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Abstract
Rotatingmachines are frequently subject to awide range of rough conditions, resulting inmechanical failures and performance
degradation. Thus, it is important to apply proper failure detection and recognition techniques, such as machine learning
algorithms, to prevent these issues early. In industrial environments, little data exists regarding failure conditions,which hinders
the training stage of the classification algorithms responsible for classifying the failures. Therefore, this work proposes a hybrid
method of data augmentation to increase the number of minority class instances in order to improve classifier performance.
The approach combines the synthetic minority over-sampling and the additive white Gaussian noise techniques to create a
set of artificial signals. The results show that the proposal is able to achieve better results than applying those techniques
separately and also when using an undersampling strategy. For comparison purposes, four machine learning classification
methods were analyzed alongside our data augmentation proposal, namely, support vector machines, K -nearest neighbors,
random forest and stacked sparse autoencoder. The proposed hybrid data augmentation method associated with stacked sparse
autoencoder outperformed the other models obtaining an accuracy of 100% and a processing time of 0.13 s.

Keywords Data augmentation · Combined failures recognition · Imbalance · Misalignment · Rotating machines · Predictive
maintenance

Introduction

Rotating machines are widely employed in modern industry.
However, they are frequently subject to a wide range of con-
ditions, such as frequent load changes and high speeds (Qian
et al. 2019) that result in performance degradation and
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mechanical failures (Li et al. 2020b). Consequently, a key
industry issue is to provide system effectiveness and reliabil-
ity through accurate fault diagnosis (Yu et al. 2019). These
allow for unexpected failures and unscheduled downtime to
be minimized, saving unnecessary extra costs.

Applications involving fast and intelligent fault diagno-
sis methods are of significant interest, as can be seen in
the works (Li et al. 2019; Wang et al. 2020; Martins et al.
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2021). A variety of sensors have also been employed to
measure dynamic responses (Goyal et al. 2019). A possi-
ble non-invasive solution to effectively measure the different
levels of degradation is through vibration signal estimation.
Note that failure recognition and detection from mechanical
vibration analysis enables proper maintenance measures at
early stages (Glowacz 2018). The most frequent failures that
affect the useful life of rotating machines are imbalance and
misalignment (Bai et al. 2019; Guan et al. 2017).

Misalignment is usually due to improper installation, ther-
mal variation, asymmetric loads, amongst others (Hujare and
Karnik 2018). These result in increased loads on bearings
and couplings, the parts connected to the shaft. Misalign-
ment usuallyworsenswith continuous operation and requires
periodical monitoring in order to be corrected (Verma et al.
2014). One possible strategy for determining misalignment
is to employ vibration spectrum analysis. This is a reli-
able method that also enables the identification of imbalance
faults. Various methodologies have been applied in the lit-
erature addressing this issue, such as (Klausen et al. 2018;
Djagarov et al. 2019). For instance, (Yamamoto et al. 2016)
proposed using an intelligent algorithm embedded in a Field
Programmable Gate Array (FPGA) to correct imbalance
faults. The work (Djagarov et al. 2019) designed a Super-
visory Control and Data Acquisition (SCADA) system for
monitoring electric motor failures in ships.

Other references, such as (William and Hoffman 2011;
Yu 2019), successfully applied signal processing methods
to fault detection. Recently, many authors, such as (Srinivas
et al. 2019; Dekhane et al. 2020), have addressed the problem
of measuring, identifying, and quantifying combined faults
in rotating machines. Machine learning and statistical tech-
niques also exist for tackling these issues, namely (Yang et al.
2019; Zhang et al. 2020a).

A review on data-driven fault severity assessment in
rolling bearings was presented in (Cerrada 2018). The work
mentions a series of techniques that can be employed to
assess the state of an electric engine based on digital signal
processing and intelligent algorithms, namely: artificial neu-
ral networks, support vector machines, clustering, Markov
models, fuzzy logic, linear discriminant analysis, Gaussian
mixturemodels and probabilistic based approaches.One pos-
sibleway for developing prognostic systems is to consider the
remaining useful life of an asset, which can be estimated by
fault classification techniques (Si et al. 2011). Fault classifi-
cation can be divided into model-based approaches (Srinivas
et al. 2019; Wang and Jiang 2018) and data-driven meth-
ods (Dekhane et al. 2020; Li et al. 2017), the latter being
the focus of this paper. Typically, statistical data-driven
approaches for fault classification apply stages such as (i)
data acquisition; (ii) feature extraction; (iii) fault identifica-
tion; and (iv) fault severity estimation (Martins et al. 2019).
Machine learning techniques are susceptible to suffer from

overfitting issues. This is especially true in the case of learn-
ing from rare events (Oh and Jeong 2020).Data augmentation
schemes can be employed to reduce this issue (Li et al.
2020c).

In (Jin et al. 2021) a technique is presented based on deep
learning to identify vibration signals composed of simple
and combined failures related to bearing faults. The dataset
used in this paper is composed of eight classes composed of
three simple failures, four combined failures and one class
corresponding to normal operating conditions. The algorithm
employs active learning in order to overcome a lack of labeled
instances. The article also proposes an automatic way of
extracting features to reduce the intervention of a special-
ist in the initial choice of the feature set. The authors also
apply a feature selection technique to choose the most rele-
vant ones and thus reduce the number of input signals in the
classifier. The algorithm achieved 100% accuracy, outper-
forming convolutional neural networks and long short-term
memory algorithms.

In (Xiao et al. 2021) a system was designed based on
deep learning using a denoising autoencoder to solve the
problem of noisy domain shift in failure identification. This
work made use of two datasets consisting of acoustic sig-
nals, one referring to gear faults and the other to motor faults.
Noisy data was generated through additive white Gaussian
noise (AWGN) and binary masking. Classification-wise, the
proposed algorithm performed well even in the face of con-
taminated signals with high noise levels. The training time
of the proposed algorithm was also lower when compared to
other deep learning algorithms.

