In this way, the sample weight
vector S based on RAVs can be obtained and used for the
training process of the improved CNN.

Image construction with CWT

Next, the one-dimensional signals need to be converted to
images before the DL process. Figure 1 gives the details of
the converted way. First, the technology of CWTwas utilized
to decompose the 1D sample into a 2D wavelet coefficient
matrix. The details of the formula of CWT can be found in
(Guo et al., 2018). Because the complex Morlet wavelet can
match the actual fault responses well (Gu et al., 2017). In
the proposed method, the complex Morlet wavelet is deter-
mined as the wavelet basis function. And the scale parameter
is set to equal to the length of each sample (1024). Then,
the time–frequency images can be generated with the size
of 1024 × 1024. Last, the operation of bilinear interpolation
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(Kim et al., 2019) is implemented to compress the time–fre-
quency images, thus the compressed images with the size of
100 × 100 can be obtained, as the input of ICNN.

Fault identification with improved CNNmodel

As a classical deep learning method, CNN has a flexible
construction way to adapt to different sample conditions.
Moreover, 2DCNN has superior identification performance
on the images, which can more fully learn the fault infor-
mation contained in time–frequency images. Therefore,
2DCNN is used as the basic model for fault diagnosis in this
paper. It is constructed by an input layer, two convolutional
and pooling layers, a fully connected layer and a classifier
layer. More details are described in experiments. The convo-
lutional layer employs a series of filters to extract the fault
information. Every filter is convolved with its input, and non-
linear mapping can be implemented by calculating with an
activation function f, as described as follows:

(I ∗ K )i � f (
dK −1∑

j�0

K j Ii+ j + b), (12)

where I is the input of the convolution layer, K denotes
several trainable filters with length dK , * means the convo-
lutional computation, b expresses bias, and f is a nonlinear
activation function.

Max-pooling can compress the feature maps and improve
the robustness of the model. And after the last pooling layer,
a fully connected layer is established to further dig and reflect
the previous flattened features. At last, a soft-max regression
model is often placed at the end of 2DCNN as a classifier.

Before the fault diagnosis for unknown samples, the
2DCNNmodel needs to be fully trained. Aiming at the back-
ground of small sample and non-ideal data, three improve-
ments and optimizations are implemented for the training
procedure in the proposed method. First, the sample weight
vector S based on RAVs is established to optimize the train-
ing process of the 2DCNN model. Specifically, the model is
designed to learn more information from high-weight sam-
ples compared with the low-weight samples. Second, the
strategy of class weight is introduced to the training pro-
cess of 2DCNN to adapt to the imbalance between normal
and fault samples. The above two optimizations are achieved
in the design of the loss function, and the improved cross-
entropy loss function can be described as:

Loss(xi ) � −S(xi )C(xi )
[

yi log
�
yi + (1 − yi ) log(1 − log

�
yi )

]
,

(13)

where yi,
�
yi are desired and actual output of the input xi,

respectively. The vectors of S and C express the sample

weight and class weight of xi, respectively. And both S and C
are normalized to [0,1]. Besides, the values of class weight
C are determined with the ratio of the number of samples in
different machine states.

Third, the early-stopping strategy is used to avoid the over-
fitting problems that are common in the diagnosis of small
sample. For instance, the training process would be stopped
when the validation loss does not decrease over the previous
500 epochs. And the best model parameters that can keep
the smallest validation loss will be restored from previous
training records. Based on the above three improvements,
the improved CNN can better identify the mechanical fault
type under the non-ideal data.

Experimental validation

Experimental setup

To validate the effectiveness of the proposedmethod, a public
bearing fault dataset from Case Western Reserve University
(CWRU) (Smith&Randall, 2015) was used. The dataset was
acquired from a rolling bearing rig, which was composed of
a 1491.4 W three-phase motor, a loading motor, and a torque
sensor. The signals were acquired in the following working
conditions: The rotation speeds were 1730, 1750, 1772, and
1797 rpm, and the corresponding motor loads were 3, 2, 1, 0
Hp, respectively. The sampling frequency of the acceleration
sensor was 12 kHz. With the above conditions, the signals
under four different bearing states were acquired, including
normal (N), inner race fault (IRF), outer race fault (ORF),
and rolling element fault (REF). For each fault type, it has
four fault sizes (7, 14, 21, and 28 mils). More details can be
found in (Smith & Randall, 2015).

