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Abstract
Natural disasters usually occur unexpectedly, causing loss of life and property. It is essential to quickly and effectively distribute
aid materials to minimize the damage in the aftermath of a disaster. Aid organizations require decision-making mechanisms
that provide hard data to make quick and accurate decisions during the distribution of aid materials. In this study, the delivery
of aid materials to the victims of disasters is investigated as a vehicle routing problem. For this purpose, a new method is
developed by integrating the interval type-2 fuzzy TOPSIS method with the Clarke and Wright savings algorithm. In this
way, while determining the routes, different criteria specific to the problem could also be analyzed with the distance criterion.
The proposed method is presented with a numerical example to show how it can be implemented in the humanitarian aid
distribution problem. As a result of the numerical example, it is determined that the proposed method completed the delivery
with 826 distance units in four rounds, and the classical Clarke and Wright savings algorithm completed the delivery at 820
distance units in four rounds. Although the proposed method provides a longer distance solution than the classical Clarke and
Wright savings algorithm, it has the advantage of determining safer routes by taking into account the different risks that may
arise during a disaster. Finally, well-known benchmark problems are solved using the proposed method.

Keyword Humanitarian aid distribution · Vehicle routing problem · Savings algorithm · Fuzzy logic · Interval type-2 fuzzy
sets · TOPSIS

Introduction

Natural disasters such as hurricanes, earthquakes, and floods
have been causing significant losses worldwide. According
to the records from the International Disaster Database, there
were at least 396 natural disasters in 2019, killing 11,755 peo-
ple, affecting 95million people, and costing about 130 billion
US$ (Froment & Below, 2020). These statistics emphasize
the importance of aid distribution management to reduce
the effects of natural disasters. It is a known fact that nat-
ural disasters cannot be prevented. However, their impact
can be reduced if disaster preparedness activities are car-
ried out effectively. It is crucial to manage humanitarian aid
operations in disaster areas (DA) and promptly deliver aid
materials. Therefore, efficient aid distribution management
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has an essential role in accessing humanitarian aid materials
to the disaster victims on time.

The optimal planning of emergency transportation in the
post-disaster humanitarian supply chain is different from tra-
ditional transportation problems (Wang et al., 2018). The
distribution of aid materials to the victims of disasters is
a vehicle routing problem (VRP). VRP should be flexible
enough to accommodate different constraints other than the
capacity and route length encountered in real-life applica-
tions (Cordeau et al., 2002). The traditional VRP aims to
determine the best routes at a minimal cost. The classical
Clarke and Wright (CW) savings algorithm consider dis-
tance or cost criteria when determining routes. However, in
events that directly affect human life, such as natural disas-
ters, decision-makers (DM) may need to consider different
criteria other than distance or duration. The shortest route
may not be the optimal solution. Different criteria, such as
the traffic density, the physical condition of the road, and the
suitability of combining orders in the same vehicle, may also
need to be evaluated (Cengiz Toklu, 2017). Therefore, this
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motivates us to develop a new approach that can reach more
need-oriented solutions.

The performance of aid distribution management may be
affected byvarious criteria. Evaluating these criteria andfind-
ing the most effective solution becomes more difficult as the
number of criteria increases. This study presents a modi-
fied CW savings algorithm based on interval type-2 fuzzy
(IT2F) logic and Technique for Order Preference by Sim-
ilarity to an Ideal Solution (TOPSIS) method for the VRP
in humanitarian aid distribution. The proposed method aims
to evaluate the effect of different criteria when creating the
savings matrix, which is one of the steps of the CW savings
algorithm. For this reason, it is suggested to use importance
coefficients while determining the savings matrix in the CW
savings algorithm. The mentioned importance coefficients
are determined by the IT2F TOPSIS method.

The distribution problem is one of the crucial issues in
many studies. Distribution relates to the problem of pro-
viding goods from a depot to customers. The problem can
be modeled using graph theory through the traveling sales-
man problem (TSP) and VRP. VRP is the extended version
of TSP (Wahyuningsih et al., 2016). VRP, also knowns as
the node routing problem (NRP), is one of the most stud-
ied issues in operational research. Because the allocation of
goods is being affected by numerous factors, these factors
are transformed into constraints or variables for the problem.
As a result, different VRP variants are developed (Konstan-
takopoulos et al., 2020). The capacitated arc routing problem
(ARP) is the problem of servicing a set of streets in a street
network using a fleet of vehicles with a certain capacity ini-
tially located at a central depot (Wøhlk, 2008). According to
Chu et al. (2005), the capacitated ARP includes obtaining a
set of feasible vehicle tour that minimizes the total cost of
traversed edges. A NRP and an ARP can be interconverted.
The choice of an arc routing or node routing model must
consider the distinct nature of the operations as well as the
solution techniques. NRPs have been studied more intensely
than ARPs (Assad & Golden, 1995). Despite these similari-
ties between ARP and VRP, there has been a great effort to
study NRPs. In this way, many solution methods have been
developed on VRP. Because of this reason, some researchers
have been motivated to transform ARPs into NRPs (Foulds
et al., 2015). Besides, considering the capacity constraint of
VRP and making both routing and assignment are among
its advantages. Earthquake is one of the natural disasters
where humanitarian aid is most needed. According to Anbu-
udayasankar et al. (2016), allocating food to areas that are
affected by earthquakes is a complex distribution problem. It
is necessary to plan optimal food supply patterns and inven-
tory allocation for these areas. Similarly, it is also crucial to
formulate theVRP asminimizing the amount of pain and suf-
fering of the affected people instead of minimizing the travel
distance. For these reasons, the VRP approach is preferred

in this study. In addition, the proposed method does not only
aim to minimize the distance as mentioned above. It also
considers other criteria necessary to plan aid distribution.

This study aims to find an optimum solution that mini-
mizes the travel distance and the number of routes, taking
into account the different decision criteria encountered in
real-world problems. It is not always possible to model and
analyze real-world problems with deterministic mathemati-
cal methods. Because this kind of problem can sometimes
have a very complex structure, incomplete or unidentified
information, or may not reach a feasible solution under all
constraints. Furthermore, it may be necessary to use linguis-
tic expressions like few,many,morewhen defining problems.
The fuzzy set theory was first introduced by Zadeh (1965)
to solve these types of problems. The classical type-1 fuzzy
(T1F) logic approach has been criticized for including one
membership value for each precise parameter value. After-
ward, Zadeh (1975) developed type-2 fuzzy (T2F) sets (Ucal
Sari & Kahraman, 2015). IT2F sets (Karnik et al., 1999;
Liang & Mendel, 2000; Mendel et al., 2006) are the particu-
lar case of T2F sets. According to Mendel et al. (2006), IT2F
sets are used more often because general T2F sets involve
computational complexity. For this reason, a multi-criteria
decision-making (MCDM) technique integrated with IT2F
sets is preferred in this study. Likewise, the TOPSIS method
has an advantage that is the ability to identify the best alter-
native quickly (Sadeghzadeh&Salehi, 2011).Moreover, this
method has a simple, rational, comprehensible concept and
the computation involved is simple (Deng & Yeh, 2006;
Roszkowska, 2011). In summary, the contributions of this
paper include the following:

• A newmethod that enables the decisions taken in humani-
tarian aid operations to be quick and accurate is developed.
Within this scope, the MCDM approach is proposed to
determine the savings matrix in the CW savings algo-
rithm. One of the strengths of the proposed method is that
it can evaluate different criteria simultaneously. It derives
its power from the MCDM technique added to the CW
savings algorithm. Specifically, it is aimed to provide the
flexibility required in humanitarian aid operations by pri-
oritizing the determined criteria with the fuzzy MCDM
technique.