In (Shao et al. 2017) the authors propose an Auxiliary
Classifier Generative Adversarial Network (ACGAN) to cre-
ate new and realistic synthetic observations directly from
sensor data. The method is applied for fault detection and
classification in rotating machines. The authors made use of
a rotor kit with one accelerometer for data gathering. Six
conditions were simulated: normal, stator winding defect,
imbalanced rotor, bearing defect, broken bar, and bowed
rotor. The minor class had 100 samples, while the rest of
the classes had 200 instances. Different training data set-
tings using real data and generated data were used to produce
12 different scenarios. The baseline scenario employed 200
samples of real data alongside zero instances of generated
data and achieved an accuracy of 99.80%.When 200 samples
were used from real data in conjunction with 200 generated
samples the system produced 99.93% accuracy. Classifica-
tion accuracy reached 100% when 200 real samples were
used alongside 600 generated ones.

In the work of (Rashid and Louis 2019), AWGN was
used to augment the positioning and movement data which
were collected fromGPS and gyroscope devices. The sensors
were installed in heavy-duty vehicles to evaluate the optimal
usage of civil construction equipment through deep learn-
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ing methods. The goal of the authors was to reduce costs in
civil constructions. The idea of creating a new dataset using
data augmentation techniques can also be found in (Rochac
et al. 2019). The authors applied AWGN to develop sev-
eral new training data from an original limited set consisting
of infrared camera images and further train different deep
learning models. The authors gave special attention to the
signal-to-noise ratio (SNR), experimenting with ten dif-
ferent SNR values to demonstrate the respective influence
on accuracy. These results were then compared to those
obtained using Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al. 2002). In the latter, the authors per-
formed experiments using SMOTE to enlarge the minority
class after having undersampled the majority classes in order
to analyze performance in the ROC space. The experiments
were performed with three different classifier algorithms.

In (Arslan et al. 2019), a dataset of humidity, tempera-
ture, light intensity, and air quality was preprocessed through
AWGN and SMOTE data augmentation techniques and fur-
ther used to train a classifier algorithm. The results suggested
a better accuracy when using SMOTE than AWGN for this
configuration. Thework (Fernández et al. 2018) presents a lit-
erature review and approaches some of the relevant aspects of
the SMOTE technique. In (Wang 2008) the authors success-
fully increased classification accuracyby combiningSMOTE
and a Biased-SVM when applied to four other imbalanced
datasets available at the UC Irvine (UCI) machine learning
repository. The results suggested that classifier sensitivity to
minority classes was improved by the SMOTE algorithm.
It is also possible to create variations of the SMOTE tech-
nique as proposed by (Li et al. 2011). Instead of selecting
the K -nearest neighbors (K -NN), the authors selected three
real random samples to create a triangle. The triangle is then
filled with a defined quantity of lines, and each of these
lines will finally contain a defined synthetic amount of data
points. This process was entitled Random-SMOTE, whose
objective was to pursue a more uniform distribution of syn-
thetic items throughout the minority class space. In (Ali et al.
2019) the influence on themodel accuracywas analyzed after
SMOTE was applied to enlarge the minority class of a vibra-
tion dataset. The results were comparable to the previous
works, which used AWGN as the augmentation approach.
The authors used a multilayer perceptron (MLP) to classify
the rotating machine faults.

Variational Autoencoder is an additional data augmenta-
tion technique based on deep learning. The method allows
for the reconstruction of the created examples in the data
space. However, the approach is known for producing dis-
torted reconstruction when the signal is noisy (Burks et al.
2019). Themethod is also difficult to train due to the required
hyperparameter tuning process and the high execution com-
putational cost (Asadi et al. 2009; Shorten and Khoshgoftaar
2019), which requires the use of clusters and/or GPUs.

Generative artificial neural network is another deep learn-
ing method that has been used for data augmentation in
several areas. However, the use of the technique has some
limitations, namely: (i) it requires a large amount of origi-
nal data to carry out training (Yu et al. 2021), which is not
always possible, as is the case of this research; (ii) it is sub-
ject to instability and non-convergence of the algorithm in
cases where the generator produces large outputs; and (iii)
it generates examples that are not consistent with the physi-
cal nature of the real data (Shorten and Khoshgoftaar 2019;
Mikołajczyk and Grochowski 2018).

Asmentioned in the previous paragraphs, the performance
of deep learning techniques is susceptible to suffer from a
lack of training examples inwhat concerns failure conditions.
Therefore, it is pertinent to propose a data augmentation
method for those classes whose instances are lacking, which
is: (i) stable when using parameter adjustment methodology;
and (ii) does not require high-performance computational
resources. The main contributions of this paper are summa-
rized below:

1. Most of the research focusing on fault diagnosis in rotat-
ing machines only considers the identification of single
faults. However, in this work, the objective is to identify
and differentiate single failures from combined failures.
These are situations that can occur in industrial environ-
ments. Furthermore, this task is more complex than the
identification of isolated faults.

2. Compute the influence in classifier performance of pre-
processing approaches such as features normalization,
undersampling, and data augmentation using white noise
and SMOTE.

3. Develop a novel hybrid data augmentation method using
SMOTE and AWGN to increase the number of minority
classes instanceswith the objective of improving classifier
performance.

This paper is structured as follows. Section 2 presents
a description of the proposed methodology, detailing the
dataset as well as the feature extraction process. A theoret-
ical foundation regarding the main concepts treated in this
research is briefly explained in Sect. 3. Section 4 describes
the effectiveness of the proposed method. The concluding
remarks are reported in Sect. 5.

Case study

Industrial rotating machines are usually involved in produc-
tion processes. Production stoppage might cause significant
financial losses and even damage the equipment. This makes
it unfeasible to cause failures in these apparatuses for study
purposes. An adequate study of the problems affecting this
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Fig. 1 ABVT Experimental
bench

type of machines requires a large dataset covering different
types and severities of breakdowns. Creating such a dataset
can be very time consuming and even impossible for themost
critical operating conditions.

In this sense, two approaches can be taken, namely: (i)
place the rotating machine on a test bench for the purpose
of inserting faults and recording the corresponding vibra-
tion signatures; and (ii) employ bench simulators of rotating
machines. The former is impractical given the potentially
high cost of the machine and elevated execution time asso-
ciated with preparing and assembling the failures. As a
consequence, laboratory tests are more expensive. The sec-
ond approach enables the insertion of failures in a more
convenient way, which results in time and execution sav-
ings (Villa et al. 2012).