In this experiment, ten bearing states with different fault
types and fault diameters were constructed and labeled,
which are N, IRF7 (inner race fault with fault size 7
mils), IRF14, IRF21, ORF7, ORF14, ORF21, REF7, REF14,
REF21. For each bearing state, the signals from four work-
ing conditions were all adopted to conduct the subsequent
experiment. In this paper, all experimental codes were writ-
ten by Python 3.6 with TensorFlow 2.0. A computer with an
Intel®CoreTM i7-8550U processor and 16 GB of RAMwas
used.

Non-ideal sample sets construction

Since the bearing data of CWRU is recognized as a rela-
tively desirable dataset in the industry, the non-ideal sample
sets need to be further constructed to validate the pro-
posed method. In this experiment, three different situations
of non-ideal data were considered, i.e. unbalanced dataset
(meanwhile keeping a small sample set), signal noise and
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noisy labels. And the general performance of the proposed
methodwas validatedwith the eleven constructed sample sets
(S0–S10), where S0 is the original sample set and S1-S10 are
non-ideal. Specifically, the gaussian white noise with SNR�
0 dB was added into some samples of S1-S5, and some noisy
labels were injected into S6-S10. Moreover, a ratio of the
number of the normal samples and other fault samples was
set to 10:1 in the training set, thus the situation of unbalanced
data distribution can be simulated. Meanwhile, the validat-
ing set and test set were balanced for ten bearing states. And
sequential 1024 data points were used as one sample.

The details of the constructed eleven sample sets are
shown in Table 2. For the training set, validation set and test
set in each sample set of S1-S5, the ratio of the number of
total samples to the number of non-ideal samples is an equal
ratio with the range of 0 to 25%. Only the training sets have
non-ideal samples for S6-S10. In addition, S0-S10were inde-
pendently sampled from the sensing signal and constructed
to ensure randomness.

Samples reliability assessment procedure

Before the operation of samples reliability assessment, some
preparatory work including three phases needs to be finished.
First, 10 time-domain and 13 frequency-domain features
were calculated for each group in sample set S0-S10. Then,
the MLR model was established and the input dimension,
output dimension, batch size, learning rate were set to 23,
10, 64, 1 × 10–3, respectively. Last, the MLR model was
trained and validated by S0-S10 to test whether the MLR
model is suitable as SRA model.

By calculating the IF values between the training samples
and the validation samples, the IFM can be constructed, as
shown as Fig. 2 (For ease of presentation, Fig. 2 only draws
the points with its absolute value of IF > 0.05). Predictably,
several points with high IF values may have much greater
influence on the validation samples than the others. The IFM
containsmuch useful information that can help the process of
SRA. By summation computation, the TIF values and RAVs
can be obtained, which can more efficiently express the sam-
ple reliabilities.

Taking the training set of S1 for instance, Fig. 3 gives the
distribution of RAVs. The color of the circles in the figure
represents the type of the samples, which was unknown dur-
ing the experiment. And the size of the circles indicates the
unreliable degree of the sample, i.e. the smaller the RAV,
the larger the size of the circle. From the perspective of the
overall distribution, the RAVs of non-ideal samples are lower
than the original samples. From the view of local distribu-
tion, the RAVs of several non-ideal samples are extremely
low while all RAVs of the original samples are higher than
0.5. Moreover, it can be seen that the RAV of the original
samples ranged from 0.5 to 1.0, which shows that the SRA

Fig. 2 The IFM information on S1

Fig. 3 The detailed assessment results on sample set S1

processing also has a certain assessment effect on the original
sample. After all, the original dataset is also not absolutely
ideal. As a result, the proposed indicator of RAV can be used
as a valid assessment metric to reflect the influence of sam-
ples on model training.

As discussed previously, the sample weights should be
revised to 0 when the RAV value is lower than μ − 3σ , and
the boundary is also marked with a red dashed line in Fig. 3.
Subsequently, the sample weights were established with the
revised RAV vector.

