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Abstract
Additive manufacturing (AM) has gained increasing popularity in a large variety of mission-critical fields, such as aerospace,
medical, and transportation. The layer-by-layer fabrication scheme of the AM significantly enhances fabrication flexibility,
resulting in the expanded vulnerability space of cyber-physical AM systems. This potentially leads to altered AM parts with
compromised mechanical properties and functionalities. Furthermore, those internal alterations in the AM builds are very
challenging to detect using the traditional geometric dimensioning and tolerancing (GD&T) features. Therefore, how to
effectively monitor and accurately detect cyber-physical attacks becomes a critical barrier for the broader adoption of AM
technology. To address this issue, this paper proposes a machine learning-driven online side channel monitoring approach for
AM process authentication. A data-driven feature extraction approach based on the LSTM-autoencoder is developed to detect
the unintended process/product alterations caused by cyber-physical attacks. Both supervised and unsupervised monitoring
schemes are implemented based on the extracted features. To validate the effectiveness of the proposed method, real-world
case studies were conducted using a fused filament fabrication (FFF) platform equipped with two accelerometers. In the case
study, two different types of cyber-physical attacks are implemented to mimic the potential real-world process alterations.
Experimental results demonstrate that the proposed method outperforms conventional process monitoring methods, and it
can effectively detect part geometry and layer thickness alterations in a real-time manner.

Keywords Additive manufacturing · Cyber-physical security · LSTM-autoencoder · Online attack detection · Process
authentication · Side channel

Introduction

Background

The great flexibility of additive manufacturing (AM) has
significantly enlarged the product design space, enabling to
fabricate complexgeometries that are not feasible for conven-
tional manufacturing technologies. Nowadays, AM has been
adopted in an increasing number of fields where lightweight
structures are highly desirable, such as aerospace, medi-
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cal, and transportation (Beyer, 2014; Huang et al., 2015).
Furthermore, cyber-enabled platforms are incorporated into
AM systems, which allows rapid communication, iteration,
and information sharing regarding product design, machine
setup, and processing parameters (Lee et al., 2016). This
facilitates the cyber-physical AM where critical information
can be transferred remotely for manufacturing. However, the
information sharing between cyber and physical domains is
exposed to the risks of cyber-physical attacks, which poses
a tremendous threat in cyber-physical AM systems (Sturm
et al., 2017; Wells et al., 2014; Wu et al., 2018).

In general, the files containing important product informa-
tion in the AM digital thread, such as STL, AMF, 3MF, and
G-code files, are at a risk of cyber-physical attacks (Bon-
nard et al., 2018, 2019a, 2019b; Shi et al., 2021). More
critically, the layer-by-layer fashion of AM processes sig-
nificantly expands the product alteration space. As such,
cyber-physical attacks could result in compromised func-
tionality of the fabricated parts without even altering its
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Fig. 1 A demonstration of
cyber-physical attacks in AM
processes

external geometric dimensioning and tolerancing (GD&T)
features. As demonstrated in Fig. 1, a cyber-physical attack
can either alter the design (e.g., insert a small void) in the
STL/AMF/3MF file, or manipulate the G-code file which is
sliced from STL/AMF/3MF file by modifying the process
parameters (e.g., increase the nozzle temperature, print-
ing speed, and printing path) and product geometry. The
alterations due to cyber-physical attacks may not be easily
detected by traditional quality control methods, but it will
significantly deteriorate the mechanical properties of AM
products, leading to compromised product quality and reli-
ability, or even life-threatening hazards in human-involved
operations. Therefore, it is urgently needed to develop in-
situ process authentication tools for the timely detection of
product/process alterations in AM.

Motivation and objectives

With the development of online sensing technologies, sensor-
based process monitoring provides new opportunities to
achieve effective in-situ process authentication, which veri-
fies if the actual process/product is consistent with its design
intent (Komolafe et al., 2019; Xiao et al., 2015). With
the signals collected from heterogeneous sensors, i.e., side
channels, appropriate data analytics methods can be devel-
oped by coupling AM process knowledge and online sensor
data. However, most recent AM process monitoring meth-
ods mainly focus on the detection of process anomalies, such
as material under or over flow (Liu et al., 2019), and over-
heating/lack-of-fusion problems (Khanzadeh et al., 2018,
2019). Product/process alterations induced by cyber-physical
attacks, on the other hand, are usually regarded as a normal
process, and thus cannot be easily detected by the state-of-
the-art in-situ anomaly detection methods.

The objective of this study is to extract key process
features through heterogeneous sensor fusion to facilitate
in-situ process alteration detection. Subsequently, various
in-situ monitoring and shift detection approaches could be
implemented based on the extracted process features. In prac-
tice, when the attack types of interests are known and the
labeled data under attack are available, supervised monitor-
ing approaches, e.g., classification algorithms, can be applied
to detect the attack occurrence. However, as discussed, the
potential attack space is almost infinite. Thus, it is also com-
mon that the type of attack is unknown, and there are no

labeled data under attack for model training. Under this cir-
cumstance, unsupervisedmonitoring approaches are needed.

There are three major technical challenges to realize this
objective: (1) some process attributes are technically difficult
or expensive to be directly measured by side channels, such
as the alteration on infill rate; (2) the process physics of AM
are usually highly complex, resulting in challenges to recog-
nize the underlying patterns from the sensor data; and (3) the
potential process alteration space is almost infinite in prac-
tice, so that the cost of obtaining a comprehensive training
dataset is prohibitively high.

