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Abstract
Thermal error of machine tools has a huge influence on the accuracy of the workpiece. However, the nonlinearity of the
thermal error limits the accuracy and robustness of the prediction model. With the rapid advancement in artificial intelligence,
this paper presents a novel thermal error modeling method based on random forest. The model’s hyper-parameters are easy
to be optimized by grid searching method integrating with cross validation. The temperature features are measured as the
model input. Based on the out-of-bag data generated during modeling process, the proposed model itself can simultaneously
evaluate the temperature feature importance through comparing the decrease inmodel’s the prediction accuracy after randomly
shuffling the value of the target feature. Moreover, to enhance the model performance and reduce the measurement and
computational cost, the method of selecting key temperature points are presented to exclude the redundant features through
iteratively eliminating the least important feature and comparing the prediction accuracy under different feature combinations.
Furthermore, the hysteresis effect between temperature and deformation is also considered. The method of determining the
time lag is proposed through permuting the original time series of the target feature while keeping the remainder constant
and comparing the resultant relative importance. A thermal error experiment validates the accuracy and robustness of the
proposedmodel which can continuouslymaintain the prediction accuracy of over 90% in spite of varying operation conditions.
Compared to conventional machine learning methods, the proposed model requires less training data, enables faster and more
intuitive parameter tuning, achieves higher prediction accuracy, and has stronger robustness.

Keywords Thermal error · Machine tool · Artificial intelligence · Random forest · Machine learning

Introduction

Thermal error accounts for over 70% among all the total
errors of the machine tools (Mayr et al., 2012). To improve
the machining accuracy, it is of great significance to model
the thermal error accurately. Recently, various methods have
been presented to analyse, model and predict the thermal
errors, which can be categorized into physics-based method
and data-driven method.

For the physics-based method, the relevant researches
focus on the mechanism analysis of the heat generation, heat
transfer, and the resultant deformation in the manufacturing
system.Liu et al. (2019) proposed the optimizationmethod of
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the thermal boundary conditions, including the thermal loads,
the convective heat transfer coefficient and the thermal con-
tact resistance to reduce the thermal elongation. Świć et al.
(2021) presented a thermo-mechanicalmethod based on ther-
mal deformation mechanism to increase the accuracy of long
low-rigidity shafts. Liu et al. (2021) established a physically-
based model for the time-varying nonlinear thermal error of
the screw in the servo axis. Grama et al. (2018) calculated
the heat generation and dissipation of the motorized spin-
dle and presented an effective cooling strategy to reduce the
thermal error. The physics-basedmethod often requires an in-
depth physical understanding of themanufacturing system to
develop closed-form mathematical models for the tempera-
ture field and deformation field. However, prior knowledge
of system behavior is not always available due to the com-
plex error sources in the actual machining where the thermal
system is high-order nonlinear, dynamic, and accompanied
by hysteresis. To address the shortcomings, the data-driven
method has drawn increasingly significant attention.
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For the data-driven method, it aims to explore the inter-
nal characteristics of process data and establish the mapping
relationship between temperature and thermal error with-
out consideration of the intrinsic physical process. Liu et al.
(2020) applied multivariable regression analysis (MRA) to
the thermal error modeling of spindle. Whereas, the model
prediction accuracy is limited due to its relatively weak non-
linear fitting ability. Hereafter, the artificial neural network
(ANN) is increasingly popular to be used to model the ther-
mal error due to its good performance on fitting nonlinear
functions, such as back propagation neural network (BPNN)
(Yin et al., 2018), recurrent neural network (Yang & Ni,
2005) and convolutional neural network (Fujishima et al.,
2018). But it is not easy to adjust the parameters of the neu-
ral network model, such as the number of the neurons in the
hidden layer, the weights, and the thresholds. Besides, it is
easy to fall into local extremum due to the gradient descent
characteristics and it requires a large amount of training data
and long training time. Support vector machine (SVM) is
another comparable method with the neural network. Miao
et al. (2013) found that SVM has better prediction accuracy
and robustness thanMRA under the condition of small train-
ing data. Ramesh et al. (2002) concluded that SVM is more
applicable in a production environment as fewer training data
and parameters are required than ANN. But the parameter
tuning for SVM is also unavoidable and even it is critical
to find a precise kernel function. Before implementing ANN
and SVM, their network structures have to be determined
in advance. Then many scholars have combined with some
parameter optimization methods, such as genetic algorithm
(Tian&Luo, 2020), particle swarmoptimization (Katherasan
et al., 2014) and ant colony optimization (Zhang & Wong,
2018). In essence, these methods are a type of searching
algorithms to determine the thresholds and weights of the
model. In addition, there are also other data-driven methods,
such as Bayesian approach (Mosallam et al., 2016), fuzzy
logic (Kovac et al., 2013), ridge regression (Liu et al., 2017),
and the combination of several methods (Abdulshahed et al.,
2016). However, these existing methods are hard to interpret
and more importantly fail to satisfy the requirement for pre-
diction model in the actual engineering application that high
accuracy and strong robustness with low measurement and
computational cost can be achieved under a small amount of
data so as to reduce the prohibitive downtime for experimen-
tal tests.