• The proposed method extends the CW savings algorithm.
Thus, this method can be used in different vehicle routing
problems in manufacturing or supply chain management
by determining subject-specific criteria.

The rest of this paper is organized as follows. Section 2
examines the literature on humanitarian aid distribution
and CW savings algorithm separately. Section 3 focuses
on the IT2F TOPSIS method and the CW savings algo-
rithm. Moreover, in this section, the fundamental definitions
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and notations of the fuzzy set theory and IT2F sets are
introduced briefly. Section 4 includes the proposed method,
modified CW savings algorithm. Section 5 applies the pro-
posed method to a vehicle routing problem in humanitarian
aid distribution. Besides, well-known ten benchmark prob-
lems are solved using the proposed method and compared
with the classical CW savings algorithm. Finally, the con-
clusions are discussed.

Literature review

In this section, the studies on humanitarian aid distribution
and theCWsavings algorithmare examined separately. Thus,
the focused problem and the method, which is a part of the
solution phase, are evaluated.

Humanitarian aid distribution

Natural disasters occur worldwide and have serious conse-
quences that affect human life. In emergency events, the
transportation of medical supplies is an important problem.
The necessary aid materials at the emergency sites should
be provided immediately (Li et al., 2017). There are studies
in different disciplines on disaster management, emergency
management, aid distribution management, and humanitar-
ian supply chain to minimize disaster risk. Studies focusing
on the performance evaluation of the humanitarian aid chain
have increased in recent years (Anjomshoae et al., 2017; Bea-
mon & Balcik, 2008; Kovács & Spens, 2007; Torabi et al.,
2012).

Another issue that researchers (Celik et al., 2014; Pettit &
Beresford, 2009; Zhou et al., 2011) focused on is crucial suc-
cess factors in the humanitarian supply chain management.
Likewise, studies involving optimization models have also
been the focus of researchers. Sheu (2007) presented a hybrid
fuzzy clustering optimization model for the critical relief
demands. Yi and Kumar (2007) presented a model includ-
ing ant colony optimization for logistics problems in disaster
relief organizations. Likewise,Wang et al. (2018) formulated
the emergency transportation problem with an integer linear
programming model. Balcik and Beamon (2008) proposed a
model that determines the locations of relief materials dis-
tribution centers and the number of relief materials at each
distribution center in natural disasters. Vitoriano et al. (2011)
developed a multi-criteria optimization model to allocate
humanitarian aid. Huang et al. (2012) identified and for-
mulated performance criteria in relief distribution based on
efficacy and equity. H. Li et al. (2017) aimed to determine
the most appropriate route to deliver medical supplies to the
requested places as soon as possible in case of an emergency
event using uncertain programming. Li et al. (2018) devel-
oped an optimization model under demand uncertainty in

a relief operation. Loree and Aros-Vera (2018) proposed a
model that determines the distribution locations for use in
post-disaster relief activities. Song et al. (2018) developed
an optimization model considering the lack of reliable pre-
diction of customer demand in disasters. Sharifyazdi et al.
(2018) developed a linear programming model that includes
inventory cost, replenishment cost, and transportation cost.
Liu et al. (2019) developed a model that determines the best
temporary medical service locations and medical service
allocation strategies for post-disaster situations. Maghfiroh
and Hanaoka (2020) proposed a multi-modal aid distribution
model. Ghorbani and Ramezanian (2020) dealt with the issue
from a different perspective. They developed a stochastic
model that offers an integrated approach to carrier selection
and supplier selection problems in humanitarian logistics.
Flexibility, adaptability, and agility are essential character-
istics of disaster management. For disaster relief efforts,
Day (2014) employed a complex adaptive supply network.
Rasouli (2019) emphasized the importance of agility in dis-
aster relief operations.

Finally, MCDM techniques used in disaster management
are examined. Sheu (2010) proposed a model to manage
emergency logistics processes using TOPSIS-based decision
rules. Zhou et al. (2011) specified the critical success factors
in emergency management with the fuzzy Decision Mak-
ing Trail and Evaluating Laboratory (DEMATEL) method.
Torabi et al. (2012) developed a model that includes fuzzy
DEMATEL and fuzzy analytical network process (ANP)
methods tomeasure humanitarian supply chain performance.
Celik et al. (2014) evaluated critical success factors in human-
itarian logistics using the trapezoidal T2F analytic hierarchy
process (AHP) method. Kabra et al. (2015) determined the
criteria for the coordination between aid organizations in
humanitarian supply chain management and ranked these
criteria with the fuzzy AHP method. In a similar study,
Kabra and Ramesh (2015) used fuzzy AHP and fuzzy TOP-
SIS methods to determine the barriers to coordination in
humanitarian supply chain management. Celik and Taskin
Gumus (2016) proposed a model including T2F AHP and
T2F PROMETHEE methods to measure emergency pre-
paredness and response-ability performances. Yılmaz and
Kabak (2020) proposed a model to identify distribution cen-
ter locations for relief operations using AHP and TOPSIS
methods under IT2F sets.

When the literature is examined, it is seen that studies
including MCDM techniques focus on humanitarian supply
chain management and its performance. This study differs
from other studies in the limited literature by focusing on the
aid distribution process, one of the main issues of humani-
tarian logistics.
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Savings algorithm

Clarke and Wright (1964) developed a heuristic solution
known as the CW savings method. This method is the first
algorithm that became widely used (Rand, 2009), and it aims
to combine the routes without exceeding the capacity while
delivering goods to every customer to minimize the total
transportation costs or distance. The details of the method
are given in the methodology section.

Since 1964, several variations to the basic savings for-
mula have been proposed. One of the first studies to extend
the CW savings algorithm was conducted by Gaskell (1967)
and Yellow (1970). Gaskell and Yellow proposed using gen-
eralized savings of form Si j � Ci0 + C0 j − λCi j to help
assign more compact routes, where λ is a positive parameter
(Cordeau et al., 2002). As the λ parameter increases, the dis-
tance between the customers becomes more important than
the distance to the depot (Rand, 2009). Table 1 summarizes
the methods based on the CW savings algorithm and the con-
tribution of the proposed method to the literature.

As given in Table 1, Tillman and Cain (1972) examined
the CW savings algorithm within the scope of more than
one depot constraint. In this study, they proposed a for-
mula as cmod

ik � minm{cim} − (cik − minm{cim}) where k
is each depot and, i is each customer. Nelson et al. (1985)
implemented six methods to the CW savings algorithm and
contributed to the speed of the CW savings algorithm by
using special data structures. Paessens (1988) proposed a new
function as Si j � Ci0 +C0 j −λCi j +μ

∣
∣C0i − C j0

∣
∣, 0 < λ ≤

3 and 0 ≤ μ ≤ 1 to calculate savings. Altinkemer andGavish
(1991) proposed a newmatching-based procedure for the par-
allel version of the CW savings algorithm. Altinel and Öncan
(2005) proposed a function as Si j � Ci0 + C0 j − λCi j + μ
∣
∣C0i − C j0

∣
∣ + v

(

di + d j
)

/d where di is demand of customer
i, d is average demand and v is new parameter. With this
function, they aimed to take customer demands into account
and distances while calculating savings. Battarra et al. (2008)
developed a genetic algorithm to determine the best parame-
ters for the parametric version of the CW savings algorithm
proposed by Altinel and Öncan (2005). Juan et al. (2011)
enhanced the CW savings algorithm with the Monte Carlo
simulation, cache, and splitting techniques. Pichpibul and
Kawtummachai (2012a) proposed the two-phase probabilis-
ticmechanismand the route post improvement.Caccetta et al.
(2013) combined the CW savings algorithm with the domain
reduction approach. The proposed method modifies the CW
savings algorithm to analyze different criteria specific to the
problem besides the distance criterion using IT2F TOPSIS
method.

