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Abstract
Digitization of large parts with tight geometric tolerances is a time-consuming process that requires a detailed scan of the
outer surface and the acquisition and processing of massive data. In this work, we propose a methodology for fast digitization
using a partial scan in which large regions remain unmeasured. Our approach capitalizes on a database of fully scanned parts
from which we extract a low-dimensional description of the shape variability using Statistical Shape Analysis. This low-
dimensional description allows an accurate representation of any sample in the database with few independent parameters.
Therefore, we propose a reconstruction algorithm that takes as input an incomplete measurement (faster than a complete
digitization), identifies the statistical shape parameters and outputs a full scan reconstruction. We showcase an application
to the digitization of large aeronautical fuselage panels. A statistical shape model is constructed from a database of 793
shapes that were completely digitized, with a point cloud of about 16 million points for each shape. Tests carried out at the
manufacturing facility showed an overall reduction in the digitization time by 80% (using a partial digitization of 3 million
points per shape) while keeping a high accuracy (reconstruction precision of 0.1mm) on the reconstructed surface.

Keywords Statistical shape analysis · Shape reconstruction · Surface digitization · Sparse sampling

Introduction

The so-called fourth industrial revolution, Industry 4.0,
is undergoing a fast development thanks to the advances
in Industrial Internet of Things and artificial intelligence
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(Cohen et al. 2019). As a typical application of Industry 4.0,
smart industrial systems includes a wide range of sensors
and processors all over the manufacturing process (Kurfess
et al. 2020) to monitor equipment and timely discover faults.
In this framework artificial intelligence algorithms are used
for automated quality control and surface defect inspection
tasks in the manufacturing industry (Gao et al. 2006; Hao et
al. 2020; Pimenov et al. 2018; Tabernik et al. 2020; Židek et
al. 2020). In such applications, digitization plays an increas-
ingly important role, as it is essential to create accurate digital
representations of the as-manufactured part that could then
be sent to software for quality assessment or defect detec-
tion (Teutsch 2007). In many industrial applications such as
the one showcased in this paper, digitization takes place at an
intermediate stage of the manufacturing chain and not neces-
sarily on the finished product. Interestingly, the objective of
intermediate digitization would not be to make a decision on
whether to accept, reject or rework a part, but rather to adapt
the subsequent manufacturing operations to the specifics of
the part being produced in an automated way. Digitization,
in combination with machine learning and artificial intelli-
gence algorithms, has already demonstrated its potential to
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bring new levels of accuracy and productivity to the industry
(Jack Feng and Wang 2002; Židek et al. 2020).

Despite the benefits it brings in terms of shape identi-
fication, we must include the digitization time in the total
manufacturing workflow time, which includes the acqui-
sition time plus the data processing time. Sometimes the
digitization time may be negligible compared to the overall
processing cycle. However, in many industrial cases digiti-
zation is concerned with large parts that have to meet tight
geometric tolerances, requiring a detailed scan of the outer
surface and the acquisition and processing of massive data
(Drouot et al. 2018; Poulhaon et al. 2014). In this sense, the
introduction of a complete digitization in the manufacturing
process may have a negative effect in the total production
time, which is in conflict with the desired requirements for
the introduction of artificial intelligence in the industry (Lee
et al. 2020).

In this work, we consider as an application the mechani-
calmachining of large aeronautical fuselage panelswhich are
about six meters long and two meters wide, with small thick-
ness in the order of few millimeters and double curvature,
see Fig. 1. These panels undergo a milling process to reduce
the thickness locally in order to optimize the overall weight-
resistance ratio of the panel. Because of their pronounced
slenderness, the milling process requires sophisticated tech-
nology, including special supports and the use of a mirror
milling system (Panczuk and Foissac 2008), with a milling
cutter on the machined face and a counter-bearing on the
opposite side.

Thickness tolerances are in the order of 0.1 millimeters.
Significant geometric variability is observed from one panel
to another, even if they belong to the same batch. Presumably,
variability originates from, at least, two sources: (i) previous
manufacturing stages, including ametal forming process that
precedes milling; and (ii) the positioning of the part on the
support system, as the part is likely to deform significantly
under its own weight. As a consequence, the milling toolpath
cannot be designed according to aCADmodel as it would not
be an accurate representation of the real part. Instead, panels
must be fully digitized before machining in order to adapt
the milling path to their actual geometry. Both the acquisi-
tion time and data processing (generation of CAD files and
adaptation of the machining path) have a negative impact on
productivity.

In light of this practical case, it is reasonable to assume
that there are similar issues in other manufacturing pro-
cesses and even beyond the industrial sector. For example,
the interested reader can refer to the references below related
to the medical imaging community. Leaving aside possible
technological improvements regarding the data acquisition
procedure (see e.g. D’Apuzzo 2006; Khalfaoui et al. 2013;
Mian and Al-Ahmari 2019; Qian et al. 2021 in this regard), it
is straightforward that a reduced sampling of the surface leads

to a shorter scanning time, at the cost of having an incomplete
measurement of the panel. The challenge we face is that of
designing a digitization methodology that takes as input an
incomplete data acquisition of a surface in a reduced time,
and outputs a complete reconstruction of the surface without
negatively impacting accuracy.