The temperatures are generallymeasured as the input vari-
ables whose collinearity between each other and correlation
with the output variables affect the model accuracy as well
as robustness drastically (Miao et al., 2015), and therefore
the reliable locations and numbers of temperature measur-
ing points are extremely significant. Poor placement and a
small number of temperature sensors would result in poor
prediction accuracy. However, a large number of tempera-

ture sensors would have a negative influence on the model’s
accuracy and robustness because each temperature sensor
may bring noise and some temperatures inevitably have high
correlation with others. Meanwhile, the measurement cost
for experiments and the computational cost for modeling
would also be increased. To seek an optimal strategy to
lay out the temperature sensors, many researchers are dedi-
cated to exploring the effective methods of selecting the key
temperature points, such as correlation analysis (Lo et al.,
1999), grey system theory (Li et al., 2006), fuzzy clustering
(Abdulshahed et al., 2015), the least absolute shrinkage and
selection operator (LASSO) (Tan et al., 2017). Nevertheless,
there always exist some drawbacks among these presented
methods. For correlation analysis, common approaches such
as Pearson correlation coefficient, it is only sensitive to
the linear relationship between the variables. Specifically,
even though it is one-to-one mapping for the nonlinear rela-
tionship, the correlation coefficient can still be rather low.
For grey system theory, it fails to eliminate the coupling
and collinearity between temperature features and measure
negative correlations. For fuzzy clustering as a typical unsu-
pervised learning algorithm, the threshold selection is quite
empirical, which largely depends on the engineering expe-
rience. For LASSO, it would arbitrarily select one feature
among highly correlated features and directly neglect all the
others, which is easy to lead to the instability of the predic-
tion. To sum up the above, there is yet no an effective method
to optimally select the key temperature points. In addition,
all these current methods are conducted separately before
establishing the thermal error prediction model which itself
is unable to evaluate the feature importance.

The hysteresis effect is a nonnegligible factor that makes
the conventional static or instantaneous modeling method
less robust, which is defined as a system that has memory,
where the effects of the current input to the system are expe-
rienced with a certain delay in time (Hassani et al., 2014).
It can be observed that the temperature usually lags behind
the thermal error since the temperature sensors mounted on
the surface cannot reflect the real internal temperatures. The
worst hysteresis behaviour generally occurs in large machine
tools with bigger volumes, longer strokes and heavier cutting
loads (Tan et al., 2014). The thermal system in machine tools
is a nonstationary and time-varying systemwith varying ther-
mal time constants caused by various working conditions.
The thermal errors depend on not only the current thermal
status but also the previous thermal status. To take the hys-
teresis effect into consideration, existing researches focus on
the physics-based analysis of the dynamic characteristics of
the thermal system (Yang & Ni, 2003) or require an extra
thermal basic characteristics test of the system (Xiang et al.,
2018). Hence, it is of prime concern to put forward a concise
and efficient data-driven method that can be directly imple-
mented based on the process data.
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With the rapid advancement in artificial intelligence (Nti
et al., 2021), this paper presents a novel thermal error mod-
eling method based on random forest (RF) consisting of
a forest of decision trees. Based on the out-of-bag (OOB)
data, the proposed model itself can simultaneously evaluate
the feature importance through comparing the decrease in
the prediction accuracy after randomly shuffling the value
of the target feature. Then, the key temperature points are
selected based on iterative elimination to improve the model
performance and save the measurement and computational
cost. Furthermore, the hysteresis effect between tempera-
ture and deformation is also considered. The accuracy and
robustness of the proposed model were validated through a
thermal error experiment. The further comparisons with the
extensively-used models, such as BPNN and SVM model,
are conducted, which demonstrates the superiority of the pro-
posed RF model.