To address these challenges, this study developed a fea-
ture extraction approach based on LSTM-autoencoder to
effectively capture the attack-induced alterations from the
online collected sensor signals.As a powerful self-supervised
representation learning approach, autoencoder is capable
of extracting effective features through identifying a low
dimensional representation from the original complex high
dimensional data.Moreover, the embedding of LSTMhidden
layer further enables the autoencoder to extract more accu-
rate features from the sequential sensor signals to incorporate
the temporal information. Using the extracted features, both
unsupervised and supervised monitoring approaches are fur-
ther developed and incorporated for online cyber-physical
attack detection. The rest of the paper is organized as fol-
lows. A brief review of the related work is provided in Sect.
2. The proposed researchmethodology is introduced in detail
in Sect. 3. To demonstrate the effectiveness of the proposed
method, Sect. 4 presents the experimental setup and case
study results using a fused filament fabrication (FFF) plat-
form. Finally, the conclusions and future work are discussed
in Sect. 5.

Literature review

As discussed in Sect. 1, this study is motivated by the cyber-
physical security monitoring for AM processes using side
channels. Therefore, this section first introduces relevant
existing studies regarding sensor fusion for online anomaly
detection (Sect. 2.1), and then followed by a brief review of
the existing approaches regarding the side channel monitor-
ing for AM processes (Sect. 2.2) and related studies in the
post-process part authentication (Sect. 2.3). Accordingly, the
limitations in the current literature are also identified.
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Sensor-based anomaly detection approaches

In the literature, sensor-based in-situ process monitoring
for process/product anomaly detection has been thoroughly
investigated. Heterogeneous sensor signals, such as acceler-
ation, temperature, and acoustic emission, are fused for pro-
cess anomaly detection for variousAMprocesses (Villalobos
et al., 2021; Wu et al., 2019). For example, Pittino et al.
applied acceleration signals to automatically detect the pro-
cess anomaly (Pittino et al., 2020). Furthermore, advanced
sensing technologies, such as optical camera, infrared imag-
ing, and 3D scan, generate high dimensional data in the
format of infrared and optical images or even 3D point cloud,
providing rich information for in-situ process monitoring
(Dastoorian & Wells, 2021; Larsen & Hooper, 2021; Rao
et al., 2015; Wang et al., 2021). For example, Liu et al. pro-
posed a close-loop quality control approach based on image
data (Liu et al., 2019). Ye et al. proposed an in-situ layer-wise
monitoring method based on point cloud fusion for additive
manufacturing (Ye et al., 2021). In terms of data analytics
methodologies, various advanced analytical methods have
been tailored for the specific data formats, such as Bayesian
Dirichlet process (DP)mixturemodel (Rao et al., 2015),mul-
tifractal analysis (Chen et al., 2020; Imani et al., 2019), deep
learning (Li et al., 2021; Ye et al., 2021), and various variants
of principal component analysis as well as manifold learn-
ing methods (Colosimo & Grasso, 2018; Khanzadeh et al.,
2018; Liu et al., 2021). However, most state-of-the-art in-
situ AM process monitoring methods only focus on process
defect detection, making it cumbersome to detect uninten-
tional alterations when the process is still stable.

Side channel monitoring for AM processes

In the cybersecurity area, side channels can be exploited to
infer process information (Hospodar et al., 2011). These side
channels contain fruitful information and can be used for
cyber-physical attack detection, because side channels can
capture intrinsic process/product behaviors, and do not nec-
essarily focus on detecting pre-specified alterations (Vincent
et al., 2015). In cyber-physical systems, side channels are
defined as systems that capture information directly related
to the current manufacturing process, which can be used for
part and process authentication and verification.

There are several existing solutions to detect cyber-attacks
in industrial control systems, for example, neural network-
based methods (Kravchik et al., 2021), and the rule-based
approaches (Yılmaz & Gönen, 2018). However, these meth-
ods do not take the physical domain into consideration,which
could not effectively utilize all information in the industrial
control systems.Thus, the detectionperformancemaybe lim-
ited inAMpractice. Furthermore, for the rule-basedmethods,
since the potential AM process alteration space is usually

almost infinite, it is also impractical to list all types of cyber-
attack in the rule table. During the manufacturing phase,
side channel analysis can be categorized into single-sensor
side channel analysis and heterogeneous-sensor side channel
analysis. In single-sensor side channel analysis, typical side
channels exploited include acoustic emission (Belikovetsky
et al., 2018; Chhetri et al., 2016; Huang & Kovacevic, 2011;
Mativo et al., 2018), thermal related signals (AlFaruque et al.,
2016; Slaughter et al., 2017), power consumption (Gatlin
et al., 2019; Moore et al., 2017), acceleration (Chhetri et al.,
2016; Liu et al., 2020), and image series (Al Mamun et al.,
2021; Kwon et al., 2020; Prakash et al., 2020). Recently,
electromechanical impedancemeasurements are used as side
channel information for various manufacturing processes
(Komolafe et al., 2019; Sturm et al., 2016; Tenney et al.,
2019, 2020). The transducer can be attached to or embedded
in theAMbuild during the process to generate in-situ part sig-
nature for part alteration detection. In heterogeneous-sensor
side channel analysis, multiple types of sensors are incorpo-
rated to detect cyber-physical attacks to the AM process. For
example, Gao et al. (2018) integrated heterogeneous sensor
information (i.e., accelerometer, magnetometer, and camera)
for real-time printing parameters inference (i.e., infill path,
printing speed, layer thickness, and fan speed) to detect any
process/part alterations. Chhetri et al. conducted a case study
to investigate the integration of acoustic, vibration, power,
and magnetic sensors for 3D model reconstruction (Chhetri
& Al Faruque, 2017). Machine learning-based supervised
monitoring methods (Mahato et al., 2020) and control chart-
based unsupervisedmonitoringmethods (Huang et al., 2020)
are widely applied in both single-sensor and heterogeneous-
sensor based side channel analysis in AM. Furthermore,
this strategy has also been adopted by other manufacturing
processes. For example, Wu et al. extracted features from
acoustic sensor signal and applied random forest classifier to
detect the alterations of geometry design andmachine param-
eters in the CNC milling system (Wu et al., 2019). However,
the current side channel monitoring methods highly rely on
a comprehensive dataset to properly train the model for real-
time estimation/detection.When latent information becomes
complicated, these methods reviewed above may not be
capable of extracting effective features and the monitoring
performance may be deteriorated.

