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Abstract
In industrial settings, it is inevitable to encounter abnormal patterns monitoring a process. These patterns point out manu-
facturing faults that can lead to significant internal and external failure costs unless treated promptly. Thus, detecting such
abnormalities is of utmost importance. Machine learning algorithms have been widely applied to this problem. Nevertheless,
the existing control chart pattern recognition (CCPR) method can only deal with a fixed input size rather than dealing with
different input sizes according to the actual production needs. In order to tackle this problem, an original CCPR method
relying on convolutional neural network (CNN) named as VIS-CNN is proposed. Signal resizing is performed using resam-
pling methods, then CNN is used to extract the abnormal patterns in the dataset. Five different input sizes are generated
for model training and testing. The optimal hyperparameters, as well as the best structure of the used CNN are obtained
using Bayesian Optimization. Simulation results show that the correct recognition rate of the VIS-CNN is 99.78%, based on
different window size control charts. Furthermore, we address the issue of the mixed CCP and provide a modified scheme
to achieve high recognition ratio for 8 mixed patterns on top of 6 standard patterns. The modified scheme includes wavelet
noise reduction and Adaptive Boosting. A case study on metal galvanization process is presented to show that the method has
potential applications in the industrial environment.

Keywords CCPR · Mixed CCP · CNN · Deep learning · Bayesian optimization · Control chart pattern recognition

Introduction

In manufacturing, a process is considered in-control if only
random causes affect its operation. On the other hand, an
unstable process encounters other sources of variation, rec-
ognized as abnormal variations. The two mentioned sorts
of variations can be differentiated using various monitoring
tools (e.g., adaptive control system and control chart). Once
some points surpass a threshold or an unnatural pattern is
detected, the monitored manufacturing process is declared to
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be out of control. When dealing with continuous variables,
the abnormal control chart patterns (CCPs) can be linkedwith
unambiguous causes that unfavorably disturb the manufac-
turing processes and point to specific machine problems. For
example, trend patterns might indicate wear, thermal distor-
tion of crucial parts of a machine tool, or operator fatigue
(Addeh et al., 2018). In comparison, shift patterns might
occur due to changes in operators, materials, or equipment.
Moreover, periodic variation in the power supply could lead
to cyclic patterns (Hachicha & Ghorbel, 2012).

While finding the out-of-control points can be recognized
with no trouble by the quality practitioners, identifying the
unnatural patterns depends on the experience level of qual-
ity control personnel. To detect unnatural patterns, many
scholars have proposed supplementary runs-rules (Mehmood
et al., 2019; Shongwe, 2020; Zhang et al., 2017). Neverthe-
less, Zan et al. (2020b) indicated that there is no one-to-one
mapping relation between supplementary rules and abnormal
patterns. Additionally, employing too many rules may not be
applicable for real-time monitoring and will inevitably cause
multiple false alarms (Ranaee & Ebrahimzadeh, 2011). On
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Fig. 1 Illustration of the normal (blue) and abnormal control chart patterns (red) (Color figue online)

Table 1 Parameters for
generating the CCPs Pattern Mathematical representation Parameter value/range

NOR y(t) � μ + x(t) μ � 30, σ � 0.05

US y(t) � μ + x(t) + ν × s μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ]

DS y(t) � μ + x(t) − ν × s μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ]

UT y(t) � μ + x(t) + ν × d × t μ � 30, σ � 0.05, d ∈ [0.1σ, 0.3σ ]

DT y(t) � μ + x(t) − ν × d × t μ � 30, σ � 0.05, d ∈ [0.1σ, 0.3σ ]

CYC y(t) � μ + x(t) + ν × α × sin(2π t/ω) μ � 30, σ � 0.05, α ∈ [1.5σ, 4σ ],
ω ∈ {4, 5, 6, 7, 8}

the other hand, the presence of abnormal patterns can be
extended to other applications beyond manufacturing; they
can appear, for instance, as outbreaks in healthcare (Santiago
& Smith, 2013) or variances in a supply chain (Costantino
et al., 2015). Owing to the deficiencies of supplementary
rules and continuously increasing requirements for intelli-
gent manufacturing, more and more interest is noticed in

evolving accurate and automatic CCP Recognition (CCPR)
algorithms. Hence, the CCPR problem is formulated as a
pattern recognition problem and tackled by various machine
learning models to be used. Hachicha and Ghorbel (2012)
presented a systematic literature review on CCPR studies
until 2010. They discussed about 120 research papers pub-
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lished in well-recognized journals. In their review, most of
the articles were based on artificial neural network (ANN).

Conversely, recently, more advanced methods with com-
plicated frameworks have been adopted in order to improve
the classification accuracy and the applicability of CCPR.
Support Vector Machines (SVM) has been widely applied
in the CCPR, achieving good results. Khormali and Addeh
(2016) used a multiclass SVM-based classifier. In the pre-
sented method, type-2 fuzzy c-means (T2FCM) clustering
algorithm was used to enhance the SVM system. Moreover,
they used cuckoo optimization algorithm (COA) to opti-
mize the hyperparameters of the classifier. Zhou et al. (2018)
proposed a classification scheme of Fuzzy Support Vector
Machine (FSVM) with hybrid kernel function. Meanwhile,
the hyperparameters were optimized using genetic algorithm
(GA). The results of the practical cases manifest that the
proposed method has application potential for solving the
problem of control chart interpretation in the real situations.
Zaman and Hassan (2019) presented a hybrid method using
a combination of fuzzy c-mean (FCM) and ANFIS. The
comparison showed that the FCM–ANFIS method achieves
comparable classification accuracy for eight types of inves-
tigated CCPs.

With the popularity of deep neural networks (DNNs),
numerous academics have started to adopt it for CCPR.Miao
and Yang (2019) were the first to use convolutional neu-
ral network (CNN) for CCPR based on extracted statistical
and shape features from raw data. Dissimilar to traditional
neural networks, the removal of full-connects between lay-
ers significantly decreases the CNN algorithms’ complexity
(Khan et al., 2017). Later, Zan and et al. (2020b) showed
that CNN could learn optimal features automatically with
no need to apply complex features extraction. Furthermore,
the 1 Dimension CNN (1D-CNN) did well when a real
dataset from production environment was used on top of
the improved automation of the quality control in the pro-
cess. Lu et al. (2020) extended the idea of CCPR to monitor
machining conditions instead of output quality. Experiments
were conducted for two machining processes with different
cutting parameters. The outcomes revealed the applicabil-
ity of CCPR for condition monitoring for the machining
process under different machining environments. Fuqua and
Razzaghi (2020) discussed the issue of imbalanced data in
the CCPR problem. They developed a Cost-Sensitive CNN
(CSCNN) for the imbalanced CCPR problem. Zan and et al.
(2020a) used multilayer Bi-LSTM for CCPR and a similar
problem named histogram pattern recognition (HPR), where
seven histogram patterns are used for anomaly detection of
the process.

