Journal of Intelligent Manufacturing (2022) 33:911-927
https://doi.org/10.1007/s10845-022-01915-2

f')

Check for
updates

On reliability of reinforcement learning based production scheduling
systems: a comparative survey

1 1

Constantin Waubert de Puiseau’ @ - Richard Meyes’ - Tobias Meisen

Received: 7 April 2021 / Accepted: 20 January 2022 / Published online: 5 February 2022
© The Author(s) 2022

Abstract

The deep reinforcement learning (DRL) community has published remarkable results on complex strategic planning problems,
most famously in virtual scenarios for board and video games. However, the application to real-world scenarios such as
production scheduling (PS) problems remains a challenge for current research. This is because real-world application fields
typically show specific requirement profiles that are often not considered by state-of-the-art DRL research. This survey
addresses questions raised in the domain of industrial engineering regarding the reliability of production schedules obtained
through DRL-based scheduling approaches. We review definitions and evaluation measures of reliability both, in the classical
numerical optimization domain with focus on PS problems and more broadly in the DRL domain. Furthermore, we define
common ground and terminology and present a collection of quantifiable reliability definitions for use in this interdisciplinary
domain. Concludingly, we identify promising directions of current DRL research as a basis for tackling different aspects of

reliability in PS applications in the future.

Keywords Reinforcement learning - Production scheduling - Reliability - Robustness - Machine learning

Introduction

For many decades, finding an optimal production schedule
has been a challenging and active field of research for its
appealing combinatorial logic and application in real-world
sociotechnical systems. In the past and present, produc-
tion scheduling (PS) problems are solved using heuristics or
numerical optimization methods. Both have their advantages
and limitations: heuristics, such as Earliest Due Date First,
often serve as good and easily-understandable guidelines for
the decision-making process, but may not perform well on
all types of tasks (Marti et al., 2018). Numerical optimization
methods are more complex to apply, as the production envi-
ronment and objectives need to be mathematically described
in great detail and then solved numerically, but find provably
more optimal solutions (Pinedo, 2016).

With remarkable results in board and video games (Badia
et al., 2020; Vinyals et al., 2019), ongoing fast development

B Constantin Waubert de Puiseau
waubert@uni-wuppertal.de

Chair of Technologies and Management of Digital
Transformation, University of Wuppertal, Wuppertal,
Germany

and successful examples of the transfer of Reinforcement
Learning (RL) algorithms, especially Deep Reinforcement
Learning (DRL), from simulation to the real world (Nevena
Bellemare et al., 2020; Lazic et al., 2018), RL has re-emerged
as a promising third alternative for solving PS problems in
the future. The motivating vision behind RL-based PS lies in
the nature of PS problems as illustrated in Fig. 1. The left-
hand side represents the environment of the PS system. In its
entirety, the environment is a sociotechnical system with var-
ious components. These components by themselves exhibit
stochastic behavior, such as fluctuations of productivity of
a worker. Interconnectivity and mutual influence in obvious
(machine—tool) and non-obvious ways (weather—process
parameters) add even more complexity to the task of manu-
ally creating an accurate mathematical model of the system.
With RL, however, hopes are that through interaction with the
real-world environment, the RL agent can create an approx-
imation of how the environment behaves. This rationale also
extends to the right-hand side of Fig. 1 showing the evalua-
tion criteria of the schedule. More abstract evaluation criteria,
such as profit, are not easily correlated to ground-level com-
ponents of the production system. The complexity of the
evaluation is further increased with the addition of stability,
robustness and risk criteria, often summarized in the term

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-01915-2&domain=pdf
http://orcid.org/0000-0001-7764-1322

912

Journal of Intelligent Manufacturing (2022) 33:911-927

complexity and accuracy of the environment

+ -
worker
weather behavior tools
machines
supply a
spatial arrangement :
chain . s jobs
buffers

Fig. 1 The dimensions of the real-world PS problem

reliability. Consequently, the vision of end-to-end RL-based
PS translates to providing the algorithm fine-grained infor-
mation (left end in Fig. 1) and receiving actions maximizing
high-level key performance indicators (KPIs) (right end in
Fig. 1) in return.

On the way to achieving this vision, a large and well-
funded research community is making promising advance-
ments in tackling large and continuous environment descrip-
tions (Mnih et al., 2013; Vinyals et al., 2019). In the direction
of capturing all relevant evaluation possibilities, however, we
have identified a large gap in research on reliability in con-
nection with RL. In this paper, we address this reliability gap
by shedding light on measures of and techniques for reliable
PS solutions.

Contribution, scope and structure

This survey is aimed at understanding what reliability in
PS means and how it can be addressed through RL-based
solution approaches. To this end, we reviewed a large
body of literature collected through a key-word search
from SemanticScholar and GoogleScholar search engines.
The key-words were tailored towards each section and are

Fig. 2 Illustration of the scope

currently considered?

yes| | no

relevance of evaluation criteria

+
OEE reliability
l advanced
tardiness production profit
makespan KPIS management
KPIS

depicted in Fig. 2. The literature was first algorithmically fil-
tered by relevance in the respective search engine and only the
most relevant 500 papers considered. Subsequently, the body
of literature was narrowed down through a manual search
through titles and, later, abstracts.

The remainder of this article is structured as follows: we
firstly review the state-of-the-art of RL-based PS and point
out the lack of reliability awareness in (2). We then make use
of literature from the mature field of classical optimization,
narrowed down to the PS context, to collect a quantifiable def-
inition of reliability (3.1) and common methods to achieve
reliability (3.2). Next, we shift our view to the field of RL,
where we examine reliability-related literature in a set frame-
work of terminology and analyze measures (3.3) and methods
(3.4) in this field. Having collected all aspects of reliability
from both domains separately, we identify overlapping def-
initions and concepts. An overview of topics and respective
sections in this survey are illustrated in Fig. 2. On that basis,
we finally provide a structured list of recommended evalu-
ation measures and most promising research directions for
more reliable RL-based PS in future applications in (3.5).

33&34
of evaluated literature and the ‘
target result \
Reinforcement “ Reliability
Learning \
. Target o 3.1&3.2
2. — - '//
Production Numerical
Scheduling Optimization
/
|
|
4

@ Springer

Journal of Intelligent Manufacturing (2022) 33:911-927 913
Fig. 3 Reliability example)
(adapted from (Pinedo, 2016)) weghted
2000 4 tardiness
/ jobs 1 2 3
/
v duration 10 10 10
1,2,3 4
() 1/22 3,1) due date 10 22 34
1000 4 / value 1 100 100
/l,
I,
II,
______________ ‘ initial delay
T T
10 20

Introduction to scheduling problems

According to Pinedo (2016), PS is a decision-making pro-
cess that deals with the allocation of resources to tasks over
a time period with the goal of optimizing one or more objec-
tives in a production environment. In its most basic form,
resources consist of raw materials and processing machines.
More broadly, resources further include transport systems,
tools, places for storage, human operating forces and more.
Tasks, or jobs, are processing steps required to transform raw
material into the desired output product and take up resources
and time. Tasks may range from deformative manufacturing
processes to transport and quality checks. Objectives of PS
typically revolve around minimizing time, cost and tardiness
in the production process. PS problems are combinatorial
problems by nature and often subject to a variety of inter-
dependencies and constraints of resources and tasks. The
solution to PS problems, the schedule, is a plan of which
job to start at which time step, often represented as Gantt
chart (Pinedo, 2016).

In PS literature, abstracted and simplified combinatorial
sub-problems are often the subject of investigation. One such
abstraction is the Job-Floor Scheduling Problem (JESP), in
which it is assumed that machines are set up in series and
every raw piece goes through the same tasks in the same order.
A more complex abstraction is the Job-Shop Scheduling
Problem (JSSP), in which the jobs (tasks) differ for differ-
ent raw parts. Industrial applications often introduce very
specific requirements regarding the problem and solution
formalizations (Abdolrazzagh-Nezhad and Abdullah, 2017,
Allahverdi, 2016; Fuchigami & Rangel, 2018).

Even simplified production scenarios are not trivial to
solve and evaluate in presence of uncertainties (Tarek Chaari
et al., 2014). For illustration purposes, consider the follow-

Fig. 4 Four-step approach for
scheduling with classical

Step 1

ing JESP from Pinedo (2016). Three jobs are sequentially
scheduled on a single machine. The jobs are independent
of each other and characterized by a processing duration, a
set due date and a weighting factor for how much they are
worth if finished on time. The objective is to minimize the
weighted tardiness. All parameters are shown in Fig. 1, right.
Without disruptions, the optimal solution is to schedule the
jobs in order (1, 2, 3), because all jobs can be finished before
their respective due date and the weighted tardiness is zero. If
we now consider random downtimes of the machine before
the first job, the optimal schedule becomes a function of the
downtime. For a delay of one time-unit, (1, 2, 3) is still opti-
mal. For a delay of ten time-units, however, neither job 1 nor
job 2 are finished on time. In this case, a scheduling order
of (2, 3, 1) would have been better. The weighted tardiness
for both schedules as a function of early downtime is plotted
in Fig. 3, right. Hence, (2, 3, 1) can be considered a more
robust, or risk-aware schedule.

Classical methods for solving PS problems follow the
four-step approach shown in Fig. 4. A mathematical model of
the production environment builds the foundation. Then, ini-
tial conditions featuring the job description are passed into
the model and the resulting equations are optimized for a
defined objective function.

Scheduling can take place in an online or offline fashion.
Figure 4 describes an offline scheduling system, in which
a schedule is prepared before the process starts and then
remains unmodified. Online scheduling systems monitor the
process and decide which action to take in the next step.

Introduction to deep reinforcement learning

Scheduling and other discrete time-dependent problems can
often be formulated as Markov Decision Processes MDPs.