As a result, the experimental bench Alignment Balance
Vibration Trainer (ABVT)was employed in this study to pro-
duce simple and combined faults. This experimental bench
is composed of a 0.25 hp DC motor, two rolling bearings,
a thin shaft, a sliding surface, a rigid coupling, and an iner-
tia disc positioned in the center hug configuration (between
the rolling bearings), as shown in Fig. 1. The simulation
bench was used in an environment with a controlled tem-
perature in the range of 22 ◦C to 27 ◦C. Before starting to
record and monitor the signals, the engine was in opera-
tion for 10 minutes to ensure that it was properly prepared.
Signals that presented vibration values outside the expected
range were discarded and replaced with a new recording.
The module used to record the vibration and tachometer
signals was the signal acquisition module (NI 9234), manu-
factured by National Instruments. This module converts the
analog signals from the sensors into digital voltage or cur-
rent signals. The main features of the module sensor are
24-bit resolution, a maximum sampling frequency of 51.2
kHz, 102 dB dynamic range, anti-aliasing filter, operating
temperature range of [−40, 70] ◦C, and signal conditioning
for piezoelectric sensors. The LabviewTM, softwarewas used

to implement the interface between the acquisition module
and the computer. This interface enables viewing the signals
of each channel during the acquisition step to avoid recording
errors.

The scenarios studied in this research are: (i) normal
behavior; (ii) imbalanced rotor; (iii) imbalance rotor with
added horizontalmisalignment; and (iv) imbalance rotorwith
added vertical misalignment. Imbalance is provoked in the
ABVT by fixing screws on the inertia disc. Vertical misalign-
ment is produced by adding metal plates at the base of the
DC motor. Horizontal misalignment is inserted by shifting
the base of the motor and measuring rotational speed using
a digital tachometer, as shown in Fig. 2.

The vibration signals were acquired and stored. Because
the acceleration signals are quite noisy, which can negatively
affect the fault diagnosis stage, they were filtered by a band-
pass Hamming window whose cutoff frequencies are 10 Hz
and 1000 Hz. Subsequently, the discriminative characteris-
tics of the signals were extracted as a means of reducing the
amount of input information to be presented to the classifiers.
The last step was to compare the classification performance
behavior of four algorithms. This allowed us to better grasp
of the effectiveness of the proposed hybrid data augmentation
method against AWGN and SMOTE.

Dataset

Table 1 presents the details of the dataset produced, which
consists of 238 signals. These were recorded by changing
the motor rotational speed using 2 Hz steps in the range
f ∈ [16, 60] Hz. The maximum frequency employed is due
to the operating limits of the simulation bench. The imbal-
ance values listed in Table 1 indicate the masses (in grams
(g)) that were placed on the inertia disc. The horizontal and
verticalmisalignmentsmeasures are inmillimeters (mm) and
correspond to the movement of the motor base when com-
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Fig. 2 Faults insertion

(a) (b)

(c)

Table 1 Dataset description Scenarios Signals Details
Quantity Speed (Hz) Label

Normal 115 [16, 60] No

Imbalance (6g) 23 [16, 60] I

Imbalance (20g) 18 [16, 50] I

Imbalance (6g) + hor. misalignment (1 mm) 23 [16, 60] IHM

Imbalance (20g) + hor. misalignment (1 mm) 18 [16, 50] IHM

Imbalance (6g) + ver. misalignment (1.27 mm) 23 [16, 60] IVM

Imbalance (20g) + ver. misalignment (1.27 mm) 18 [16, 50] IVM

pared to its initial position. The ‘Label’ column indicates the
class that describes each scenario.

The vibration signals were measured at the internal bear-
ing, which is closer to the DC motor. Digital data was
acquired at the sampling frequency of 50 kHz for 3 s. Three
uniaxial piezoelectric accelerometers, manufactured by IMI
Sensors,were employed to obtain vibration signals in perpen-
dicular directions: axial, horizontal, and vertical. The main

characteristics of this sensor are: sensitivity (100mV/g (20%)
); frequency range ([0.27, 1000] Hz); and acceleration mea-
surement range ([−50, 50] g, in this case g is approximately
9.8m/s2). In order tomeasure the rotational speed of the shaft
motor, the tachometer MT-190 was used, which is produced
by Monarch Instrument.
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Table 2 Extracted features at
time and frequency domains,

with αK �
√
K (K−1))
K−2

Feature Time Frequency

Maximum T1 = max (x(n)) F1 = max (s(k))

Minimum T2 = min (x(n)) F2 = min (s(k))

Mean value T3 = ∑N
n=1

x(n)
N F3 = ∑k

k=1
s(k)
K

Variance T4 = ∑N
n=1

(x(n)−T3)2

N−1 F4 = ∑K
k=1

(s(k)−F3)2

K−1

Standard deviation T5 = √
T4 F5 = √

F4

Root mean square T6 =
√

∑N
n=1

(x(n))2

N F6 =
√

∑K
k=1

(s(k))2

K

Kurtuosis T7 = E[x(n)−T3]
(T5)

4 F7 = E[s(k)−F3]
(F5)

4

Unbiased skewness T8 =
√
N (N−1))
N−2

E
[
(x(n)−T3)3

]

E
[
(x(n)−T3)2

]3/2 F8 = αK
E

[
(s(k)−F3)3

]

E
[
(s(k)−F3)2

]3/2

Signal energy T9 = ∑N
n=1

|x(n)|2
N F9 = ∑K

k=1
|s(k)|2

K

Amplitude range T10 = T1 − T2 F10 = F1 − F2

Entropy T11=−∑N
n=1 p(zn) log2 p(zn) F11=−∑K

k=1 p(zk) log2 p(zk)

Crest factor T12 = max|x(n)|
T6

F12 = max|s(k)|
F6

Shape factor T13 = T6∑N
n=1

|x(n)|
N

F13 = F6∑K
k=1

|s(k)|
K

Impulse factor T14 = T1∑N
n=1

|x(n)|
N

F14 = F1∑K
k=1

|s(k)|
K

Margin factor T15 = max |x(n)|
(∑N

n=1

√|x(n)|
N

)2 F15 = max |s(k)|
(∑K

k=1

√|s(k)|
K

)2

Defect factor T16 = T1 − T6 F16 = F1 − F6

Rotational frequency N/A F17 = R f

Amplitude at R f N/A F18 = Am(R f )