ICNNmodel establishment and training

In the previous section, the SRA procedure has been accom-
plished, thus the sample weight vector was obtained. Then,
the technology of CWT was implemented to transfer the 1D
signals into 2D imageswith three channels, as the input of the
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Table 2 The descriptions of
eleven sample sets used in this
case

Sample set Training num Validating num Test num Ratio of non-ideal sample (%)

Normal Fault

S0 400 40 × 9 200 2000 0

S1-S5 400 40 × 9 200 2000 5,10,15,20,25

S6-S10 400 40 × 9 200 2000 5,10,15,20,25

The signals from four working conditions were all used averagely, e.g., the number of normal samples for S0
is 400, which means the number of samples from each working condition is 100

Table 3 The detailed structure of ICNN

Layer Parameter name Activation
function

Output size

input – – 100 × 100 × 3

conv1 Convolutional
kernel

Relu (100,100,32)

pool1 Max pooling
kernel

– (20, 20, 32)

conv2 Convolutional
kernel

Relu (20, 20, 64)

pool2 Max pooling
kernel

– (4, 4, 64)

FC1 – – 1024 × 1

FC2 Weight Matrix Relu 256 × 1

DR – – 256 × 1

output Weight Matrix Softmax 10 × 1

Table 4 The parameter settings of the training process

Parameter description Value

Loss function Categorical_crossentropy loss

Batch size 64

Dropout rate 0.2

Max iterations 2000

Early stopping patience 500

Early stopping monitor Val_loss

Sample weight The obtained vector S from the SRA

Class weight The ratio between normal and fault
type is 1:10

ICNNmodel. Before the fault identification, the ICNNmodel
should be established firstly based on the hyperparameters in
Table 3.

During the training process, some classical settings such
as batch processing and dropout were used. All parame-
ters about training settings are illustrated in Table 4. Three
improved strategies were also carried out in the ICNNmodel.
First, the obtained sample weight vector S from the SRA

Fig. 4 The training and validating loss curves of ICNN

Fig. 5 The training and validating accuracy curves of ICNN

was used to adjust the loss function, which makes the ideal
training samples can provide more impact on model fitting.
Second, the class weight vector C was also injected into the
loss function to optimize the learning effect of the fault sam-
ples with a small amount. Last, the strategy of early-stopping
was utilized to avoid overfitting.

Figures 4 and 5 show an example training and validating
process on sample set S1. Because the patience of early-
stopping was set to 500, the actual stopping epoch was 501
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Fig. 6 Test accuracies of the ICNN models on S0-S10

generations later than the epoch of model parameters recov-
ery. After the training process is stopped, the early-stopping
strategy can restore the best model parameters based on the
lowest validating loss overall process. It can be seen that
the validating accuracy from the epoch of model parameters
recovery is significantly higher than the validating accuracy
from the actual stopping epoch. Therefore, with the help of
early stopping, the ICNNmodel can guarantee the best gener-
alization performance and avoid the influence of fluctuation
in the training process.

Fault identification by ICNN

After the training process, the ICNN model can be used to
identify the mechanical states. To further demonstrate the
effectiveness of the proposed method, the test sets of S0–S10
were all used separately in this section. To illustrate the
superiority of ICNN, a 2DCNN (without the three improved
strategies) was used as a comparison method. On all eleven
sample sets, the proposedmethod can achievehigher recogni-
tion accuracy, as shown inFig. 6. Especiallywhen the training
set contains more non-ideal samples, such as S5 and S10, the
improvement of test accuracy is more substantial for the pro-
posed ICNN. Moreover, the ICNN model can also improve
the accuracy facing the test set of S0 (original samplewithout
artificially added non-ideal samples), although the rise was
not significant enough. It indicates that the proposed ICNN
can also improve the fault diagnosis performance in practical
scenarios.

Discussion

Effectiveness of the SRA procedure

Two aspects were discussed separately for the effectiveness
of the SRA procedure. One aspect is about the feasibility

Table 5 The comparison of different choices for the SRA model

Methods Parameters Accuracy (%)

KNN k � 11 56.75

SVM Rbf kernel (3 times) 41.30

MLR learning rate � 0.001,
batch size � 64

89.50

Fig. 7 The IF values match the actual loss differences

of the SRA model, and the other is the efficiency of the IF
tool. In this paper, the SRA model should have good conver-
gence and stability for the training process. Otherwise, the
perturbations brought by the model training will bring great
uncertainty to the determination of the RAV values, espe-
cially when facing non-ideal data. Thus, most deep learning
methods are not suitable to be a choice of SRA models. For-
tunately, classical machine learning methods generally have
good convergence and stability, such as KNN, SVM. Table
5 gives the accuracies for KNN, SVM and the used MLR on
the test set of S1. It can be inferred that the MLRmethod is a
pretty good choice for the SRA model. Because it has better
fault identification performance for samples compared with
the other twomethods. Meanwhile, the convergence ofMLR
is also acceptable.