One problem that is usually encounteredwhenmonitoring
any process in order to detect abnormal control chart patterns

is the lack of ability to deal with the changing production
rates. For the sake of clarification, consider a situation where
the output of the production line is changing every hour or
every shift while the network is trained to deal with fixed
input size, let say 60 units/minute. This means that if the
throughput yield of the production line is 40, it cannot be pro-
cessed by the network. For the currently available methods,
the network has to be retrained in order to change the input
size, which will be inconvenient in many cases. To the best
of our knowledge, all research works have been conducted
usingCNNs considered detectingCCPs for input signalswith
fixed length. Moreover, a common problem appears when
more than one pattern exists at the same time in a problem
referred to as mixed CCPs. Little research has been done on
the mixed CCPs, and to the best of our knowledge, no one
has considered all the variations and combinations between
all the patterns that could potentially exist (8 mixed patterns)
on top of the variable input size that we consider here. The
different variations and combinations can be very similar in
shape, and previously developed models can be easily con-
fused between them. On the other hand, most of the available
literature found on DNNs for CCPR determines the optimal
hyperparameters as well as the network structure based on
trial and error experiments with no proof of the optimality of
the output.

In this paper, we aim to address the abovementioned three
challenges in one framework based on CNNs. The contri-
butions that we present in this work are as follows; first,
we propose a CNN with Variable Input Size (VIS-CNN)
for the CCPR problem in order to be able to monitor a
signal with variable length. To the best of our knowledge,
this is the first time VIS-CNN has been designed for the
CCPR problem. Second, a modified VIS-CNN is presented
in order to achieve high efficiency when dealing with mixed
CCPs. Third, since hand-tuning is an arduous procedure
to reproduce as it is based on trial and error, we optimize
the hyperparameters as well as the architecture of our pro-
posed VIS-CNN model using Bayesian optimization (BO).
The paper is structured as follows; section “Methodology”
describes the simulation process, the standard CNN, our pro-
posed VIS-CNN algorithm, and the performance evaluation.
Section “VIS-CNN for standard CCP” presents computa-
tional results and comparisons for the VIS-CNN, while
section “VIS-CNN for mixed CCP” shows the modified
VIS-CNN for mixed CCPs and its performance evaluation.
Section “Case study” presents a case study, and section “Con-
clusion” concludes the paper and provides future directions
for research.
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Fig. 2 Illustration of the normal (blue) and mixed abnormal control chart patterns (red) (Color figue online)

Methodology

Data simulation

Essentially, there are six different CCPs in any production
process, namely, normal (NOR) pattern, up and down shift

(US and DS) patterns, up and down trend (UT and DT) pat-
terns, and finally, cyclic (CYC) pattern. The six patterns are
illustrated in Fig. 1. where the abnormal pattern is shown in
red and normal patterns in blue.

We useMonte Carlo simulation to provide a large number
of the CCPs for the classification algorithm. The input signal
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Table 2 Parameters for generating mixed CCPs

Pattern Mathematical representation Parameter value/range

US + UT y(t) � μ + x(t) + ν1 × s + ν2 × d × t μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ],d ∈ [0.1σ, 0.3σ ]

US + DT y(t) � μ + x(t) + ν1 × s − ν2 × d × t μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ],d ∈ [0.1σ, 0.3σ ]

DS + UT y(t) � μ + x(t) − ν1 × s + ν2 × d × t μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ],d ∈ [0.1σ, 0.3σ ]

DS + DT y(t) � μ + x(t) − ν1 × s − ν2 × d × t μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ],d ∈ [0.1σ, 0.3σ ]

US + CYC y(t) � μ + x(t) + ν1 × s × t + ν2 × α × sin(2π t/ω) α ∈ [1.5σ, 4σ ], ω ∈ {4, 5, 6, 7, 8}
DS + CYC y(t) � μ + x(t) − ν1 × s × t + ν2 × α × sin(2π t/ω) μ � 30, σ � 0.05, s ∈ [1.5σ, 3σ ],α ∈ [1.5σ, 4σ ],

ω ∈ {4, 5, 6, 7, 8}
UT + CYC y(t) � μ + x(t) + ν1 × d × t + ν2 × α × sin(2π t/ω) μ � 30, σ � 0.05, d ∈ [0.1σ, 0.3σ ],α ∈ [1.5σ, 4σ ],

ω ∈ {4, 5, 6, 7, 8}
DT + CYC y(t) � μ + x(t) − ν1 × d × t + ν2 × α × sin(2π t/ω) μ � 30, σ � 0.05, d ∈ [0.1σ, 0.3σ ], α ∈ [1.5σ, 4σ ],

ω ∈ {4, 5, 6, 7, 8}

Fig. 3 The structure of the
proposed CCPR method
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of the CCPR problem has three main components y(t) �
μ+x(t)+d(t). A constant term represents the processmeanμ,
random term x(t) that follows normal distribution x(t) ∼
N (0, σ ) withμ � 0 and σ standard deviation to represent the
natural variability in the process. Finally, a function to model
each specific abnormal pattern d(t) where d(t) � 0 for the
NOR pattern. For the US and DS patterns, d(t) � ±ν × s
where v is parameter determining the shift position, and it
is equal to 0 before the shift, and to 1 after the shift, s is
the shift magnitude; positive sign is used for the US pattern,
while negative sign is used for the DS pattern. Similarly, in

the case of the UT and DT patterns, d(t) � ±ν ×d× t where
v is parameter determining the trend position, and it is equal
to 0 before the trend, and to 1 after the trend, d is the slope
of a trend; the sign “+” is used for the UT pattern, and sign
“−” is used for the DT pattern. Lastly, for the CYC pattern,
d(t) � ν × α × sin(2π t/ω) where α is the amplitude of a
cycle, and ω is the period of a cycle. The formulation and
used parameters/ranges of CCPs are summarized in Table 1.