Post-process part/process authentication

As another common way to assess the AM product, post-
process part/process authentication is also widely applied
in practice. Process authentication means the verification of
the manufacturing product to its design intent (Komolafe
et al., 2019; Xiao et al., 2015), including product geome-
try, surface roughness, and material properties. During the
testing phase in AM processes, multiple part authentica-
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Fig. 2 The overall research framework of the developed online cyber-physical attack detection approach for AM processes

tion methods can be used to verify the part structure and
performance, which can be categorized into destructive and
nondestructive methods. In destructive testing, the final part
will be destroyed during either the testing procedure or the
sample preparation procedure. For example, Sturm et al.
altered an STL file of a tensile test specimen to reduce the
tensile strength which remained undetected until the speci-
men was destructively tested (Sturm et al., 2017; Zeltmann
et al., 2016). In addition, various microstructure charac-
terization can be used to verify the material properties of
the AM part (Yampolskiy et al., 2014). In nondestructive
evaluation, multiple traditional post-characterization meth-
ods, such as ultrasonic testing and x-ray CT testing, can
be used (Waller et al., 2014). In addition, recent studies
have proposed to use some more convenient approaches for
part authentication by applying sensing techniques such as
impedance analysis (Komolafe et al., 2019; Tenney et al.,
2017, 2019), and chemical taggants (Flank et al., 2017).
Unfortunately, compared with in-situ monitoring methods,
post-process authentication methods cannot effectively uti-
lize the in-process information, particularly, the internal
structure fabrication information. Meanwhile, due to its high
flexibility requirements for customization, it is usually very
costly in terms of time, material, and equipment, or even
infeasible, to produce a lot of identical reference parts as
training data using AM processes.

Proposed researchmethodology

As shown in Fig. 2, the overall proposed research method-
ology in this study consists of three steps: (1) time window-

based side channel data representation (Sect. 3.1); (2)
data-driven feature extraction method based on the LSTM-
autoencoder (Sect. 3.2); and (3) online cyber-physical attack
detection framework for AM processes using the extracted
features based on supervised and unsupervisedmethod (Sect.
3.3).

Data representation

As discussed in Sect. 1, this study is focused on the cyber-
physical attack detection using side channels. In practice,
the sensor signals collected from side channels. The raw sig-
nals can be represented in the form of a time series {xt }Tt�1,
where t is the time index and xt is a p × 1 vector and p
denotes the dimension of the side channels. For example, in
the case study two vibration sensors are mounted on printing
bed and extruder with sampling frequency 3 Hz (see details
in Sect. 4.1), resulting in a time series with 6 channels, i.e.,
p � 6. Without loss of generality, it is assumed that all
sensor channels have the same sampling frequency and are
synchronized. In practice, pre-processing techniques such as
up/down-sampling approaches (Proakis, 2001) can be poten-
tially used if side channels have different sampling frequency.

The objective is to extract the inherent pattern information
of {xt } and detect the process change caused by cyber-
physical attacks in AM. Since the proposed methodology
is targeted for in-situ application, a natural and cost-effective
option is to analyze the sensor data sequentially using a time
window. As defined in Eq. (1), the raw signals {xt } from side
channels can be represented as a sequence of overlapping
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Fig. 3 A demonstration of the
autoencoder architecture

time windows {Xi } (i is the time index of each window) with
the dimension p × n,

Xi �

⎛
⎜⎜⎜⎜⎜⎜⎝

x(i−1)×(n−v)+1

x(i−1)×(n−v)+2

.

.

.

x(i−1)×(n−v)+n

⎞
⎟⎟⎟⎟⎟⎟⎠

T

(1)

where n is the user-defined window size and v represents the
number of overlapping observations between two consecu-
tive windows. In practice, the selection of n and v can be
empirically determined based on existing studies (Tootooni
et al., 2016). In this study, the window size and overlap are
selected by conducting an offline study for the collected train-
ing data and identifying an appropriate value. Notably, other
approaches, such as the autocorrelation function (ACF) or
automutual information (AMI) (Kantz & Schreiber, 2004;
Nayfeh & Balachandran, 2008), can be further incorporated
as well. Specifically, the first zero crossing ACF and the first
minimum of the AMI can be used to determine the window
size.

Data-driven feature extraction using
LSTM-Autoencoder

To analyze the multi-channel sensor data represented by a
series of windows {Xi }, this study proposes to incorporate a
data-driven feature extraction approach based on the integra-
tion of autoencoder and long short-term memory (LSTM),
which is capable of effectively capturing the underlying pat-
tern variation of {Xi } when process alterations occur.

Widely applied as a feature extraction approach, autoen-
coder is a self-supervised neural network that learns accu-
rate low dimensional representation from high dimensional
data through an encoding–decoding architecture (Hinton &
Salakhutdinov, 2006). The advantages of autoencoder lie in

two main aspects: (1) it is able to capture the inherent non-
linear patterns from the data; and (2) it can be conducted in an
unsupervisedmannerwithout knowing the label information.
In general, an autoencoder consists of two parts, namely, an
encoder and a decoder. As demonstrated in Fig. 3, an encoder
is a part of neural network that embeds the high-dimensional
input data Xi into a low-dimensional representation di in a
latent space (i.e., in the code layer). Mathematically, it can
be represented as,

di � f (Xi ) (2)

where f (·) is an encoding function. On the other hand, a
decoder is to reconstruct the input from the latent space repre-
sentation di using a highly symmetric structure with encoder.
Similar to the encoder, the decoder can also be represented
by a decoding function g(·),

X̂i � g(di ) (3)

As such, the autoencoder model can be described by com-
bining Eq. (2) and Eq. (3),