For the proposedmethod, the improvement effect depends
on the reliability of the IF tool to some extent. Therefore, it
is necessary to discuss the efficiency of the IF tool during
the SRA procedure. Compared with using the actual loss
differences of the “leave one out” retraining strategy, the IF
tool can save a lot of computation time and maintain a high
approximation accuracy. By conducting five tests, the mean
consuming time of IF tool for constructing the IFM matrix
was 175 s, but using the actual loss differences needed 2198 s.
To illustrate the effectiveness of the IF tool, the influence of
some training samples on a validation sample was calculated
in twoways (IF tool and “leave one out” retraining), as shown
in Fig. 7. And the used samples of three subfigures were from
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Fig. 8 The comparison with other sample weighting methods

S0, S5 and S10. From Fig. 7, it shows that the IF values are
very close to the actual loss differences so that the points in
the figure are distributed along the line y � x. Therefore, the
IF tool can save more than 90% time compared with “leave
one out” retraining meanwhile keeping superior accuracy.

After implementing the SRA process, the sample weights
of the entire training set can be calculated and used to opti-
mize the subsequent model training. The above process has
formal similarities with some deep learning studies using
important sampling (Angelos & Fleuret, 2018; Johnson &
Guestrin, 2018; Santiago et al., 2021), because they both
achieve training optimization by setting the training sam-
ple weights. Differently, the SRA procedure determines the
sample weights of training samples by the model perfor-
mance on the validating set, while the sample weights of
important sampling are determined based on samples’ own
contribution to the gradient descent during the model fitting
process. To investigate the superiority of the SRA process,
two importance sampling-based sample weighting methods,
namely upper-bound (Angelos & Fleuret, 2018) and LOW
(Santiago et al., 2021), are used for comparison. Moreover, a
baseline method (2DCNN) without sample weighting is also
used. The average test accuracies were obtained by conduct-
ing five trials on S0-S5 independently, as shown in Fig. 8.

It can be observed from Fig. 8 that ICNN has the high-
est fault identification accuracies on all six sample sets. At
the same time, as the unreliability of the sample set gradu-
ally increases, the proposed ICNN has a more pronounced
improvement effect. This indicates that the proposed method
can handle the non-ideal samples more effectively compared
with others. For themethod of LOW, its accuracies are signif-
icantly improved compared with 2DCNN on S0, S1 and S2.
It means that LOW can help the model fitting and improve
the test accuracies when the sample sets are relatively ideal.
But the fault recognition effect of LOW is unsatisfied on S4
and S5, which contain more non-ideal samples. This may be
because when the number of non-ideal samples increases,

Fig. 9 The comparison for the impact of three improvements of ICNN
on test accuracy

some non-ideal samples of one batch can also achieve rapid
gradient descent. In this case, LOW would learn the wrong
information from those non-ideal samplesmore easily, which
can reduce the recognition performance of themodel. In con-
trast, the proposedSRAdetermines the sampleweights by the
model loss on the validation set, which is equivalent to intro-
ducing additional supervisory information to set the sample
weights that can achieve better generalization performance.
Moreover, the method of upper-bound has poor performance
in terms of recognition accuracy, because it sacrifices some
accuracy while achieving fast model training.