It is worth mentioning that in some literature, the parame-
ter setting lacked randomness (e.g., parameter setting range
was too narrow or using fixed values) when generating simu-
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Fig. 4 1D signal resampling
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Fig. 5 Optimization process: minimum objective tracing

lation data (Zan et al., 2020b) which contradicts the real-life
CCPs. In addition, in themajority of previous literature, about
60 sampling points were used as an input size for whatever
model used (Zan et al., 2020b). This could ensure a more
considerable difference between different CCP types; how-
ever, it lowers the detection ability of the model. To imitate
actual manufacturing processes, we tend to make compli-
cated changes to the monitored object. The mean μ is set to
30, and the standard deviation σ is set to 0.05. The rest of
the CCP parameters are selected randomly within a specific
range. For the slope, d ∼ U (0.1σ , 0.3σ ), the magnitude of
the shift s ∼ U (1.5σ , 3.0σ ), the amplitude of cyclic patterns
α ∼ U (0.1σ , 0.3σ ), and the period of cycle ω ∼ U (4, 8).
Also, to provide a more realistic resemblance to the real-
world situations, the starting point of the abnormal pattern
ν ∼ U (4, 10). This means that every window of abnormal

pattern starts with in-control data and eventually includes
only out-of-control vectors regardless of the window size.
This indeed increased the difficulty of the CCPR because of
the large randomness of parameters.

On the other hand, in real-life situations, there is no guar-
antee that CCP will appear in a sole manner. The traditional
CCPR methods in such cases will only detect one pattern at
a time, which can be misleading. Hence, we simulate various
mixed CCP to be used along with the six traditional CCPs
which are shown in Fig. 2. We also show the equations used
for the mixed patterns and their parameters in Table 2. Sim-
ilar to the simulation for the traditional CCPs, the μ is set
to 30, and the σ is set to 0.05. Also, d ∼ U (0.1σ , 0.3σ ),
s ∼ U (1.5σ , 3.0σ ), α ∼ U (0.1σ , 0.3σ ), and ω ∼ U (4, 8)
and independent from each other.

Proposed pattern recognitionmethod for standard
CCP

We use CNN as the central core of the proposed algorithm.
The advantage of using CNN in the context of the CCPR
problem is that it can automatically detect significant features
with no need for any domain expertise. CNN consists of six
elementary layers, namely, the input layer, the convolutional
layer, activation function layer, pool layer, fully-connected
layer, and the output layer.

The combination of convolutional and pooling layers per-
forms feature extraction while the classification occurs at
the fully connected layer (Xia et al., 2018). The weights
and biases of a convolutional layer are arranged as a
sequence of convolutional kernels known as filters). The
convolution of multiple input feature maps and multiple con-
volutional kernels yields to an output feature map as xlj � f

Table 3 Optimized structure and
parameters of the VIS-CNN Layer No Name Parameters

1 Image input 30×1×1

2 Convolution 24×1×1 convolutions with stride [1 1], 16 filters

3 ReLU –

4 Max pooling 12×1 max pooling with stride [1 1]

5 Fully connected 6 fully connected layer

6 Softmax –

7 Classification –
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(∑Dl−1
i�1 xl−1

i ∗ ωl
i j + blj

)
, j � 1, 2, . . . , Dl where l repre-

sents the layer number, D is the number of feature maps, ω
is a convolutional filter between each consecutive layers, xlj
represents the jth output featuremap,b is the bias, and f is the
activation function. The most common nonlinearity activa-
tion functions are Sigmoid function f (x) � 1/

(
1 + e−x

)
and

Rectified Linear Units (ReLU) function f (x) � max(0, x).
On the other hand, the pooling layer reduces the dimension of

the feature maps through downsampling xlj � down
(
xl−1
j

)
,

j � 1, 2, . . . , Dl where the xlj here is the jth output of the
pooling map and down is the pooling function. In this paper
we use max pooling where the maximum value of the sub-
sampling region is taken as a new feature. The output of the
pooling layer is then turned into a single vector, and then
weights are applied to predict the correct label in the fully
connected layer. The last layer of the CNN is that the output
layer represents the number of pattern types to be identified.
Usually, the activation function of the output layer is a Soft-
max function, which is presented as f (xi ) � exi /

∑N
j�1 e

x j .
Finally, the goal of the training phase algorithm is to esti-

mate the parameters
(
ωl
i j and blj

)
which minimize the cost

function. In this paper, the CNN used has inputs and outputs
of a width of 1.

The proposedCCPRmethod is shown in Fig. 3; at first, the
input signal is resized to match the input of the CNN using a
resampling technique. In real applications, the length of the
monitored data might be changed per unit time due to the
production needs, especially in sensor-based real-time mon-
itoring. Therefore, this paper proposes a VIS-CNN to tackle
the CCPR regardless of the input size.We further continue by
determining the best structure of the used CNN by defining
the number of convolutional blocks and optimal hyperparam-
eters using BO. The suggested VIS-CNN can take raw data
as an input and provide end-to-end recognition.

The rawCCPdata,will be divided into training, validation,
and test sets, are generated as described in the “Data simula-
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Fig. 7 Effect of different number of training samples on the performance

tion” section. The weights and biases of a CNN structure are
optimized and adjusted by Back Propagation to minimize the
objective cost function using the training set. The test set is
then used to validate the optimized CNN. The performance
measure used is the correct recognition rate (CRR), repre-
sented as:

CRR � correctly identified patterns/total number of patterns

At last, the proposed VIS-CCNwas compared to other exist-
ing methods for the CCPR problem.

Image resizing using resampling

In order to use a variable-sized signal, wewill resize the input
signal using a resampling method. Unlike other methods,
resampling can resize an image without losing information
or adding noise. Consider a signal represented as a 1D image
in our case, s(x) that is ideally sampled with a summation of
delta functions or comb where

comb(x) �
∞∑

n�−∞
δ(x − n) (1)

and

δ(x − n) �
{
+∞, x � n
0, x �� n

. (2)

Then, the sampled signal could be expressed as

Ss(x) � s(x) · 1

X
comb

( x

X

)
�

∑
n

s(nX)δ(x − nX) (3)

Resizing an image by resampling (upsampling or downsam-
pling) can be described as a two-step process. First, the
continuous signal is reconstructed using some low-pass filter,
h( f ), via a spatial-domain convolution to pass the baseband