Step 2 Step 3 Step 4

optimize the objective
function for the
current progress state

numerical optimization
apply the schedule in

the real world

inspect the resulting
schedule

build a mathematical
model of the process

@ Springer

914

Journal of Intelligent Manufacturing (2022) 33:911-927

In such, the system, or environment, is initially described
through a state sp € § at timet = 0, at which an action
ap € Ais taken, leading to a new statesp,; = 0, based on the
underlying transition model” : StxArxSt +1 — [0, 1].
For every discrete state-action-state transition, the reward
function R : StxAtxSt + 1 — R quantifies how good the
transition is for fulfilling the underlying task. RL algorithms
exploit this structure through interaction with the environ-
ment over time, finding optimal actions for each observed
state to maximize the cumulative reward in a set time period.
The interacting algorithms are also referred to as RL agents
(Sutton & Barto, 2018).

For example, in the context of a JSSP, the state may include
all status information of machines and jobs. The actions may
be the decision which job to schedule next and the reward may
be a positive value based on the number of parts finished in
the last time-step. Inherently, RL is used in online scheduling
schemes, taking one action in each time step.

RL can roughly be divided into value-based and policy-
based methods. Value-based methods assign Q-values to all
possible actions given state s, representing the expected dis-
counted cumulative reward:

Q" (s,a) = Ey [Z v R(silag)lso = s, a0 = a}

k=0

The RL agent’s policy 7 (s|a) is then determined by choos-
ing the action with the maximum corresponding Q-value. For
sufficiently small problems, Q-values for each discrete state-
action-pair may be stored in a lookup table. This becomes
infeasible for very large or even continuous state and action
spaces. In Deep Reinforcement Learning DRL, the Q-values
are represented through a parameterized function, a deep neu-
ral network, which maps the state observation to Q-values.
Such functions are called Deep-Q-Networks DQNs (Mnih
et al., 2013). In contrast to lookup tables, DQNs will return
Q-values even for previously unseen states. The ability to
form a useful representation of the underlying problem for
unseen states is called generalization (Witty et al., 2018).
Policy-based methods optimize the policy w more directly,

Fig.5 Illustration of the six-step .

.. single
approach used for training and } transition
deployment of RL-agents

repeated
D transition

Step 1

get simulation
environment & choose
RL-algorithm

@ Springer

Step 3

test and evaluate
(pre) trained agent

Step 2
pre-train agent
through interaction
with the simulation

affectively mapping a state to an optimal action. The policy
function is also represented through a deep neural network,
in which updates follow the gradient

VoJ (Ols) = Eq, [Q7 (s, a) o Vglogmy(s, a)]

first proposed in Sutton et al. (1999). In both cases, the
parameters are iteratively updated through observations of
the environment, collected from experienced trajectories in
the environment, also called episodes.

Figure 5 illustrates the typical stepwise application pro-
cess of RL-Algorithms to real-world problems (Dulac-
Arnold et al., 2019; Tobin et al., 2017). The first step consists
of building a simulation environment and choosing a suit-
able RL algorithm based on specified properties of the state-,
observation-, action- and reward-space. In step two, the algo-
rithm is pre-trained through interaction with the simulation.
The next step is intensive testing and an evaluation of the
pretrained agent in many scenarios. If the results fulfill the
expectations, the trained agent is used to control the real
environment in step 4, typically under close human supervi-
sion. Around the transition from one system to another, e.g.,
simulation to reality, a whole research branch called transfer
learning has developed (Da Silva & Costa, 2019). Optionally,
the agent then continues to learn from newly experienced
interactions in the real environment to refine its policy and
close the gap between simulation and reality, as depicted in
steps 4 through 6.

Since the control action of the RL agent is one suggested
action per output for each new observation, the RL agent’s
behavior can be seen as strictly reactive. Therefore, one does
not obtain a whole schedule at the first timestep, but only in
retrospect, after looking at the actions taken over time. This
is a fundamental difference between any online-scheduling
routine and offline optimization methods: an a priori analy-
sis and evaluation of a strategy in the real environment is not
possible. The only two options for evaluating a schedule are:
(1) A run-through of the whole simulated production envi-
ronment before any actions are taken in the real environment.
(2) A posteriori evaluation.

Step 4

Step 5
test and evaluate
performance in the
real environment

let agent interact with
the real environment

Step 6

refine agent based on
new experience

Journal of Intelligent Manufacturing (2022) 33:911-927

915

State-of-the-art of reinforcement learning
based production scheduling

This section provides a summary of state-of-the-art attempts
at solving PS problems using RL. We discuss recent suc-
cesses and limitations of RL-based approaches to deal with
real-world production scenarios.

Arviv et al. (2016) examined a Q-learning approach to a
PS problem, controlling the dispatching of raw material to
machines by transport robots. Based on a state representa-
tion of whether buffers and machines were occupied or not,
the robots learned to transport material between buffers. The
focus lay on the collaboration of robots and reward systems,
aiming to optimize the completion time. The results show
that the algorithms improve with training but are not bench-
marked against an existing approach.

Luo (2020) used a DQN to map a generic representation
of the production state to action values, which represent six
different set dispatching rules, aiming to minimize the total
tardiness. The problem is described as a flexible job shop
problem with new insertions, meaning that new jobs can
be added during the execution of a schedule. The generic
observed state representation consists of high-level features,
such as the utilization rate of machines or the average com-
pletion rate of jobs at each time step, so that the state
representation is independent of the job sizes, number of
machines and other scaling factors. This choice is a trade-off
for observation accuracy since job and task-specific fea-
tures are neglected. Their results show a better average
performance of the DQN-algorithm in many, but not all test
scenarios, when compared to each of the six dispatching rules
separately.

Inspired by AlphaZero’s (Silver et al., 2018) success in
board games, (Rinciog et al., 2020) applied an adapted algo-
rithm to offline scheduling (obtained in a simulation) in a
sheet metal production scenario to optimize tardiness and
material waste. The situational state space contains informa-
tion about whether a machine is used at the moment, the
job value and status as well as remaining slack times. An
action determining which job is scheduled next is requested
whenever a machine is idle. The RL agent is pretrained to
approximate an earliest due date (EDD) heuristic and then
further refined, eventually outperforming the EDD heuristic
and a shallow random Monte Carlo Tree Search (MCTS)
benchmark on average. The results present a meaningful
proof-of-concept, but given that AlphaZero was applied to
a very simplified and static scenario, the question of real-
world applicability remains largely undiscussed.

Waschneck et al. (2018) applied DQNSs to control worksta-
tions in a production environment, observing the availability
of machines and job characteristics and mapping the current
state to the position of a job in the planning schedule. The
DQNs are trained to jointly maximize the throughput of the

factory. Comparing the average throughput over all tests, the
trained agents achieve results comparable to human experts
but worse than a heuristic dispatching rule based on the job
due dates and first-in-first-out principles.

Kuhnle et al. (2020) studied different design choices, e.g.,
reward formulations and definitions of the episode length
in the continual production process, for building a PS sys-
tem using the TRPO (Schulman et al., 2015) RL algorithm.
The state-space consists of machine and job, including cur-
rent failure states, remaining processing times, buffer spaces
and waiting times and is mapped to actions corresponding to
the transport of pieces from A to B. They optimize a multi-
objective function and evaluate the machine utilization and
inventory levels. Depending on the evaluation metric, the
RL agent shows a similar or slightly better performance than
heuristics. The study empirically showed that more informa-
tion in the state space leads to better overall results, since a
balance between common heuristics can be found.

Lang et al. (2020) trained two separate DQN based RL
agents in sequence on the allocation of jobs to machines and
operation sequence selection, respectively. Each PS prob-
lem was characterized by the specific number of jobs, with
different deterministic processing times and due dates. The
resulting performance was evaluated based on the total time
to finish all jobs and the tardiness (sum of the difference
between due dates and finishing times of each job) and bench-
marked against a metaheuristic approach. Their algorithms
showed comparable or better performance on different prob-
lem sizes.

The solutions above give the promising impression that
RL is generally applicable for PS problems. However, regard-
ing the state-space complexity (cf Fig. 1, left), current
research is still mainly in the proof-of-concept stage. The
other axis for improvement is the basis on which production
schedules are evaluated (cf. Figure 1, right). Recent liter-
ature mainly focuses on maximizing the average value of a
KPI. Luo (2020) report the standard deviation of the obtained
results over multiple runs, showing that their results often
deviate by more than 100%. Random schedules and those
obtained by dispatching rules showed significantly smaller
relative standard deviations. A smaller deviation of the results
can be a desirable property to build trust in the reliability of
a system. Overall, the existing literature does not investigate
reliability criteria, which are equally important as a large
average return (Birolini, 2004).

One reason why these characteristics are not investigated
may lay in the hope that by maximizing the average reward,
the RL agent creates an implicit probabilistic model of the
environment, including occasional disruptions, and might
learn to choose the appropriate order accordingly. However,
for management and workers to accept a new scheduling sys-
tem, the evaluation of schedules for both KPIs and reliability
is crucial. In some cases, it may be beneficial to be able to

@ Springer

916

Journal of Intelligent Manufacturing (2022) 33:911-927

deliberately trade in some of the optimality of KPIs for reli-
ability, as described in 1.2.

Review on reliability
Reliability definitions in production scheduling

In the broader engineering context, reliability of a system
is defined as “the probability that the [...] [system] is able
to perform as required for a given time interval” (Birolini,
2004). It follows that reliability measures are based on
system- and problem-specific requirements. For this investi-
gation, we assume that some more fundamental requirements
for a PS system, such as availability of the planning algorithm
(Birolini, 2004; Policella et al., 2007), are given. According
to Leusin et al. (2018), an optimal reliable dynamic schedul-
ing system:

(1) anticipates common disturbances in the production sce-
nario,

(2) can be adjusted to fit new circumstances with minimal
change to the original plan, and

(3) quickly reacts to such new circumstances by suggesting
the best adjustments.