The research field of surface reconstruction from digi-
tally scanned shapes has achieved considerable progress in
the last decades, with contributions mainly found in applica-
tions involving computer vision, e.g. Belongie et al. (2002),
Pauly et al. (2005),Marton et al. (2009), Guo et al. (2013) and
especially, the medical imaging and bioengineering commu-
nity, see Heimann and Meinzer (2009), Wang et al. (2016),
Bernard et al. (2017), Ballester et al. (2017), Zhang et al.
(2017), Lauzeral et al. (2019) to cite only a few. All meth-
ods rely on some assumptions, or priors, that are imposed
either on the scanned point cloud or on the scanned surface.
A complete review of such methods and different priors can
be found in Berger et al. (2014). One popular approach is that
of Statistical ShapeAnalysis,which capitalizes on previously
digitized samples of the same class (considered as training
data) to build a statistical shape model (SSM). The SSM is
then able to represent any shape in the object class by a mean
shape and the variability observed in the training set. Among
the different possibilities to build an SSM, we find Point Dis-
tributionModels (Cootes et al. 1992), in which the shapes are
represented as a set of points or landmarks distributed over
the surface. Within this approach, the creation of an SSM
is achieved in three main steps: (i) registration, that is, the
identification of the landmark points in each training shape;
(ii) computation of the mean shape; and (iii) extraction of
a low-dimensional description of the shape variability using
Principal Component Analysis (PCA) (Chatterjee 2000; Jol-
liffe 2002; Jolliffe and Cadima 2016).

Previous works in surface reconstruction from incomplete
data can be found in Guo et al. (2013), which uses a database
of shapes for 2Dcontour completion and inPauly et al. (2005)
for 3D objects surface completion. In Shen et al. (2012) high-
quality 3Dmodels are reconstructed from low-quality data by
assembling templates from an object database. These works,
however, assume that the incomplete regions are small, thus
the objective is to fill in the gaps that may appear in the
acquired data, whereas the aim of this work is to identify a
particular shape by digitizing only a portion of its surface.
The work in Bernard et al. (2017) presents a method for
surface reconstruction from sparse point clouds, where the
input consists of a reduced number of points which are regis-
tered onto the template of the SSM using a Gaussian mixture
model approach. The interested reader is also referred to this
last reference for an in-depth review of the state of the art in
this topic. The idea of building object reconstructions from
reduced samplings is already present in Bernard et al. (2017),
however, the digitization outputs in high accuracy manufac-
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Fig. 1 Application case studied:
aircraft panel manufacturing. a
Raw panel after forming.
Complete digitization of the
component is required to adapt
machining trajectories to the
real shape. b Final panel after
milling

turing, which is the main scope of this work, usually consist
of clouds with a large amount of data points. Indeed, even
with a partial scan of the surface, the number of scanned
points is in the order of millions. Another relevant differ-
ence is that the existing literature on surface reconstruction
deals with closed surfaces of 3D solid objects (Lauzeral et
al. 2019), whereas our interest relies on curved shapes that
can be treated as 2D surfaces in a 3-dimensional space.

In this work we propose a methodology for fast 3D sur-
face digitization that works as follows: first, an SSM is
computed from a database of full samples, using prior infor-
mation of the surface’s boundary. Then each new sample is
partially digitized and reconstructed by fitting the SSM to
the partial measure solving a non-linear minimization prob-
lem. After the new surface is identified in the SSM, the
proposed methodology outputs a reconstruction point cloud
that resembles that of a complete surface scan. With this
choice, the introduction of our proposed methodology in the
manufacturing workflow is straightforward, as all the follow-
ing data processing phases in the manufacturing line remain
unchanged, (see Fig. 2).

The article is structured as follows: in “Data” section
we introduce the data used in this work together with the
relevant features of the data acquisition. The details of the
SSM creation and reconstruction algorithm are presented in
“Methodology” section, together with error and validation
metrics definitions. Finally, the numerical results concerning
the application case are shown in “Results” and “Conclu-
sions” sections contains the conclusions.

Data

All data used in this work has been provided by Stelia
Aerospace (St. Nazaire, France). In this section, we present
the data acquisition process and then the different datasets

used in this work, together with its features. We denote a
point in the 3D space as x = {x, y, z} ∈ R

3, and a 3D cloud
of points corresponding to a panel shape is represented with
capital letters, S = {x1, ..., xn}T ∈ R

n×3. The Euclidean
distance is denoted by ‖ · ‖.

Data acquisitionmethod and data format

The data acquisition process is as follows: a laser beam trav-
els along a predefined path that sweeps the panel, storing
3D coordinates of points on the panel’s surface. The beam is
7.5 cm wide, it reads 400-450 points at a time (acquisition
step), and the device performs acquisition steps at a constant
frequency as it travels along the measured surface. A com-
plete scan of a panel requires a scanning path around 180
m long, yielding a point cloud of approximately 16 million
points. This data is then stored in a file that contains the coor-
dinates of the entire point cloud with a numerical precision
of 0.001mm, which will be the lower bound when measur-
ing the reconstruction error in “Results” section. All points
in the sample are considered for the statistical shape model
construction, and the proposed reconstruction algorithm will
provide surface reconstructions with the same point density
as that of a completely scanned panel. To help the shape’s
location in the 3D space, the component in consideration con-
tains two small holes that are drilled for aligning purposes
during the different manufacturing processes undergoing,
serving as reference marks. The coordinates of both marks
are obtained during the scanning phase, and they are denoted
as Φ12 and Φ14 (see Fig. 3a).