X̂i � g( f (Xi )) (4)

where the goal is to make the reconstructed signal X̂i as
close as the original input Xi , and the reconstruction error is
defined as follows,

ei �
∥∥∥X̂i − Xi

∥∥∥ (5)

where ‖·‖ represents the norm to quantify the error. Con-
sequently, the autoencoder training can be achieved by
minimizing the mean square error (MSE) of the recon-
struction through all training samples. Moreover, various
regularization terms, such as L2 regularization and spar-
sity regularization, can be incorporated in the loss function
(Tschannen et al., 2018). With the defined loss function,
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two groups of hyper-parameters need to be pre-defined: (1)
dimension of the latent space representation vector, i.e., di ,
which represents the extent of dimension reduction; and
(2) the structure of the hidden layers, e.g., the number of
hidden layers and the number of neurons in each layer. Subse-
quently, the autoencoder can be trained via backpropagation,
which follows the same way as the conventional multilayer
perceptron. However, such autoencoders that are based on
feedforward neural networks that do not fully consider the
sequential information in the sensor signals,whichmaymake
feature extraction ineffective and result in inaccurate attack
detection.

To address this limitation, this study incorporated the
LSTM networks (Hochreiter & Schmidhuber, 1997) into the
encoder-decoder architecture, namely, LSTM-autoencoder.
As a powerful machine learning technique, LSTM is one
type of recurrent neural network (RNN) that are capable of
learning order dependency in sequential data (Xu & Yoneda,
2019). Due to its excellent performance, LSTM has been
widely applied to many types of the sequential data, e.g.,
video, text, and audio data. In this study, data collected by
the side channel during the process are also sequential. Thus,
it is natural to integrate theLSTMin the frameworkof autoen-
coder (i.e., to fit f and g using LSTM) by considering the
inherent temporal relationship within each Xi .

Compared to the structure of regular neural networks, the
hidden layer updates in LSTM are replaced by a special type
of neuron, namely, memory cell, which is able to store the
useful information over an arbitrary period of time. As shown
in Fig. 4a, a memory cell in LSTM consists of three gates,
i.e., forget gate, input gate, and output gate. These gates are
used to determine the value of Ck and hk which represent
the state and output vector of the k th memory cell, respec-
tively. Specifically, rk represents the forget gate, a layer that
usually uses the sigmoid function σ as activation function
to determine how long to retain the information. Once the
stored data are outdated, rk will erase it by resetting to zero.
Mathematically, it can be formulated as,

rk � σ
(
Wr

[
hk−1, xk

]
+ br

)
(6)

where hk−1 denotes the output vector of the previous cell and
xk denotes the input vector of this cell. Wr and br are the
weight matrix and bias vector, respectively. The input gate
ik is another critical layer in the memory cell to determine
which information should be stored. It also uses the sigmoid
function as activation function and can be written as,

ik � σ
(
Win

[
hk−1, xk

]
+ bin

)
(7)

whereWin and bin denote the weight matrix and bias vector
of the input gate, respectively. Besides, the candidate state

of the cell, denoted as C̃k , which is the combination of hk−1

and xk , can be calculated through,

C̃k � tanh
(
WC

[
hk−1, xk

]
+ bC

)
(8)

whereWC and bC denote the weight matrix and bias vector
of the input gate, respectively. Meanwhile, the hyperbolic
tangent function is applied as activation function. Based on
rk and ik , the state of cell Ck can be updated through

Ck � Ck−1rk + C̃k ik (9)

Then the output vector hk of the cell can be determined by
the output gate and the cell state, as demonstrated in Eq. (10),

ok � σ
(
Wo

[
hk−1, xk

]
+ bo

)

hk � ok tanh(Ck)
(10)

where Wo and bo are the weight matrix and bias vector of
the output gate, respectively.

Thereby, as illustrated in Fig. 4b, the LSTM-autoencoder
essentially combines the framework of autoencoder and the
usage of LSTM networks (Gensler et al., 2016). The LSTM
network is embedded in the encoding function (i.e., f (·)) and
decoding function (i.e., g(·)) so that the temporal information
in the input sequential data can be effectively considered and
utilized. In this study, 2 LSTMhidden layers are incorporated
in both encoder and decoder, with 128 and 64 LSTM units,
respectively. The dimension of code layer is 60. Since the
input data are collected in a window-based format with tem-
poral order, the suggested sequence length in LSTM layer is
the same as the window size so that the underlying temporal
relationship within each sample could be effectively utilized.

In practice, to apply the LSTM-autoencoder to extract fea-
tures from side channels for online monitoring, it needs to
be trained by using pre-collected data under normal condi-
tion (i.e., no attack). Then the newly observed signals from
the side channels will be processed using the trained LSTM-
autoencoder model and thereby features can be extracted for
in-situ process authentication. In this study, two groups of
features are utilized for both supervised and unsupervised
process monitoring. First, the low dimensional latent space
representation {di }, as defined by Eq. (2), is applied to iden-
tify the change of the inherent signal patterns between normal
and attacked conditions. If unexpected changes occur during
process, the variations in the pattern of {di } will reflect the
pattern change in {Xi }. Second, the reconstruction error {ei },
which is defined in Eq. (5), is selected for monitoring as well.
If the new online side channel data come from the same dis-
tribution with the training data, the reconstruction error will
also follow the same distribution as that of the training data.
Otherwise, unintended process alterations may occur if the
level of reconstruction error significantly increases. Based
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Fig. 4 a A demonstration of the
LSTM unit (memory cell); b the
architecture of
LSTM-autoencoder, which
embeds the LSTM network to
the encoding and decoding
functions

upon these two groups of features, an online cyber-physical
attack detection methodology is developed in Sect. 3.3.

Onlinemonitoring for cyber-physical attack
detection

In this section, an online monitoring approach for cyber-
physical attack detection is further developed using the
features {di } and {ei }, which are extracted by the LSTM-
autoencoder (see more explanations in Sect. 3.2), as demon-
strated in Fig. 5. The overall framework of the proposed
online attack detection methodology consists of the process

monitoring from both supervised (Sect. 3.3.1) and unsuper-
vised (Sect. 3.3.2) perspectives.