The rest of the paper is organized as follows. Sec-
tion 2 details the random forest algorithm, including model
structure, model construction process and hyper-parametric
tuning. Section 3 proposes the method of optimally select-
ing key temperature points in the thermal system. Section 4
presents the method of determining the time lag consider-
ing hysteresis effect between temperature and deformation.
A thermal error experiment is carried out in a machine tool

and the result and discussion are detailed in Sect. 5. Con-
cluding remarks and future research directions are presented
in Sect. 6.

Random forest

The random forest algorithm, developed by Breiman (2001),
is a tree-based ensemble learning method consisting of a
forest of decision trees and has been widely applied to the
classification and regression. RF uses bagging to increase
the diversity of the trees by growing them from bootstrap
samples and random subsets of input features. In addition,
aggregating the prediction of all the diverse decision trees
can significantly eliminate the influence of the noise in the
dataset and reduce the overall variance of the model. Com-
paring with the conventional machine learning algorithms,
it requires little data preparation, is simple to interpret, and
less likely to overfit a dataset.

Model structure

Figure 1 illustrates the model structure of random forest that
constructsN decision trees from bootstrap samples of a train-
ing dataset.

Fig. 1 Model structure of random forest
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Each decision tree is composed of branches and nodes.
Each internal node represents a test on a certain input feature
and each branch represents the output result of the test. The
leaf node, i.e. the node which would not split, represents a
class label for classification or a response for regression. The
decision tree where each node has less than two branches is
called binary tree which is generally used to solve the regres-
sion problems where the response is continuous such as the
issue on thermal error modeling in this paper. Classification
and regression trees (CART) supports numerical target vari-
ables and is usually implemented to construct binary trees
using the feature and threshold that yield the largest impurity
decrease at each node. Each decision tree is a weak learner.
Multiple decision trees are grown inparallel to reduce the bias
and variance of the random forest model. The final response
of the model is obtained by averaging the predicted values
of all the N regression trees.

Model construction process

First, the training dataset of each regression tree is acquired
by sampling from the original training dataset with replace-
ment and is called as a bootstrap sample. As thus, bootstrap
aggregating or bagging generates N new training datasets of
size n to grow N regression trees. The number of regression
trees is an important parameter governing the complexity of
a model.

Next, for each regression tree, M features are randomly
selectedwithout replacement fromall available input features
to be taken as split candidates of each non-leaf node. Such
feature bagging can reduce the correlation among the trees.
Then starting from the root node, choose the best split among
these features based on splitting criterion until the terminal
leaf node is generated.

The splitting criterion at each node is that the residual sum
of squares would beminimized after the split. A decision tree
recursively partitions the feature space so that the samples
with the same labels for classification or similar target val-
ues for regression can finally be grouped together from the
initial mixed samples. In essence, the tree growing process is
the process of decreasing the impurity of the whole dataset
which is measured by information entropy or Gini impurity
for classification and residual sum of squares for regression
in this paper.

Supposing that the training dataset S �
{(x1, y1), (x2, y2), . . . , (xn , yn)} of the vth regression
tree is discretely divided into m regions R1, R2,…, Rm

through the regression tree. Denoting the response in the jth
region as a constant cj. The response of the regression tree
can be modeled as

Tv(x) �
m∑

j�1

c j I (x ∈ R j ) (1)

where I(.) is an indicator function. If its argument is true,
then the indicator function returns 1; otherwise 0.