The latter criterion is a property of the scheduling algo-
rithm and its implementation and integration rather than that
of a schedule itself. Instead, we focus on criteria (1) and (2),
which are requirements of the product of said algorithm: the
schedule.

Classically, the reliability of a schedule is described in
terms of “robustness” or “stability” of the production pro-
cess being executed according to that schedule (Goren &
Sabuncuoglu, 2008). Definitions of these terms may differ
depending on the specific context of the analyzed production
system. Generally, robustness describes that performance
measures are only minimally affected by the occurrence
of a disruption, when following the schedule. Large sta-
bility, on the other hand, describes the small deviation of
the timing of discrete events due to a disruption (Goren &
Sabuncuoglu, 2008). Whenever a time shift of events impacts
performance, it is evident that robustness and stability are no
longer independent features. Yet, depending on the setup and
performance measures, it has also been observed that opti-
mizing a schedule for robustness yields less stable results and
vice versa (Goren & Sabuncuoglu, 2008; Leon et al., 1994),
suggesting a tradeoff between those two aspects of reliabil-
ity. Robustness and stability both have their implications and
importance, varying strongly depending on the production
scenario and the subjective perspective on the optimality of
a schedule. Aiming to present a comprehensive collection of
commonly used reliability measures, we do not strictly dis-

@ Springer

criminate robustness and stability in this work but treat all
measures as independent facets to reliability instead.

Perhaps the most intuitive option to get a numerical value
for reliability is to compare the original plan, or expected
plan, to one or multiple test runs in the real system after
the execution of that plan. By that measure, a larger differ-
ence indicates a smaller reliability of the original plan. Some
used the sum of all deviations in completion times CTs of
jobs. CT is defined as the time from start to finish of a job
or the processing time plus the waiting time (Al-Hinai &
ElMekkawy, 2011; Goren & Sabuncuoglu, 2008; Rahmani
& Heydari, 2014). Other options to use the CT are to track
the average deviation of CTs or the average deviation of CTs
only of jobs, which are directly affected by a disturbance (Al-
Hinai & ElMekkawy, 2011). Some researchers compared the
expected and realized makespan, which is the time required
to complete all jobs (Rahmani & Heydari, 2014; Shen et al.,
2017), or the workload, which is the maximum running time
of any machine until all jobs are finished (Shen et al., 2017).
Note that all of these measures rely on an a priori calcula-
tion of the expected value and can only be used to assert
the reliability of a schedule in retrospect, after its applica-
tion. Since the expectation of the whole original schedule is
needed, these measures cannot be applied to online schedul-
ing systems.

Another option is to evaluate a fixed schedule for multiple
estimated or simulated test runs with different initializations
or parameterizations of the production environment and use
minimum values of the objective function (performance mea-
sure) as an indication of how risky the produced schedules
were. In the job shop scheduling literature, the maximum tar-
diness of production times is often the evaluated performance
measure (Goren & Sabuncuoglu, 2008; Hall & Posner, 2004;
Pinedo, 2016), representing the difference between a set due
date and the completion or delivery time. Tardiness is a pop-
ular objective, since delayed deliveries often cause penalty
payments and have a direct influence on profit margins. Tardi-
ness is also linked to the concept of just-in-time production
(Cheng & Podolsky, 1996). Other monitored measures for
the multiple-test setup include the sum over all completion
times (Wu et al., 2009), which is closely related to the sum
of all finishing times, or the maximum realized makespan
within all tests (Leusin et al., 2018; Luo, 2020; Zhu & Wang,
2017). The obvious advantage is that a reliability measure is
given before the deployment in the real world. On the other
hand, the accuracy of the results depends on how well the
environment model can be parameterized.

Both approaches directly evaluate common production
KPIs, making them easily interpretable and easily adjustable
to any other production KPI of interest. Some examples may
be found in Amrina and Yusof (2011). It can also make sense
to modify the KPIs for a reliability measure. Pinedo (2016),
for example, considers a weighting factor for tardiness, mul-

Journal of Intelligent Manufacturing (2022) 33:911-927

917

tiplying the importance or monetary value of a product with
its tardiness. Another consideration is the difference in any
objective value divided by the duration of the causing dis-
turbance (Pinedo, 2016) as a measure for reliability. Hence,
a large value suggests that small disturbances cause large
harm. Another indicator for reliability is the sum of all dif-
ferences in the objective value caused by a disruption of
magnitude d, multiplied by the probability of the disruption
having that magnitude (Pinedo, 2016). The indication relies
on the knowledge about the disruption magnitude probabil-
ities. This measure is very intuitive, since a human planner
would also consider the probability of a disruption, based on
experience or available data. Sotskov et al. (1997) took a dif-
ferent approach, defining a stability radius as the quantity of
change in a single processing time, within which the found
schedule is still optimal when tested. The stability radius can
be determined with respect to any KPI, as long as a parame-
terizable production environment is available. Recent studies
on reliability are borrowing from risk-measures in finance
(GleiBner, 2011), using the value at risk VaR for reliability,
which is the value of a worst defined quantile of the objec-
tive value distribution over all processes, or the average or
conditional value at risk AVaR/CVaR (Géttlich & Knapp,
2020), which is the average of all objective values within
a worst defined quantile. The VaR-related measures can be
used whenever a statistical evaluation of the performance
over multiple test runs is available. It is therefore applica-
ble to both the statistical evaluation of differences between
expectation and test and the evaluations of test runs.

All measures discussed so far are based on analyses of
KPIs across real, estimated or simulated runs. Comparatively
few measures directly characterize a set schedule before run-
ning and before testing it. One such measure is flex, which
counts the number of pairwise jobs which are unrelated
by precedence constraints. Another is fluidity, which is an
estimate for the probability of localized changes absorb-
ing a temporal variation instead of propagating it through
the rest of the schedule. Unfortunately, flex and fluidity are
only measurable if the problem is formulated as a partial
order schedule, which is not always possible (N. Policella
etal., 2007). In contrast to all negative measures, quantifying
unreliability rather than reliability, (Pinedo, 2016) suggests
that there are also positive indicators for reliability, such as
the utilization of the bottleneck of a production scenario.
Inherently, this measure requires the identification of all bot-
tlenecks. Shen et al. (2017) further consider the presence of
idle times between jobs or tasks as a characteristic which
increases reliability. For this measure, it is particularly evi-
dent that classical optimality, such as a small makespan, and
reliability measures may present themselves as counteracting
trade-offs.

Noteworthily, criterion (2), though highly relevant since
frequent rescheduling is a necessity in most real-world appli-

cations (Pinedo, 2016; Vieira et al., 2003), is not specifically
investigated or even quantified in a large part of the screened
literature. We believe that the main challenge for measur-
ing this criterion is that the easy adjustability of a schedule
depends not only on the schedule itself but also on the
rescheduling routine. Rescheduling routines can roughly be
divided into three categories: Firstly, common in the aca-
demic setting, “right-shift rescheduling” is applied, in which
the production process is effectively put on hold for the dura-
tion of a disruption and then continued according to the
original plan once the disruption is resolved. Secondly, “par-
tial rescheduling” adjusts the original schedule, where it has
been most affected by a disruption. The last category com-
prises complete rescheduling routines. Those may either take
the original schedule into account or optimize the allocation
of all remaining jobs fully anew (Leusin et al., 2018).

It follows that evaluating a schedule for criterion (2)
depends on:

1. The timing of the disruption, since a disruption towards
the end of a schedule does not influence already com-
pleted jobs.

2. The ability and focus of the algorithm to trade-off
between an optimal new schedule and small adjustments
to the original schedule.

One attempt to capture criterion (2) was made by Kou-
velis and Yu (1997), who calculated the deviation of positions
occupied by jobs after right-shifting following a disruption.
In other words, the impact of a disruption on the order of the
schedule was quantified. Another attempt was made by Bean
et al. (1991), who counted the number of reassigned jobs
after complete rescheduling following a disruption. Those
two measures quantify the induced change by rescheduling
and do not discriminate, whether the reliability stems from
the original schedule being easily adjustable or if it stems
from a reliable rescheduling routine. Though not specifically
designed to measure criterion (2), the previously discussed
measures flex, fluidity and the presence of idle times also
indicate a positive characteristic of the original schedule with
regard to criterion (2).

Approaches to achieve reliable schedules through
classical optimization

In this chapter we briefly categorize approaches to achieve
reliable schedules through classical optimization schemes
along with selected examples, highlighting those elements
and ideas, which may be adapted by RL-practitioners and
clarifying the limits of the state-of-the-art.

In classical optimization for problem setups featuring
uncertainties, there are two major paradigms: robust opti-
mization and stochastic optimization. Robust optimization

@ Springer

918

Journal of Intelligent Manufacturing (2022) 33:911-927

aims to find the worst possible parameter configuration
and optimizes the schedule for this fixed setting. Exam-
ples of such scheduling problems and solution approaches
may be found in Zhu and Wang (2017), Wiesemann et al.
(2013), Takayuki Osogami (2012). Since robust optimiza-
tion solves worst-case scenarios, resulting schedules are
often over-conservative. Stochastic optimization aims to uti-
lize knowledge about the uncertainty distributions to find
a solution, which is optimal with a certain probability.
Examples of stochastic optimization for scheduling prob-
lems are Biuerle and Ott (2011), Bauerle and Rieder (2014),
Yoshida (2019), Prashanth (2014), Ruszczynski (2010),
Chow, Ghavamzadeh, et al. (2018), Wu et al. (2009), Daniels
and Carrillo (1997), Goldpira and Tirkolaee (2019).