Amplitude at 2R f N/A F19 = Am(2R f )

Amplitude at 3R f N/A F20 = Am(3R f )

Amplitude at 4R f N/A F21 = Am(4R f )

Feature extraction

One of the main preprocessing steps in fault diagnosis is
feature extraction of the vibration signals (Razavi-Far et al.
2017; Xu et al. 2019). The fault signature can be under-
stood as a set of symptoms associated with a defect, and
these are directly related to certain features from the vibra-
tion signals (Cerrada 2018). Feature extraction also reduces
the amount of information to be used as input to the classifier.
For contextualization, in this research, if this preprocessing
step were not to be used, the classifier would receive 150,000
samples referring to each of the sensors used. This would
unnecessarily increase the computational cost of the clas-
sification task and impair its accuracy due to the excess of
information (Bramer 2007). In this work, features are used in
time and frequency domains (Pandya et al. 2013; Dhamande
and Chaudhari 2018), as shown in Table 2 where:

– x(n) is the time domain vibration signal;
– N is the length of the time domain vibration signal;
– E denotes the expected value operator;
– p(zn) corresponds to the probability of x(n) being equal

to the possible values of sequence zn ;

– s(k) is the vibration signal spectrum obtained by the
application of Fast Fourier transform (FFT) in x(n);

– K is the number of samples of s(k);
– p(zk) corresponds to the probability of x(k) being equal

to the possible values of sequence zk ;
– R f is the rotational speed frequency obtained by the FFT
of the tachometer;

– Am(R f ) denotes the maximum value of s(k) at the R f

of the rotating machine;
– N/A stands for not applicable;

with the exception of the R f indicator, which represents only
a single feature, each one of the remaining indicators in
Table 2 is calculated for the axial, horizontal, and vertical
directions. This results in 48 time-domain and 60 frequency-
domain features, thus producing a feature vector with 109
elements.

Features normalization

In statistical studies, normalization is used to standardize data
and to optimize data processing (Suarez-Alvarez et al. 2012).
In machine learning, normalization plays a significant role
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when attributes can hinder data processing (e.g., redundant
or extreme values). Normalization is a way to standardize
and minimize problems that originate from such dispersions
or redundancies. The process allows for (Walpole andMyers
2012): (i) effective data processing; and (ii) ignoring incon-
sistent data. Normalization can improve the performance of
classifiers such as SVM, K -NN, and RF (Canbaz and Polat
2019; Sikder et al. 2019).

Preliminary simulations in the dataset employed in this
work show that Minimum-Maximum (min-max) normal-
ization performs better than Z normalization. Thus, in the
simulations, only the min-max normalization was applied.
This technique, respectively presented in Equation (1), nor-
malizes the values through their minimum and maximum
values, separating them at fixed intervals to provide more
effective processing (Polat 2020).

fenorm = fe − min (fe)
max (fe) − min (fe)

, (1)

where fe is the original feature vector, min(fe) is the lowest
value of vector fe, max (fe) is the highest value of fe and
fenorm is the normalized fe vector.

Theoretical foundations

This section presents the theoretical background for the
development of the hybrid approach, namely: Sect. 3.1
presents an explanation of rotating systems and a respec-
tive dynamic model; Sect. 3.2 describes the imbalance whilst
Sect. 3.3 details the misalignment effects; Sect. 3.4 presents
the data augmentation methodology and Sect. 3.5 elaborates
on the classification methods employed.

Mechanical model of rotatingmachines

In general, a rotor-coupling-bearing system is represented by
a second-order differential equation as described by (Desouki
et al. 2020):

Mq̈ + Cq̇ + Kq = f(t), (2)

whereM is the mass matrix,C is the damping matrix, andK
is the stiffness matrix. The vector of generalized coordinates
is given byq, with its first and second derivativeswith respect
to time t given by q̇ and q̈, respectively. While, the external
forces are represented by the vector f(t).

Imbalance and misalignment are the main sources of
vibration in rotating machinery. The vibration caused by
these phenomena may destroy critical parts of the machine,
depending on its amplitude. Considering those phenomena
responsible for the excitation forces perceived in the cou-

pling of the driver and driven shafts, the vector of external
forces is given by (Desouki et al. 2020):

f(t) = fimb(t) + fmis(t), (3)

where fimb(t) is the component due to imbalance and fmis(t)
is the component caused by parallel or angularmisalignment,
or even a composition of them, and t is time (Wang and Jiang
2018; Xu and Marangoni 1994; Wang and Gong 2019).

Imbalance in rotatingmachines

According to (Desouki et al. 2020), imbalance occurs when
the center of mass of a rotating assembly does not coincide
with the center of rotation. The ISO 21940-1:2016 defines
imbalance as a resulting condition of force transmission or
vibration movement through the bearings as a result of the
action of centrifugal forces (ISO 2016). The issue is usually
attributed to deformations, asymmetries, imperfections in the
raw material, and assembly errors caused by an eccentric
concentrated mass. The imbalance force is described by:

fimb(t) = mrω2, (4)

where m is the unbalancing mass, r is the distance from the
mass center of gravity to the rotation axis, andω is the angular
velocity. Imbalance in rotating machines can be identified by
applying signal processing techniques. This fault presents
amplitude in the fundamental frequency of the rotational
speed, which is much higher than the amplitudes of other
harmonics in the radial direction. This issue provokes high
vibration amplitudes, which causes stresses in structural sup-
ports and can eventually lead to their complete failure (Bloch
and Geitner 2005).

Misalignment in rotatingmachines

The alignment condition on rotatingmachines is given by the
relative position of the connected shafts. If their centerlines
are coincident, forming a straight line, the rotating machine
is considered aligned. Otherwise, there is misalignment,
which is usually classified as parallel or offset misalignment,
angular misalignment, or more commonly, a combination of
both (Hujare and Karnik 2018). The misalignment produces
forces and moments, inducing radial and axial vibrations in
the system, which can be represented by:

fmis(t) = Kc�e, (5)

where Kc is the couplings stiffness matrix and �e is the
couplings stiffness matrix and �e vector of misalignments,
composed by parallel and angular displacement (Wang and
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Jiang 2018; Wang and Gong 2019). It should be said that the
study of rotor misalignment has been limited to a qualita-
tive understanding of the phenomenon. This has been mostly
based on experiments with scarcely successful attempts to
develop an effective mathematical model that allows for a
quantitative evaluation of this defect (Desouki et al. 2020;
Sinha et al. 2004; Lal and Tiwari 2018).