In addition to these, the studies that extend the CW
savings algorithm by focusing on different constraints are
briefly explained below. The extended version of VRP can
be associated with constraints such as the vehicle capacity,

Table 1 Modifications to the CW savings algorithm

Author(s) and year Contribution(s)

Gaskell (1967) Accentuated the distance
between customers by adding
the λ parameter to the
classical CW savings
algorithm

Yellow (1970) Focused on the version of CW
savings algorithm proposed
by (Gaskell, 1967) and stated
that a list of polar coordinates
of delivery points would be
utilized

Tillman and Cain (1972) Adapted the CW savings
algorithm for more than one
depot

Nelson et al. (1985) Contributed to the speed of CW
savings algorithm

Paessens (1988) Improved a new function to
calculate savings

Altinkemer and Gavish (1991) Proposed a procedure for the
CW savings algorithm

Altinel and Öncan (2005) Proposed a new function that
takes customer demands into
account in addition to
distances

Battarra et al. (2008) Developed a genetic algorithm
to determine the best sets of
parameters of the CW savings
algorithm

Juan et al. (2011) Enhanced the CW savings
algorithm

Pichpibul and Kawtummachai
(2012a)

Proposed two-phase
probabilistic mechanism and
the route post improvement

Caccetta et al. (2013) Combined the CW savings
algorithm with the domain
reduction approach

Proposed Method Proposed the MCDM approach
to determine the savings
matrix

route length, arrival/departure time at each node and ser-
vice time, collection or delivery of goods (Goel & Maini,
2017). Some researchers (Atkinson, 1994, 1998; Balakr-
ishnan, 1993; Bräysy, 2002; Homberger & Gehring, 1999;
Solomon, 1987; Van Landeghem, 1988) studied VRP with
time window based on the CW savings algorithm. VRP with
time window takes into account the constraint of delivering
to customers within a predetermined time windows.

When some elements such as demand and travel time in
the VRP are random, the problem is called stochastic VRP
(Gendreau et al., 1996). In this study, it is assumed that cus-
tomer demands are predetermined. However, various studies
investigated VRP within the context of stochastic demands
by extending theCWsavings algorithm (Berhan, 2016; Stew-
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art &Golden, 1983; Tillman, 1969). Similarly, Lambert et al.
(1993) studied the stochastic VRP in which travel times are
random.

VRP evolves into the VRP with backhauls when the vehi-
cle’s route contains deliveries and then collections (Rand,
2009). Some studies benefit from the CW savings algorithm
within the scope of VRP with backhauls. Wassan (2007)
generated an algorithm for the VRP with backhauls using
two construction schemes developed by Osman and Wassan
(2002) based on the savings algorithm.

There are also studies in the literature that extend the CW
savings algorithm with metaheuristic approaches. Battarra
et al. (2008) used genetic algorithm approach to determine
the best sets of parameters. Studies that examine the clas-
sical heuristic and metaheuristic methods for the VRP in
depth are also encountered in the literature. Laporte et al.
(2000) examined classical andmodern heuristics for theVRP
and presented the comparative computational results. Like-
wise, Cordeau et al. (2002) compared classical and modern
heuristics for the VRP. They also examined the CW sav-
ings algorithm in the category of classical heuristics and
they stated that it is commonly used in practice despite some
of its shortcomings and got high scores in simplicity and
speed. Rand (2009) examined extensions of the classical CW
method to analyze the developments.

When the literature is examined in recent years, the follow-
ing studies have been encountered: Herdianto (2021) used
machine learning analysis to determine the essential features
of VRP. In another study, Mrad et al. (2021) proposed the
genetic algorithm based on the CW savings algorithm to
minimize the total transportation cost. Kunnapapdeelert and
Thawnern (2021) used the CW savings algorithm to design
the vehicle route for the distribution of the steel industry.
Zheng et al. (2021) proposed a model to integrate metro for
urban logistics delivery using the improved tabu search algo-
rithm and the CW savings algorithm.

When the studies that included the MCDM and the CW
savings algorithm are examined, the following studies are
encountered. Balaji et al. (2019) used the AHP method to
increase customer satisfaction in the VRP. Nowroozi et al.
(2021) combined AHP and TOPSIS methods with the CW
savings algorithm, arguing that the shortest route is not the
best route in all situations.

In conclusion, several variations to the CW savings for-
mula have been proposed to improve the computation speed
since 1964. Moreover, many extensions of the basic VRP
that allow for constraints such as route length and vehicle
capacity have been investigated using adaptations of the CW
savings algorithm (Rand, 2009). However, there is still a gap
in the literature regarding themodifiedCWsavings algorithm
considering priority constraints specific to the problem. This
study differs from other studies by including IT2F sets and

modifying the formulation of the classical CW savings algo-
rithm.

Methodology

Processing information linguistically and dealing with the
incomplete and heterogeneous character of existing informa-
tion are the main objectives of fuzzy sets (Pedrycz, 1993).
In this section, IT2F sets, IT2F TOPSIS method, and CW
savings algorithm are described briefly.

Fuzzy set theory and interval type-2 fuzzy sets

Some definitions of T2F sets and IT2F sets fromMendel et al.
(2006) are reviewed in the following:

Definition 1 (Mendel et al., 2006): ˜̃A is the T2F set that is
characterized by a type-2 membership function μ˜̃A

(x, u)

where x ∈ X and u ∈ Jx ⊆ [0, 1], shown as follows:

˜̃A �
{(

(x, u), μ˜̃A
(x, u)

)

|∀x ∈ X ,∀u ∈ Jx

⊆ [0, 1], and0 ≤ μ˜̃A
(x, u) ≤ 1

}

(1)

Also, ˜̃A can be represented as;

˜̃A � ∫
x∈X

∫
u∈Jx

μ˜̃A
(x, u)/(x, u) (2)

where Jx ⊆ [0, 1] and
˜

denotes union overall admissible
x and u.

Definition 2 (Mendel et al., 2006): ˜̃A is called IT2F set, if all

μ˜̃A
(x, u)=1. An IT2F set ˜̃A can be represented as follows:

˜̃A � ∫
x∈X

∫
u∈Jx

1/(x, u), whereJx ⊆ [0, 1] (3)

Definition 3 (Mendel et al., 2006): An IT2F set’s upper and
lower membership functions are T1F membership functions.

Figure 1 represents an r-polygonal IT2F set. Let
˜̃Ai=( ÃU

i , Ã
L
i ) are the upper and the lower membership func-

tions of the IT2F set Ã1, Ã2, …, and Ãn respectively (Lee &
Chen, 2008a).