To satisfy the splitting criterion, the best response ĉ j is
the mean values of yi in region Rj

ĉ j � mean(yi |xi ∈ R j ) (2)

Considering a splitting feature k and split point p, and
define the pair of half-planes, then

R1(k, p) � {X |Xk < p} and R2(k, p) � {X |Xk ≥ p}
(3)

The splitting feature k and split point p need to satisfy

min
k,p

⎡

⎣min
c1

∑

xi∈R1(k,p)

(yi − c1)
2 + min

c2

∑

xi∈R2(k,p)

(yi − c2)
2

⎤

⎦

(4)

Theminimizationwithin the square brackets can be solved
as

ĉ1 � mean(yi |xi ∈ R1(k, p)) and

ĉ2 � mean(yi |xi ∈ R2(k, p)) (5)

Herein, the best split has been found. The dataset can be
divided into two regions and the splitting process is iteratively
repeated on each of the two resultant regions until a prede-
fined stopping criterion is satisfied. The maximum allowable
depth of the tree or the maximum number of the records in
the leaf node can both be set to be a threshold to stop the
splitting process.

Last, N regression trees {Tv}N1 can be constructed. The
final response of the prediction model at a new input x is
obtained by averaging the predicted values of all theN regres-
sion trees.

fRF (x) � 1

N

N∑

v�1

Tv(x) (6)

Hyper-parametric tuning

Model’s hyper-parameters significantly affect its accuracy,
robustness and generalization capability. There exist three
crucial hyper-parameters in the random forest algorithm, i.e.
the number of trees (N), the maximum depth of the tree (D),
the number of randomly selected features (M). Parameter N
has a close relation with the computational cost. Thus, it is
necessary to seek a reasonable number to realize a trade-
off between predictive performance and computational time.
When increasing the number of trees would not significantly
improve prediction results, the threshold can be considered to
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be acceptable. ParameterD largely decides the generalization
capability of the model. The oversize regression tree would
lead to the serious overfitting in the new dataset. Parameter
M serves the feature bagging process and determines the
strength of variable selection process. For most regression
problems,M is the dimension of input feature vector (Geurts
et al., 2006). Comparing to conventional machine learning
techniques, the hyper-parameters of RF are more intuitive
and easier to be optimized.

The grid searching method is implemented to find the
optimal values of these hyper-parameters, which executes
the subprocess for all combinations of selected values of
the parameters and then delivers the optimal parameter val-
ues (Bardak et al., 2021). The cross-validation method is
integrated to prevent over-fitting problems and evaluate the
model’s performance on the unknown dataset. In this paper,
fivefold cross-validation is carried out. Specifically, the train-
ing dataset is divided into five subsets equally. Each subset is
successively regarded as a validation dataset, and the remain-
ing four subsets are taken as training dataset.

Selection of key temperature points

For the thermal error modeling, M temperature sensors are
placed at the different positions in the machine tool to mea-
sure the temperatures which are taken as the input features.
A displacement sensor is used to measure the thermal error
which is taken as the output variable. Thus, the dimension of
the dataset is M + 1. The size of the dataset depends on the
sample period and the total sample time. Too many tempera-
ture features would have a negative influence on the model’s
accuracy and robustness because each temperature sensor
may bring noise and some temperatures are highly corre-
lated with each other. Additionally, the measurement cost
for experiments and the computational cost formodeling also
need to be considered in the actual engineering application.
Thus, it is of great significance to select the temperature key
point to improve the performance and practicability of the
model.

Evaluation of temperature feature importance

Comparing to the conventional machine learning algorithms,
RF enables assessment of relative importance of input
features, which contributes to dimensionality reduction to
improve model’s performance on high-dimensional prob-
lems. Since the dataset of each regression tree is generated
by sampling with replacement or bootstrapping, some obser-
vations may be repeated and other observations may not be
selected. On the average, approximately one third of the sam-
ples in the dataset have not been utilized during the process
of constructing the regression tree and they are named OOB

samples of that tree by which RF can natively perform an
unbiased estimation of generalization error with no need for
using an external dataset. Herein, OOB samples are actually
regarded as a testing dataset for each tree and can be used to
evaluate feature importance through adding random noise to
change the value of a certain feature and comparing decrease
in prediction accuracy in the OOB samples. The greater the
decrease is, the more important the feature is. Not only the
individual influence of each feature but also the interactive
effect of multiple features on the response can be considered.