Others approached uncertainties by examining many solu-
tions under different fixed parameterizations empirically,
which could easily be adapted for RL-approaches, when
suitable simulated environments already exist. Gottlich and
Knapp (2020) simulated multiple solutions in a parame-
ter range of disturbances and manually chose a trade-off
between the optimality of the estimated objective func-
tion and risk measures. Similarly, Al-Hinai and ElMekkawy
(2011) applied their found solution to many simulated test
cases with generated breakdowns, subtracted reliability mea-
sures based on completion time deviations from the objective
function and used a genetic algorithm to refine their solution
accordingly. However, computational cost scales quadrati-
cally with the number of parameters, hence the computation
of all parameter combinations and manual selection may not
be feasible in practice, when the parameter space becomes
larger or even continuous.

To the best of our knowledge, all of these solution concepts
have not been empirically proven to work well on prob-
lems with large state and action spaces, but were tested on
comparatively small and simplified problems. This raises the
question, if the approaches will be transferrable to real-world
problems with large and continuous state and action spaces
as well as complex non-deterministic environment behavior.

Reliability definitions in deep reinforcement
learning

Terminology, definitions and measures of reliability in DRL
are not congruent with those in PS. This is because the appli-
cation of RL to real-world problems introduces additional
challenges on which the research community has recently
concentrated (Dulac-Arnold et al., 2019). This section pro-
vides a summary of relevant challenges, relates them to
consequences for the reliable application of RL to PS prob-
lems and introduces common evaluation metrics aiming to
measure how well the challenge is overcome.

Some reliability measures in RL are noticeably differ-
ent from those seen in classical optimization approaches.

@ Springer

Since RL agents are usually used for online decision-making,
meaning that the control actions are taken at each time step of
the process, one can usually not evaluate the reliability of the
whole schedule a priori. Instead, one must resort to a com-
plete run-through on a simulation model or in the real world
to obtain the whole schedule. Doing that, one must keep in
mind that once a scheduling system has been transferred to
the real-world environment, playing the schedule through in
the simulation in advance to deployment may paint an inac-
curate picture of the agent’s performance because there will
likely be a difference between the two environments.

Reliability considerations in DRL can roughly be divided
into robustness, safety, performance consistency and stabil-
ity, which are described in the following sections.

Robustness

Robustness can refer to a limited sensitivity of the perfor-
mance of the RL agent towards.

1. noise in the observation (Ferdowsi et al., 2018),

2. inaccuracies in the control action (Tessler et al., 2019),
or

3. non-deterministic transition behavior of the environment.
(Abdullah et al., 2019; Mankowitz et al., 2018)

The goal of robustness is therefore to observe similar
behavior and success in a similar setting. Robustness, by
this definition, also relates to successful agent behavior in
unknown but similar problem settings, often referred to as
generalization ability (Kenton et al., 2019). The real system
always differs from the simulation, because of inaccurate
training models (Hiraoka et al., 2019). The real world is also
inevitably subject to more noise and non-deterministic tran-
sition behavior, technical or human imprecision and errors in
the real world. Hence, robustness is of utmost importance for
the reliable transferal of the agent from simulation to reality.
As one measure for robustness of the RL agent, one can log
the performance during test-runs in the training and testing
phase. Typically, the average cumulative reward and stan-
dard deviation of the reward in multiple runs are evaluated
(Abdullah et al., 2019). Others have additionally tracked the
CVaR during training runs (Hiraoka et al., 2019).

Safety

Safety in RL refers to the fulfillment of constraints in the

1. action- space or
state-space (Dalal et al., 2012; Cheng, Orosz, et al., 2019;
Felix Berkenkamp et al., 2017)

N

Journal of Intelligent Manufacturing (2022) 33:911-927

919

during training and testing. Examples of constraints in the
PS domain are physically impossible actions (action-space
constraints), such as the scheduling of two jobs on a machine
at the same time, or undesirable states, such as the large delay
of the finishing time of a product. Hence, for PS, the term
safety is not necessarily related to physical harm of human
beings as much as it might be in autonomous driving. How-
ever, if certain actions or states are impossible, decisions on
how to deal with the situation will be left to human decision
makers, effectively introducing more randomness and noise
to state transition behavior observed by the agent. This, in
turn, can make a schedule unreliable. Hence, inexecutable
actions and dangerous or impossible states should be avoided
in areliable schedule. Moreover, the schedule should account
for small mistakes in the execution leading to such constraint
violations. Inevitably, the line between robustness and safety
can be blurry, since a lack of robustness might be the cause
of constraint violations. Safety is typically not a problem in
purely simulated problems such as the Atari environments
(Bellemare et al., 2013), but highly relevant in real-world
applications. The terminology about the concept of safety in
RL is sometimes ambiguous. Consequently, considerations
of safety may also appear in the literature as risk-sensitive
behavior (Dabney et al., 2018) or cautious behavior (Zhang
et al., 2020) by the RL agent.

In RL literature, engineers usually do not measure how
safe a single episode is or was, but statistically evaluate a
policy over multiple episodes in retrospect. Constraints are
often indirectly incentivized through a cost or penalty term
in the reward function. Therefore, most researchers log the
average and standard deviation of the cost shaped return
(Achiam et al., 2017; Bohez et al., 2019; Boutilier & Lu,
2016; Cheng, Orosz, et al., 2019; Cheng, Verma, et al.,
2019; Chow, Nachum, et al., 2018; Derman et al., 2018).
Some also separately measure the average penalty (Bohez
et al., 2019) or the average and variance of constraint val-
ues (Cheng, Orosz, et al., 2019; Cheng, Verma, et al., 2019;
Chow, Nachum, et al., 2018) or the cumulative constraint vio-
lation values (Dalal et al., 2012; Yang et al., 2020). Another
option is to count all constraint violations (Pinedo, 2016)
and calculate the percentage of tests ending in pre-defined
catastrophes (Kenton et al., 2019) to evaluate safety.

Steady performance

In academic problems it is often sufficient to track the average
test score or average regret during training and evaluation,
to determine how well the algorithm fulfills a particular task
(Badia et al., 2020; Duan et al., 2016; Henderson et al., 2017,
Osband et al., 2020). However, RL algorithms often exhibit
high variance in performance in different runs, diminishing
their reliability in terms of performance consistency (Cheng,
Verma, et al., 2019). Note that the range in performance can

have its root in the trained agent (inherently only success-
ful on a subset of tasks (Yehuda et al., 2020)), in the faced
problem (e.g., more or less complex setups of the problem),
or in the agent’s ability to compensate for non-deterministic
transition behavior in the environment. Note that the latter is
strongly tied to robustness.

In some use cases, a minimum performance threshold may
be necessary at all times. Accordingly, Chan et al. (2020)
recently defined reliability measures for the RL community:
Firstly, in terms of dispersion of the obtained reward dur-
ing training and testing, measured by the inter-quartile-range
(IQR). Secondly in terms of risk, measured by the CVaR
during training and testing. Though originally targeted at
measuring reproducibility of the results, we argue that these
measures, especially during testing, are also valuable for the
definition of reliability in the context of a steady performance
of a scheduling system.

Stability

We define the term stability of a RL algorithm, though it is
often used interchangeably with robustness in RL literature
(Chan et al., 2020; Chollet, 2019), as the successful, repro-
ducible and smooth learning ability of an algorithm during
training (Henderson et al., 2017). This ability can be hindered
by

1. algorithm implementation parameters (Teh et al., 2017,
Logan Engstrom et al., 2020),

2. random seeds in the initialization of parts of the algorithm
or the environment (Chan et al., 2020) or

3. noisy reward signals (Fu et al., 2017; Henderson et al.,
2017).

Importantly, stability is desired in the original training
phase in the simulation but becomes a strong requirement
when learning from the real environment, because the policy
should not get worse through training. In this work, we will
not consider the learning ability of algorithms but instead,
focus on measures for the reliability of schedules after learn-
ing is complete.

Approaches to achieve reliability in DRL solutions

The previous section highlighted the main aspects to con-
sider when aiming for more reliability in RL, namely safety,
robustness and steady performance. This section summa-
rizes recent work on these reliability aspects. Here, we do
not limit this review to PS problems, but open the scope to
all approaches covering relevant reliability aspects (cf. Fig-
ure 2.).

@ Springer

920

Journal of Intelligent Manufacturing (2022) 33:911-927

Fulfilling constraints (safety)

A large body of research focuses on safety, i.e., the fulfill-
ment of constraints in the state and action space. At the latest,
the fulfillment of constraints becomes relevant when the RL
agent interacts with the real environment. Though agents
can theoretically learn how impossible and undesired actions
and states are treated through carefully hand-crafted negative
rewards, in some cases, it is more convenient and precise to
specify constraints (Achiam et al., 2017).

An active direction of research has emerged around (Risk-
) Constrained MDPs (CMDPs). It involves the reformulation
of an MDP to one with constraints on an expected cumulative
cost or penalty. Note that the definitions of robust MDPs (cf.
Section 3.2) and CMDPs are not mutually exclusive: The
cost term in CMDPs can contain expressions for constraints
not only of states and action but also rewards. Within this
research direction, a lot of focus lies on safe (in the sense
of remaining within constraints) exploration during training,
which is particularly relevant when fine-tuning an agent in
a real-world environment (Dalal et al., 2012; Wabersich &
Zeilinger, 2018).

Achiam et al. (2017) employ a trust-region-optimization
related approach called Constrained Policy Optimization
(CPO). It is based on policy improvement steps which guar-
antee an increase in reward while satisfying constraints.
Using this method, they guarantee constraint satisfaction
both during training and testing. On the downside, their
method is very conservative, since it ensures the satisfaction
of all constraints in every time step and not just the result,
which may not be needed in every case. Yang et al. (2020)
extend the trust-region approach of Achiam et al. (2017) with
a projection of the policy onto the closest constraint satisfying
policy, so as to provide a lower bound on reward improve-
ment and an upper bound on constraint violation for each
policy update. Their algorithm performs well on several tasks
with constrained state-spaces. If the approach performs well
on environments with non-deterministic transition behavior,
as present in many PS scenarios, is still subject of future
research.