˜̃Ai � ( ÃU
i , ÃL

i )

�
((

aUi1, a
U
i2, ..., a

U
ir ; H1

(

ÃU
i

)

, .., Hr−2

(

ÃU
i

))

,
(

aLi1, a
L
i2, ..., a

L
ir ; H1

(

ÃL
i

)

, .., Hr−2

(

ÃL
i

)))
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Fig. 1 The upper and lower r-polygonal membership functions
( ÃU

i and Ã
L
i ) of the IT2F set Ãi (Lee & Chen, 2008a)

Fig. 2 The upper and lower trapezoidal membership functions
( ÃU

i , ÃL
i ) of the IT2F set Ãi (S.-M. Chen & Lee, 2010)

where r Number of edges in the upper and the lower r-
polygonal membership functions ( ÃU

i and ÃL
i ).

HJ

(

ÃU
i

)

: Membership value of the element aUi(J+1) in the

upper r-polygonal membership function ÃU
i , 1 ≤ J ≤ r − 2

HJ

(

ÃL
i

)

: Membership value of the element aLi(J+1) in the

lower r-polygonal membership function ÃL
i ,1 ≤ J ≤ r − 2

H1

(

ÃU
i

)

∈ [0, 1], .., Hr−2

(

ÃU
i

)

∈ [0, 1], H1

(

ÃL
i

)

∈
[0, 1], .., Hr−2

(

ÃL
i

)

∈ [0, 1], r ≥ 3 and 1 ≤ i ≤ n (Lee &

Chen, 2008b).
Lee and Chen (2008a) identified the notion of ranking

values of IT2F sets. Furthermore, in another study, Lee and
Chen (2008c) customized the notion of ranking values for
trapezoidal IT2F sets in their numerical example. Figure 2
represents the upper and the lower trapezoidal membership
functions of the IT2F set.

The notion of the ranking value of the trapezoidal IT2F
set is mentioned below (Lee & Chen, 2008c).

Rank(˜̃Ai ) � M1

(

ÃU
i

)

+ M1

(

ÃL
i

)

+ M2

(

ÃU
i

)

+ M2

(

ÃL
i

)

+ M3

(

ÃU
i

)

+ M3

(

ÃL
i

)

− 1

4

(

s1
(

ÃU
i

)

+ s1
(

ÃL
i

)

+ s2
(

ÃU
i

)

+ s2
(

ÃL
i

)

+ s3
(

ÃU
i

)

+ s3
(

ÃL
i

)

+ s4
(

ÃU
i

)

+ s4
(

ÃL
i

))

+ H1

(

ÃU
i

)

+ H1

(

ÃL
i

)

+ H2

(

ÃU
i

)

+ H2

(

ÃL
i

)

(4)

where

Mp

(

Ã j
i

)

�
(

a j
ip + a j

i(p+1)

)

/2, 1 ≤ p ≤ 3,

Sq
(

Ã j
i

)

�

√
√
√
√
√

1

2

q+1
∑

k�q

⎛

⎝a j
ik − 1

2

q+1
∑

k�q

a j
ik

⎞

⎠

2

, 1 ≤ q ≤ 3,

S4
(

Ã j
i

)

�

√
√
√
√
√

1

4

4
∑

k�1

(

a j
ik − 1

4

4
∑

k�1

a j
ik

)2

Hp

(

Ã j
i

)

is the membership value of the element a j
i(p+1)

in the trapezoidal membership function Ã j
i , 1 ≤ p ≤ 2, j ∈

{U , L} and 1 ≤ i ≤ n.

In Eq. (4), the summation of M1

(

ÃU
i

)

, M1

(

ÃL
i

)

, M2
(

ÃU
i

)

, M2

(

ÃL
i

)

, M3

(

ÃU
i

)

, M3

(

ÃL
i

)

, H1

(

ÃU
i

)

, H1
(

ÃL
i

)

, H2

(

ÃU
i

)

and H2

(

ÃL
i

)

is denoted the basic ranking

score where deducted the average ofs1
(

ÃU
i

)

, s1
(

ÃL
i

)

, s2
(

ÃU
i

)

, s2
(

ÃL
i

)

, s3
(

ÃU
i

)

, s3
(

ÃL
i

)

, s4
(

ÃU
i

)

and s4
(

ÃL
i

)

from the basic ranking score to give the dispersive IT2F set
a penalty, where 1 ≤ i ≤ n (S.-M. Chen & Lee, 2010).

Interval type-2 fuzzy TOPSIS

TOPSIS method (Hwang & Yoon, 1981) seeks the solution
with the shortest Euclidean distance from the positive ideal
solution (PIS) and the solution with the farthest Euclidean
distance from the negative ideal solution (NIS) (Tzeng &
Huang, 2011). In this study, the IT2F TOPSIS method is
preferred to evaluate the decision criteria, because IT2F
sets provide more flexibility in fuzzy group decision-making
problems (Lee & Chen, 2008c). C.-T. Chen (2000) extended
the TOPSIS method using T1F sets in triangular fuzzy num-
bers. Afterward, C.-T. (Chen et al., 2006) developed the
TOPSIS method using linear trapezoidal membership func-
tions. The steps of the IT2F TOPSIS method developed by
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S.-M. Chen and Lee (2010) and Lee and Chen (2008c) are
described below:

Alternatives (X) : X � {x1, x2, . . . , xn}
Attributes (F) : F � { f1, f2, . . . , fm}

F1(benefit attributes) and F2 (cost
attributes), F1 ∩ F2 � �, and
F1 ∪ F2 � F

Decision-makers (DM) : D � DM1, DM2,…, DMk

Step 1The decisionmatrix of the p th decision-maker (Yp)
is created.

Yp �
(

f̃ pi j

)

mxn
�

⎡

⎢
⎢
⎢
⎢
⎢
⎣

˜̃f
p

11
˜̃f

p

12 . . .
˜̃f

p

1n
˜̃f

p

21
˜̃f

p

22 . . .
˜̃f

p

2n
...

...
...

...
˜̃f

p

m1
˜̃f

p

m2 . . . f̃ pmn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5)

Y (The average decision matrix) � (˜̃f i j )mxn (6)

where ˜̃f i j �
(
˜̃f
1
i j⊕˜̃f

2
i j⊕...⊕˜̃f ki j
k

)

, ˜̃f i j is an IT2F set, 1≤ i ≤
m, 1≤ j ≤ n, 1 ≤ p ≤ k

Step 2 The weighting matrix of the attributes of the p th
decision-maker (Wp) is realized.

f1 f2 · · · fm

Wp �
(

˜̃w
p
i

)

1xm
�
[

˜̃w
p
1
˜̃w

p
2 . . . ˜̃w

p
m

]

(7)

W (The average weighting matrix) �
(

˜̃wi

)

1xm
(8)

where ˜̃wi �
(
˜̃w
1
i ⊕˜̃w2

i ⊕...⊕˜̃wk
i

k

)

, ˜̃wi is an IT2F set, 1≤ i ≤ m,

1 ≤ p ≤ k.
Step 3 Weighted decision-matrix (Yw) is created.

Yw � (̃ṽi j )mxn �
⎡

⎢
⎢
⎢
⎣

˜̃v11 ˜̃v12 . . . ˜̃v1n
˜̃v21 ˜̃v22 . . . ˜̃v2n
...

...
...