Supposing that there exist the bootstrap samples v � 1,
2, …, N . The importance factor of each input feature can be
counted in the following five steps.

(1) Starting from v � 1, construct a regression tree Tv by
bootstrapping and denote OOB data as Loob

v .
(2) Make the predictions on Loob

v through the constructed
regression tree and calculate the prediction error
errOOBv .

(3) For a certain input feature k (k � 1, 2, …,M), randomly
shuffle the value of the feature in Loob

v and then denote
the resultant data as Loob

vk . Similarly, make the predic-
tions on Loob

vk through the constructed regression tree
and calculate the prediction error errOOBvk .

(4) Repeat steps (1)-(3) for v � 2, …, N .
(5) The importance factor of the feature k is evaluated as

F(k) � 1

N

N∑

v�1

(errOOBv − errOOBvk) (7)

Selection of key temperature points based
on iterative elimination

To find the optimal locations as well as numbers of tempera-
ture sensors, the method of selecting key temperature points
based on the iterative elimination is presented. First, rank the
temperature features by their importance factors based on the
proposed model and record the model’s prediction accuracy.
Then, eliminate the least important feature and iteratively
repeat the above steps. The iterations are performed M-1
times until there is only one feature left. Last, compare the
model’s prediction accuracy under different feature combi-
nations and select the feature combination with the highest
prediction accuracy.

Furthermore, in order to ensure the reasonability and reli-
ability of results, five-fold cross-validation is further applied.
The validation processes togetherwith corresponding feature
ranking are performed five times at each iteration. At the ith
(i � 1, 2,…, 5) validation, the prediction accuracy on the
validation dataset is denoted as Acur [i]. The feature impor-
tance ranking at the validation with the highest prediction
accuracy AcurMax is considered as the basis of feature elimi-
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nation at the current iteration. The mean prediction accuracy
AcurMean during five times of validation are deemed as the
prediction accuracy at the current iteration. The highest accu-
racy AallMax among M − 1 times of iterations is regarded
as the final model accuracy whose corresponding tempera-
ture feature combination is considered as the key temperature
points which are denoted as keyFC. Figure 2 andAlgorithm 1
depict the procedures of implementing the method of select-
ing key temperature points based on iterative elimination.

Algorithm 1: Key temperature points selection algorithm
Input: Original dataset with M temperature features
Output: Key temperature points keyFC
1:  Divide into five subsets randomly;
2:  for k=1 to M-1 do
3:    for i=1 to 5 do
4:   Establish the RF model;
5:    Calculate the Acur[i];
6:    AcurMean= AcurMean +Acur[i]/5;
7:    if AcurMax<Acur[i] then
8:    AcurMax=Acur[i]; iMax=i;
9:    end if
10:    end for
11:    Rank the features at the iMax-th validation;
12:     Eliminate the least important feature ;
13:     Save the current feature combination curFC;
14:     if AallMax<AcurMean then
15:       AallMax=AcurMean; keyFC= curFC;
16:     end if
17:   end for

Thermal error modeling considering
hysteresis effect

Hysteresis effect

In previous studies (Xiang et al., 2018; Yang & Ni, 2003),
sufficient evidence shows that there exists the hysteresis
phenomenon between temperature and thermal deformation,
which causes the conventional modeling approach based on
the static premise to be less accurate and robust due to the
absence of the time variable in the modeling process. The
temperature usually lags behind the thermal error when the
rate of temperature change is lower than the response speed
of thermal deformation and where the sensors mounted on
the surface do not reflect the real internal temperature. The
dynamic response of thermal displacement to different sur-
face temperature sensors has a different time constant. Taking
a certain dataset for example to demonstrate the hysteresis

effect, Fig. 3a illustrates the measurement results of the tem-
peratures and spindle thermal error from a cycle of two hours
for heating up and another three hours for cooling down. The
temperature variations at three different positions on the spin-
dle are the input features and respectively denoted as �T1,
�T2 and �T3. The thermal error induced by spindle ther-
mal elongation is the output variable and denoted as �L.
The sampling period is 1 min, and thus the dataset contains
300 data samples. It can be noticed that there exists a cer-
tain delay in time between the temperature and thermal error
and the time interval is not identical for different temperature
features.