Another proposition on how to solve CMDPs was made
by Tessler et al. (2018), who use the Lagrangian formulation
of constraints for the reward function and for converging
towards fulfilling these constraints during optimization steps.
Relatedly, Bohez et al. (2019) regularize the optimization
problem with the use of the Lagrangian formulation of state
constraints, minimizing the penalty while respecting a lower
bound on the performance on the task. Both latter approaches
allow working with mean valued constraints, constraining
the expected sum of a cost term over the whole episode,
but do not strictly guarantee the satisfaction of constraints in
every time-step. Stooke et al. (2020) related updates of the
Lagrangian variable into integral control of classical control-

@ Springer

theory in PID-controllers. Arguing that the integral control
part oscillates without the proportional and derivative control
parts, they added these to the Lagrangian update term for
policy gradients, achieving a more stable learning process.
The approach is especially interesting when the RL agent
learns from direct interaction with the real environment and
should not deviate much from its previous behavior.

Another control-theoretic approach is given by Fisac et al.
(2019), who use a discounted safety formulation based on
Hamilton—Jacobi safety analysis, learned as a separate value
function in the Bellman equation. By manually defining fail-
ure states, the algorithm is kept from getting too close to
those.

Zhang et al. (2020) derived a primal—dual policy gradient
method with a risk-term, based on the policy’s long-term
state-action occupancy distribution, in the cost function.
Despite the effectiveness of the algorithm in the exemplary
grid-world setting, its extension to large and continuous state
and action spaces remains unsolved.

Cheng, Verma, et al. (2019) suggest a regularization tech-
nique to stay close to a hand-crafted controller policy (prior).
They show that given a prior with control-theoretic constraint
guarantees, the prior can be approximated and improved
through policy gradients, while experiencing smaller vari-
ance and restricting the action space both during training and
testing compared to learning from scratch. Unfortunately, the
hand-crafted prior is typically unattainable in the PS prob-
lem.

A supervised learning based approach, called intrinsic
fear, was suggested by Lipton et al. (2016) to guide the policy
away from undesired states. In it, states are first categorized
as avoidable catastrophes, if they should not be visited by
an optimal policy, and as danger states, which are close to
catastrophic states. A neural network then learns to classify
these states and penalizes the Q-learning target according
to the observed state. The idea is interesting, since a neural
network could also be used to learn undesirable states from
experience. However, due to the black-box character of neu-
ral networks, it is unclear if the accuracy of the classification
of safe and unsafe states is sufficient.

Another popular way to ensure constrain compliance is
to modify or override an action if it would otherwise lead
to a constraint dissatisfaction. One such method is shielding
(Mohammed Alshiekh et al., 2018; Osbert Bastani, 2019),
where a safe backup policy is known and applied if needed.
This only works, if such a backup policy exists. Others have
suggested ways to change the action slightly to stay on a safe
policy parameter set, if the next step is predicted to be unsafe
by a critic-like structure (Chow, Nachum, et al., 2018; Dalal
et al., 2012; Wabersich & Zeilinger, 2018). However, these
methods rely on expert knowledge of unstable equilibrium
points, which are more obvious in mechanical systems than
for scheduling tasks.

Journal of Intelligent Manufacturing (2022) 33:911-927

921

Robustness

The ability to perform well in new situations and under noisy
observation, action or transition behavior is not necessarily
improved through increased training volume, model capacity
or exploration alone (Witty et al., 2018). Robust MDPs were
introduced to tackle uncertainty in environment parameters
and find strategies which assume worst-case constellations.
Tamar, Glassner, et al. (2015) form a CVaR-gradient to guide
policy updates in a robust MDP setting, showing that their
approach results in conservative policies, which trade off
peak performance for less risky strategies, i.e., better CVaRs.
Refining this approach in Tamar, Chow, et al. (2015), both
the VaR of the total discounted return and assessments of
the risk in intermediate steps were included to capture static
and dynamic risk. The assessment is performed through a
sampling-based critic. Both approaches were found to be
overly-conservative in some scenarios because they assume
worst-case conditions. These assumptions were relaxed for
so-called soft-robust policy gradients, in which worst-case
scenarios and average scenarios are weighted by an impor-
tance parameter (Derman et al., 2018; Hiraoka et al., 2019).
We believe this to be a promising direction of research for
PS regarding the stochasticity of real-world environments.

Another option is to adjust the training process so that the
space of unknown scenarios becomes smaller. One common
challenge is that not every action is executed exactly accord-
ing to the policy output, but may differ in timing, intensity
or be entirely different. This challenge is addressed in action
robust reinforcement learning. Tessler et al. (2019) trained
an RL agent, for which the output action was altered with
a set probability or altered by an adversary algorithm. That
way, they obtained a policy, which was less sensitive to action
perturbations. A similar approach was taken in Pinto et al.
(2017), who used an adversarial agent in a zero-sum game to
add perturbations in the environment behavior to learn more
robust policies for the simulation to reality transfer of an
agent. If challenging environment setups are known, one can
simulate manually defined worst-case transition models of
the environment and train the agent to keep a minimum dis-
tance to these scenarios (Abdullah et al., 2019). Tobin et al.
(2017) introduced domain randomization, which introduces
synthetic variance in the observation space during training
and has shown to improve generalization capabilities for the
transfer from simulation to reality. Carefully chosen and ran-
dom perturbations introduced in training can help to evaluate
and enhance the robustness of the trained RL agent, but could
also make the combinatorial scheduling problem harder to
solve.

Robustness as the lack of generalization was also
addressed by Kenton et al. (2019), who suggested training an
ensemble of agents and averaging over their action values.
The standard deviation within the different action prediction

was leveraged to quantify the uncertainty of the policy at a
particular state, enabling to set a threshold on uncertainty and
“call for help”, i.e., manual interference. If no backup policy
is attainable in practice, the approach is useless during exe-
cution. However, the uncertainty of the ensemble might help
to evaluate how robust the algorithm is during training.

Steady performance

Some work on steady performance was already described in
the section on “fulfilling constraints” above, when rewards
were constrained to a certain window. Another approach for
steadier performance is the Probabilistic Goal Semi-MDP
(Mankowitz et al., 2016). In this formulation of MDPs, the
objective is reformulated to consider the probability of the
expectation to surpass a certain threshold. However, the trans-
fer of that formulation to DRL has not been completed.
Boutilier and Lu (2016) propose another variation to MDPs
called Budgeted MDPs (BDMP). Their approach introduces
the notion of a budgeted resource, e.g., consumed energy in a
motion control example, which is limited within a period of
time. The agents learn a policy including the tradeoff between
resource consumption and reward, in which the policy is a
function of the maximum expected consumption. Such an
approach could be useful to budget the reliance of a strategy
on risky states, if those states can be quantified. Carrara et al.
(2019) further developed the approach to be applicable to
continuous action spaces and unknown system dynamics.

A promising research branch is distributional RL, in which
a distribution over the expected returns is learned. These dis-
tributions could naturally be used as trade-off between the
maximum average reward and the worst possible outcome of
an action, since they incorporate the uncertainty over possible
returns (Dabney et al., 2018).

In conclusion of Sect. 3.4, we have identified different
directions for improvement along the dimensions of con-
straint satisfaction, robustness and steadiness of performance
in this section. A summary of the mentioned literature is given
in Fig. 6. We have indicated, which aspect of reliability from
the RL-perspective is primarily addressed by each publica-
tion and how this aspect has been quantified in the results for
each publication. Regarding the used measures it should be
noted that some measures were either supplemented or fully
based on human expert inspections of the algorithm output
behavior. None of the approaches have been applied to PS
yet and it remains unclear, which approaches are applicable
to scheduling problems in real-world environments.

Suggestions on how to deal with reliability
in DRL-based scheduling solutions

Below, we summarize our findings and articulate recom-
mendations for future research on RL-based PS. As stated

@ Springer

922 Journal of Intelligent Manufacturing (2022) 33:911-927
Fig.6 Summary of literature W &
concerning the reliability of o ” & W e \Q*‘Z’\&\\\@%
scheduling algorithms egen . Xeé R < NG ?’(\oo i\&\%
@ applied measure(s)) e@\\5 y ,b\oe\}\&é\ e ‘&e}e& \é‘t o‘—’&\e.o \4\0\\4\ o
E z;efi(ti;’ performance 'db&\oo \o@\'@ \6\6&1\6’@:& *ic, o&cz ‘&b\:&\\oo;{b\d\o&x@& &
@ robustness SN \i\oo 2 O\rz}b\oq‘b ° x@QX\ Q@& ?}y‘%\ QO\Q @e‘o o <
T O &t 3
%@‘ o ST S R\ o\oc'rb & qG > &
Daniels et al. 1997 EA®
Wu et al. 2009 D o
Ruszczynski 2010 A)
Al-Hinai et al. 2011 B °
Biuerle et al. 2011 (&} ° g
Osogami 2012 (R E
Wiesemann etal. 2013 D e g
Biuerle et al. 2014 = =
Prashanth 2014 & (] ° 5
Rahmani et al. 2014 EH & e 7
Chow et al. 2015 A e o o =
Zhu et al. 2017 ABY o @
Goldpira et al. 2019 @ e
Yoshida 2019 EA ®
Géattlich et al. 2020 F1A e o o
Tamar et al. 2014 D e o ®
Tamar et al. 2015 @ e e o
Boutilier et al. 2016 Ed e o ° °
Lipton et al. 2016 A o ° °
Mankowitz etal. 2016 E3 e o °
Achiam et al. 2017 A e o e o o
Pinto et al. 2017 D e e
Tobin et al. 2017 (]
Alshiekh et al. 2018 A] °
Dabney et al. 2018 B2 e o]
Dalal et al. 2018 A e o e 2
Derman et al. 2018 o o e 3
Tessler et al. 2018 A e o e o g
Wabersichetal. 2018 A g
Abdullah et al. 2019 o e e]
Bastani 2019 A e o <
Bohez et al. 2019 A ° ° ‘©
Carrara et al. 2019 o o §‘
Cheng et al. 2019 A o o (] o
Cheng et al. 2019 A o o
Chow et al. 2019 A o o e o
Fisac et al. 2019 A
Hiraoka et al. 2019 @ e e o
Kenton et al. 2019 Q o o
Tessler et al. 2019 ® e e o
Stooke et al. 2020 A o [°
Yang et al. 2020 A e o o e o o o
Zhang et al. 2020 A e o o

before, not all methods of classical numerical optimization
may apply to RL, because RL-based approaches are online
scheduling systems. We aim to answer the question, which
measures and approaches to use given a particular problem
setting.