...
˜̃vm1 ˜̃vm2 . . . ˜̃vmm

⎤

⎥
⎥
⎥
⎦

˜̃V i j � ˜̃wi ⊗ ˜̃f i j 1 ≤ i ≤ m and 1 ≤ j ≤ n. (9)

Step 4The ranking values of the IT2F set˜̃vi j are calculated
with Eq. (4)

(10)

Y
∗
w � (Ranking weighted decision matrix

)

�
(

Rank
(

˜̃vi j

))

mxn
, 1 ≤ i ≤ m and 1 ≤ j ≤ n

Step 5 x+ � (

v+1 , v+2 , . . . , v+m
)

, PIS and x− �
(

v−
1 , v−

2 , . . . , v−
m

)

, NIS are calculated.

v+1 �

⎧

⎪⎨

⎪⎩

max
1≤ j≤n

{

Rank˜̃vi j
}

, i f fi �∈ F1

mix
1≤ j≤n

{

Rank˜̃vi j
}

, i f fi �∈ F2
(11)

v−
1 �

⎧

⎪⎨

⎪⎩

min
1≤ j≤n

{

Rank˜̃vi j
}

, i f fi �∈ F1

max
1≤ j≤n

{

Rank˜̃vi j
}

, i f fi �∈ F2
(12)

Step 6 d+
(

x j
)

and d−(x j
)

are calculated as;
d+
(

x j
)

: The distance among each alternative ( x j ) and the
PIS

(

x+
)

d−(x j
)

: The distance among each alternative
(

x j
)

and the
NIS

(

x−)

d+
(

x j
) �

√
√
√
√

m
∑

i�1

(

Rank
(

˜̃vi j

)

− v+i

)2
, 1 ≤ j ≤ n (13)

d−(x j
) �

√
√
√
√

m
∑

i�1

(

Rank
(

˜̃vi j

)

− v−
i

)2
, 1 ≤ j ≤ n (14)

Step 7: The closeness coefficient for each alternative,
CC(x j ) are calculated. Finally, alternatives are prioritized
and evaluated according to the closeness coefficient.

CC
(

x j
) � d−(x j

)

d+
(

x j
)

+ d−(x j
) , 1 ≤ j ≤ n (15)

The Clarke andWright savings algorithm

The CW savings algorithm is a widely applied heuristic algo-
rithm for solving capacitatedVRP. The steps of the algorithm
are explained in Fig. 3. In the CW savings algorithm, only
one depot is available in the problem. Goods must be deliv-
ered in a certain amount to given customers from the depot. A
number of vehicles are available for the transportation of the
goods. The vehicles have a limited capacity. All the routes
in the problem–solution should start with the depot and end
with the depot. Goods are taken from the depot and delivered
to one or more customers. At the end of the route, the vehi-
cle returns to the depot. This method aims to combine the
routes without exceeding the capacity by visiting every cus-
tomer to minimize the total transportation costs or distance
specified driving from any customer to any other customer.
Transportation costs between the same two points may vary
depending on their directions (Lysgaard, 1997).

Figure 4 is shown the savings concept. In Fig. 4a, cus-
tomers i and j are visited on different routes. In Fig. 4b, the
two customers are visited on the same route, and Fig. 4c is
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Fig. 3 Steps of the CW savings
algorithm

i j

0

i j

0

cancel ca
nc

el

new i j

0

(a) (b) (c)

Fig. 4 Themodel of the savings concept. a: Two separate routes, b Join-
ing the routes, c final route

the final route. The algorithm calculates all the savings (Sij)
between customers i and j by using Eq. (16).

Si j � Ci0 + C0 j − Ci j fori, j � 1, . . . , nandi �� j (16)

where Sij denotes all the savings between customers.

Ci0 denotes cost of traveling from the depot to customer
i.

Cij denotes cost of traveling from customer i to j.
The parallel version of the algorithm consistently imple-

ments the merge yielding the largest saving. In contrast, the
sequential version keeps expanding the same route until this
is no longer feasible (Cordeau et al., 2002). In the parallel
version, when a link cannot be made into an existing route, a
new route is created with that link (Rand, 2009). According
to Cordeau et al. (2002), the parallel version is much more
appropriate in practice. In the proposed method, the parallel
version of the CW savings algorithm is adopted.

Proposedmethod

Many different heuristic and metaheuristic methods have
been developed for the VRP. The most popular member of
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Fig. 5 Steps of the proposed
method

the classical heuristics class, the CW savings algorithm is
the basis for many studies thanks to its advantages. These
advantages can be listed as easiness of implementation (Vigo,
1996), speed, and simplicity (Rand, 2009) easiness to code
(Rand, 2009; Volna & Kotyrba, 2016). Also, the savings
method is included in most commercial software due to
its advantages (Pichpibul & Kawtummachai, 2012b; Rand,
2009; Vigo, 1996). According to Altinel and Öncan (2005),
classical heuristics conduct a limited investigation of the
search area compared with metaheuristics. However, clas-
sical heuristics are simple, easy to implement and generate
fairly good solutions very fast. For these reasons, the classical
CW savings algorithm is used in the proposed method.

While the savings matrix is being created, distance or cost
criterion is taken into account in the CW savings algorithm.
However, in real-world problems, the distance or cost criteria
may not be sufficient to decide. In this study, a new approach
is proposed to solve the capacitated VRP based on the CW
savings algorithm. The proposed method involves evaluating
different criteria simultaneously while combining the routes.
The evaluation criteria to be used while deciding to combine
the routes are prioritized with the IT2F TOPSIS method, one
of the MCDM techniques. The proposed method aims to
find feasible solutions to minimize traveling distances and
number of routes while reaching the optimal solution in light
of the decision criteria by using Eq. (17).

S∗
i j � (Ci0 + C0 j − Ci j ) × ICi j (17)

where IC ij: Importance Coefficient of the combined routes.
In the CW savings algorithm, the savings (Sij) are sorted

from largest to smallest, and nodes are combined in that order,
considering the vehicle capacity constraint. If the savings are

calculated using Eq. (16) as in the classical CW savings algo-
rithm, only the distance criterion is taken into account, and
the routes are combined. However, if Eq. (17) is used, other
problem-specific criteria along with the distance criteria will
also be influential in determining this order. For instance,
assume that the savings to be obtained from the combination
of two location pairs (S13 and S14) are calculated by Eq. (16)
as follows, and the vehicle capacity is 30.

S13 � 25 and S14 � 18. According to the classical CW
savings algorithm, locations 1 and 3, which have the high-
est savings value, are combined. However, assume that the
importance coefficients for these location pairs are 0.08 and
0.12, respectively. So the new saving values according to the
proposed model are calculated using Eq. (17) as follows:

S13:25 × 0.08 � 2 and S14:18 × 0.12 � 2.16. In this
case, locations 1 and 4 are first combined. Thus, the location
pairs to be combined will change, thanks to their importance
coefficients.With this change, different criteria are taken into
account, as well as distance savings.

The steps of the proposed method are described in Fig. 5.
The proposed method starts with the classical CW savings
algorithm. In the first step of the proposed method, the CW
savingsmatrix is created using the classicalCWsavings algo-
rithm. Routes that can be combined under load constraint are
determined. In the second step, problem-specific decision cri-
teria are determined. Afterward, the importance coefficients
of the decision criteria are determined by using the IT2F
TOPSIS method. In the fourth step, a modified CW savings
matrix is created. In this step, the importance coefficients are
multiplied by the savings derived from the classical CW sav-
ings algorithm. In continuation of the proposed method, the
classical CW savings algorithm steps are followed using the
modified CW savings matrix.
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Table 2 Demands and distances
of DAs Distance ADC DA1 DA2 DA3 DA4 DA5 DA6 DA7 Demand

ADC 0

DA1 44 79

DA2 118 106 110

DA3 105 25 105 30

DA4 103 115 45 105 62

DA5 24 55 64 27 104 51

DA6 34 65 25 125 125 45 49

DA7 179 112 98 81 25 185 29 64

Table 3 Determined Savings by
using classical CW savings
algorithm

Savings DA1 DA2 DA3 DA4 DA5 DA6 DA7

DA1

DA2 X

DA3 124 118

DA4 X X 103

DA5 13 X 102 23

DA6 13 X 14 12 13

DA7 X X 203 257 18 184

The assumptions and limits of the proposed model are as
follows. Node demands are not equal, but all demands are
precise and pre-determined. There is a capacity restriction
for vehicles. All vehicles have the same capacity. Although
there is no restriction on the number of vehicles used, one of
the objectives is to minimize the vehicle fleet. There is one
depot. Routes start from the depot and end at the depot. The
distances are symmetric (i to j and j to i is same distances).
There is no legal restriction of the trip in hours.