Supervised process monitoring through classification

If labeled sensor data under attacks are available for train-
ing, i.e., possible attack patterns are known, then supervised
machine learning, i.e., classification, can be applied to dis-
tinguish the attacked status from normal status. In practice,
using the fused extracted features {(di , ei )} with labels yi ,
e.g., normal (yi � 0) or attacked (yi � 1), advancedmachine
learning-based classifiers can be trained and an appropriate
one will be selected for online application after comparison.
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Fig. 5 The features extracted from the developed methodological
framework for online cyber-physical attack detection

In this study, through comparison (see details in Sect. 4), a
popular ensemble learning method, namely, adaptive boost-
ing (also known asAdaBoost) (Hastie et al., 2009), is applied.
AdaBoost uses the initial training data to generate a weak
learner, e.g., a decision tree. Then based on the performance
of the initial weak learner’s prediction, AdaBoost adjusts the
weight of training data for the next round weak learner train-
ing.During this process, training sampleswith lowprediction
accuracy in the previous round will receive more attention.
Eventually, these weak learners are integrated together with
different weights to form a strong learner (Feng et al., 2020).
After training an AdaBoost model Ada(·), the labels yi for

Xi can be then predicted using the extracted features (di , ei ),
as shown in Eq. (11),

ŷi � Ada(di , ei ) (11)

where ŷi is the predicted label.
To improve the detection robustness, a voting-based

decision-making framework is further implemented based
on the prediction results from classification. Specifically, to
make the attack detection more accurate at time i , k consecu-
tive samples, Xt−k+1,Xt−k+2, · · ·, Xt , will be used together,
and the classification result from them with the highest votes
will be used to make decision, i.e., normal or abnormal (see
Fig. 6). For example, if k � 5, then the prediction outcomes
from the current sample and 4 consecutive immediate past
samples are used, and the alteration will be reported when at
least three of these five samples are predicted as abnormal.
The number of consecutive samples and sampling frequency
are inter-correlated in order to make status predictions in a
constant time interval. When the sampling frequency is high,
the number of consecutive samples should be large and vice
versa. In practice, the sampling frequency of sensor is usually
fixed so the only hyperparameter is the number of consecu-
tive samples k. Thus, in this study, an appropriate value of k
could be selected through offline tuning in the model training
stage. The advantage of supervised processmonitoring is that
the type of attack can be clearly identified. However, more
training data and label information is required in practice to
ensure the detection accuracy.

Fig. 6 Supervised process
monitoring using AdaBoost
with voting-based
decision-making framework
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Fig. 7 Unsupervised process
monitoring based on EWMA
control chart using anomaly
score estimated from OCSVM

Unsupervised process monitoring incorporating novelty
detection and control chart

On the other hand, as discussed in Sect. 1.2, if the attack
information is unknown and only the data without attack,
i.e., under normal condition, are available, an unsupervised
monitoring approach is then needed for the attack detec-
tion. Control chart is an effective and widely applied tool
for unsupervised monitoring in engineering practice. How-
ever, in this study, directly applying control chart may not
work since the collected sensor data are with high dimension
and the complex underlying distribution is also unknown. To
address this issue, as a popular novelty detection approach,
one-class support vector machine (OCSVM) is incorporated,
since it is capable of dealing with high-dimensional data and
it does not require any distribution assumptions. Thus, this
study proposes to integrate these two approaches, in which
the OCSVM outputs an anomaly score for every high dimen-
sional sample, and the EWMA control chart is applied to
detect the shift of the anomaly scores.

As an extension of SVM, OCSVM is often applied to
detect anomalies without over-fitting (Manevitz & Yousef,
2001). OCSVM maps the input (i.e. training data) to a high-
dimensional feature space and creates a region within which
most of themapped points fall, while the remaining points lie
outside and become outliers (Hoang et al., 2019). Then based
on the trainedmodel, the testing data points aremapped to the
feature space and labeled accordingly. Furthermore,OCSVM
can estimate an anomaly score si for each sample, which
is calculated by a predefined decision function, denoted by
As(·),

si � As(di , ei ) (12)

The anomaly extent is inversely proportional to the score
and it can be identified by the upper bound on the fraction
of training error and a lower bound of the fraction of sup-
port vectors. For more details of OCSVM, please refer to the
Ref (Manevitz & Yousef, 2001). It is worth noting that the
performance of OCSVM will be affected by kernel function
selection. In this study, different kernel functions, includ-
ing Radial basis function (RBF), polynomial function, linear

function, and sigmoid function, are examined. The RBF ker-
nel is selected since it can help to achieve the best monitoring
performance according to the experiments on the training
data.

In practice, if there is no attack, the rate of the detected
“alteration” should be at a low level, i.e., the distribution of
the calculated anomaly score will not change significantly.
However, once an attack occurs, the trained autoencoder will
be no longer suitable for the data under attack, hence the
anomaly scores calculated from OCSVM follow a different
distribution. Based on this hypothesis, this work embed-
ded the OCSVM model into an exponentially weighted
moving average (EWMA) control chart, namely, OCSVM-
EWMA chart, to achieve effective unsupervised monitoring.
As shown in Fig. 7, the developed OCSVM-EWMA chart
uses the anomaly score estimated by OCSVM as the quality
characteristic and detects its shift through an EWMA chart,
which is a well investigated and commonly applied control
chart. Mathematically, this could be formulated as

zi � λsi + (1 − λ)zi−1 (13)

where si denotes the score of each point calculated by
OCSVM with proper linear transformation, and λ is the
parameter of EWMA. There are two major reasons to select
EWMA chart in this study for change detection: (1) it is not
sensitive for the normal assumption (Huang et al., 2014);
and (2) it has strong capability to detect the small variations
(Montgomery, 2009). In practice, the parameters of EWMA
chart can be determined by balancing false alarms andmissed
detection rate. Then the control limits and decision rules also
can be determined accordingly.