Datasets

Three different datasets have been considered along with this
work, and are referenced as complete scan, partial sampling,
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Fig. 2 Scheme of the originalmanufacturingworkflow, in blue, where a
complete digitization of the surface is performed before machining due
to high quality requirements. The proposedmodification, consisting of a
partial digitization and a shape reconstruction Algorithm, is highlighted

in green. In order to be as less intrusive as possible in the manufacturing
workflow, the output of the proposed fast digitizationmethodology tries
to resemble the point cloud of a complete scan acquisition (Color figure
online)

and verification datasets. The features of each one are the
following:

Complete scan dataset This is the main database, consist-
ing of 746 panels that were completely scanned at Stelia
Aerospace’s workshop between 2014 and 2019 from 7 dif-
ferent laser data acquisition sets working in parallel. The data
is considered to be homogeneous, this is, no distinctions are
made between each acquisition set. A thorough review of the
raw database was performed to dismiss corrupted data. Over-
all, there were missing files in 53 samples (either the point
cloud file or any of the reference markers’ locations), and
138 samples were found to have flaws in the acquired data
(either point cloud with empty regions or incoherent mea-
sures). All these defective samples were dismissed, having a
final training set consisting of ns = 555 panels.

Partial sampling dataset To test the reconstruction algo-
rithm, a partial sample dataset is built from the complete
scan database. The partial scan trajectory (Fig. 3b) has been
arbitrarily chosen, partially covering all the panel’s surface
with a trajectory similar to a triangular wave. This has been
selected to fulfill the technological constraints of the laser
data acquisition devices at Stelia Aerospace, so that an in-
situ validation can be performed. This partial scan path is
near 35 m long and provides an incomplete point cloud of
3.5million points, this is, roughly a 20%of the data contained
in a complete scan.

Verification dataset The last set consists of 9 new panels,
different from those in the complete scan dataset, which are
used in the verification of the methodology. These samples
have been digitized twice, using both the complete and partial
scan strategies. As the data comes from the same sample, the
reference landmarks Φ12,Φ14 should have the same coor-
dinates in the partial and complete files of the same sample.
However,wehavenoticeddifferences around0.1mmin these
values between the partial and complete data. This is prob-

ably because the scanning machine resets its home position
between scans, and that process may introduce a small offset
in the local reference system. Despite those differences being
small with respect to the total size of the component, they
will be relevant when evaluating the reconstruction, which is
meant to be within the same order of magnitude.

Methodology

The method in this work is divided into two stages: first, an
SSM of the panel is built in an offline stage, and then the
online stage generates a reconstruction from an incomplete
panel measure using the shape parametrization.

1. Offline stage generating the SSM. The SSM is built in the
same fashion as the Point Distribution Models (PDM),
where there are two distinguished steps: alignment of the
training shapes and dimensionality reduction.

(a) Alignment phase. A point cloud is arbitrarily chosen
to serve as template shape (S0). Then, the alignment
of each sample in the training set (target shape) is per-
formed in two steps: a rigid registration of the target
onto the template followed by a non-rigid registra-
tion of the template onto the target. The output of
this step is the template’s deformation field such that
it fits each target shape.

(b) A dimensionality reduction step, using techniques
such as the Principal Component Analysis (PCA)
(Jolliffe 2002), to extract a low-dimensional descrip-
tion of the shape variability. Specifically, the principal
modes of deformation of the template are extracted
from the registered data. It is worth mentioning that
the PCA returns an ordered set of modes according
to how much each of them contributes to explain the
input data. Therefore, the user can establish a trade-
off between accuracy and model size, expressed by
the number of modes considered. By selecting the
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Fig. 3 a Sample shape of the
studied geometry with landmark
locations and b partial scan
trajectory in blue. Dimensions
in millimeters

set of modes that best describe variability, the PCA
provides a statistical description of any shape with
a restricted number of modes. New shapes x̃ can be
written as the sum of the mean component x̄ plus a
linear combination of the selected principal modesφi
and its shape parameters αi (Jolliffe 2002):

x̃ = x̄ +
N

∑

i=1

φiαi (1)

2. Online stagepanel reconstruction.At the online stage, the
input data is an incomplete scan of a geometry outside
the SSM’s samples, thus the online phase is divided into
two steps: shape parameter identification and geometry
reconstruction.

(a) The shape parameters in Eq. (1) corresponding to
the new geometry are identified through an iterative
minimization problem. As a result, we obtain a defor-
mation field of S0 that fits the shape of the partially
scanned sample.

(b) After obtaining the shape parameters that best fit the
incomplete data, theSSMis particularized,with those
parameters, at a fine cloud of arbitrarily distributed
points to create a virtual reconstruction of the sample
with the same format of a completely scanned panel.
This is called the oversampling step.

The offline and online phases are now detailed in “Offline
training” and “Online reconstruction” sections respectively.

Offline training

The purpose of this stage is to build a Statistical ShapeModel
from a set of previously scanned complete shapes, which is
our training set. Following the PDM building procedure, we
first align all shapes in the training set to an arbitrarily chosen
template shape. We divide this alignment into rigid and non-
rigid registration steps. Then the final SSM is obtained after
a dimensionality reduction step.