Numerical example

In this section, a numerical example is presented to demon-
strate how the proposed method can be implemented in
real-world problems.

Problem definition

It is assumed that there are 3 DMs (DM1, DM2, and DM3),
and there is an aid distribution center (ADC) responsible for
aid materials support to 7 different DAs. The distribution
vehicles can carry less than or equal to 140 units. Disaster
victims’ demands and distances of DAs are given in Table 2.

Fig. 6 Combining DA1 and DA3 a: Two separate routes, b final route

Determination of the CW savings matrix

In this step, the CW savings matrix is generated, and routes
that can be combined under load constraint are determined.
First of all, the total distance is calculated without combining
the loads as an initial solution. Assume that transportation is
provided to each DA separately. Total Distance � 2 x (44 +
118 + 105 + 103 + 24 + 34 + 179)� 1214 Distance unit. The
classical CW savings matrix is calculated by using Eq. (16)
and shown in Table 3.

For instance, the saving value (124) is achieved by com-
bining DA1 and DA3 demands. This value is calculated as
follows:

Figure 6a shows the route that will occur if the demands of
the routes are not combined. In this case, the distance value
is calculated as follows:

Distance � (44 + 105) × 2 � 298
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Figure 6b shows the new route created by combining
demands belonging to DAs. In this case, the new distance
value is calculated as follows:

Distance � (44 + 25 + 105) � 174

The difference between the two cases gives the amount of
savings and is calculated as follows:

Saving � (298 − 174) � 124

The saving can be calculated easier is by using Eq. (16)
as follows:

Saving � 105 + 44 − 25 � 124

Thus, the new route was expressed as ADC-DA1-DA3-
ADC. However, combining DA1 and DA2 demands is not
possible because it exceeds the load constraint. The total
demand for the two DAs is 189 units, which exceeds the
140-unit capacity. Similarly, the DAs that total demands that
exceed the load limit are indicatedwith the "X"mark in Table
3. As a result, theoretically, a total of 14 route combining
activities can be carried out. These routes and the savings
they provide are given in Table 3.

Determination of decision criteria

DMs aim to save distance by visiting more than one DA on
the same route by combining loads while providing access
to the DAs. For this purpose, DMs considered six decision
criteria along with distance criterion while evaluating the
distance savings. These decision criteria are determined as
traffic density, the physical condition of the road, suitability
of aid material to be transported in the same vehicle, extra
costs, disaster victim priority, and reliability and security of
the routes. The decision criteria are briefly explained below.

Traffic density (C1) In the classical CW savings algorithm,
routes can be combined to save distance or cost. When the
routes are combined, a new route from location i to location
j is created (Fig. 3b). Traffic density on this new route should
be an effective criterion in the decision to combine i and j
locations.

The physical condition of the road (C2) New routes may
be physically damaged during a disaster, and they cannot be
used safely (for instance, roads can be damaged due to the
fault line in the earthquake, or the roads can be blocked due
to the collapse of the bridges).

Suitability of aid material to be transported in the same
vehicle (C3) During route combination, aid materials will
be transported in the same vehicle. Therefore, sometimes
transporting materials in the same vehicle can create a safety

problem. For instance, it is not appropriate to transport
inflammablematter and causticmaterials in the same vehicle.

Extra costs (C4): While new routes save distance, new
costs such as bridge tolls and toll roads may arise.

Disaster victim priority (C5): If there is an aid material
that needs to be delivered urgently, these routes will have
to be given priority in the savings matrix. Thanks to this
criterion, specific routes can be combined to give priority to
urgent needs.

Reliability and security of the routes (C6) Unlike "the
physical condition of the road (C2)" criterion, sometimes
roads may be closed to traffic within the framework of the
measures taken by the governments, or the new route cre-
ated for savings may be located within the risky zone due to
possible disaster hazards.

In the next section, the importance coefficients of the
routes that can be combined are determined by considering
these six criteria.

Determination of importance coefficients

Besides the distance criterion, six decision criteria that evalu-
ate different situations inDAs are determined in the proposed
method. Within the scope of these six decision criteria,
importance coefficients are determined by using the IT2F
TOPSIS method. The problem discussed is adapted to the
IT2F TOPSIS method as follows:

• DMs: 3 decision-makers (DM1, DM2, and DM3)
• Attributes: 6 different decision criteria (C1, C2, C3, C4,
C5, and C6)

• Alternatives: 14 route combining activities (1–3, 1–5, 1–6,
2–3, 3–4, 3–5, 3–6, 3–7, 4–5, 4–6, 4–7, 5–6, 5–7, and 6–7)

DMs evaluate both decision criteria (attributes) and alter-
natives in terms of these criteria. The linguistic expressions
used during the evaluation converts into fuzzy numbers by
using Table 4.

Theupper and the lowermembership functions of the IT2F
sets are shown in Fig. 7.Weights of the criteria evaluatedwith
linguistic terms are shown in Table 5.

DMs evaluated the alternativeswith respect to the six eval-
uation criteria using the linguistic expressions shown inTable
4. Due to the space constraints, only the evaluations made
within the scope of the C1 criterion are given in Table 6 as
an example. The evaluations in Tables 5 and 6 are converted
into fuzzy numbers using Table 4 and shown in Tables 7 and
8, respectively.

The average of the evaluations given in Tables 7 and 8 are
calculated using Eqs. (6) and (8). Then the steps of the IT2F
TOPSIS method are applied by using Eqs. (9–14).
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Table 4 Linguistic expressions
and their corresponding IT2F
sets (S.-M. Chen & Lee, 2010)

Linguistic expressions Interval type-2 fuzzy sets

VL ((0,0,0,0.1;1,1),(0,0,0,0.05;0.9,0.9))

L ((0,0.1,0.1,0.3;1,1),(0.05,0.1,0.1,0.2;0.9,0.9))

ML ((0.1,0.3,0.3,0.5;1,1),(0.2,0.3,0.3,0.4;0.9,0.9))

M ((0.3,0.5,0.5,0.7;1,1),(0.4,0.5,0.5,0.6;0.9,0.9))

MH ((0.5,0.7,0.7,0.9;1,1),(0.6,0.7,0.7,0.8;0.9,0.9))

H ((0.7,0.9,0.9,1;1,1),(0.8,0.9,0.9,0.95;0.9,0.9))

VH ((0.9,1,1,1;1,1),(0.95,1,1,1;0.9,0.9))

* VL: Very Low, L: Low, ML: Medium Low, M: Medium, MH: Medium High, H: High, VH: Very High

Fig. 7 The upper and the lower membership functions

Table 5 Weights of the criteria evaluated by the DMs (with linguistic
terms)

Decision criteria DM1 DM2 DM3

C1 M M M

C2 VH H H

C3 MH M M

C4 M L L

C5 MH MH H

C6 H H MH

In Table 9, the distance d+
(

x j
)

between each alternative
(

x j
)

and the PIS and the distance d−(x j
)

between each alter-
native

(

x j
)

and the NIS are calculated using Eqs. (13–14).
The relative degree of closeness of each alternative CC

(

x j
)

is calculated using Eq. (15) and shown in Table 9. Normal-
izing the sum of the relative degree of closeness values CC
(

x j
)

to 1, the importance coefficients are obtained. In Table
9, the sum of the relative degree of closenessCC

(

x j
)

column
is 8.3782. Each location pair is normalized by dividing by the
total value. For instance, location pairs 1–3 are normalized
as 0.6046/8.3782 � 0.0722.