Case study

Tovalidate the effectiveness of the proposedmethod, this sec-
tion examines the performance of the proposed methodology
based on an actual AM process, fused filament fabrication
(FFF), by using the in-situ accelerometers as side channels.
The experimental setup and data collection are introduced
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Fig. 8 Demonstration of the experimental setup

in Sect. 4.1, followed by the results summary, interpretation,
and discussion in Sect. 4.2.

Experimental setup

In this case study, a desktop FFF-based 3D printer (Prusa
i3 MK3S) was used for data collection. Vibration sensors
are selected to detect the motion-related alteration during
the 3D printing process, which is directly associated with
G-code alterations and thus can be used as side channels to
detect changes in the G-code (Chhetri et al., 2016). Based
on the AM process knowledge, the printing paths speci-
fied in the G-code are implemented through the relative
motion between the extruder and the printing bed. There-
fore, to detect AM process alterations, two vibration sensors
(i.e., MEMS accelerometers) are mounted to the extruder
and printing bed (see Fig. 8), respectively, which are capa-
ble of recording the real-time vibrations of the extruder and
the printing bed in the three axes with approximately 3 Hz
sampling frequency. ARDUINOMEGA 2560 REV3 micro-
controller was used for data acquisition from all the side
channels (i.e., the vibration sensors in this study).

In this study, a solid cube (with the edge dimension 2 cm)
was used as the nominal design with the process parameters
summarized in Table 1. The feedstock material used was
polylactic acid (PLA) filament. To validate the performance
of the proposed monitoring approach, two cases based on
two different potential cyber-physical attacks in AM were
investigated in this study, and the detailed design parameters
are summarized in Table 2:

Table 1 The design parameters of nominal parts

Design Parameters Value

Printing Speed 40 mm/s

Layer Thickness 0.3 mm

Nozzle Temperature 215 °C

Bed Temperature 60 °C

• Case 1: The design geometrywas attacked, in “STL” stage,
to insert a small square-shaped void in the design.

• Case 2: The layer thickness was attacked, in the “slicing”
stage, to alter the thickness of specific layers.

These two altered cases are designed to represent two
major categories of G-code alterations. Case 1 simulates the
scenario where an internal feature (i.e., void) is added to
the design, which cannot be detected by traditional quality
inspectionmethods if the internal feature is concealed.On the
other hand, Case 2 simulates the scenarios where the extru-
sion speed and the motion in the z-axis changes. Both cases
will lead to compromised mechanical properties of the final
product. In addition, it is worth noting that advanced cyber-
physical attacks were designed to ensure that the build time
of original and altered designs are comparable. Therefore,
with no side channel information, the process change cannot
be trivially detected by tracking the build time. To conduct
the case studies, 6 trials were performed in each case and the
sensor data were collected. In each trial, about 4600 sample
points (sensor signals) were collected in about 30 min, i.e.,
the time to print a test part. Afterwards, according to the Sect.
3.1, the raw data were represented in timewindow-based for-

123



Journal of Intelligent Manufacturing (2023) 34:1815–1831 1825

Table 2 The design parameters
of two altered cases Design Parameters Case 1 Case 2

Layer Design Layer # 1~41: solid Solid

Layer # 42~67: a square hole inside

Layer Thickness 0.3 mm Layer # 1~40: 0.3 mm

Layer # 41~56: 0.25 mm

Layer # 57~67: 0.35 mm

Printing Speed 40 mm/s

Nozzle Temperature 215 °C

Bed Temperature 60 °C

Fig. 9 Normal sample vibration signals collected from a extruder, and b printing bed

Fig. 10 Sample parts, a a
nominal part, b an attacked part
of Case 1, and c an attacked part
of Case 2

mat with window size n � 30 and window overlap v � 25.
The exemplary raw signals collected from each sensor are
shown in Fig. 9 and three sample parts are demonstrated in
Fig. 10.

Results and discussion of cyber-physical attack
detection performance

As described in Sect. 4.1, the side channel data collected
from the two different simulated potential cyber-physical
attack cases (i.e., Case 1 and Case 2) were applied to perform
the online attack detection analysis. Specifically, a prelimi-
nary trial was conducted first as pre-collected data for model
training, and then for each case five trials were conducted to
test the detection performance. Both supervised and unsu-
pervised online monitoring methods (see details in Sect. 3.3)

were applied to these two cases, and the detection perfor-
mance is evaluated and discussed as well.

Parameter setup and selected benchmark methods

In the proposed method, several parameters need to be
determined in the following four setup steps: (1) time
window setup; (2) LSTM-autoencoder setup; (3) classifier
(AdaBoost) setup; and (4) OCSVM-EWMA control chart
setup. To select appropriate parameters, this study tested dif-
ferent combinations and select the best one based on the
attack detection performance. The selected parameters setup
for the proposed method is listed in Table 3.