Rigid registration

Each of the 7 different scanning machines used to acquire all
the samples in the database has its own coordinate system,
which introduces considerable differences in the scanned
coordinates of each panel. The rigid registration step aims
to minimize rotations and displacements between samples
so that the differences are mainly due to shape variations. A
simple rigid registration can be performed using the refer-
ence marks Φ12, Φ14, the samples are aligned so that Φ14 is
located at the origin of the new reference system, and Φ12

is located on the x-axis. Let xs be the coordinate of a point
belonging to a given sample, then the rigid transformation is
written as:

123



2350 Journal of Intelligent Manufacturing (2023) 34:2345–2358

x = Rβ Rθ (xs − Φ14) (2)

where θ and β are the angles between the segmentΦ14−Φ12

and the XY , X Z planes respectively, with their correspond-
ing rotation matrices Rθ and Rβ .

Template shape

The construction of the SSM requires an arbitrarily chosen
template shape, denoted as S0. The geometry under consid-
eration is a nearly rectangular-shaped shell which, despite
having a curvature, is mainly aligned with the reference
coordinate system, z being the out-of-plane direction. Con-
sidering this topology we define the template as a flat surface
on the xy plane. After performing the rigid registration on all
samples of the training set, we define a rectangular bound-
ing box that covers all {x, y} coordinates (see Fig. 4). The
bounding box is thenmeshedwith a regular structured grid of
1000 by 250 nodes, thus S0 ∈ R

2×nS0 , with nS0 = 250000.

Non-rigid registration

From now on and to simplify the notation we will use the fol-
lowing decomposition for any point in the space: x ≡ { p, z},
with p representing the 2D coordinates {x, y}. Let Ti be the
i-th sample in the complete scan dataset. The objective in this
step is the creation of a mapping ai : R2 �→ R

3 such that
ai (S0) fits the target shape Ti . Following again the in-plane
/ out-of-plane approach we divide the non-rigid registration
into two phases: first we obtain a mapping f 1 : R2 �→ R

2

that fits the in-plane coordinates pi , thenwe compute a scalar
mapping f2 : R2 �→ R such that f2◦ f 1 fits zi . The complete
non-rigid registration mapping can be written as:

ai = {

f 1 (S0) , f2 ◦ f 1 (S0)
}

(3)

XY registration The first step of the non-rigid registration is
performed using the thin plate spline model (Duchon 1977;
Meinguet 1979). This is an efficient tool commonly used for
shape matching tasks in the framework of object recognition
methods (Belongie et al. 2002; Bookstein 1997; Lauzeral
et al. 2019). In its 2D version, the TPS defines a function
f (x, y) that minimizes the bending energy (Duchon 1977;
Meinguet 1979):

I f =
∫ ∫

R2

(

∂2 f

∂x2

)2

+ 2

(

∂2 f

∂x∂ y

)2

+
(

∂2 f

∂ y2

)2

dxdy

(4)

subject to f ( pi ) = p′
i , where i = 1, ..., N are some previ-

ously defined correspondences between the target shape pi

and its transformations p′
i , also known as landmark points.

There are different options to establish those landmarkswhen
there is no prior knowledge of the target shape available, such
as closest point metrics (Lauzeral et al. 2019) or the shape
context (Belongie et al. 2002), which establish as landmarks
a set of points arbitrarily distributed at the shape’s boundary.
In both works, the correspondences are set in an iterative pro-
cess that alternates between setting the landmarks and solving
the TPS problem (4) until convergence is reached. The land-
marks can also be directly specified if previous knowledge
of the shapes being matched is available, with the benefit of
avoiding the iterative process. In the application case at hand,
the reference marks {Φ12,Φ14} provide very little informa-
tion of the shape to perform a non-rigid registrationwith high
accuracy in terms of shape match. However, as the panel’s
shape is simple (the projection on the x, y plane is a slightly
deformed rectangle), we can set the landmarks to solve the
TPS problem as follows. The boundary of the panel is the
convex hull of all the plane coordinates pT ∈ T (Fig. 4a).
The first landmarks are the corners of the square-shaped tar-
get Ti , which are found using a corner detection algorithm
and matched to the correspondent corners of the template
S0. Then we can re-parametrize the target’s boundary so that
it has the same amount of points as that of the template’s
boundary. This provides enough landmarks to solve the TPS
problem (4) and obtain f 1(S0). An example of this map-
ping is shown in Fig. 4, where the template’s mesh has been
coarsened for the sake of clarity.

Z registration To present the second phase in the non-rigid
registration step we describe the computation of f2 ◦ f 1 at
a given node n ∈ S0 with coordinates p′

n = f 1
(

pn
)

, which
is illustrated in Fig. 5a. First we identify all points P =
{ p ∈ T : ‖ p − p′

n‖ < r}, within the searching radius r =
h
√
2/2, and h being a representative element size of S0 (in

this application, h = 6.3 mm). The coordinate zn is then
computed as a weighted average of all zi ∈ P and using a
Gaussian filter (Shapiro and Stockman 2000):

zn =
∑

i∈p ziωi
∑

i∈p ωi
; ωi = e− ‖ pi− p′n‖2

2σ2 (5)

wherewe have considered a standard deviation σ = r/2. The
data acquisition procedure presented some specific features
that influenced the quality of the z-coordinate registration
near the panel boundaries.Ononehand, the samples analyzed
in this work contained a much higher point density near the
panel boundaries (as a consequence of the scanning device
travelling at a slower speednear the boundarieswhile keeping
the acquisition frequency constant), and on the other hand,
the scan device’s trajectory produced a saw-toothed pattern
of the boundary instead of the smooth curve of the actual
panel, as shown in the detail of Fig. 5b. To address these
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Fig. 4 Non-rigid registration: XY mapping. a Template mesh S0 and target sample Ti with plane coordinates pi . bMapping f 1 (S0) obtained with
the TPS. The correspondences between boundary points (landmarks) are highlighted

issues we implemented the following features concerning
the registration near the boundaries:

1. The Gaussian filter’s standard deviation is reduced to
σ = r/8 for nodes along the boundary of S0, andσ = r/6
for nodes at the two following inner layers.With thismea-
sure, we give more importance to the points located near
p′
n without reducing the number of considered points,

since there is a higher number of points in the boundary.
2. The nodes at the boundary of S0 laying outside the saw-

toothed pattern don’t have any point within a distance
r . The non-rigid registration at these nodes is computed
employing a least squares fitting of the z values obtained
at the adjacent nodes.

Statistical shape model: dimensionality reduction

When all targets are registered into S0 we build the matrix
A = [a1, ..., ans ], and compute the average displacement
field x̄. Then the SVD is applied to matrix ˜A, which
is obtained by subtracting x̄ from A. Finally, the shape
parametrization x̃ of the shape generation model is written
as Jolliffe (2002), Lauzeral et al. (2019):

x̃ = x̄ + Φα (6)

where we have used compact notation, α ∈ R
m being the m

shape parameters andΦ the truncated basis with [φ1, ...,φm]
modes. The SSM is defined at the discrete set of points in
the template’s mesh S0. However, the online reconstruction
stage, which is presented in the following section, requires a
continuous definition of the SSM. This can be easily obtained
by including the traditional FE interpolation in Eq. (6), with
linear shape functions. Thus, the SSM at a given point p
inside the template shape S0 with interpolation coordinates
ξ p ∈ R

2 is computed as:

Fig. 5 Non-rigid registration: Zmapping. aWeighted average at a node
with coordinates p′

n . b Border features: radii of the weighted average
area (orange), and nodes without points (red) (Color figure online)

ϕp(α) := B
(

ξ p

)

x̄ + B
(

ξ p

)

Φα (7)

where B is the linear interpolation operator.

123



2352 Journal of Intelligent Manufacturing (2023) 34:2345–2358

Online reconstruction

Let T ′ be a new sample outside the SSM original data from
which only a partial scan with coordinates X t ∈ T ′ is avail-
able. The goal is to generate a reconstruction of the panel
from the incomplete data acquired using the SSM from the
offline training. This is achieved in two steps: identification
of the shape parameters and oversampling.

Shape identification from a partial scan

The location of the reference marks {Φ12,t ,Φ14,t } is also
available in the new sample T ′, thus the rigid registration in
Eq. (2) is applied to obtain xt . Now we must identify the
shape parameters of T ′ that best fit the partial measures xt .
For this, the following minimization problem is proposed:

min
α∈Rm

[

1

2

∑

t∈T ′
(ϕt (α) − xt )2

]

(8)

IntroducingEq. (7) in (8), andusing the simplifiednotation
Bt = B

(

ξ t
)

, we can obtain the solution of the minimization
problem:

min
α∈Rm

[

1

2

∑

t∈T ′
(Bt x̄ + BtΦα − xt )2

]

(

∑

t∈T ′
ΦT BT

t BtΦ

)

α =
∑

t∈T ′
ΦT BT

t (xt − Bt x̄) (9)

The problem in (8) is non linear, as the interpolation coor-
dinates ξ t corresponding to the points xt also depend on
the unknowns α. In other words, while the pt coordinates
remain constant the underlying mesh S0 is being modified
by α, so the sample’s points can change their location in the
interpolation. For the solution of the problem, we propose
a fixed-point procedure presented in Algorithm 1. After set-
ting an initial guess α0 the mapping ϕ(α) is defined, and the
interpolation coordinates of the sample’s points, ξ t , can be
directly obtained. Having the interpolation coordinates Eq.
(9) becomes a linear system ofm equationswithm unknowns
that can be easily solved, yielding new shape parameters. The
process is repeated until stagnation of the shape parameters.

Algorithm 1 Fixed-point iteration to identify shape param-
eters
Require: α0 
 Arbitrary
i ← 1
while ‖αi − αi−1‖ < Tol do

Find the interpolation coordinates ξ t
Evaluate Bt
Solve αi 
 Eq. (9)

end while

We propose two different alternatives to set the initial
guess α0:

1. Assume α0 = 0. This is equivalent to setting the mean
value of the reduced basis, x̄, as the initial guess for the
SSM in (6).

2. We also propose a more problem-specific approach. We
first obtain the perimeter of the partially scanned sam-
ple as the convex hull of the pt coordinates. For these
points, we can obtain interpolation coordinates assuming
the same procedure as in the non-rigid registration (“XY
registration” section) for the generation of landmarks.
Then the problem in Eq. (9) can be solved considering
only those points along the boundary to obtain the initial
values α0.

Oversampling

Having solved problem (8), the SSM’s parameters αt are
identified, and the mapping ϕ(αt ) is fitted to represent the
partially scanned sample T ′. We can create a new point cloud
x′
r that resembles that of a complete scanned sample (i.e.

with around 16 million points), as this data is later used in
the manufacturing workflow of the panel. For that purpose,
we evaluate and store the interpolation coordinates ξ re f of a
sample arbitrarily chosen from the database used to generate
the SSM in the offline stage. Then, the SSM is evaluated at
the reference coordinates and the rigid registration transfor-
mation in Eq. (2) is reversed:

xr = ϕre f (α p)

x′
r = RT xr + Φ14

(10)

Validation and error metrics

The purpose of the validation is twofold. First, to ensure
the quality of the SSM obtained from the complete scan
dataset. Second, to verify the reconstruction algorithm from
an incomplete sample. Here we present the metrics used for
validation, and the results are shown in “Results” section.