Furthermore, Fig. 3b shows the temperature-deformation
relationship when being heated and cooled which can more
intuitively indicate the hysteresis behavior of the tempera-
tures relative to the deformation and the linear correlation
between these variables. Hence, it would yield the more pre-
cise prediction results considering the hysteresis effect of the
thermal system.

Determination of time lag based on permutation
test

The existing work formulates the time lag based on the
physics-based method or requires an extra thermal basic
characteristics test. To develop a more concise and efficient
data-driven method, this paper presents the method of deter-
mining the time lag based on permutation test to incorporate
the time variable into the thermal error modeling, which can
be divided into the following steps:

(1) Rearranging the original time series of the target fea-
ture with a certain time lag while keeping the remaining
features constant is called a permutation test.

(2) The time series of the target feature is rearranged to be
with different time lags in different permutation tests.

(3) The relative importance of the different time series is
evaluated based on the proposed model using random
forest.

(4) The optimal time lag can be determined through com-
paring the relative importance factors.

(5) The above steps are repeated until the time lags of all
the temperature features are obtained.

Generally, the sampling period SampleT in the actual
engineering application is considered as the resolution of
time lag in the permutation test. Denoting the number of the
permutation tests as NumPT and the time lag as LagT .
Figure 4 and Algorithm 2 describe the procedures of imple-
menting the method of determining the time lag based on
permutation test.
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Fig. 2 Algorithm flowchart of key temperature points selection based on iterative elimination

(a) (b)

Fig. 3 Measurement results when being heated and cooled: a Thermal error and temperature variations varying with time, b Thermal error varying
with temperature variations
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Algorithm 2: Time lag determination algorithm 
Input: Original dataset with M temperature features 
Output: Time lag for all the features LagT[1: M] 
1:    for k=1 to M do 
2:      for i=0 to NumPT do 
3:         Rearrange the time series of the kth feature 

with time lag of i*SampleT; 
4:         Calculate the kth feature importance Imp[i] 

using RF; 
5:         if ImpMax< Imp[i] then 
6:           ImpMax=Imp[i]; iMax=i; 
7:         end if 
8:      end for 

9:    LagT[k]=iMax*SampleT;
10: end for

Experiment

Experimental Setup

As the core component of machine tool, the spindle would
generate large amounts of heat during themachining process,
which is the main source affecting the machine precision (Li
et al., 2015). In this paper, a spindle thermal error experiment
is conducted in a three-axis vertical machining center with
a mechanical spindle using the spindle error analyzer manu-
factured by Lion Precision Corporation in USA, as shown in
Fig. 5. The tool holder of the machine tool is used to clamp
the high-precision standard balls. The capacitive displace-
ment sensor with the accuracy of 0.1 µm is installed at the
bottom of the probe nest to measure the Z-direction displace-
ment of the front standard ball, namely the spindle thermal
error induced by thermal elongation. The temperature sensor
chip is Tsic506F of IST Corporation in Switzerland with the
accuracy of 0.1 °C. Eight temperature sensors are originally
used to measure the temperature data. Their specific number
and placements are listed in Table 1 and shown in Fig. 5.

Results and discussion

Key temperature points

In the test, the spindle rotates without load at the speed of
6000 r/min for 2 h and then remains stop for 3 h. The tem-
perature difference between each temperature variable and
the ambient temperature is taken as the model input, which is
denoted as�Ti, where i represents the number of the temper-
ature sensor. The spindle length is denoted as L. The thermal
error induced by spindle thermal elongation is denoted as�L,

Fig. 4 Algorithm flowchart of determining time lag based on permuta-
tion test

which is taken as the model output. The sampling period for
temperature and thermal error is 1 min, and thus the eight-
dimensional dataset including 300 data samples is obtained,
as shown in Fig. 6.