Borrowing from classical numerical optimization
approaches, we divide the considerations of reliability
in RL-based PS into three main categories which build upon
each other: the aspects of reliability of one fixed schedule,
the aspects of reliability of a policy in terms of performance

@ Springer

across multiple test runs and the reliability in terms of the
ability to reschedule well.

The reliability of a single schedule

Obtaining one schedule through RL involves logging all
actions taken by the RL agent over a certain period of time.
The schedule can either be obtained from the simulated or
the real environment. This single schedule can then be evalu-
ated through any KPI of choice (e.g., makespan or tardiness).
If the schedule stems from the real environment, it can only

Journal of Intelligent Manufacturing (2022) 33:911-927

923

be benchmarked against another schedule for the same prob-
lem, if the environment is sufficiently simple. Otherwise, the
interaction with the real environment is likely to affect the
environment differently than the simulation, hindering the
comparability. In that case, the stand-alone reliability mea-
sures can only be based on expert knowledge and opinion or
may follow general principles. Such measures include:

1. MI. The utilization of bottleneck machines
2. M2. The presence of idle times

If the schedule stems from a simulation, one can evaluate
the fixed schedule for several test runs in that simulation with
different parameterizations (e.g., of machine breakdowns).
During the test, parametrizations and KPIs of interest should
be logged. Useful reliability measures then include the ones
mentioned above and:

M1. Average and standard deviation of performance
M2. The worst performance

M3. The best performance

M4. The VaR/CVaR of the performance

MS5. The stability radius

M6. The difference in performance divided by the change
in parameterizations

7. MT7. The difference in performance after a change in
parameterizations times the probability of that change

AN S e

If the problem is subject to constraints, it should also be
logged if any constraint was violated and by how much. The
above list can then be extended by:

1. MI. The percentage of tests within constraint violations

2. M2. The cumulative constraint violation values

3. Ma3. The average and variance of constraint violation val-
ues

The progression of reliability aspects for a single sched-
ule goes hand in hand with methods to achieve them. The
measures of a single, stand-alone schedule may be improved
through reward shaping, exploiting expert knowledge to
incentivize the right characteristics of the schedules. Testing
the schedule in different parameterized environments hoping
to measure similar performance is considered in robustness
research in RL and robust and risk-constrained MDP for-
mulations. Here, we have identified the following promising
approaches:

1. Al. Domain randomization (Tobin et al., 2017)
. A2. Adversarial agents (Pinto et al., 2017) and
3. A3. Soft-robust policy gradients (Derman et al., 2018;
Hiraoka et al., 2019)

Dealing with constrained problems, one should resort to
the safe RL literature. For this case, we believe.

1. Al. Projection Based Constrained Policy Optimization
(Yang et al., 2020)

2. A2. PID Lagrangian Methods (Stooke et al., 2020)
to be the most promising research directions for PS.

Reliability of a policy

To measure the reliability of a trained policy, it makes sense
to consider more than one problem during testing. However,
all measures and methods of the previous section also apply.
The measures can be extended by a statistical analysis of
performance and reliability measures of a single schedule.
Thus, they include:

1. M3. Average and standard deviation of performances
M6. VaR/CVaR of performances

3. MI3. Average and standard deviation of reliability mea-
sures of a single schedule (M1-M12)

4. MI14.VaR/CVaR ofreliability measures of a single sched-
ule M1-M12)

The methods are extended by those considering steady
performance. Particularly.

1. Al. Distributional RL (Dabney et al., 2018)
Reliability of rescheduling algorithms

For any consideration of rescheduling, one needs to compare
an original planned schedule to a newly planned sched-
ule. Since RL-based PS is an online scheduling scheme,
rescheduling is only of interest, if the original schedule is
formed as a sequence of actions taken in a simulation. To
the best of our knowledge, rescheduling has not yet been
explicitly studied in RL-based PS. Our best guess is that lit-
tle changes to an original schedule would be implemented
through penalizing or constraining changes to the original
schedule. Although we believe the applicable use-cases to
be limited and found measures to be rather vague (cf. Sec-
tion 3.2), we name them here for completeness:

M15. The deviation of task positions
M16. The number of re-ordered jobs
M17. Flex

M18. Fluidity

M19. Presence of idle times

Al S

More research on existing problems and the demand for
reliability in rescheduling should be conducted to address
this challenge more clearly.

@ Springer

924

Journal of Intelligent Manufacturing (2022) 33:911-927

Conclusion and future work

We have identified a lack of considerations of reliability in
current RL-based PS attempts. This lack is a fundamental
obstacle to the confident application of DRL to PS prob-
lems. Since this research field is still in its infancy today,
there exists no ready-to-use schema or set of methods for the
design of an RL-based PS solution to achieve competitive
and reliable production schedules. A critical step towards
such a schema or set of methods is the creation of a common
understanding, i.e., terminology, definitions, and measures of
reliability. This work contributes a documented and common
starting point for the interdisciplinary discussion of reliabil-
ity in the online PS and DRL community. The measures and
definitions are meant to aid the community with translating
real-world PS requirements to suitable DRL problem formu-
lations, algorithms, solutions and evaluation metrics. To this
end, we have mapped common problem settings of PS sys-
tems to applicable measures (M1-M19) and have suggested
promising solution approaches (A1-6), conclusively detailed
in Sect. 3.5. Most measures can easily be tracked and reported
to facilitate the community to compare reliability aspects of
found solutions, rooted in a common understanding of what
these measures imply.

The next step towards reliable DRL-based PS lies in the
empirical validation of the applicability of the found reliabil-
ity aspects, i.e., safety, steady performance, and robustness.
Future studies need to address the following questions in
close collaboration of production planning experts and DRL
experts:

1. Are the found reliability aspects sufficient for the quan-
tification of reliability criteria for production schedules
in the eyes of production planners and workers, or does
the list need to be extended?

2. How canrequirements for the performance and reliability
expressed by production planners be quantitatively and
unambiguously be translated to DRL training procedures
and testing results?

3. How well are the found DRL-based approaches address-
ing aspects of reliability applicable to complex, non-
deterministic production scenarios?

To answer these questions, we are currently creating simu-
lation environments for PS scenarios of different complexity
and with selected realistic constraints and stochastic quali-
ties. We are planning on implementing the suggested solution
approaches to test and validate their applicability. During
this validation, we are planning on reporting all reliability
measures to evaluate their expressivity in cooperation with
industrial partners.

We hope that this work helps fellow researchers choose
appropriate evaluation metrics for their respective scheduling

@ Springer

algorithms and scenarios. We further hope to encourage the
adaption of modern RL algorithms to more reliability-aware
DRL-based PS.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was funded by the German Federal Ministry for Eco-
nomics and Energy (BMWi) within the research project AlphaMES.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abdolrazzagh-Nezhad, M., & Abdullah, S. (2017). Job shop schedul-
ing: Classification, constraints and objective functions. Interna-
tional Journal of Computer and Information Engineering, 11,
429-434.

Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V., Luo, R.,
Zhang, M., et al. (2019). Wasserstein robust reinforcement learn-
ing. https://arxiv.org/pdf/1907.13196.

Achiam, J.,Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy
optimization. In: ICML’17: Proceedings of the 34th international
conference on machine learning (70), 22-31.

Al-Hinai, N., & EIMekkawy, T. Y. (2011). Robust and stable flexible job
shop scheduling with random machine breakdowns using a hybrid
genetic algorithm. International Journal of Production Economics,
132, 279-291. https://doi.org/10.1016/j.ijpe.2011.04.020

Allahverdi, A. (2016). A survey of scheduling problems with no-
wait in process. European Journal of Operational Research, 255,
665-686. https://doi.org/10.1016/j.ejor.2016.05.036

Alshiekh, M., Bloem, R., Ehlers, R., Konighofer, B., Niekum, S., &
Topcu, U. (2018). Safe reinforcement learning via shielding. In:
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32

Amrina, E., & Yusof, S. M. (2011). Key performance indicators
for sustainable manufacturing evaluation in automotive compa-
nies. In: Proceedings of the 2011 IEEE international conference
on industrial engineering and engineering management (IEEM),
Singapore, Singapore, 12/6/2011-12/9/2011 (pp. 1093-1097).
[Piscataway, NJ]: IEEE. doi:https://doi.org/10.1109/IEEM.2011.
6118084.

Arviv, K., Stern, H., & Edan, Y. (2016). Collaborative reinforcement
learning for a two-robot job transfer flow-shop scheduling prob-
lem. IEEE SMC 2013 Conference, 54(4), 1196-1209.

Badia, A. P, Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A.,
Guo, D., et al. (2020). Agent57: Outperforming the Atari human
benchmark. Proceedings of the 37th International Conference on
Machine Learning, 37(119), 507-5017.

Bastani, O. (2019). Safe reinforcement learning with nonlinear dynam-
ics via model predictive shielding. https://arxiv.org/abs/1905.
10691.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/pdf/1907.13196
https://doi.org/10.1016/j.ijpe.2011.04.020
https://doi.org/10.1016/j.ejor.2016.05.036
https://doi.org/10.1109/IEEM.2011.6118084
https://arxiv.org/abs/1905.10691

Journal of Intelligent Manufacturing (2022) 33:911-927

925

Béuerle, N., & Ott, J. (2011). Markov decision processes with
average-value-at-risk criteria. Mathematical Methods of Opera-
tions Research, 74,361-379. https://doi.org/10.1007/s00186-011-
0367-0

Biuerle, N., & Rieder, U. (2014). More risk-sensitive markov decision
processes. Mathematics of Operations Research, 39, 105-120.