Implementation effect of three improvements
of ICNN

The respective effect for the three improved strategies, i.e.
sample weight (SW), class weight (CW) and early-stopping
(ES) were further explored. Each strategy is separately
removed from the ICNN model to determine its influence
on model performance. And the results are shown in Fig. 9.
It can be concluded that the strategy of SW has the biggest
contribution to the performance of ICCN because the accu-
racy is the lowest without it. It indicates that the SW strategy
can optimize the training process of the 2DCNN network,
although the sample weights were calculated from the raw
one-dimensional samples. This is because the sample quality
was not altered significantly before and after the input image
was constructed. ES strategy also has a significant impact,
and it is even equivalent to the SW strategy in S6 and S7.
And the CW strategy can also improve the recognition per-
formance of the model on most sample sets, although this
improvement is not significant. The reason is that the RAVs
included in the SW strategy already consider the influence
of the samples on the model fitting to some extent and give
higher weights to the faulty samples with scarce quantity. In
summary, the three improvement strategies in the proposed
ICNN method are all effective and necessary.
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Fig. 10 The robustness validation of three kinds of model hyper-parameters on test accuracy. a The comparison of the removing strategies. b The
comparison of the patience settings of early-stopping. c The comparison of the class-weighted settings

Robustness validation of model parameters

In the proposed method, some hyperparameters need to be
selected artificially, and improper selectionmay influence the
fault diagnosis effect of the model to a certain extent. Gen-
erally, the hyper-parameter settings can be determined by
the model performance on the validating set. In this part, the
robustness of the threemost critical hyper-parameters that are
removing strategy, patience and class weight are discussed.
Because these three hyper-parameters correspond to the three
improvements of the proposed model, i.e. sample weight,
early-stopping and class weight, thus the robustness of the
proposed three improvements can also be validated. Specifi-
cally, the three hyper-parameters were adjusted numerically
several times and the average test accuracies were obtained
by conducting ten trials on S0, S1, S6. The details are shown
in Fig. 10.

From Fig. 10a, five different removing strategies were
selected to validate the model performance. For example, the
removing strategy of μ − 5σ means that the training sam-
ples with RAV < μ − 5σ would be removed. It can be seen
that there is no r excessive change on the test accuracy when
the removing strategy uses μ − 3σ , μ − 4σ or μ − 5σ .
It indicates that the model performance can be improved
after only removing a few extreme non-ideal samples. But
the test accuracy decreases significantly when more train-
ing samples were removed (using μ − σ or μ − 2σ ). This
is because when the removing strategy is set too strict, more
useful samples can also be deleted bymistake. And themodel
fitting would become more difficult with a small sample set.
Therefore, in addition to determining the removing strategy
by the model performance on the verification set, it is also
feasible to remove only a few extreme non-ideal samples.
From Fig. 10b, it can be observed that the smaller values of
patience would result in lower test accuracies, which is due
to the model stopping training too early. Thus, the patience

values are more inclined to be set larger if the training dura-
tion is not considered. In Fig. 10c, the class weight setting
with 1:10 can achieve the highest test accuracy, which is also
consistent with the unbalanced ratio of the training set.

Comparison with other state-of-the-art methods

Further, the proposed method is verified and compared with
other state-of-the-art methods on the CWRU dataset, as
shown in Table 6. Five trials were applied and themean accu-
racy was calculated for each method. On the sample sets
containing less non-ideal data such as S0 and S1, ResNet-
APReLU and CWT + 2DCNN can achieve high accuracies
comparable to our method. But with the increasing influ-
ence of abnormal data, the accuracy reduction speed of our
method is significantly slower than other methods. Even on
S10, the accuracy rate of our method can still be main-
tained at 73.50%. Because some comparison methods such
as CNNEPDNN and ResNet-50 are not suitable for small
sample classification, thus they cannot obtain good accuracy
performance. And in the total time-consuming comparison
on one sample set, the performance of the proposed method
is also acceptable.

Verification on another practical case

To further validate the effectiveness of the proposed method,
another practical case was conducted based on a gearbox
experimental platform (Hu et al., 2019; Zhang et al., 2021a,
2021b). It comprised a one-stage reduction gearbox, a servo
motor, a magnetic power brake, a torque sensor, and a brake
controller, as shown in Fig. 11. The detailed parameters of
driving and driven gears are listed in Table 7. To simulate
different fault sizes, wire-electrode cutting technology was
used to construct four kinds of gear crack conditions (non-
crack, 1/4 crack, 1/2 crack, and 3/4 crack). The length of
the gear crack can be computed by Lc�i × (Rc−rh)/4, i
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Table 6 The comparison of different methods

Method Test accuracy on different sample set (%) Time (s)

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

ResNet-APReLU
(Zhao et al., 2021)