Calculation of themodified CW savings algorithm

In this section, calculations of the classical CW savings algo-
rithm are realized by using the modified CW savings matrix.
Thus, the modified savings matrix is created with a new
approach that considers the importance coefficients primar-
ily. The classical savings matrix is created by considering

Table 6 Evaluating alternatives with respect to C1(with linguistic
terms)

Decision criteria Alternatives (location
pairs)

DM1 DM2 DM3

C1 1–3 M M MH

1–5 VH VH H

1–6 H H MH

2–3 H H MH

3–4 M M ML

3–5 M MH MH

3–6 VH H H

3–7 M M ML

4–5 M ML M

4–6 ML M M

4–7 MH H H

5–6 VH M VH

5–7 M M VH

6–7 VL L VL

only the distance criterion. The modified CW savings matrix
is generated (Table 10) by multiplying the importance coef-
ficients by savings derived from the classical CW savings
algorithm given in Table 3.

Location pairs in the modified savings matrix are sorted in
descending order. Then, the steps of the classical CW savings
algorithm are applied by considering the modified savings
matrix. Solutions of the classical CW savings algorithm and
the modified CW savings algorithm are shown in Table 11.

When the classical and modified CW savings algorithms
are compared, it is seen that the modified CW savings algo-
rithm created a six-unit longer route plan. This is because
the proposed modified CW savings algorithm does not only
consider the distance criterion as in the classical CW savings
algorithm. The proposed algorithm combines the routes, tak-
ing into account all six decision criteria.
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Table 9 Results of the IT2F
TOPSIS method Alternatives (location

pairs)
d+
(

x j
)

d−(x j
)

Relative Degree of
closeness CC

(

x j
)

Importance coefficients

1–3 3.6344 5.5583 0.6046 0.0722

1–5 2.8718 8.3867 0.7449 0.0889

1–6 2.8030 7.1112 0.7173 0.0856

2–3 3.0093 7.0276 0.7002 0.0836

3–4 5.0512 3.8657 0.4335 0.0517

3–5 3.9086 5.2374 0.5726 0.0683

3–6 2.8242 8.1399 0.7424 0.0886

3–7 5.0512 3.8657 0.4335 0.0517

4–5 3.6106 5.7143 0.6128 0.0731

4–6 5.3088 3.6541 0.4077 0.0487

4–7 3.0975 6.7459 0.6853 0.0818

5–6 2.7655 7.4760 0.7300 0.0871

5–7 2.6582 7.4502 0.7370 0.0880

6–7 8.3866 2.8900 0.2563 0.0306

Total 8.3782 1

Table 10 The modified CW
savings matrix Savings DA1 DA2 DA3 DA4 DA5 DA6 DA7

DA1

DA2 X

DA3 8.9488 9.8614

DA4 X X 5.3297

DA5 1.1558 X 6.9716 1.6823

DA6 1.1130 X 1.2406 0.5839 1.1327

DA7 X X 10.5041 21.0222 1.5834 5.6284

Table 11 Results of the
numerical example Classical CW savings algorithm Modified CW savings algorithm

Route Total load Total length Route Total load Total length

0–4-7–0 126 307 0–4-7–0 126 307

0–1-3–0 109 174 0–2-3–0 140 328

0–5-6–0 100 103 0–1-5–0 130 123

0–2-0 110 236 0–6-0 49 68

Total 820 Total 826

Experimental results

This section presents the numerical experiment of the pro-
posed method. The empirical performance of the proposed
method is evaluated on a set of ten benchmark problem
instances available in the literature. Augerat et al. (1995)
suggested three datasets (A, B, and P). For the instances in
dataset A, both customer locations and demands are ran-
domly generated. In dataset B, the customer locations are
clustered. Dataset P is a modified version of other instances.
The proposed method is implemented as a Java application.
Calculations of the instance P-n16-k8 (P: Set code, n: num-

ber of the node including a depot, k: number of vehicles)
are detailed below. Note that there is no restriction on the
number of vehicles used in the proposed model. Although
the number of vehicles is determined in the instances, it is
not considered in the solution. However, it is aimed to reach
all nodes with the least number of the vehicle fleet. Location
coordinates and demands for P-n16-k8 are given in Table 12.
Load capacity of vehicles is 35 units.

In the first step of the application, the location coordinates
and demands of the customers (disaster victims) are entered
into the system. Similarly, the capacity of the vehicles in
the fleet is also entered. The distances between nodes and
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Table 12 Location coordinates
and demands for instance
P-n16-k8

Locations X Y Demand Locations X Y Demand

DEPOT 30 40 0 9 57 58 28

2 37 52 19 10 62 42 8

3 49 49 30 11 42 57 8

4 52 64 16 12 27 68 7

5 31 62 23 13 43 67 14

6 52 33 11 14 58 48 6

7 42 41 31 15 58 27 19

8 52 41 15 16 37 69 11

the distances between nodes and depot are calculated using
Eq. (18).

The Euclidean distance
(

di, j
) �

√
(

xi − x j
)2 +

(

yi − y j
)2

(18)

where (xi , yi ) and (x j , y j ) are the geographical locations of
point i and j.

Also, the classical CW savings matrix is calculated by
using Eq. (16). The importance coefficients for each location
pairs that can be combined without exceeding the capacity
constraint are determined by using the IT2FTOPSISmethod.
If importance coefficients assigned as 1, the model becomes
the classical CW savings algorithm. The importance coeffi-
cients determined for P-n16-k8 are shown in Table 13. Note
that the location pairs in Table 13 are only locations that can
be combined under the capacity constraint.

After the importance coefficients are entered into the sys-
tem, themodified savingsmatrix is created by using Eq. (17).
Themodified savingsmatrix of theP-n16-k8 instance is given
in Table 14.

For instance, the "X" mark is placed for the savings to
be obtained by combining the locations numbered 3 and 2
(Table 14). Because the total demand amount of locations 3
and 2 exceeds the load capacity (19+30�49>35).However,
when nodes 2 and 4 were examined, it was determined that
they did not exceed the load capacity (19 + 16 � 35). The
distances between depot (0) and node 2, depot (0) and node
4, nodes 2 and 4 are calculated by Eq. (18) as follows.

The Euclidean distance
(

d0,2
)

�
√

(30 − 37)2 + (40 − 52)2 � 13.892

The Euclidean distance
(

d0,4
)

�
√

(30 − 52)2 + (40 − 64)2 � 32.557

The Euclidean distance
(

d2,4
)

�
√

(37 − 52)2 + (52 − 64)2 � 19.209

Therefore, S24 is determined by using Eq. (16) as S24 �
Ci0 + C0 j − Ci j � 13.892 + 32.557 − 19.209 � 27.24.
The importance coefficient of combining nodes 2 and 4
is determined as 0.011 in Table 13. The following mul-
tiplication is performed as required by Eq. (17) and the
modified saving value of nodes 2 and 4 (S∗

24) is calculated as
S∗
24 � 27.24 × 0.011 � 0.299. These calculations are per-

formed for all node pairs and Table 14 is created. Finally, the
results of the classical and modified CW savings algorithm
are given in Table 15.