Furthermore, to demonstrate the effectiveness of the
LSTM-based feature extraction framework, three state-of-
the-art feature extractionmethods in the related area, namely,

123



1826 Journal of Intelligent Manufacturing (2023) 34:1815–1831

Table 3 The parameter setup of
the proposed method Step Parameter Value

Window setup Window size (n) 30

Window overlap (v) 25

LSTM-autoencoder setup LSTM hidden layer size in encoder (128,64)

LSTM hidden layer size in decoder (64,128)

Latent space dimension 60

Transfer function for encoder and decoder tanh

AdaBoost setup Number of estimators 400

Learning rate 0.2

OCSVM-EWMA setup Kernel function in OCSVM RBF

Upper bound on the fraction of training errors and lower bound of
the fraction of support vectors

0.1

λ in EWMA 0.3

Table 4 The parameter setup of
the benchmark methods Methods Parameter Value

AdaBoost Number of estimators 400

Learning rate 0.2

RF Number of trees 300

GB Number of estimators 300

Learning rate 0.01

SVM Kernel function RBF

MEWMA Smoothing parameter (λ) 0.2

Confidence level for control limit 0.975

Wavelet + AdaBoost Wavelet basis Daubechies 4 (db4)

Decomposition level 2

Threshold value used for data compression 0.05

Simple autoencoder
+ AdaBoost

Latent space dimension 100

Transfer function for the encoder and decoder sigmoid

Fast Fourier Transform (FFT) (Mironovova & Bíla, 2015),
wavelet transformation (Jiang et al., 2008), and simple
autoencoder (Hinton & Salakhutdinov, 2006), were selected
as benchmark methods for comparison in this study. Mean-
while, for the supervised monitoring, the popular classifi-
cation algorithms, including AdaBoost, random forest (RF),
gradient boosting (GB), and support vector machine (SVM),
were also applied to directly classify the normal status and
attacked status for comparison. Regarding the unsupervised
monitoring scheme, the multivariate EWMA (MEWMA)
chart, which is a very powerful multivariate process mon-
itoring tool, was applied as the benchmark to compare with
the developed OCSVM-EWMA chart. The parameter selec-
tion used for both benchmark and the proposed methods are
summarized in Table 4. Meanwhile, the computation time
for online application was evaluated as well. In this study,
feature extraction and supervised learning were performed
under Python 3.7.3 and TensorFlow 1.13.1 (Abadi et al.,
2016). The control chart part was performed under R 4.1.0
with package qcc 2.7 (Scrucca, 2004). The computer CPU

and GPU used in the experiments are Intel Xeon Processor
W-2123 (3.6GHz) andNVIDIAQuadro P2000, respectively.

Supervised monitoring results

The classification results of Case 1 and Case 2 are pre-
sented in Tables 5 and 6, respectively. The classification
performance is evaluated by the value of precision, recall,
and F-score (Powers, 2011). Precision and recall are directly
related to the level of type I and type II errors, respectively.
F-score is a combination of precision and recall, which can
be formulated by Eq. (14),

F − score � 2 × Precision × Recall

Precision + Recall
(14)

The results demonstrate that the proposed method
achieves the best classification performance in both Case 1
and Case 2. Meanwhile, the computational efficiency of the
proposed method is also sufficient for online attack detec-
tion since the computational speed (>2000Hz) ismuch faster
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Table 5 The comparison of
classification results (supervised
monitoring)—Case 1

Methods Precision Recall F-score Computation time (ms)

AdaBoost 0.7424 0.8117 0.7755 0.27

Random Forest 0.7024 0.8428 0.7662 0.28

Gradient Boosting 0.7061 0.8612 0.7759 0.06

SVM 0.6837 0.9535 0.7954 0.27

FFT + AdaBoost 0.8122 0.9820 0.8891 2.5

Wavelet + AdaBoost 0.9100 0.9600 0.9343 2

AE + AdaBoost 0.8947 0.9090 0.9018 0.72

LSTM-AE + AdaBoost 0.9220 0.9570 0.9392 0.72

LSTM-AE (consider error) +
AdaBoost (Proposed)

0.9479 0.9460 0.9469 0.81

Table 6 The comparison of
classification results (supervised
monitoring)—Case 2

Methods Precision Recall F-score Computation time (ms)

AdaBoost 0.7655 0.8111 0.7876 0.27

Random Forest 0.7322 0.7994 0.7643 0.29

Gradient Boosting 0.7368 0.8231 0.7776 0.06

SVM 0.6667 0.9999 0.8 0.27

FFT + AdaBoost 0.9961 0.7580 0.8609 2.5

Wavelet + AdaBoost 0.8593 0.8730 0.8661 2.1

AE + AdaBoost 0.9371 0.9690 0.9528 0.67

LSTM-AE + AdaBoost 0.9513 0.9770 0.9640 0.8

LSTM-AE (consider error) +
AdaBoost (Proposed)

0.9477 0.9790 0.9631 0.85

than the sampling frequency (about 3 Hz) during the printing
process. Although using classification algorithm directly for
monitoring is much faster, the detection accuracy will be sig-
nificantly reduced. The three benchmark feature extraction
approaches also demonstrate the relatively high detection
accuracy, but none of them can achieve competitive accuracy
for both Case 1 and Case 2. For example, the wavelet-based
method achieved very high accuracy inCase 1, but its F-score
in Case 2 is significantly lower than the proposed method.
Meanwhile, its computation cost for online monitoring is
much larger, which may not be suitable if the sampling fre-
quency or the number of channels increased significantly.
Similarly, if the simple autoencoder is applied for feature
extraction, the detection accuracy is very competitive in Case
2, however, its performance in Case 1 is not satisfactory.
Additionally, the results also show that the consideration of
reconstruction error can help to improve the detection accu-
racy in Case 1.

Unsupervised monitoring results

The results of proposed LSTM-AE + OCSVM-EWMA
method under unsupervised monitoring scenario are visu-
alized in Fig. 11, where the dash lines represent the upper
control limit (UCL) and lower control limit (LCL), respec-

tively. In addition, the red solid vertical line denotes the
onset of cyber-physical attack. For both Case 1 (Fig. 11a)
and Case 2 (Fig. 11b), the results demonstrated that the pro-
posedmethod is able to effectively detect the attack in a short
time with a relatively low false alarm rate.

Subsequently, to further compare the proposed approach
with the benchmark methods, three metrics are applied to
quantify the detection performance, listed below:

(1) False alarm rate: the rate of false alarms under normal
condition, i.e., an estimation of type I error α. Lower
false alarm rate indicates the method is more robust
when the process is under normal condition.

(2) Averaged attack response time: for the five testing trials
of each case, when attack occurs, the average number
of samples until the control chart first signals, i.e., an
estimation of the out-of-control average run length. In
general, shorter averaged attack response time implies
higher sensitivity to out-of-control samples.