SSM performance metrics

The quality of the SSM is evaluated with the compactness,
generalization, and specificity metrics introduced in Davies
(2002). The compactness is defined as:

C(m) =
m

∑

i=1

λi (11)

with λi being the i-th proper value associated with the SVD.
This metric represents the contribution of each additional
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shape parameter in the reduced model. The fewer parameters
required to properly describe any shape, the more compact
the model is.

The generalization can be seen as the ability of the SSM
to represent a shape out of the training set. This is evaluated
using a leave-one-out approach: a sample T from the com-
plete scan dataset is removed and a new SSM is built using
the nT − 1 remaining shapes. Then, T is registered to obtain
at , and the shape parameters corresponding to the new SSM
can be obtained as follows:

αt = ΦT
m(at − x̄) (12)

where Φm stands for the truncated basis with the corre-
sponding amount of modes m and x̄ the average field. A
reconstruction T ′(m) of sample T is computed using Eq.
(6) and the estimated shape parameters. Finally, the approx-
imation error is measured as the average point-wise distance
between all ns0 points in the reconstruction and the sample
registration:

ε(T , T ′(m)) = 1

ns0

ns0
∑

i=1

‖x̄i + ΦmΦT
m(ati − x̄i ) − ati‖

(13)

This process is then repeated for each sample in the com-
plete scan dataset, and the generalization is calculated as a
function of the number of modes as in Davies (2002):

G(m) = 1

nT

nT
∑

i=1

ε(Ti , T
′
i (m)) (14)

Finally, the specificity measures the ability of the SSM
to generate shapes that are similar to those in the training
set. A random set of N shapes Rs is generated, with a vari-
able number of modes m. Then, for each shape Si (m) ∈ Rs

the distance to the closest registered sample in the complete
dataset Ts is computed as in Eq. (13), and the specificity is
written as Davies (2002):

S(m) = 1

N

N
∑

i=1

min
a j∈Ts

ε(a j , Si (m)) (15)

Reconstruction error metrics

To evaluate the quality of the panel reconstruction algorithm
we will consider a complete scan C and a partial scan P .
The reconstruction process will output a new reconstructed
point cloud, R. The complete and partial samples may come
from the complete dataset, with its respective sample in the
partial sampling dataset, or from the complete and partial
scans in the verification dataset. As noted in section the data

in the verification dataset presents some differences in the
reference landmarks’ Φ12,Φ14 location, which would intro-
duce an artificial source of error, since in a real production
workflow a sample wouldn’t be scanned twice. To exclude
this error source from the reconstruction error metrics we
will evaluate the reconstruction error after performing the
rigid registration step in “Rigid registration” section where
all shapes are aligned, thus wewill work with the coordinates
xc and xr .

The error between the reconstruction R and the complete
scan C can be defined as the distance between both shapes,
which we denote as Dist(C, R). The following definition
for the distance between two surfaces was used in Xu et al.
(2013), Lauzeral et al. (2019) for SSM validations:

Dist(C, R) = 1

2

[

1

Nc

∑

c∈xc
min
r∈xr

‖c− r‖

+ 1

Nr

∑

r∈xr
min
c∈xc

‖c− r‖
]

(16)

where Nc and Nr stand for the number of points at C and
R respectively. Although being a robust, unbiased function,
this method has a high computational cost as the number
of points increases. Due to the high density of the point
clouds involved in this application (around 16 million), we
propose an alternative definition that takes advantage again
of the geometry’s shape to reduce the computational cost.
First we define ϕs ≡ { ps, zs} as the solution of problem (8)
applied to obtain the reconstruction R. Then an interpolant of
the z-coordinates is built using again the linear interpolation
operator B:

LR( p) = B pzs, LR( ps) = zs (17)

Finally, the distance function between the reconstructed
and completely scanned shapes is defined as:

Dist(C, R) = 1

Nc

∑

c∈xc
|zc − LR( pc)| (18)

Using this distance function and the partial sampling
dataset we introduce an alternative computation of the gener-
alization metric, G∗(m), which considers not only the SSM
but also the reconstruction algorithm’s performance in iden-
tifying shapes that are outside the training dataset. For that,
we will use the same leave-one-out approach, but now the
approximation error is computed between each sample Ci in
the complete scan dataset and a reconstruction Ri (m) built
from its corresponding sample in the partial sampling dataset
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Pi using m modes. Therefore, the new generalization metric
can be written as:

G∗(m) = 1

nT

nT
∑

i=1

Dist(Ci , Ri (m)) (19)

where the distance between shapes is calculated using
Eq. (18).With thismeasure, we can evaluate the quality of the
complete process, which includes the registration, the model
order reduction, and the non-linear reconstruction algorithm.

Results

The performance of the proposed method has been analysed
in three different ways:

1. Via compactness, which measures the effect of trunca-
tion in the ability of the model to reproduce the training
dataset.

2. Via generalization, which measures the ability of the
model to represent unseen data using a leave-one-out pro-
cedure.