123



1948 Journal of Intelligent Manufacturing (2023) 34:1941–1963

Fig. 8 Confusion matrix for the
CCPR using VIS-CNN and raw
data

Table 4 Performance of
different machine learning
methods for CCPR

Reference Input data type Classifier Correct recognition ratio %

Ranaee and Ebrahimzadeh
(2013)

Shape and statistical
features

MLP 99.15

Kao et al. (2016) Independent component
analysis

SVM 98.94

Zhou et al. (2018) Shape and statistical
features

FSVM 99.28

Addeh et al. (2018) Shape and statistical
features

Bees-RBF 99.63

Zan et al. (2020b) Raw data 1D-CNN 99.30

Zan et al. (2020a ) Raw data Bi-LSTM 99.26

Aziz kalteh and Babouei
(2020)

Shape and statistical
features

CWOA-ANFIS 99.77

Proposed method Raw data VIS-CNN 99.78

replicate of the sampled signal spectrum. As illustrated in
Fig. 4, the reconstructed continuous signal is then resam-
pled with the new sampling frequency, the reconstructed
continuous signal and the resampled signal are expressed,
respectively, as

g(x) � (ss(x) ∗ h(x)) �
∑
n

s(nX )h(x − nX ) (4)

gs(x) � g(x) · 1

X ′ comb
( x

X ′
)

�
∑
n

g(nX ′)δ(x − nX ′) (5)

In general, resampling can be achieved through various inter-
polation methods. Image interpolation tries to achieve the
best estimation of a pixel’s intensity using neighboring pixel
values on proximity basis. Interpolation is above all essen-

tial when resampling the image to meet the specifications
or present the final image with no visual loss. The distance
between samples of the original signal is divided into several
intervals. Then, interpolation is used to estimate the values
of the resampled points. Image interpolation can generally
be achieved through three methods: nearest neighbor, bilin-
ear interpolation, or bicubic interpolation (Antoniou, 2016).
Since each method has its own merits and challenges, more
discussion on the choice of appropriate method is provided
by Hemanth and Balas (2019). For a 1D signal, linear inter-
polation is widely adopted for ease of calculation and good
efficiency; hence we use it here. Note that the underlying
assumption that it is always possible to distinguish between
low and high-frequency signals (Lévesque, 2014).
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Fig. 9 Correct classification
percentage of VIS-CNN (left
matrices) vs 1D-CNN (right
matrices) for various input sizes
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Fig. 9 continued

Tuning of hyperparameters using Bayesian optimization

In this paper, we want to find the best performing hyper-
parameters of a CNN measured on a validation set. Hyper-
parameters, in contrast to model parameters, are set by the
operating engineer before training by trial and error. Hyper-
parameters optimization can be represented in equation form
as θ∗ � argmin

x∈X EV (θ ) where EV (θ ) represents the objective

function evaluated on the validation set,θ∗ is the set of hyper-
parameters that yield the lowest value of the score, andwhere
θ is a vector of the considered hyperparameters. Optimizing
hyperparameters is usually very expensive due to the need
to retrain the model for every set of new hyperparameters
and then calculate the validation metric. BO can be advanta-
geous over other methods due to its ability to minimize the
number of training cycles (Victoria&Maragatham, 2020). In
Bayesian optimization (BO), the objective function is repre-

sented as a probabilistic model. Intuitively, instead of merely
using the local gradient andHessian approximations, we take
advantage of all the available information from the previous
evaluations. This way, computations are done to determine
the next point to evaluate. In general, BO has the ability to
find the extrema of complicated nonconvex functions with
relatively small number of evaluations (Brochu et al., 2010).
Assume that EV (θ) is drawn from a prior that follows Gaus-
sian Process (GP), i.e., EV (θ ) ∼ N (0, K ), where EV (θ) has
some Gaussian noise with zero mean and standard deviation
of σ and its kernel is given as

K �
⎡
⎢⎣
k
(
θ1, θ1

)
. . . k

(
θ1, θ t

)
...

. . .
...

k
(
θ t , θ1

)
. . . k

(
θ t , θ t

)

⎤
⎥⎦ + σ 2

noise I
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Fig. 10 Optimization process for the Bi-LSTM network: minimum
objective tracing

Fig. 11 Classification accuracy for the four models under variable input

where k
(
θ1, θ

′
1

)
is the covariance function and σ 2

noise is the

variance of the Gaussian noise. Assume the observations
from the preceding iterations denoted as D1:t and are in the
form as

{
θ1:t , EV

1:t

}
where EV

1:t � EV
(
θ1:t

)
.

Denote θ1+t as the next point to evaluate and the value
of the function at θ t+1 as EV

t+1 � EV
(
θ t+1

)
. Under the GP

prior, EV
1:t and EV

t+1 are known to be jointly Gaussian, and
the predictive distribution can be obtained (Rasmussen &
Nickisch, 2010):

EV
t+1|D1:t ∼ N

(
μ

(
θ t+1

)
, σ 2(θ t+1

)
+ σ 2

noise

)
(6)

where

μ
(
θ t+1

) � kT
(
K + σ 2

noise I
)−1

EV
1:t , (7)

σ 2(θ t+1
) � k

(
θ t+1, θ t+1

) − kT
(
K + σ 2

noise I
)−1

k, (8)
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Fig. 12 Optimization process for the modified VIS-CNN: minimum
objective tracing

and

k � [
k
(
θ t+1, θ1

)
k
(
θ t+1, θ2

) · · · k(θ t+1, θ t
)]T

(9)

Consequently, the predictive posterior distribution EV
t+1|D1:t

can be characterized by its predictive mean function μ
(
θ t+1

)
and predictive variance function σ 2

(
θ t+1

)
, which solely

depend on the choice of the covariance function k
(
θ, θ

′)
.