In this research, a random forest is constructed using 60
regression trees. 75% of the measured data are randomly
selected as the training dataset and the remaining is taken
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Fig. 5 Experimental setup for
the thermal error measurement
using the spindle error analyzer

Table 1 Sensors and locations

Sensor T0 T1 T2 T3 T4 T5 T6 T7

Location Air Cooling fins Rear bearings Front end face Front bearings Headstock Machine body Spindle motor

Fig. 6 Measured data of the
temperatures and thermal error

as the testing dataset. The RF algorithm is performed with
scikit-learn in Python. Through the presented method of
selecting key temperature points based on iterative elimina-
tion, the importance factors of these features are recorded in
Fig. 7 and the corresponding prediction accuracy measured
by mean square error (MSE) is depicted in Fig. 8 in each
iteration.

According to the rank of the feature importance, the
least important feature is iteratively eliminated until there
is only one feature left. From Fig. 8, the prediction accuracy
increases continuously with the elimination of the redun-
dant features and the measurement noise until three features
are left. Then the prediction accuracy inversely decreases
because the significant features are eliminated resulting in
the loss of the useful information. Through comparing the
model’s prediction accuracy under different groups of tem-

perature features, the feature combination, i.e., T2, T4 and
T5, with the highest accuracy is finally selected as the key
temperature points. Herein, the dimension and size of the
dataset are 4 and 300, respectively. It can be concluded that
the presented method contributes to the identification and
elimination of the redundant features and the model perfor-
mance improvement.

Time lag considering hysteresis effect

Through the presented method of determining the time
lag, the permutation test is conducted on each feature with
different time lags which are the integer multiple of the sam-
pling period which is 1 min in this case. Then, the relative
importance of the feature with different time lags can be
obtained, as exhibited in Fig. 9.
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Fig. 7 Importance factors of the temperature features during iteration process
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Fig. 8 Prediction accuracy varying with the feature combination

It can notably be seen that the temperature T2 of the rear
bearings, the temperature T4 of the front bearings and the
temperatureT5 of the headstock lag behind the thermal defor-
mation by 2 min, 3 min and 4 min, respectively. That can
reasonably be attributed to the positions of the machine com-
ponents from the heat sources and the specific placements of
the sensors attached on them, as shown in Fig. 5. T2 and T4

are closer to the main heat sources, rear bearings and front
bearingswhich generate the heat due to the friction during the
rotation process of the spindle. In addition, the sensor place-

ment of T5 is relatively farther from the internal temperature
of the spindle.

Model prediction and comparison

Considering the random factors during the experimental pro-
cess, the test was repeated four times, and thus four sets
of datasets containing 1200 data samples were obtained, as
shown in Fig. 10.

Three measured datasets are randomly selected as the
training dataset (e.g. Fig. 10a–c) and the remaining one (e.g.
Fig. 10d) is taken as the testing dataset to establish the pro-
posed model based on RF. A regression tree in the proposed
model can partially be visualized as shown in Fig. 11.

Comparing to the conventional machine learning tech-
niques, such as BPNN and SVM which are both the typical
and extensively-used approaches for thermal error modeling,
the proposed model is no more a black box model and can be
visualized. The given situation is observable and the expla-
nation for the condition can easily be explained by Boolean
logic. Thus, it can be concluded that the proposed model has
better interpretability.

To further compare the model performance, the thermal
error is also modeled using BPNN and SVM. For BPNN,
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through modifying the number of hidden layers and neu-
rons in each hidden layer and the connection weights among
the neurons together with the performance comparison (Bar-
dak et al., 2016), the network architecture is selected, which

includes one input layer with three neurons, one hidden layer
with ten neurons and one output layer with one neuron. For
SVM, according to the research work (Miao et al., 2013), the
Gaussian radial basis function kernel is one of themost effec-
tive kernel functions used in thermal errormodeling, and thus
is selected in this research. The BPNN and SVM model are
constructed using MATLAB Toolbox which provides large
amounts of powerful tools for achieving the efficient model-
ing. The predicted values using BPNN, SVM and RF and the
observed values are exhibited in Fig. 12. Themodel accuracy
using three methods is measured through the coefficient of
determination R2, mean absolute error (MAE) and MSE in
statistics, as listed in Table 2.