(3) True detection rate: the rate of the true alarms under
attacked condition. i.e., an estimation of 1 − β, where
β represents the type II error.

Based on the above mentioned three evaluation metrics,
the comparison results between the proposed method and
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Fig. 11 The online attack detection performance using the proposed
LSTM-AE + OCSVM-EWMA method for unsupervised monitoring.
a Case 1; and b Case 2

benchmark methods are presented in Tables 7 and 8. The
control limits for each method are determined based on the
same training data (i.e., phase I data) used in Sect. 4.2.2,
which controls the level of α around 0.025 for the phase I

data. Afterwards, the control limits are applied for the testing
data (phase II data), which are also the same with the testing
data in Sect. 4.2.2.

Overall, the results demonstrate that the proposed method
can achieve a superior performance for both cases than
the benchmark methods. Specifically, FFT-based monitoring
has very long attack response time and low true detection
rate, which is significantly worse than the proposed method.
Although the wavelet-based monitoring can achieve com-
petitive attack response time for both cases and similar true
detection ratewith the proposedmethod, its false alarm rate is
much higher than all other methods and also its true detection
rate in Case 2 is low. The simple autoencoder-based approach
is also not competitive. For both cases, it has much higher
false alarm rates, longer attack response times, and lower true
detection rates than the proposed method. In addition, the
results based on the direct application of OCSVM-EWMA
(without the proposed effective feature extraction) and the
LSTM-AE + MEWMA (without the proposed OCSVM-
EWMA control chart) based monitoring also show that our
proposed feature extraction and control charting framework
can indeed reduce both false alarm rate and miss detection
rate. Meanwhile, the results also show that the considera-
tion of reconstruction error can help to improve the detection
performance significantly in Case 1. Therefore, it can be con-
cluded that the proposed method is very promising to handle
the AM process alteration caused by cyber-physical attack.

Conclusions and future work

This paper develops a machine learning-based online mon-
itoring methodology using side channels to detect process

Table 7 The comparison of the
unsupervised monitoring
results—Case 1

Methods False alarm rate Averaged attack
response time

True detection rate Computational time
(ms) /unit

FFT +
OCSVM-EWMA

0 35.8 0.144 1.06

Wavelet +
OCSVM-EWMA

0.198 4.2 0.831 1.588

AE +
OCSVM-EWMA

0.170 7.6 0.309 0.494

LSTM-AE +
MEWMA

0.051 16 0.149 5.613

OCSVM-EWMA 0.096 5.4 0.716 0.262

LSTM-AE +
OCSVM-EWMA
(not consider
error)

0.063 9.2 0.400 0.426

LSTM-AE +
OCSVM-
EWMA
(Proposed)

0.091 4.6 0.857 0.478
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Table 8 The comparison of the
unsupervised monitoring
results—Case 2

Methods False alarm rate Averaged attack
response time

True detection rate Computational time
(ms) /unit

FFT +
OCSVM-EWMA

0.200 93.8 0.255 0.984

Wavelet +
OCSVM-EWMA

0.214 8 0.255 1.482

AE +
OCSVM-EWMA

0.017 89.8 0.012 0.556

LSTM-AE +
MEWMA

0.099 3.2 0.197 6.116

OCSVM-EWMA 0.155 20.4 0.337 0.303

LSTM-AE +
OCSVM-EWMA
(not consider
Error)

0.024 4 0.423 0.410

LSTM-AE +
OCSVM-
EWMA
(Proposed)

0.033 7.4 0.444 0.432

alterations inAMdue to themalicious cyber-physical attacks.
A data-driven approach based on the LSTM-autoencoder is
developed for feature extraction from the multi-dimensional
side channel data. By incorporating an AdaBoost-based
classification approach and a developed novelty detection
embedded control chart OCSVM-EWMA, the extracted fea-
tures can be applied for both supervised and unsupervised
in-situ monitoring, respectively. Two cyber-physical attack
cases in FFF are designed to validate the effectiveness of
the proposed method. Overall, the conclusions can be sum-
marized as three points: (1) side channels contain useful
information to detect process alterations; (2) the proposed
LSTM-autoencoder based feature extraction is able to effec-
tively capture the variation induced by process alterations;
and (3) the developed attack detection approach using the
extract features can detect process alterations in a timely and
accurate manner under both supervised and unsupervised
scenarios. Furthermore, the proposed method also has the
potential to be applied in other additive manufacturing pro-
cesses as well. To extend it to other AM processes, suitable
sensors should be explored and installed due to the differ-
ent mechanisms among different AM processes. Afterwards,
the model setup, such as the neural network architecture also
needs to be further optimized in order to achieve a satisfac-
tory performance. In short, it is very promising for the future
application of online cyber-physical attack detection in AM.

This work is a preliminary study for side channel-based
online process cyber-physical attack detection in AM. Thus,
several limitations need to be addressed in the future work.
On the one hand, currently only the vibration signals are
utilized, so the capability of the proposed method for other
types of signals should be further investigated. On the other
hand, the design of the test parts is relatively simple in this

study. As the geometry of AM product becomes more com-
plicated, the robustness of the proposed method will be more
important and it needs to be investigated as well. Therefore,
future directions of this study include the following aspects.
First, other types of side channel sensors (e.g., thermocouple,
acoustic sensors, etc.) will be explored to improve detection
capability for all different types of potential process alter-
ations (such as the temperature and/or speed change). The
fusion of heterogeneous sensor data is also expected to pro-
vide better performance to the proposed alteration detection
framework. Second, when fabricating designs with compli-
cated geometries, the robustness of the proposed method to
complex printing paths needs to be further investigated. Last
but not the least, from the methodological perspective, the
accuracy and efficiency improvement of the feature extrac-
tion and monitoring algorithms will be further investigated
as well.
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