In this study, the ARD Matern 5/2 covariance function is
used (Snoek et al., 2012).

k
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√√√√5
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/γ 2

l +
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(
θ l − θ

′
l

)2
/γ 2

l

⎞
⎠ e

−
√
5

l∑
l�1

(
θ l−θ

′
l

)2
/γ 2

l

(10)

where γ0 is covariance amplitude and γl is the character-
istic length scale, which are the hyperparameters of the GP.
Note that these hyperparameters are distinct from those being
subjected to the overall Bayesian optimization. The most
commonly advocated approach is to use a point estimate of
these parameters by optimizing themarginal likelihood under
the GP (Snoek et al., 2012). As stated earlier, BO tends to
allocate more computations on determining the next point
θ t+1 to evaluate, and it does so by using an acquisition func-
tion created from the above-discussed predictive posterior
distribution. Acquisition functions balance between discov-
ering new areas in the objective space and exploiting areas
that are already identified to have auspicious values. The
acquisition function is based on Expected Improvement (EI)
over the best-expected value μbest � argminθ j∈
1:t

μ
(
θ j

)
,
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Table 5 Optimized structure and
parameters of the modified
VIS-CNN

Layer No Name Parameters

1 Image input 30×1×1

2 Convolution 35×1×1 convolutions with stride [1 1], 45 filters

3 ReLU

2 Convolution 35×1×1 convolutions with stride [1 1], 45 filters

3 ReLU

4 Max pooling 12×1 max pooling with stride [1 1]

5 Fully connected 12 fully connected layer

6 Softmax

7 Classification

Fig. 13 Correct classification
percentage of VIS-CNN

which has a closed-form solution under the GP (Snoek et al.,
2012) assumption as follows:

aEI
(
θ t+1

) � σ
(
θ t+1

)
[Z�(Z ) + φ(Z )] (11)

where�(·) andφ(·) areCDF andPDFof the standard normal,

respectively, and Z � μbest −μ
(
θ t+1

)
σ
(
θ t+1

) . Therefore, the point to

be evaluated in the next iteration is determined so that it

maximizes the acquisition function. It is noted that, unlike
the original unknown objective function, aEI(·) in Eq. (11)
can be cheaply sampled to be maximized. Steps for the BO
adopted in this paper is described as follows:

1. Define the θ domain of hyperparameters to search over
2. Calculate the predictive mean and predictive variance

functions μ
(
θ t+1

)
and σ 2

(
θ t+1

)
using Eqs. (7) and (8)
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using the chosen ARD Matérn 5/2 covariance function
in Eq. (10)

3. Find θ t+1 by optimizing the acquisition function over the
θ t+1 � argmaxθ aE I

(

|D1:t

)
4. Evaluate the validation error EV

(
θ t+1

)
through the deep

learning model with θ t+1 determined in step 3
5. A history consisting of (score, hyperparameters) pairs

used by the algorithm to update GP

VIS-CNN for standard CCP

We generated 2000 samples of each data length (25, 30, 35,
40, and 45) for the six patterns. The dataset was randomly
divided into three parts, of which 70% of samples were used
to trainVIS-CNN, 15%of samples for validation, and the rest
were used for testing. The data is all resampled and resized
to have a length of 30. To this point, the structure and hyper-
parameters of the network have not been determined yet. BO
is then used to obtain the optimal hyperparameters.

We choose the variables to be optimized and the corre-
sponding ranges to search using BO. First, we optimize the
network section depth. This parameter controls the number
of convolutional blocks in the network. We set the searching
range between 1 and 4. Then, we search for the best learn-
ing rate, note that it may depend on the data as well as the
network structure. The searching set is between 0.01 and 1.
We use L2 regularization in order to avoid overfitting, and
we search the space of regularization strength to find a good
value. Adaptive Moment Estimation (Adam) is used for the
training process.

The values of the observed and estimated objective func-
tions of the optimization process are illustrated in Fig. 5. It
can be seen that function evaluation ends with 30 iterations
because of the model saturation. At the end of the 27th iter-
ation, the minimum observed objective is achieved, which
will later be used to construct the best model.

Table 7 gives the values for the hyperparameters (best
values are bolded) obtained from thevalidation set over the 30
iterations. The section depth is found to be 1, which implies
that only one convolutional layer is enough for achieving
the highest accuracy. The optimal network structure and its
parameters are shown in Table 3.

Influence of resampling size and number of training
samples on the recognition performance

Although the developed model can deal with variable input
sizes, the used CNN can only have a fixed input size. Hence,
we need to find the optimal output size of the resampling
process, which will be the CNN’s input. To select the most
convenient input size, we performed a set of simulations
whose results are shown in Fig. 6. Using the same training

Fig. 14 Example of the noise in the extracted feature for the original
and denoised signal

set, the size of the resized signal is tested for various sizes.
We use the Bayesian optimized CNN for all of the trials. As
shown in Fig. 6, the best-resized signal input of the network
is 30, and the corresponding CRR is 99.7%.

On the other hand, different number of training samples
per pattern has been explored in order to define the best num-
ber of samples that can achieve the required accuracy. As
shown in Fig. 7, the number of samples of each CCP was
respectively set to a range between 500 and 5000 with a step
of 500. It can be observed that starting from 2000 training
samples per pattern, no significant change can be noticed in
the CRR.

Performance evaluation of VIS-CNN

In order to evaluate the classifier performance more intu-
itively, the confusion matrix is used. The diagonal values
represent the count of the number of correctly recognized
patterns, while the values around the diagonal denote the
number of misclassifications. For the VIS-CNN, the confu-
sion matrix is shown in Fig. 8. The CRR of the VIS-CNN
compared to other recent CPPR literature is shown in Table
4. The results showed that the VIS-CNNhas the highest CRR
(99.78%) compared to the other methods. Since we classify-
ing six faults, the number from 1 to 6 represents respectively
the following patterns CYC, DT, NOR, DS, US, and UT.

To assess the proposed method’s performance further, a
comparative experiment ofVIS-CNNand1D-CNNproposed
by Zan et al. (2020b) in terms of various input sizes is con-
ducted, as shown in Fig. 9. The 1D-CNN used by Zan et al.
(2020b) was shown to be superior over multi-layer percep-
tron (MLP) in cases when the input was either the raw data
or the feature set. The feature set included the statistical
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Fig. 15 The new structure of the
VIS-CNN with AdaBoost
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features (mean, standard deviation, skewness, and kurtosis)
and shape features (S, NC1, NC2, APML, APSL). In addi-
tion, the 1D-CNN had almost a similar performance as the
method proposed byMiao andYang (2019), where CNNwas
used with shape and statistical features as inputs. Hence, we
choose Zan et al. (2020b) for comparison. It is important to
note that the structure of the VIS-CNN is different from the
1D-CNNproposed by Zan et al. (2020b) in twomain aspects.
First, theVIS-CNNstructure can dealwith variable input size
due to the incorporation of the image resizing process, which
is not the case in the 1D-CNNwhere the network needs to be
retrained for each different input size. Secondly, BO showed
that the optimal structure for the VIS-CNN has one con-
volutional layer which is simpler and less computationally
expensive than the 1D-CNN which has two convolutional
layers.