FromTable 2, the higherR2 of RF indicates the higher per-
centage of the response variable variation that is explained by
a regression model, which means the proposed model based
on RF fits the data better. Furthermore, the smaller MAE and

123



2024 Journal of Intelligent Manufacturing (2023) 34:2013–2026

0 50 100 150 200 250 300

0

20

40

60

80

-10

Time (min)

Th
er

m
al

 e
rr

or
 (μ

m
)  Observed error

 Predicted error
 Residual error

(a)BPNN

0 50 100 150 200 250 300

0

20

40

60

80

-10

Time (min)

Th
er

m
al

 e
rr

or
 (μ

m
)  Observed error

 Predicted error
 Residual error

(b) SVM

0 50 100 150 200 250 300

0

20

40

60

80

-10

Time (min)

Th
er

m
al

 e
rr

or
 (μ

m
)  Observed error

 Predicted error
 Residual error

(c)RF

Fig. 12 Comparison of observed errors and predicted errors using three methods: a BPNN, b SVM, c RF

Table 2 Comparison of model accuracy using BPNN, SVM and RF

Method R2 MAE/µm MSE/µm2

BPNN 0.9916 1.7196 4.6234

SVM 0.9933 1.2654 3.6823

RF 0.9980 0.8118 1.0854

MSE using RF significantly demonstrates the higher predic-
tion accuracy of the proposed model.

RF uses bagging to increase the diversity of the trees by
growing them from bootstrap samples and random subsets
of input features. Moreover, aggregating the prediction of
all these trees can significantly eliminate the influence of
the noise in the dataset and reduce the overall variance of
the model to achieve the stronger robustness. To further ver-
ify the robustness of the proposed model, another test with
the varying spindle speeds is conducted to test whether the
proposed model can maintain the expected accuracy when
operation conditions are changed. The spindle speed spec-
trum and the model prediction using BPNN, SVM and RF
are illustrated in Fig. 13.

From Table 3, it can visibly be noticed that even though
the operation conditions are varying, the proposed model
based on RF still fits the data better and maintains the higher
prediction accuracy than BPNN and SVM and the maximum
residual error is less than 3µmwhich is smaller than 6µmof
BPNN and 5 µm of SVM. Thus, the proposed model based
on RF is further demonstrated to be more robust.

Conclusions

To further improve the thermal error modeling accuracy and
robustness, this paper presents a novel thermal error mod-
eling method based on random forest which requires less
training data, enables faster and more intuitive parameter
tuning, achieves higher prediction accuracy, and has stronger
robustness. The following conclusions can be drawn:

1. Comparing to the existing error prediction models, the
proposed model itself can simultaneously evaluate the
feature importance since OOB data are generated during
modeling process and can be utilized to perform an unbi-
ased estimation to give the feature importance factors.

2. The method of selecting key temperature points based on
iterative elimination is presented to effectively eliminate
the redundant features andmeasurement noise to improve
the prediction accuracy and reduce the measurement and
computational cost.

3. Considering hysteresis effect in the thermal system,
the method of determining the time lag based on per-
mutation test is presented to further improve the model
performance.

4. Comparing to the conventional machine learning meth-
ods, such as BPNN and SVM, the proposed model based
on RF is simple to interpret, achieves higher prediction
accuracy, and has stronger robustness with the require-
ment of less training data and the faster parameter tuning.
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Fig. 13 Robustness experiment with the varying spindle speeds: a Spindle speed spectrum, b Model prediction using BPNN, c Model prediction
using SVM, d Model prediction using RF

Table 3 Comparison of model accuracy using BPNN, SVM and RF

Method R2 MAE/µm MSE/µm2

BPNN 0.9181 2.5576 9.3773

SVM 0.9460 2.1134 6.1798

RF 0.9980 0.8118 1.0854

A thermal error experiment was conducted in a machine
tool to validate the accuracy and robustness of the proposed
model which can continuously achieve the prediction accu-
racy of over 90% even though the operation conditions are
changed.

The proposed model can also be applied to other errors
of the machine tools such as geometric error and cutting-
tool wear-induced error. Further, these models using RF can
be integrated into an error compensation software system
to adaptively improve the machine precision based on the
big data from production line, which contributes a lot to the
intelligent manufacturing. All of these potential works will
be explored in future research.
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