3. Via in-situ verification tests, which demonstrate the
ability of the methodology to perform in a relevant
environment, as the resulting output of the proposed
methodology has been introduced in the actual manufac-
turing workflow, with successful results in the following
quality control procedures.

The results concerning the SSM performance are shown in
“SSM performance evaluation” section, whereas the in-situ
verification test is presented in “Online shape reconstruction
verification test” section.

SSM performance evaluation

The SSM metrics are presented in Figs. 6 and 7. All these
results were calculated using the complete scan dataset, with
the partial sampling dataset being also used for the com-
putation of G∗(m) and a random set of 1000 generated
shapes for the computation of the specificity. The compact-
ness graph indicates that starting at around 50 modes the
contribution of each additional parameter drastically dimin-
ishes. Metrics S(m), G(m) and G∗(m) were calculated for
m = {1, 2, 5, 10, 20, 50, 100, 200, 500}. In this test, when
solving the non-linear minimization problem in Eq. (9) the
boundary-specific approach was used to set the initial guess
of the shape parameters. A comparison between the proposed
alternatives is shown in the following section.

Both generalization factors show a similar trend, with a
logarithmic descent of the average error up to 0.044 and

0.053mm respectively. This means that the reconstruction
algorithm from a partial sample provides reliable results,
similar to projecting the intrinsic ability of the SSM. The
bars in the graphs represent one standard deviation. Although
in both cases the variability decreases with the number of
modes, the G∗(m) metric presents always higher variability
than G(m). In both cases the generalization metrics are sta-
bilized atm = 100modes, showing a slight improvement for
200 and 500 modes. In light of these results, it seems appro-
priate to choose a truncated basis with 100 modes for this
application, which represents a balance between accuracy
and computational cost.

Online shape reconstruction verification test

After testing the performance of the method with the com-
plete scan and the virtually generated partial sampling
datasets, in this section we validate the presented methodol-
ogy in an industrial environment. For this, 9 different samples
were digitized twice in the manufacturing plant, both par-
tially and completely (for error measurements), as presented
in “Datasets” section. These samples form the verification
dataset. Then, for each panel in the verification dataset, we
obtained a surface reconstruction from the partial digitization
using the algorithm proposed in this work, and the output
reconstruction point cloud was introduced in the manufac-
turing workflow, substituting the complete digitization point
cloud, as presented in Fig. 2. The experiment is designed and
executed as follows for each panel: (i) run the full scan pro-
gram (ii) stop the execution and enter in manual execution
mode, to avoid the milling step to be started after scanning
(iii) log on the industrial computer and download a copy of
the full scan for later comparison (iv) load the reduced scan
program (v) log on the industrial computer and download a
copyof the partial scan (vi) give the partial scan as input to our
reconstruction subroutines, running on a laptop (vii) compare
the reconstructed to the fully scanned panel (viii) transfer a
copy of the reconstructed panel to the industrial computer
(ix) go back to automated execution mode by moving to the
next manufacturing step (milling).

The graph in Fig. 8 shows the reconstruction error between
the complete scans and its reconstruction for all samples in
the verification test, using the distance function defined in
Eq. (18). The performance of both alternatives for the initial
guess to solve the non-linear problem presented in “Shape
identification from a partial scan” section is also compared.
The horizontal black line in the graph represents the gen-
eralization metric of the SSM for 100 modes, to serve as a
reference.

The use of boundary information to build the initial guess
provides a better reconstruction overall, with error values
near the generalization ability of the SSM. Although using
the mean panel as an initial guess (i.e. α0 = 0) provides
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Fig. 6 Statistical shape model,
performance evaluation metrics:
compactness (left) and
specificity (right)
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Fig. 7 Generalization metric.
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Fig. 8 Reconstruction error for each sample in the verification dataset,
with the reconstruction fixed-point algorithm using as initial guess the
mean panel (blue) and the initial boundary reconstruction (red). The
SSM’s generalization value is included in the graph as a reference (Color
figure online)

slightly worse results for most of the samples, there is a con-
siderable discrepancy in samples 4, 7, and 9. Figure 9 shows
the reconstruction error color map for sample 9 using both
strategies. The oversampling solution using the mean panel
clearly fails to adapt along the boundary of the surface, and
1.6% of the points in the oversampling cloud have recon-
struction errors over 1 mm, whereas the resulting cloud in
Fig. 9a has no points with such error levels. Similar behavior
is found in samples 4 and 7. Finally, Fig. 10 shows the recon-
struction error color map for all panels in the verification
dataset using the boundary-specific initial guess.

Fig. 9 Verification dataset, sample 9. Reconstruction error using
boundary-specific procedure a and mean panel b as the initial guess
of the fixed-point algorithm

Discussion

The typical applications of statistical shapemodels are found
in 2D images and 3D volumes with closed surfaces. The
application in thisworkpresents a newchallenge,which is the
identification of an open surface in a 3D space. Whereas the
construction of Statistical Shape Models for 3D objects can
be achieved by properly detecting the boundary of the solid
and then performing a dimension reduction (as in Lauzeral
et al. 2019 for example), that is not enough when it comes
to open surfaces in a three-dimensional space. In this case
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Fig. 10 Reconstruction error map using boundary-specific procedure for all samples in the verification dataset (see “Datasets” section)

the contours of the open surface must be identified, there is
no such solid’s bulk, and the surface’s curvature cannot be
captured with the identification of its contours. The proposed
method is designed to solve this new challenge by building
the SSM in two steps: first, identification of the surface’s
contours and then mapping of the interior curvatures. The
performed tests in “Results” section show that the quality
of the generated SSM is in the order of 0.01mm, this is just
one order of magnitude over the data numerical precision,
thus we have achieved the maximum possible accuracy to
describe any shape in the provided database, with a reduced
basis of 100 modes in this particular case.