Data augmentation

A common issue that occurs while working with supervised
data is trying to learn from imbalanced data. This usually
happens due to the underrepresentation of a set of classes,
i.e.when an uneven number of instances are used to train the
machine learning algorithm (Fernández et al. 2018). These
are called minority classes. This situation leads to biased
models where model accuracy decreases as the imbalance
ratio increases. In real-world conditions, it is to be expected
to have more instances representing normal conditions than
those deemed to be abnormal or defective (Chawla et al.
2002). Learning from imbalanced data has thus become an
integral part ofmachine learning techniques (Fernández et al.
2018).

In (Fernández et al. 2018) resampling methods were
presented covering undersampling and oversampling. The
undersampling techniques refer to the random elimination of
samples from the majority classes to make them smaller and
size comparable to the smallest ones. However, this approach
leads to some problems since: (i) important instances may be
discarded, resulting in a lack of data affecting class charac-
terization; (ii) higher imbalance ratio, the number of samples
that will be discarded, which may reduce the ability for
generalization; and (iii) the reduction of the training set pro-
vokes a variance increase of the classifier (Chawla et al.
2002; Dal Pozzolo et al. 2015). In contrast, the oversampling
method relies on increasing the instances of minority classes
in order to make them comparable in size to the largest ones.
The candidate samples are replicated based on some weight
criteria.

More elaborate techniques are commonly referred to as
data augmentation techniques (Fernández et al. 2018;Chawla
et al. 2002), and these will be the focus of the following sec-
tions. Namely: “Additive white gaussian noise technique”

section presents the AWGN method; “Synthetic minor-
ity oversampling technique” section describes the SMOTE
approach; the details for the hybrid data augmentation
method proposed in this work can be found in section “Pro-
posed hybrid data augmentation method”.

Additive white gaussian noise technique

AWGN can be used in the data augmentation process, which
is applied to the data space instead of the feature space, as
opposed to SMOTE (Fernández et al. 2018). Figure 3 repre-
sents the AWGNmethod where a zero-mean Gaussian noise
is added to the input vibration signal (McClaning and Vito
2000; de Lima et al. 2013) to create a new vibration signal.
The Signal-to-Noise ratio (SNR), respectively presented in
Equation (6), reflects the relation between the input signal
average power (Psignal) and the average noise power Pnoise in
dB.

SNRdB = 10 log

(
Psignal
Pnoise

)

, (6)

Due to the random character of the added noise (Diniz
et al. 2010), the original input signal can be transformed
as many times as needed to make the resulting polluted sig-
nal comparable in size to those of the larger classes. This
can be performed by adding random noise to each new
copy of the vibration signal. In this research, we employed
SNRdB = 15 dB to create the noisy signal versions.

Synthetic minority oversampling technique

SMOTE was initially proposed in (Chawla et al. 2002) as
an option to increase the proportion of minority classes in
datasets. Its approach consists in creating fictitious or syn-
thetic observations in between two real observations. As
commented in (Fernández et al. 2018; Chawla et al. 2002)
this is a process applied to the feature space instead of the data
space as occurs when using other oversampling methods.

Figure 4 presents a two-dimensional representation of
the creation of the synthetic observations and the respective
feature vectors. This technique can be applied to a multi-
dimensional feature space. It is possible to create as many

Fig. 3 AWGN signal addition
scheme
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Fig. 4 Minority class feature space is represented in a simplified two
dimensions scheme. The blue circles correspond to the real observation,
the orange circles are the synthetics observations, the blue arrows are
the real features vector and the blue arrows are the synthetics features
vector (Colour figure online)

synthetic points as needed to make the minority class dataset
size comparable or equal to the larger ones.A synthetic obser-
vation might be created between: i) two real observations; ii)
a real observation and a synthetic one; and iii) between two
previously created synthetic observations.

According to (Chawla et al. 2002), a synthetic observation
can be constructed as follows: a given real feature vector,
samplei is randomly taken from the minority class dataset.
In addition, one of the K nearest neighbors of a sample is
randomly chosen. Subsequently, the difference, Di between
each respective feature of both vectors is calculated, and the
new synthetic vector is created by summing each of feature c
of the randomly chosen i samples to its corresponding Di .G,
whereG is a factor randomly chosen in the interval [0 < G <

1] for each different feature c. This results in the construction
of a synthetic vector between a sample and a neighbor. The
aforementioned process is precisely detailed in Algorithm 1.

Proposed hybrid data augmentation method

The use of SMOTE and AWGN techniques in an isolated
manner to create additional instances of the minority classes
are able to increase classifier performance. However, these
methods can also increase overfitting (Zur et al. 2004; Santos
et al. 2018), which is not desirable. Furthermore, SMOTE
also has the potential to disseminate noisy information when
new instances are created in unwanted positions (Cheng et al.
2019).

In order to increase the number of vibration signals and
avoid overfitting, we propose a hybrid method combining
SMOTE and AWGN. The purpose of applying this method is
to create a set of artificial signals that have higher randomness
than when applying techniques in an isolated manner. These

Algorithm 1: SMOTE algorithm

% Function syntax: [Od] = smote(I d, S, K )

% I d: minority class array.
% S: number of synthetic observations to add to I d.
% K : quantity of nearest neighbors
% Od: augmented class array.