As shown in Table 15, themodified CW savings algorithm
developed a five-unit longer route solution than the classical
CWsavings algorithm. The reason is that the proposedmodel
focuses not only on realizing the shortest distance routes but
also on the importance coefficients of the routes to be com-
bined. Computational results between the modified CW and
the classical CW for ten benchmark problem instances are
given in Table 16.

In Table 16, ten different sampleswith nodes ranging from
16 to 38 are compared. Changing the importance coefficients
also changes the priorities in the savings matrix. Therefore,
the total route value obtained from the modified CW savings
algorithm can be longer than from the classical CW savings
algorithm. As shown in Table 16, for the A-n32-k5 sam-
ple, the 843-unit distance is obtained with the classical CW
savings algorithm. In comparison, the 912-unit distance is
obtained with the proposed method. Similarly, the proposed
method produced slightly longer distance solutions than the
classic CW savings algorithm for other samples. However, a
shorter distance is obtained in the A-n34-k5 sample. This is
an accidental situation, and the primary purpose is to create
a safer route rather than a shorter solution. Of course, deter-
mining the shortest route is a fundamental goal. However, the
shortest route will not always be the best solution according
to the physical condition of the route. An increase in the
length of the road means the use of a safer route. The pro-
posed model also considers other criteria while determining
the shortest path. There is no limitation on the number and
type of criteria in the proposed model. Different evaluation
criteria or alternatives can be added. Thus, this model can be
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Table 13 The importance coefficients for instance P-n16-k8

Location 1 Location 2 Importance
coefficients

Location 1 Location 2 Importance
coefficients

Location 1 Location 2 Importance
coefficients

2 4 0.01100 5 12 0.00730 10 12 0.01820

2 6 0.01230 5 14 0.00350 10 13 0.01790

2 8 0.00550 5 16 0.02120 10 14 0.00310

2 10 0.00630 6 8 0.00821 10 15 0.01320

2 11 0.01410 6 10 0.08640 10 16 0.02100

2 12 0.00103 6 11 0.02950 11 12 0.00180

2 13 0.01870 6 12 0.00820 11 13 0.00350

2 14 0.00532 6 13 0.02750 11 14 0.00330

2 16 0.01830 6 14 0.00283 11 15 0.02600

4 6 0.00314 6 15 0.01690 11 16 0.01500

4 8 0.00213 6 16 0.00090 12 13 0.01278

4 10 0.00040 8 10 0.01860 12 14 0.01470

4 11 0.00921 8 11 0.01840 12 15 0.02650

4 12 0.02890 8 12 0.00770 12 16 0.05020

4 13 0.02840 8 13 0.00220 13 14 0.02700

4 14 0.01240 8 14 0.00330 13 15 0.01800

4 15 0.00125 8 15 0.00720 13 16 0.01100

4 16 0.00750 8 16 0.01640 14 15 0.01200

5 6 0.03240 9 12 0.00850 14 16 0.02240

5 10 0.03230 9 14 0.09780 15 16 0.01100

5 11 0.01510 10 11 0.01320

adapted to a new problem. For instance, it can be applied to
solve vehicle routing problems at all levels of supply chain
management in the manufacturing sector. This is one of the
advantages of the proposed model.

Discussion and conclusion

The geographical location, intensity, and timing of natural
disasters are usually unpredictable. Therefore, effective dis-
aster management is of great importance to minimize losses
and damage during the delivery of post-disaster aid to the vic-
tims. Planning with a calm and rational approach becomes
difficult during disasters. The complexity created by the cri-
sis makes it difficult to make the correct decisions in a short
time. Therefore, a method that will support aid organiza-
tions in delivering aid to disaster victims will be helpful. In
this study, a new approach is proposed to solve the capaci-
tated VRP based on modifying the CW savings algorithm.
The proposed method involves evaluating the distance crite-
ria and the different criteria caused by the current problem

simultaneously. The proposed method is illustrated with a
numerical example. The objective function of the proposed
method is not focused only on the shortest distance. The aim
of the proposed method is to determine the shortest distance
under the specified decision criteria.

The classical CW savings algorithm is preferred in the
proposed method due to its simple and fast solution develop-
ment. The capability and limitations of the proposed method
are limited by the capability of the underlying VRP solu-
tion algorithm. In future studies, this integration can also
be realized with savings-based meta-heuristics, which guide
classical heuristics to avoid local optimality. Improving the
existing algorithm with meta-heuristic approaches that can
evaluate different situations such as stochastic demands,
asymmetric distances, and travel time constraints may con-
tribute to an effective solution for the routing problem,
which will be considered as a future study. Finally, differ-
ent MCDM techniques can be implemented instead of the
TOPSIS method in determining importance coefficients, and
the effect of the techniques on route priorities can be exam-
ine.
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Table 14 Modified savings
matrix of the P-n16-k8 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3 X

4 0.299 X

5 X X X

6 0.157 X 0.077 0.301

7 X X X X X

8 0.095 X 0.067 X 0.304 X

9 X X X X X X X

10 0.119 X 0.016 0.555 3.602 X 0.819 X

11 0.389 X 0.379 0.464 0.527 X 0.440 X 0.367

12 0.023 X 1.023 0.313 0.067 X 0.103 0.246 0.302 0.054

13 0.518 X 1.506 X 0.491 X 0.053 X 0.548 0.142 0.538

14 0.115 X 0.552 0.072 0.102 X 0.138 5.038 0.167 0.104 0.299 0.941

15 X X 0.032 X 0.768 X 0.271 X 0.625 0.459 0.202 0.326 0.467

16 0.489 X 0.349 0.903 0.012 X 0.329 X 0.527 0.564 2.406 0.588 2.861 0.151

Table 15 Results of the
P-n16-k8 Classical CW savings algorithm Modified CW savings algorithm

Route Total load Total length Route Total load Total length

Depot-14–10-15-Depot 33 82.73 Depot-9–14-Depot 34 71.62

Depot-12–16-13-Depot 32 74.5 Depot-8–10-16-Depot 34 68.61

Depot-11–4-Depot 24 65.57 Depot-12–16-11-Depot 26 72.01

Depot-8–6-Depot 26 53.11 Depot-13–4-Depot 30 72.01

Depot-2-Depot 19 27.78 Depot-2-Depot 19 27.78

Depot-3-Depot 30 42.05 Depot-3-Depot 30 42.05

Depot-5-Depot 23 44.05 Depot-5-Depot 23 44.05

Depot-7-Depot 31 24.08 Depot-7-Depot 31 24.08

Depot-9-Depot 28 64.9 Depot-15-Depot 19 61.74

Total 478.77 Total 483.95

Table 16 Computational results
between the modified CW and
the classical CW

Instance Number of customers Vehicle capacity Classical CW Modified CW

A-n32-k5 31 100 843 912

A-n33-k5 32 100 713 715

A-n33-k6 32 100 775 777

A-n34-k5 33 100 810 808

A-n36-k5 35 100 826 839

B-n35-k5 34 100 980 984

B-n38-k6 37 100 837 842

P-n16-k8 15 35 478 483

P-n22-k8 21 3000 590 596

P-n23-k8 22 40 537 603
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