Bean, J. C,, Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup
scheduling with multiple resources, release dates and disruptions.
Operations Research, 39(3), 470-483.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C.,
Moitra, S., et al. (2020). Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588, 77-82. https://
doi.org/10.1038/s41586-020-2939-8

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The
arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47, 253-279.
https://doi.org/10.1613/jair.3912

Berkenkamp, F., Turchetta, M., Schoellig, A., & Krause, A. (2017). Safe
model-based reinforcement learning with stability guarantees. In:
NIPS’17: Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 908-918.

Birolini, A. (2004). Reliability engineering: Theory and practice.
Springer.

Bohez, S., Abdolmaleki, A., Neunert, M., Buchli, J., Heess, N., & Had-
sell, R. (2019). Value constrained model-free continuous control.
https://arxiv.org/pdf/1902.04623.

Boutilier, C., & Lu, T. (2016). Budget allocation using weakly coupled,
constrained Markov decision processes. In: UAI’16: Proceedings
of the Thirty-Second Conference on Uncertainty in Artificial Intel-
ligence, 52-61.

Carrara, N., Leurent, E., Laroche, R., Urvoy, T., Maillard, O.-A., &
Pietquin, O. (2019). Budgeted reinforcement learning in contin-
uous state space. NeurIPS 2019: Advances in neural information
processing systems, 32.

Chaari, T., Chaabane, S., Aissani, N., & Trentesaux, D. (2014).
Scheduling under uncertainty: Survey and research directions.
In: Proceedings of the 3rd international conference on advanced
logistics and transport, 2014, IEEE. doi:https://doi.org/10.1109/
ICAdLT.2014.6866316.

Chan, S. C. Y., Fishman, S., Canny, J., Korattikara, A., & Guadarrama,
S.(2020). Measuring the reliability of reinforcement learning algo-
rithms. International Conference on Learning Representations.

Cheng, R., Orosz, G., Murray, R. M., & Burdick, J. W. (2019). End-
to-end safe reinforcement learning through barrier functions for
safety-critical continuous control tasks. Proceedings of the AAAI
Conference on Artificial Intelligence, 33, 3387-3395. https://doi.
org/10.1609/aaai.v33i01.33013387

Cheng, R., Verma, A., Orosz, G., Chaudhuri, S., Yue, Y., & Burdick, J.
W. (2019b). Control regularization for reduced variance reinforce-
ment learning. In: Proceedings of the 36th international conference
on machine learning (7).

Cheng, T. C. E., & Podolsky, S. (1996). Just-in-time manufacturing: An
introduction/T. C. E. Cheng and S. Podolsky (2nd ed.). Chapman
& Hall.

Chollet, F. (2019). On the Measure of Intelligence. https://arxiv.org/pdf/
1911.01547.

Chow, Y., Ghavamzadeh, M., Janson, L., & Pavone, M. (2018). Risk-
constrained reinforcement learning with percentile risk criteria.
Journal of Machine Learning Research, 18, 1-51.

Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E. &
Ghavamzadeh, M. (2018b). Lyapunov-based safe policy optimiza-
tion for continuous control. In: NIPS’18: Proceedings of the 32nd
International Conference on Neural Information Processing Sys-
tems, 8103-8112.

Da Silva, F. L., & Costa, A. H. R. (2019). A survey on transfer learning
for multiagent reinforcement learning systems. Journal of Artifi-

cial Intelligence Research, 64, 645-703. https://doi.org/10.1613/
jair.1.11396

Dabney, W., Ostrovski, G., Silver, D., & Munos, R. (2018). Implicit
quantile networks for distributional reinforcement learning. In:
Proceedings of the 35th International Conference on Machine
Learning, 1096-1105.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., & Tassa,
Y. (2012). Safe exploration in continuous action spaces. Journal
of Artificial Intelligence Research, 45, 1.

Daniels, R. L., & Carrillo, J. E. (1997). Beta-robust schedul-
ing for single-machine systems with uncertain processing
times. IIE Transactions, 29, 977-985. https://doi.org/10.1023/A:
1018500319345

Derman, E., Mankowitz, D. J., Mann, T. A., & Mannor, S. (2018).
Soft-robust actor-critic policy-gradient. In: Proceedings of the 35th
International Conference on Machine Learning, vol. 80

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016).
Benchmarking deep reinforcement learning for continuous con-
trol. In: Proceedings of the 33th international conference on
machine learning, vol. 48, pp. 1329-1338.

Dulac-Arnold, G., Mankowitz, D., & Hester, T. (2019). Challenges of
real-world reinforcement learning. ICML Workshop on Real-Life
Reinforcement Learning.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph,
L., etal. (2020). Implementation matters in deep RL: a case study
on PPO and TRPO. In: Eighth international conference on learning
representations.

Ferdowsi, A., Challita, U., Saad, W., & Mandayam, N. B. (2018). Robust
deep reinforcement learning for security and safety in autonomous
vehicle systems. In: Proceedings of the 21st international confer-
ence on intelligent transportation systems (ITSC).

Fisac, J. F., Lugovoy, N. F, Rubies-Royo, V., Ghosh, S., & C. J.
Tomlin. (2019). Bridging Hamilton-Jacobi safety analysis and
reinforcement learning. In: Proceedings of the 2019 international
conference on robotics and automation (ICRA) (pp. 8550-8556).
doi:https://doi.org/10.1109/ICRA.2019.8794107.

Fu, J., Luo, K., & Levine, S. (2017). Learning robust rewards with
adversarial inverse reinforcement learning. https://arxiv.org/pdf/
1710.11248.

Fuchigami, H. Y., & Rangel, S. (2018). A survey of case studies
in production scheduling: Analysis and perspectives. Journal of
Computational Science, 25, 425-436. https://doi.org/10.1016/j.
jocs.2017.06.004

Gleilner, W. (2011). Quantitative Verfahren im Risikomanage-
ment: Risikoaggregation, Risikomaf3e und Performancemale. Der
Controlling-Berater, vol. 16

Golpira, H., & Tirkolaee, E. B. (2019). Stable maintenance tasks
scheduling: A bi-objective robust optimization model. Comput-
ers and Industrial Engineering. https://doi.org/10.1016/j.cie.2019.
106007

Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures
for scheduling: Single-machine environment. //E Transactions,
40, 66-83. https://doi.org/10.1080/07408170701283198

Gottlich, S., & Knapp, S. (2020). Uncertainty quantification with risk
measures in production planning. Journal of Mathematics in Indus-
try. https://doi.org/10.1186/s13362-020-00074-4

Hall, N. G., & Posner, M. E. (2004). Sensitivity analysis for schedul-
ing problems. Journal of Scheduling, 7, 49-83. https://doi.org/10.
1023/B:JOSH.0000013055.31639.f6

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger,
D. (2017). Deep reinforcement learning that matters. http://arxiv.
org/pdf/1709.06560v3.

Hiraoka, T., Imagawa, T., Mori, T., Onishi, T., & Tsuruoka, Y. (2019).
Learning robust options by conditional value at risk optimization.
In: NeurIPS 2019: Advances in neural information processing sys-
tems, vol. 33

@ Springer

https://doi.org/10.1007/s00186-011-0367-0
https://doi.org/10.1038/s41586-020-2939-8
https://doi.org/10.1613/jair.3912
https://arxiv.org/pdf/1902.04623
https://doi.org/10.1109/ICAdLT.2014.6866316
https://doi.org/10.1609/aaai.v33i01.33013387
https://arxiv.org/pdf/1911.01547
https://doi.org/10.1613/jair.1.11396
https://doi.org/10.1023/A:1018500319345
https://doi.org/10.1109/ICRA.2019.8794107
https://arxiv.org/pdf/1710.11248
https://doi.org/10.1016/j.jocs.2017.06.004
https://doi.org/10.1016/j.cie.2019.106007
https://doi.org/10.1080/07408170701283198
https://doi.org/10.1186/s13362-020-00074-4
https://doi.org/10.1023/B:JOSH.0000013055.31639.f6
http://arxiv.org/pdf/1709.06560v3

926

Journal of Intelligent Manufacturing (2022) 33:911-927

Kenton, Z., Filos, A., Evans, O., & Gal, Y. (2019). Generalizing from
a few environments in safety-critical reinforcement learning. In:
SafeML ICLR 2019 Workshop.

Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its
applications (Nonconvex optimization and its applications, Vol.
14). Boston, MA: Springer.

Kuhnle, A., Kaiser, J.-P., TheiB, F., Stricker, N., & Lanza, G. (2020).
Designing an adaptive production control system using reinforce-
ment learning. Journal of Intelligent Manufacturing. https://doi.
org/10.1007/s10845-020-01612-y

Lang, S., Lanzerath, N., Reggelin, T., Behrendt, F., & Miiller, M. (2020).
Integration of deep reinforcement learning and discrete-event sim-
ulation for real-time scheduling of a flexible job shop production.
In: Proceedings Winter Simulation Conference 2020.

Lazic, N., Lu, T., Boutilier, C., Ryu, M.K., Wong, E.J., Roy, B., et al.
(2018). Data center cooling using model-predictive control.
Leon, V.J., Wu, S. D., & Storer, R. H. (1994). Robustness measures and

robust scheduling for job shops. IIE Transactions, 26(5), 32—43.

Leusin, M., Frazzon, E., Uriona Maldonado, M., Kiick, M., & Fre-
itag, M. (2018). Solving the job-shop scheduling problem in the
industry 4.0 era. Technologies, 6, 107. doi:https://doi.org/10.3390/
technologies6040107.