L ← Quantity of observations or lines of I d
C ← Quantity of features or columns of I d
Od ← I d
for sc ← 1 to S do
i ← Randomly chosen observation of Od
n ← Randomly chosen value of the K nearest neighbors
indexes vector, using the standard K -NN algorithm, given i .
% The code block below adds a new line to Od containing one
new synthetic observation.
L ← L + sc
for cc ← 1 to C do
Di ← (Od(n, cc) − Od(i, cc))
G ← Randomly chosen value in the interval [0 < G < 1]
Od(L, cc) ← (Od(sc, cc) + (Di .G))

end for
end for

would translate into a more robust and generalist classifica-
tion model, thus decreasing the bias when compared with
any one of the two data augmentation techniques employed.
Two versions can be devised for the hybrid method. Namely,
a first version (version 1) can be developed consisting
in expanding only the number of instances of the minority
classes without making changes to the majority classes. This
procedure is illustrated in Fig. 5, where:

– Ma represents the number of majority class instances;
– Mi1 represents the number of minority class instances
obtained by feature extraction without using data aug-
mentation techniques;

– Mi2 represents the number of minority class instances
obtained from applying SMOTE;

– Mi3 represents the number of minority class instances
obtained from applying AWGN.

In the first approach, Ma , Mi1 , Mi2 and Mi3 contain,
respectively, 115, 41, 37 and 37 instances each. Also, note
that the quantity of Ma instances is equal to the sum of Mi1,
Mi2 and Mi3.

The second version of the method (version 2), pre-
sented in Fig. 6, increases the number of minority class
instances by x units using the AWGN technique and also
modifies x signals of the majority class by adding Gaus-
sian white noise. This way, the insertion of white noise does
not become a discriminating feature between minority and
majority classes. Figure 6 presents the overall details of the
second approach where:
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Fig. 5 Proposed hybrid method
version 1
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– Ma1 represents the number of majority class instances;
– Ma2 represents the number of instances modified by

AWGN;
– Mi1 represents the number of minority class instances
without using data augmentation techniques;

– Mi2 represents the number of minority class instances
resulting from applying SMOTE;

– Mi3 represents the number of minority class instances
resulting from applying AWGN.

In the second approach, Ma1 , Ma2 , Mi1 , Mi2 and Mi3 con-
tain, respectively, 78, 37, 41, 37, 37 instances each. Also, the
sum of Ma1 and Ma2 is equal to the sum of Mi1 , Mi2 and Mi3 .

Classificationmethods

This paper compares four machine learning classifica-
tion methods, namely Support Vector Machines (SVM),
K -Nearest Neighbors (K -NN), Random Forest (RF) and
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Stacked Sparse Autoencoder (SSAE). These are, respec-
tively, briefly described in Sects. 3.5.1, 3.5.2, 3.5.3 and 3.5.4.

Support vector machines

Support Vector Machines (SVM) is a machine learning
method with a set of linear indicator functions that divides
the feature space into two regions (Vapnik 2013; Ziani et al.
2017). The method maps the original data in higher dimen-
sional feature space (compared to the original one) using
the training dataset. A hyperplane with a better discrimi-
natory capacity is then constructed. This capacity depends
on the kernel function employed, with the most common
ones being the sigmoid, the radial basis, and the linear
functions (Choubin et al. 2019). Usually, the radial basis
function kernel tends to match the performance of the lin-
ear one (Chang et al. 2010). However, in the exploratory
experiments performed in this work, the linear kernel deliv-
ered the best results. As a result, it was the one chosen for the
rest of the evaluations. The linear kernel SVM also exhibits
good results in theworks presented in (Elangovan et al. 2011;
Ruiz-Gonzalez et al. 2014).

K-nearest neighbors

K -Nearest Neighbors (K -NN) is one of the most used non-
parametricmethods (Yoon andFriel 2013). This is essentially
due to its simplicity of implementation. It is used to classify
and cluster the nearest data vectors, with proximity being
measured by some defined metric, the most common of
which is the euclidean distance (also used in this work). K -
NN is designed with the concept of the classification being
decided by determining the majority class amongst its K
closest neighbors (Xing and Bei 2020).

Random forest

Random Forest (RF) is a method of ensemble learning
inspired by decision tree learning (Breiman 2001). The
method combines different decision tree predictors (with
each one being statistically independent of the remaining
ones) and outputs the most common predicted class. The
method uses a variety of binary-ruled decisions to indicate
a split in each tree (Görgens et al. 2015). Feature bagging
is performed for each tree, where a random subset of the
features is selected in the learning process. RF is ranked as
one of the best classification methods (Fernández-Delgado
et al. 2014), and its popularity growth is associated with the
automation and simplicity of the algorithmic training proce-
dure. As a result, system developers with little experience in
machine learning can build classification systems with good
discriminatory capacity (Fletcher and Reddy 2016).

Stacked sparse autoencoder

AE is a deep learning algorithm consisting of neural net-
works whose objective is to encode and reconstruct, with the
smallest possible error, the input itself in the output. It con-
sists of two parts: an encoder and a decoder. The encoder
is responsible for compressing the original data space into
a new representation space, called latent space. The func-
tion of the decoder is to reconstruct the input data from the
data representation in the latent space (Shao et al. 2017).
The training step of the AE is unsupervised because the data
labels are not provided (Li et al. 2020a). The AE can be used
in several manners, namely: (i) to perform feature reduction;
(ii) to denoise data; (iii) to perform data augmentation; (iv)
or classify data, as is the case in this paper (Fu et al. 2019).

A Stacked AE is a complex structure composed of a series
of concatenated layers. The output of each layer is connected
as an input to the next layer. In this structure, each layer is
trained as an AE with the objective of reducing the error.
After all layers are trained, a fine-tuning step is performed.
For the classification step, the decoder layer is removed and
a softmax layer is added. Due to a large number of neurons
in the hidden layers, the sparse constraint is used to capture
high-level representations of the data, thus its name, Stacked
Sparse Autoencoder (SSAE) (Aouedi et al. 2020).

Results and discussion

The main goal of this work is to identify the four classes
described in Table 1, namely, No (Normal), I (Imbalance),
IHM (Imbalance + Horizontal Misalignment) and IVM
(Imbalance + Vertical Misalignment). In this section, the
results of applying four types of classifiers are compared:
SVM, K -NN, RF and SSAE in 14 different cases, which are
described in Table 3.

As the dataset used in this research has low cardinality,
it is not recommended to use the holdout technique, which
separates the data into training and test sets. In these cir-
cumstances, classifier training can result in overfitting issues,
causing bias in the result (Aggarwal et al. 2018). As a result,
we opted to instead apply 5-fold cross-validation, which is
a stochastic partition method for training and test data. This
results in amore robust and accurate predictionmodel (Dinov
2018). The procedure iteratively goes through every possi-
ble training and test set combination evaluating the respective
performance. This procedure is illustrated in Fig. 7.