As depicted in Fig. 9, when the window size is 25, the
image has to be enlarged. The VIS-CNN has CRR � 97.3%

less than the 1D-CNN that has CRR � 98.1%. When the
window size is increased to be 30, the VIS-CNN has a higher
CRR � 99.6% than the 1D-CNN with CRR � 99.3%. For
35 window size, still, the VIS-CNN outperformed the 1D-
CNN with CRR � 99.7% for the former and 98.2% for the
latter. For 40 and 45 window sizes, the VIS-CNN has the
highest CRR of 100% and 99.8 and 99.8 for the 1D-CNN,
respectively. It worthy to mention that the training time of
the VIS-CNN is between 7 to 13 min on a personal computer
with an i7-8700 CPU@3.20-GHzCPU, 16GBRAMand 64-
bit operating system. TheVIS-CNN is advantageous over the
1D-CNN since only one training process is needed for any
input size.

In order to show the performance of the VIS-CNN against
other methods in terms of its capability to deal with the vari-
able window size we consider substituting the 1D-CNNwith
SVM and ANFIS and Bi-LSTM. For a fair comparison, we
are dealing with raw input data. In addition, the samemethod
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Fig. 16 Correct classification
percentage of VIS-CNN with
AdaBoost

used for resampling is used when training and testing the
SVM and ANFIS based models. In contrast, this is not the
case for the Bi-LSTM since it already has the ability to per-
form inference on variable lengths. In addition, a dataset with
2000 samples of each pattern is simulatedwhere 70%percent
was used for the training, and 30% was used for testing.

For the Bi-LSTMwe choose the variables to be optimized
and the corresponding ranges to search using BO. First, we
optimize the number of Bi-LSTM layers where the search-
ing range is between 1 and 4. Then, we search for the best
learning rate and L2 regularization in the interval 0.01–1 and
0–0.1, respectively. Adam is used for the training process.
The values of the observed and estimated objective functions
of the optimization process are illustrated in Fig. 10, where
the optimal parameters are achieved at the end of the 21st
iteration, the minimum observed objective is achieved. The
best model is achieved with 2 layers with an initial learning
rate of 0.021 and L2 regularization of 0.0036. The Bi-LSTM
network achieved a high accuracy of 99.14%, which is very
competitive to VIS-CNN; however it tookmore time than the
1D-CNN due to its sequential nature.

On the other hand, for the SVM, three types of kernels
were considered here; namely Linear, Quadratic and Gaus-
sian kernels. For each kernel, box constraint and kernel scale
are optimized. The optimal box constraint and kernel scale
are found to be 3 and 4.31 for the SVM with Linear kernel
with corresponding accuracy of 95.04%. While, the SVM
with Gaussian kernel showed 97.9% accuracy through 1.17
and 1.4 optimal box constraint and kernel scale, respectively.
Finally, the highest accuracy was obtained by the Quadratic
kernel-based SVMwith an accuracy of 98.34%. The optimal
box constraint and kernel scale are found to be 0.466 and
5.798, respectively.

For the ANFIS, several membership functions are avail-
able however, the initial trials showed that it does not play
a vital role. Hence we consider the Gaussian membership
function since only two parameters represent it. Jang (1993)
indicated that the ANFIS algorithm could perform classifi-
cation between two labels; hence, six ANFIS models were
trained and tested for each pattern using the IF–THEN rules.
In other words, each ANFIS model gives a result if the spec-
ified pattern is observed or not. For the training and testing, a
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Table 6 Performance of
different machine learning
methods for the CCPR for
mixed patterns

References Input data type CRR for 4 mixed
patterns %

CRR for 8 mixed
patterns %

Zhang and Cheng
(2015)

Shape and statistical
features

97.6 –

Kadakadiyavar et al.
(2020)

Raw data 97.22 –

Proposed method Raw data 99.5 97.9

hybrid method where backpropagation is used for the param-
eters associated with the input membership functions, while
least squares estimation is used for the parameters associ-
ated with the output membership functions. Then the fuzzy
inference system is generated using subtractive clustering
(Yager & Filev, 1994). The optimal initial step size is found
to be 0.018. The final achieved accuracy is 96.7%. Finally, we
report the results from 10 replicates of the inference for the
VIS-CNN, Bi-LSTM, ANFIS and Quadratic based SVM in
Fig. 11. As it can be seen, The VIS-CNN showed the highest
performance, followed by the Bi-LSTM. One important con-
clusion is that relying only on raw data for ANFIS and SVM
in the CCPR problem does not achieve good performance;
instead, statistical and shape features should be used.

In standard SPC charts, analysis could be done to measure
the two types of error committed by the chart (Type I error
and Type II error). Type I error could be explained as when it
is inferred that a process is out of control when it is actually
in control whilst Type II error is exhibited when the process
is seen to be in control when it is indeed out-of-control. In
our study, we performed 100 simulations, and we found out
that the normal pattern was detected to be abnormal with an
average of 2.11, where the normal pattern appeared with an
average of 724.52 in the testing set, henceType I error 0.0029.
Similarly, we can estimate Type II error to be 0.0021 since the
model only. On the other hand, the traditional control chart
usually is designed to have a 0.0027 Type I error (370.37
in-control average run length (Maged et al., 2021)).

VIS-CNN for mixed CCP

We generated 28,000 samples of each data length (25, 30,
35, 40, and 45) for the 14 patterns. Similar to what we did
for the case of standard CCP, the dataset was random divided
into 70% for the training set, 15% samples for validation,
and 15% for the testing set. BO is also used to obtain the
optimal hyperparameters of the network.We choose the same
variables and ranges to be optimized using BO. Figure 12
shows the best observed and estimated values of the objective
function and Table 8 shows the hyperparameters for each
iteration (best values are bolded). The best parameters for
the network are shown in Table 5.

Input 

Pre-treatment

Annealing

Galvanizing

Inspection 

Automatic Coating 
Gauge

Fig. 17 Sequence of processes used to produce galvanized cold rolled
coils

After the training process, we test themodel, and the resul-
tant CRR is 91.4%. The confusionmatrix is shown in Fig. 13.
For the CCPR problem, this accuracy is quite low and needs
to be enhanced.