98.65 98.20 96.75 96.15 95.45 93.50 92.55 86.10 83.75 67.90 52.35 3708.60

SuperGraph (Yang
et al., 2022)

81.50 79.10 78.50 76.50 73.0 76.10 76.50 80.0 76.0 75.0 72.10 95.80

CNNEPDNN (Li et al.,
2019a, 2019b)

61.75 53.40 50.35 45.75 43.15 38.45 48.95 39.30 38.75 34.75 29.65 2245.80

M2DCNN (Gong et al.,
2019)

94.75 95.25 90.75 89.15 88.25 81.45 91.55 87.45 75.95 79.10 68.25 120.50

ResNet-50 (Wen et al.,
2019)

82.10 80.45 73.25 71.55 66.45 61.10 67.50 45.65 43.05 38.95 29.90 224.60

CWT + 2DCNN (Zhou
et al., 2020)

98.35 98.05 94.15 95.25 94.65 91.90 92.85 81.25 79.65 67.05 61.45 1222.90

Ours 98.30 97.50 97.00 96.55 95.35 95.05 95.15 91.00 85.35 79.55 73.50 1327.50

Fig. 11 Composition of the monitoring platform

Table 7 Parameters of experimental gears

Gear type Teeth number Gear module Teeth width

Driving gear 50 2 mm 20 mm

Driven gear 80 2 mm 20 mm

� 0, 1, …, 3, where Rc and rh are the radius of the root
circle of the main driving wheel and the center hole, with
values of 27.5 mm and 47.5 mm, respectively. The sampling
frequency is 5 kHz and each sample contains 1024 sampling
points. Five input shaft speed conditions of the driving gear
and twokinds of loadswere used in this experiment. Thus, the
datawas sampled under 10 operatingworking conditions. For
each working condition, 168 samples can be collected and
the sample amount under different crack sizes was equal.
More details are listed in Table 8.

Without any artificial noise injected, the obtained sam-
ples are purely obtained from the actual testing environment.

Table 8 Parameters of experimental conditions

Types Value

Crack length 0, 5, 10, and 15 mm

Input shaft speed 300, 600, 900, 1200, and 1500
r/min

Load 0 Nm, 4 Nm

Number of training samples 800

Number of validating samples 80

Number of test samples 800

Points of each sample 1024

Thus, the robustness and generalization of the proposed
method can be further validated. Because the length of the
sample is set to 1024 as same as in the bearing experiment,
the model can refer to the previous settings. Seven meth-
odswere adopted separately, includingDBN,DAE, 1DCNN,
ResNet-50 (Wen et al., 2019), LeNet-5, M2DCNN (Gong
et al., 2019), the proposed ICNN. Among these methods, the
inputs of the first four methods are 1D signals, and the inputs
of the last three methods are 2D images generated by CWT.
To improve the reliability of the fault diagnosis results, ten
trials were applied for the comparison, as shown in Fig. 12.
It can be seen that the test accuracy of the proposed ICNN is
significantly higher than other methods. And the reason why
the first four methods in Fig. 12 have quite low accuracies
is that the time-domain input signals are difficult to be fully
extracted and learned in the small sample case. On the con-
trary, the time–frequency images contain more direct fault
characteristics, so the accuracy of the latter three methods is
significantly better.
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Fig.12 Comparison of different methods

Conclusions

In this paper, a novel data-drivenmethod based on the sample
reliability assessment process and improved ICNN is pro-
posed, which can improve the fault diagnosis performance
of models under the non-ideal data. First, the original train-
ing samples were evaluated based on the MLR assessment
model. Meanwhile, the influence function was used to sim-
plify the computational burden and the RAVs of all training
samples can be obtained. Then, three strategies about sam-
ple weight based on RAVs, class weight, and early-stopping
were utilized in the improvements of ICNN. Finally, the
trained ICNN can automatically extract the characteristics
and achieve the fault diagnosis with the input of compressed
time–frequency images. Experiments showed that the pro-
posed method can effectively optimize the model training
process and thus improve the performance of fault iden-
tification. By comparing with other advanced methods on
two datasets, the superiority and robustness of the proposed
method have been discussed and verified.

However, this paper only considered theway of evaluating
andweighting non-ideal samples to improve the performance
of fault diagnosis models. Combining data denoising or data
recovery to improve the reliability of model training is also
a future research trend.
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