The classifiers have adjustable parameters whose selec-
tion was oriented by maximizing the highest average of
intraclass relative hits. This is calculated through the sum
of the correct answers of the main diagonal of the confu-
sion matrix divided by the number of classes. The following
sentences describe how the hyperparameter tuning for each
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Table 3 Cases description

Case ID Description

C1 Employs original dataset.

C2 Under samples majority class (No), using only 41 of the
115 available signals, so that this class has the same
number of signals as the minority classes (I, IHM and
IVM).

C3 Over samples minority classes (I, IHM and IVM) using
SMOTE, causing these classes to have 115 instances,
which is the same number of majority class examples
(No).

C4 Over samples minority classes (I, IHM and IVM) using
AWGN with SNR = 15 dB, causing these classes to
have 115 instances, which is the same number of
examples of the majority class (No).

C5 Over samples minority classes (I, IHM and IVM) using
AWGN with SNR = 15 dB, causing these classes to
have 115 instances, which is the same number of
examples of the majority class (No). In addition, white
noise is added to all majority class examples, in order
to reduce the risk of noise addition becoming a
discriminatory feature. Amount of No instances is not
changed.

C6 Over samples minority classes (I, IHM and IVM) using
version 1 of the hybrid method, causing these classes
to have 115 instances, which is the same number of
examples of the majority class (No).

C7 Over samples minority classes (I, IHM and IVM) using
version 2 of the hybrid method, causing these classes
to have 115 instances, which is the same number of
examples of the majority class (No). In addition, white
noise is added to randomly selected majority class
examples, in order to reduce the risk of noise addition
becoming a discriminatory feature. Amount of No
instances is not changed.

C8 Application of features normalization plus C1
procedures.

C9 Application of features normalization plus C2
procedures.

C10 Application of features normalization plus C3
procedures.

C11 Application of features normalization plus C4
procedures.

C12 Application of features normalization plus C5
procedures.

C13 Application of features normalization plus C6
procedures.

C14 Application of features normalization plus C7
procedures.

classifier was performed. SVM training was performed by
testing different values of the regularization term C ∈
{2−5, 2−3, 2−1, ..., 213, 215} using the linear kernel function.
The training of the RF consisted of tuning the number of
trees. During the training stage, the number of trees was var-
ied from 1 to 50. The division rule used to form the nodes of
the trees of RFwas theGini diversity criterion. Theminimum

Training Fold
Test Fold

K
fo
ld
s

Round 1
Round 2
Round 3
Round 4
Round 5

Fig. 7 K -fold representation

number of observations per leaf used by the classifier was 1.
In what concerns the K -NN classifier, the number of neigh-
bors was varied from 1 to 100 using the Euclidean distance
to select the best value of K . Based on (Zhang et al. 2020b),
the following hyperparameters were used to train SSAEwith
softmax classification: (i) three hidden layers consisting of,
respectively, 100, 50, and 20 neurons; (ii)weight decay coef-
ficient equal to 0.0001; (iii) sparsity penalty coefficient of
0.001; and (iv) sparsity factor set to 0.2. Seven metrics were
used to measure the performance of the classifiers: classi-
fication time for one example (T), precision (P), recall (R),
specificity (S), F1 Score (F1), accuracy (A), and standard
deviation (SD) (Rehman et al. 2020; Kankar et al. 2011).

The following sections are organized as follows: Sect. 4.1
presents the results for the SVM classifier; Sect. 4.2 details
the performance of the K -NN method; Sect. 4.3 describes
the data obtained for the RF algorithm; and Sect. 4.4 lists the
results for the SSAE approach.

SVM results

Table 4 presents the SVMresults for the datasetwithout using
normalization. The data shows that using the undersampling
technique (C2) worsens SVM performance when compared
against the baseline C1. The SMOTE data-augmentation
(C3) technique causes a decrease in accuracy when com-
pared to that of C1. However, the other metrics evaluated are
improved. The application of AWGN in C4 and in all classes
(C5) improves precision, recall, specificity, and F1-score
when compared to C1. On the other hand, the application
of these techniques worsens processing time, accuracy, and
standard deviation. The application of the proposed hybrid
method, version 1 (C6) and version 2 (C7), improves SVM
performance in all the evaluated items except the processing
time compared when compared against C1.

Table 5 presents the results concerning feature normal-
ization and showcases a significant improvement in SVM
performance when compared with the described results in
Table 4. Namely, all data augmentation techniques applied
improved classifier performance when compared with the
baseline results of C8. Amongst the results presented, the
best performing one is C14 which refers to the application of
the second version of the hybrid method.
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Table 4 SVM applied to the dataset without features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C1 0.25 90.57 90.56 96.92 91.11 93.50 1.98

C2 0.26 86.25 85.48 94.98 85.87 85.48 3.99

C3 0.23 91.75 91.75 97.28 91.79 91.82 1.81

C4 0.31 91.53 91.53 97.20 91.54 91.55 2.96

C5 0.34 91.71 91.71 97.27 91.73 91.75 3.13

C6 0.30 93.64 93.64 97.89 93.65 93.67 1.70

C7 0.29 93.76 93.76 97.92 93.75 93.74 1.70

Bold values correspond to the best values of each column

Table 5 SVM applied to the dataset with features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C8 0.35 96.46 95.25 99.00 95.85 96.73 5.83

C9 0.31 96.05 96.01 98.68 96.03 95.55 5.83

C10 0.31 99.77 99.77 99.92 99.77 99.77 0.51

C11 0.31 99.79 99.79 99.93 99.79 99.79 0.47

C12 0.32 99.79 99.79 99.93 99.79 99.79 0.47

C13 0.30 99.20 99.18 99.73 99.19 99.18 1.41

C14 0.25 99.84 99.84 99.95 99.84 99.84 0.36

Bold values correspond to the best values of each column

Table 6 K -NN applied to the dataset without features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C1 0.02 57.23 57.17 86.26 57.20 67.88 9.53