To further provide more precise classification, we uti-
lize CNN as a feature extractor to obtain features from the
input data then employ an ensemble method namedAdaptive
Boosting (AdaBoost) as a classifier in the higher level of the
network. AdaBoost can combine multiple weak classifiers,
which in this case are binary decision trees, into a strong clas-
sifier. A tree boosting model output ŷi with K trees is defined
as ŷi � ∑K

k�1 fk(xi ), fk ∈ F where F � {
f (x) � ωq (x)

}
(
q : Rm → T , ω ∈ R

T
)
is the spaceof classification trees. fk

divides the trees into structure part and leaf weights part rep-
resented respectively as q and ω. T symbolizes the number
of leaves in the tree. The objective function of the model can
be represented as O � ∑

i c
(
ŷi , yi

)
+

∑
k l( fk) where c(·) is

the cost function representing the distance between the pre-
diction ŷi and the object ŷi and l(·) is the regularization term.

By examining the extracted features from CNN, which
are the input to the AdaBoost, too much noise is observed.
For example, we show the noise exhibited in one sample
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Fig. 18 Accuracy and validation
error for the dataset

of the training set of the boosting algorithm in Fig. 14.
Hence, we add a new stage for denoising using wavelet
denoiser. The basic idea behind wavelet denoising is that the
wavelet transforms signal and image features in a few large-
magnitude wavelet coefficients. Wavelet coefficients that are
small in value are typically noise and shall be removed with-
out affecting the signal or image quality. After we threshold
the coefficients, we reconstruct the data using the inverse
wavelet transform. We use wavelet denoise method called
empirical Bayesian method with a Cauchy prior as described
by Johnstone and Silverman (2004).

The new structure for the CCPR for mixed patterns is
illustrated in Fig. 15 where the two new stages are added.
Evidently, the new structure could successfully increase the
classification accuracy rates from 91.4 to 97.9% as shown in
Fig. 16. These observations notably demonstrate the efficacy
and realism of the proposed CCPR method.

The CRR of the proposed VIS-CNN with AdaBoost for
mixed CPPs is compared to other recent literature is shown in
Table 6. Previous literature has only considered 4 mixed pat-
terns, hencewe compare the proposed algorithm for the same
4mixedpatternswhere it is found that the proposed algorithm
has the highest CRR with 99.5%, note that both the meth-
ods provided byZhang andCheng (2015) andKadakadiyavar
et al. (2020) cannot deal with variable input size and the used
fixed input size is 30.

Case study

This section shows the usage of the proposed method for
monitoring the thickness of galvanized metal sheets. The
coating thickness is an essential requirement as it directly
relates to the effectiveness of corrosion protection. As illus-
trated in Fig. 17, the sheets pass through a pretreatment
process at first to remove all the rolling oil and contam-
inations from the surface. The material properties of the
sheets are then enhanced through recrystallization during the
annealing process. The resulting sheets are galvanized until
the desired coating thickness and weight is achieved.

Continuousmeasuring of coating thickness requires a spe-
cial measurement system. The installed measuring system
uses the magnetic induction principle. An excitation cur-
rent in a probe generates a low-frequency magnetic field
that spreads throughout the magnetizable base material. The
non-magnetic coating deteriorates the magnetic field. The
reduction in its strength is used to determine the coating’s
thickness. As metal sheets move down the conveyor, an auto-
matic coating thickness gauge is installed at the line’s exit.

The production line rolls sheets at speeds between
30–100 cm/s depending on the required thickness. This
means that the sizes of the output samples can change mul-
tiple times over the shift, making the traditional CCPR
methods inadequate since they may need to be retrained for
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Fig. 19 Process monitoring
using control chart and CCPR

(a) and control chart (subgroup size 5)

(b) I & MR control chart
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Fig. 20 Process monitoring
using control chart and CCPR
for mixed CCP

(a) and control chart (subgroup size 5)
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(c) Abnormal CCPs extracted by the VIS-CNN
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each rolling speed, while the proposed method can resize
the sample size for each speed. The raw collected data from
the process had to be preprocessed before it was feed to
the system due to the outliers and missing values. Instead
of removing the outliers entirely we used winsorization by
limiting extreme values in the data to reduce the effect of
possibly spurious outliers. At the same time, missing val-
ues are replaced by the mean value due to its relatively low
computational effort. Similar to the number of subgroups in
simulation experiments, the reference window size of CCPR
is also set as 30 where the in-control mean of the process is
64, with a standard deviation of 0.06. The accuracy and loss
error of the training on both the training and validation sets is
shown in Fig. 18. It is observed that no over-fitting has been
encountered on the validation set in the training procedure.
Note that we use the modified VIS-CNN for monitoring all
14 patterns formonitoring all the samples. Also, it is essential
to mention that the training time of the modified VIS-CNN is
similar to the one in the simulation experiments, which is less
than 8 min. As we mentioned before, only one training pro-
cedure is required for the network to monitor any input size,
note that the prediction can be performed very fast in-situ.

Traditional monitoring techniques such as Shewhart
charts (including Nelson rules) did not detect any pattern,
and the process was declared to be in control, as shown in
Fig. 19a, representing X and R charts and 02(b), representing
the individual chart andMR charts. The proposed CCPR sys-
tem presented in Fig. 19c detects an uptrend pattern in point
187. This implies that the thickness of the coating layer has
been subtly and steadily increasing. A change in the thick-
ness of the coating layer could lead to anunwanted increase or
decrease in theweight and change in the sheet properties. The
increase in thickness of the coating layer implies that the dip-
ping speed has been decreasing.Analyzing the process, itwas
found that some internal parts of the mechanism controlling
the dipping speed needed to be changed. This illustrates that
the CCPR method based on VIS-CNN can correctly identify
the traditional CCP appears in a production process. Another
pattern was detected which was a combination of cyclic and
downtrend patterns. In this process, such a combination can
appear if some vibration is encountered, causing the coating
layer not to stick properly on the metal sheet. From Fig. 20,
we can see that the pattern has been detected by the SPC con-
trol charts later than the CCPR system when it was detected
at sample 103. The CCPR system can also be advantageous
over SPC since it can identify the detected pattern rather than
just alarming out-of-control points.

Conclusion

This paper presents a VIS-CNN model to study the well-
known CCPR problem in industrial environment. We have
mainly tackled the literature gap of developing CCPR clas-
sification for variable input size. In addition, in order to
increase the efficiency of the network, we optimized the
hyperparameters and structure of the VIS-CNN using BO.
Furthermore, we include the mixed CCP and provide a
modified scheme to achieve a high recognition ratio of
8 mixed patterns on top of the original 6 patterns. The
modified scheme includeswavelet noise reduction andAdap-
tive Boosting. The modified scheme increased significantly
enhanced the performance of recognizing the 14 patterns. To
demonstrate our algorithm’s advantages, an extensive exper-
imental study has been conducted using both simulated and
real-world datasets. The results of the proposed VIS-CNN
have been compared with the performance of the existing
CNN algorithms in terms of the CRR as well as other algo-
rithms from the literature.