Regarding the surface reconstruction from a partially dig-
itized sample, we compared the performance of the proposed
algorithm using different strategies for the initial guess in the
fixed-point iteration in the test using the panels from the ver-
ification dataset. The results show that the identification of
the surface’s boundary as initial step of the non-linear prob-
lemsolution (presented in “Shape identification fromapartial
scan” section) is crucial to obtain an accurate shape parameter
identification. Not only because the average reconstruction
error is lower in all test cases, but also because using themean
panel of the SSM as initial guess can lead to stagnation of the
solver at local minima with worse adaption along the bound-
aries of the surface, resulting in a higher reconstruction error.
The case of sample number 6 in Fig. 10f is worth to remark,
since the performance of the reconstruction algorithm was
clearly worse in that particular case when compared to the
other samples. The average reconstruction error was signifi-
cantly higher, and the errormap showed a vertical line pattern
with higher reconstruction error. After a thorough study of
that sample by the industrial partner, an error in the work-

shop’s scanning device was detected, thus the complete scan
of that sample wasn’t representing its actual surface. There-
fore, we think that the methodology presented in this work
could also open the possibility of using the part’s SSM as an
aditional tool to check for anomalies in the manufacturing or
digitization workflow.

In the performed tests we observed that using 100 modes
in the initial fixed-point step when using only the contour of
the partial digitization may lead to overfitting problems. This
is because, in that particular case, the number of points used
to solve the fitting problem in (8) is considerably lower than
that of the whole partial sample. To avoid this problem we
performed the initial iteration of the fixed-point algorithm
using only 10 modes and the boundary of the partial sample
in the tests shown in this work, which lead to satisfactory
results.

The total reconstruction error of the proposed reconstruc-
tion algorithm fromapartial sample is slightly higher than the
generalization ability of the SSM (which is measured with
complete samples), with values between 0.05 and 0.1mm.
Although we have successfully achieved high-quality shape
reconstructions from incomplete data, we think that the tra-
jectory of the partial scan (Fig. 3b), which was arbitrarily
chosen, might affect in the total reconstruction error, and it
also explains the slightly worse generalization (and higher
variability) of the SSM when it is taken into account (Fig.
7), since that trajectory is not related to the features exist-
ing in the computed SSM. The choice of an optimal set of
measuring locations [using for example the EIM (Barrault et
al. 2004; Chaturantabut and Sorensen 2010) or a data-driven
approach (Poulhaon et al. 2014)] for the SSM would lead to
lower variability in the surface reconstruction algorithm.
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Although we have presented this surface reconstruction
methodology using a specific application case of an aircraft
manufacturing component, the proposed approach can be
extended for the reconstruction of any other surface, provided
there is a database of completely digitized samples to build a
Statistical Shape Model, and enough information of the sur-
face’s boundary topology for the non-rigid registration step in
“Non-rigid registration” section. After building the SSM that
captures the variability of the new surface, the application of
the presented reconstruction algorithm is straightforward.

Finally, concerning the computational cost of this method,
an implementation inMATLAB (TheMathworks Inc., USA)
takes 1 second per iteration in the fixed-point algorithm.
The shape identification problem required between 15 and
20 iterations for all samples, and the whole reconstruc-
tion algorithm, from reading the input file to obtaining the
oversampling reconstruction, takes between 35 and 45s,
depending on the number of iterations. Considering the time
spent in the partial scan acquisition and the reconstruction
algorithm the proposed method can reach an 80% reduction
in the surface digitization time, according to estimations by
Stelia Aerospace’s experts.

Conclusions

We presented a methodology for 3D surface reconstruction
combining partial sampling and SSMs. For the computation
of the SSM, we make use of prior known information of
the surface, especially in which concerns boundary detec-
tion and mapping. We propose a non-linear fitting problem
to identify the shape parameters of a partially scanned sam-
ple, which is solved with a fixed-point algorithm. The results
show that the obtained SSM can describe the surfaces using
100 modes, with an accuracy only one order of magnitude
higher than the scanning device’s numerical precision. The
fixed-point algorithm’s efficiency is increased if the bound-
ary of the partial sample is used for the initial iteration, and
the total reconstruction error of the proposed reconstruction
algorithm, this is, including SSM and fixed-point algorithm,
remains between 0.05 and 0.1mm of average error recon-
struction for all tested samples.

Whereas typical applications of statistical shape models
are found in 2D images and 3Dvolumeswith closed surfaces,
we present a method for the fast digitization of open surfaces
in a 3D space using incomplete measurements, which are
obtained in a significantly shorter time than complete digiti-
zations, achieving high-quality final reconstructed shapes.
The implementation of this methodology in an industrial
environment achieved an estimated time reduction of 80%
in the shown application case, provided that there exists a
database with samples that have been completely digitized.
The search of optimal partial measuring strategies for the

surface reconstruction algorithm will be studied in future
works, together with the possibility of building the SSM as
panel data is collected, this is, without having a previously
obtained sample database.
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