Lipton, Z. C., Azizzadenesheli, K., Kumar, A., Li, L., Gao, J., & Deng,
L. (2016). Combating reinforcement learning’s sisyphean curse
with intrinsic fear. https://arxiv.org/pdf/1611.01211.

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job
insertions by deep reinforcement learning. Applied Soft Comput-
ing, 91, 106208. https://doi.org/10.1016/j.as0c.2020.106208

Mankowitz, D. J., Tamar, A., & Mannor, S. (2016). Situational aware-
ness by risk-conscious skills. https://arxiv.org/pdf/1610.02847.

Mankowitz, D. J., Mann, T. A., Bacon, P., Precup, D., & Mannor, S.
(2018). Learning robust options (wasserste). https://arxiv.org/abs/
1802.03236.

Marti, R., Pardalos, P. M., & Resende, M. G. C. (2018). Handbook of
heuristics (Springer reference). Springer.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., et al. (2013). Playing Atari with deep reinforcement
learning. https://arxiv.org/pdf/1312.5602.

Osband, 1., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva,
A., et al. (2020). Behaviour suite for reinforcement learning. In;
International Conference on Learning Representations.

Osogami, T. (2012). Robustness and risk-sensitivity in Markov deci-
sion processes. In: NIPS’12: Proceedings of the 25th international
conference on neural information processing systems, vol. 1,
pp- 233-241.

Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems/by
Michael L. Pinedo. Cham: Springer.

Pinto, L., Davidson, J., Sukthankar, R., & Gupta, A. (2017). Robust
adversarial reinforcement learning. In: International Conference
on Machine Learning, pp. 2817-2826.

Policella, N., Cesta, A., Oddi, A., & Smith, S. (2007). From precedence
constraint posting to partial order schedules: A CSP approach to
Robust Scheduling. Al Communications, 20, 163—180.

Prashanth, L. A. (2014). Policy gradients for CVaR-constrained MDPs.
In: P. Auer (Ed.), Cham, 2014 (pp. 155-169, LNCS sublibrary. SL
7, Artificial intelligence, Vol. 8776). Cham: Springer.

Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop
scheduling with unexpected arrivals of new jobs and uncertain
processing times. Journal of Manufacturing Systems, 33, 84-92.
https://doi.org/10.1016/j.jmsy.2013.03.004

Rinciog, A., Mieth, C., Scheikl, P. M., & Meyer, A. (2020). Sheet-metal
production scheduling using AlphaGo zero. doi:https://doi.org/10.
15488/9676.

Ruszezyniski, A. (2010). Risk-averse dynamic programming for Markov
decision processes. Mathematical Programming, 125, 235-261.
https://doi.org/10.1007/s10107-010-0393-3

@ Springer

Schulman, J., Levine, S., Moritz, P., Jordan, M. 1., & Abbeel, P. (2015).
Trust region policy optimization. In: ICML’15: Proceedings of
the 32nd international conference on international conference on
machine learning, vol. 37, pp. 1887-1897.

Shen, X.-N., Han, Y., & Fu, J.-Z. (2017). Robustness measures and
robust scheduling for multi-objective stochastic flexible job shop
scheduling problems. Soft Computing, 21, 6531-6554. https://doi.
org/10.1007/s00500-016-2245-4

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M.,
Guez, A, et al. (2018). Mastering Chess and Shogi by self-play
with a general reinforcement learning algorithm. Science, 6419,
1140-1144.

Sotskov, Y., Sotskova, N. Y., & Werner, F. (1997). Stability of an optimal
schedule in a job shop. Omega, 25, 397-414. https://doi.org/10.
1016/S0305-0483(97)00012-1

Stooke, A., Achiam, J., & Abbeel, P. (2020). Responsive safety in rein-
forcement learning by PID lagrangian methods. In: International
Conference on Machine Learning, pp. 9133-9143.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Pol-
icy gradient methods for reinforcement learning with function
approximation. Advances in Neural Information Processing Sys-
tems, p. 12.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT Press.

Tamar, A., Chow, Y., Ghavamzadeh, M., & Mannor, S. (2015a). Policy
gradient for coherent risk measures. In: NIPS’15: Proceedings of
the 28th international conference on neural processing systems,
pp- 1468-1476.

Tamar, A., Glassner, Y., & Mannor, S. (2015b). Optimizing the CVaR
viasampling. In: AAAI’15: Proceedings of the twenty-ninth AAAI
conference on artificial intelligence, pp. 2993-2999.

Tessler, C., Mankowitz, D. J., & Mannor, S. (2018). Reward constrained
policy optimization. https://arxiv.org/pdf/1805.11074.

Tessler, C., Efroni, Y., & Mannor, S. (2019). Action robust rein-
forcement learning and applications in continuous control. In:
Proceedings of the 36th international conference on machine learn-
ing, vol. 97, pp. 6215-6224.

The, Y., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell,
R., etal. (2017). Distral: Robust multitask reinforcement learning.
In: NIPS’17: Proceedings of the 31st international conference on
neural information processing systems, pp. 4496—4506.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P.
(2017). Domain randomization for transferring deep neural net-
works from simulation to the real world. In: Proceedings of the
2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS).

Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling
manufacturing systems: A framework of strategies, policies, and
methods. Journal of Scheduling, 6,39—-62. https://doi.org/10.1023/
A:1022235519958

Vinyals, O., Babuschkin, 1., Czarnecki, W. M., Mathieu, M., Dudzik,
A., Chung, J., etal. (2019). Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575, 350-354. https://
doi.org/10.1038/s41586-019-1724-z

Wabersich, K. P., & Zeilinger, M. N. (2018). Safe exploration of nonlin-
ear dynamical systems: A predictive safety filter for reinforcement
learning. https://arxiv.org/pdf/1812.05506.

Waschneck, B., Reichstaller, A., Belzner, L., Altenmiiller, T., Bauern-
hansl, T., Knapp, A., et al. (2018). Optimization of global produc-
tion scheduling with deep reinforcement learning. Procedia CIRP,
72, 1264-1269. https://doi.org/10.1016/j.procir.2018.03.212

Wiesemann, W., Kuhn, D., & Rustem, B. (2013). Robust Markov deci-
sion processes. Mathematics of Operations Research, 38,153-183.
https://doi.org/10.1287/moor.1120.0566

https://doi.org/10.1007/s10845-020-01612-y
https://doi.org/10.3390/technologies6040107
https://arxiv.org/pdf/1611.01211
https://doi.org/10.1016/j.asoc.2020.106208
https://arxiv.org/pdf/1610.02847
https://arxiv.org/abs/1802.03236
https://arxiv.org/pdf/1312.5602
https://doi.org/10.1016/j.jmsy.2013.03.004
https://doi.org/10.15488/9676
https://doi.org/10.1007/s10107-010-0393-3
https://doi.org/10.1007/s00500-016-2245-4
https://doi.org/10.1016/S0305-0483(97)00012-1
https://arxiv.org/pdf/1805.11074
https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/pdf/1812.05506
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1287/moor.1120.0566

Journal of Intelligent Manufacturing (2022) 33:911-927

927

Witty, S., Lee, J. K., Tosch, E., Atrey, A., Littman, M., & Jensen, D.
(2018). Measuring and characterizing generalization in deep rein-
forcement learning. https://arxiv.org/pdf/1812.02868.

Wu, C. W., Brown, K. N., & Beck, J. C. (2009). Scheduling with
uncertain durations: Modeling -robust scheduling with constraints.
Computers and Operations Research, 36, 2348-2356. https://doi.
org/10.1016/j.cor.2008.08.008

Yang, T.-Y., Rosca, J., Narasimhan, K., & Ramadge, P. J. (2020).
Projection-based constrained policy optimization. https://arxiv.
org/pdf/2010.03152.

Yehuda, G., Gabel, M., & Schuster, A. (2020). It’s not what machines
can learn, it’s what we cannot teach. In: International conference
on machine learning, pp. 10831-10841.

Yoshida, Y. (2019). Risk-sensitive markov decision under risk con-
straints with coherent risk measures. In V. Torra, Y. Narukawa,
G. Pasi, & M. Viviani (Eds.), Cham, 2019 (pp. 29-40, LNCS
SublibraryL. SL7 - Artificial Intelligence, Vol. 11676). Cham,
Switzerland: Springer.

Zhang, J., Bedi, A. S., Wang, M., & Koppel, A. (2020). Cautious
reinforcement learning via distributional risk in the dual domain.
https://arxiv.org/pdf/2002.12475.

Zhu, W., & Wang, B. (2017). New robust single machine schedul-
ing to hedge against processing time uncertainty. In: Proceed-
ings of the 2017 29th Chinese Control And Decision Con-
ference (CCDC) (pp. 2418-2423). doi:https://doi.org/10.1109/
CCDC.2017.7978920.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://arxiv.org/pdf/1812.02868
https://doi.org/10.1016/j.cor.2008.08.008
https://arxiv.org/pdf/2010.03152
https://arxiv.org/pdf/2002.12475
https://doi.org/10.1109/CCDC.2017.7978920

	On reliability of reinforcement learning based production scheduling systems: a comparative survey
	Abstract
	Introduction
	Contribution, scope and structure
	Introduction to scheduling problems
	Introduction to deep reinforcement learning

	State-of-the-art of reinforcement learning based production scheduling
	Review on reliability
	Reliability definitions in production scheduling
	Approaches to achieve reliable schedules through classical optimization
	Reliability definitions in deep reinforcement learning
	Robustness
	Safety
	Steady performance
	Stability

	Approaches to achieve reliability in DRL solutions
	Fulfilling constraints (safety)
	Robustness
	Steady performance

	Suggestions on how to deal with reliability in DRL-based scheduling solutions
	The reliability of a single schedule
	Reliability of a policy
	Reliability of rescheduling algorithms

	Conclusion and future work
	References