This research lays down the foundation for several future
lines of research. For example, we have shown the efficacy of
theVIS-CNNandmodifiedVIS-CNNon standard andmixed
abnormal patterns; however, a sequel research work may
consider investigating newer patterns and developing deeper
VIS-CNNmodels. In addition, the developed method should
be updated in order to be cost-sensitive where one abnormal
pattern may be costlier than other. Finally, a newmethod that
can deal with autocorrelated data should be developed.
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Table 7 Observed and estimated objective functions and corresponding hyperparameters

Iter Objective Best observed
objective

Best estimated
objective

Section depth Initial learning rate L2 Regularization Evaluation result

1 0.50022 0.50022 0.50022 1 0.33817 1.15E−09 Best

2 0.83111 0.50022 0.53321 2 0.38789 3.24E−10 Accept

3 0.004 0.004 0.032283 3 0.014392 8.39E−09 Best

4 0.83356 0.004 0.0040512 3 0.93109 0.003202 Accept

5 0.83111 0.004 0.0040767 2 0.071964 3.44E−09 Accept

6 0.83156 0.004 0.10271 1 0.9657 1.23E−08 Accept

7 0.834 0.004 0.66651 3 0.017367 1.86E−09 Accept

8 0.005778 0.004 0.58392 1 0.01778 0.008442 Accept

9 0.45089 0.004 0.56914 3 0.014384 0.001203 Accept

10 0.17111 0.004 0.42048 3 0.025446 1.01E−10 Accept

11 0.002667 0.0026667 0.0026732 3 0.014147 7.22E−10 Best

12 0.004667 0.0026667 0.27543 2 0.01566 1.59E−10 Accept

13 0.834 0.0026667 0.26794 4 0.084313 4.20E−09 Accept

14 0.002667 0.0026667 0.21541 4 0.011041 1.36E−05 Accept

15 0.66867 0.0026667 0.2148 1 0.17453 7.50E−09 Accept

16 0.002667 0.0026667 0.21211 1 0.034091 1.06E−09 Accept

17 0.005556 0.0026667 0.18008 3 0.01466 1.84E−10 Accept

18 0.50022 0.0026667 0.18076 1 0.24567 5.90E−08 Accept

19 0.83422 0.0026667 0.17698 3 0.83685 2.48E−07 Accept

20 0.002444 0.0024444 0.15239 1 0.01155 1.00E−09 Best

21 0.003111 0.0024444 0.035833 1 0.010047 8.22E−10 Accept

22 0.002667 0.0024444 0.0059573 1 0.011919 8.08E−10 Accept

23 0.834 0.0024444 0.055756 2 0.036713 1.32E−09 Accept

24 0.006889 0.0024444 0.04365 2 0.029879 8.91E−10 Accept

25 0.004 0.0024444 0.027967 2 0.012849 5.65E−10 Accept

26 0.83533 0.0024444 0.023248 2 0.12412 1.17E−09 Accept

27 0.001777 0.0017778 0.0023458 1 0.013502 1.023e−08 Best

28 0.003333 0.0017778 − 0.0073915 3 0.010032 5.24E−10 Accept

29 0.834 0.0017778 − 0.0058137 4 0.33275 3.35E−10 Accept

30 0.003778 0.0017778 − 0.009824 2 0.01004 1.04E−10 Accept
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Table 8 Observed and estimated objective functions and corresponding hyperparameters for modified VIS-CNN

Iter Objective Best observed
objective

Best estimated
objective

Section depth Initial learning rate L2 Regularization Evaluation result

1 0.036111 0.036111 0.036111 1 0.016482 2.83E−10 Best

2 0.91544 0.036111 0.080143 2 0.91209 1.36E−10 Accept

3 0.033556 0.033556 0.034863 1 0.01145 0.00021663 Best

4 0.035444 0.033556 0.035052 1 0.02024 7.22E−10 Accept

5 0.92033 0.033556 0.035064 4 0.033447 1.25E−07 Accept

6 0.91533 0.033556 0.033485 1 0.99966 2.16E−10 Accept

7 0.91811 0.033556 0.033553 1 0.98536 0.00713 Accept

8 0.92033 0.033556 0.03377 2 0.3502 0.0051795 Accept

9 0.91544 0.033556 0.033421 1 0.99759 0.00083884 Accept

10 0.035111 0.033556 0.034199 1 0.014318 7.54E−08 Accept

11 0.035889 0.033556 0.034385 1 0.010001 2.03E−07 Accept

12 0.037778 0.033556 0.035308 1 0.014119 1.48E−07 Accept

13 0.040556 0.033556 0.036653 1 0.014164 1.66E−07 Accept

14 0.039 0.033556 0.036848 1 0.034095 1.07E−08 Accept

15 0.036 0.033556 0.036522 1 0.013069 2.16E−07 Accept

16 0.036222 0.033556 0.036068 1 0.010032 5.26E−08 Accept

17 0.038556 0.033556 0.036435 1 0.010001 2.70E−08 Accept

18 0.038444 0.033556 0.036316 1 0.025081 2.89E−09 Accept

19 0.036444 0.033556 0.036321 1 0.025703 4.14E−09 Accept

20 0.038111 0.033556 0.036282 1 0.024989 5.33E−09 Accept

21 0.91811 0.033556 0.036054 3 0.38261 0.0037216 Accept

22 0.043333 0.033556 0.035872 1 0.022979 2.79E−09 Accept

23 0.036111 0.033556 0.035826 1 0.010107 6.54E−07 Accept

24 0.057222 0.033556 0.035847 1 0.13232 1.03E−10 Accept

25 0.029444 0.029444 0.02951 2 0.01139 0.00039916 Best

26 0.036778 0.029444 0.029428 3 0.010036 1.26E−10 Accept

27 0.913 0.029444 0.02943 4 0.97711 1.25E−10 Accept

28 0.047778 0.029444 0.029442 1 0.074786 1.27E−09 Accept

29 0.073111 0.029444 0.029375 2 0.05709 1.02E−10 Accept

30 0.040111 0.029444 0.029375 1 0.049308 5.63E−10 Accept
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