C2 0.03 62.03 61.56 83.47 61.80 61.56 5.02

C3 0.03 89.59 89.35 96.22 89.47 89.35 2.29

C4 0.03 95.91 95.71 98.56 95.81 95.71 2.59

C5 0.02 95.47 95.28 98.40 95.37 95.28 1.14

C6 0.02 88.08 87.94 95.68 88.01 87.94 3.47

C7 0.03 91.47 91.39 96.96 91.43 91.39 2.69

Bold values correspond to the best values of each column

K-NN results

Table 6 reports the K -NN classifier results without using
feature normalization. The application of undersampling
(C2) improves K -NN performance in what concerns pre-
cision, recall, F1-score, and standard deviation. On the other
hand, accuracy and specificity results are reduced when
compared to the baseline (C1). In addition, the application
of oversampling techniques (C3,C4,C5,C6,C7) caused an
improvementwhen compared to: (i) the baseline results (C1);
and (ii) the undersampling approach (C2). The techniques
that exhibited the best results made use of AWGN (C4 and
C5).

Table 7 reports K -NN results for normalized features.
As can be verified, the application of feature normaliza-

Table 7 K -NN applied to the dataset with features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C8 0.04 78.56 78.27 94.47 78.41 84.20 7.41

C9 0.03 81.64 81.69 93.38 81.67 81.69 7.19

C10 0.04 98.26 98.25 99.41 98.26 98.25 0.62

C11 0.04 99.01 99.00 99.67 99.01 99.00 1.00

C12 0.04 98.23 98.19 99.39 98.21 98.19 1.70

C13 0.05 98.29 98.25 99.41 98.27 98.25 2.04

C14 0.04 99.48 99.46 99.82 99.47 99.46 1.20

Bold values correspond to the best values of each column

tion improved the performance in all evaluated cases when
compared to the results without normalization shown in
Table 6. The application of undersampling (C2) improved
precision, recall, F1 score and standard deviation when com-
pared against C1.

The application of data augmentation techniques
(C10,C11,C12,C13,C14) improved K -NN performance.
The technique which presented the best result was the sec-
ond version of the hybrid method (C14), which resulted in
an improvement of 20.92% in precision, 21.19% in recall,
5.35% in specificity, 15.26% in accuracy, 21.06% in F1-
score and a reduction of 6.21% in standard deviation without
requiring an increase in processing time against the baseline
(C8).

RF results

Table 8 presents RF results without feature normalization.
The use of undersampling (C2) increases performance when
compared against C1. Application of oversampling causes
an improvement in performance (C3,C4,C5,C6,C7). The
best performance was derived from AWGN application in
all classes (C5) and the second version of the hybrid pro-
posal (C7). The latter achieved the best results, producing an
improvement of 7.71% in precision, 11.46% in recall, 2.81%
in specificity, 9.63% in F1-score, 8.27% in accuracy, 2.93%
reduction in standard deviation, and a processing time of 0.07
s when compared against C1.

Table 9 shows RF results using feature normalization.
The data demonstrate an improvement in RF performance
for C8 and C10 when compared with, respectively, C1 and
C3 of Table 8. However, RF performance for C9,C11,

C12,C13,C14 was reduced when compared against, respec-
tively, C2,C4,C5,C6, C7 of Table 8. The results of Table
9 also show that the application of data augmentation tech-
niques (C10,C11,C12,C13,C14) improved RF performance
when compared to C8. The most effective techniques were:
(i) SMOTE (C10); and (ii)AWGN applied to all classes (C12)
using normalized features.
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Table 8 RF applied to the dataset without features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C1 0.72 91.61 87.86 96.96 89.69 91.05 3.90

C2 0.75 96.04 96.04 98.66 96.04 96.04 4.61

C3 0.79 97.74 97.71 99.23 97.72 97.71 1.94

C4 0.71 99.08 99.06 99.69 99.07 99.06 1.00

C5 0.60 99.21 99.19 99.73 99.20 99.19 1.38

C6 0.46 99.12 99.12 99.71 99.12 99.12 1.03

C7 0.65 99.32 99.32 99.77 99.32 99.32 0.97

Bold values correspond to the best values of each column

Table 9 RF applied to the dataset with features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C8 0.47 96.30 95.01 98.95 95.65 96.56 3.57

C9 0.35 94.00 93.84 97.90 93.94 93.84 4.48

C10 0.63 99.06 99.05 99.68 99.05 99.05 1.02

C11 0.43 98.57 98.55 99.51 98.56 98.55 2.13

C12 0.43 99.12 99.10 99.70 99.11 99.10 0.92

C13 0.60 96.68 96.64 98.86 96.65 96.64 2.12

C14 0.39 98.49 98.49 99.49 98.49 98.49 1.86

Bold values correspond to the best values of each column

Table 10 SSAE applied to the dataset without features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C1 0.45 40.56 44.63 80.83 44.59 59.09 7.38

C2 0.47 40.73 45.47 74.35 42.97 45.47 6.79

C3 0.41 50.71 49.54 76.29 50.12 49.54 3.98

C4 0.37 53.68 54.07 78.58 53.87 54.07 5.54

C5 0.46 52.34 53.45 78.31 52.89 53.45 1.87

C6 0.33 49.43 49.17 74.97 49.30 49.17 5.72

C7 0.55 50.47 51.58 77.12 51.02 51.57 0.54

Bold values correspond to the best values of each column

SSAE results

Table 10 reports SSAE results without feature normalization.
The use of undersampling (C2) reduced the specificity, F1-
score, and accuracy when compared against C1. Application
of oversampling (C3,C4,C5,C6,C7) caused an improve-
ment in precision, recall, F1-score, and standard deviation.
The best performance was derived from the AWGN applica-
tion in minority classes (C4).

Table 11 presents the results concerning feature normal-
ization and showcases a significant improvement in SSAE
performance when compared with the described results
in Table 10. The use of undersampling (C2) reduced the
performance when compared against C1. The application
of data augmentation techniques (C10,C11,C12,C13,C14)

Table 11 SSAE applied to the dataset with features normalization

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)

C8 0.58 95.58 94.88 98.93 95.23 96.47 3.10

C9 0.35 90.28 90.06 96.48 90.17 90.06 7.70

C10 0.63 99.06 99.05 99.68 99.05 99.05 1.02

C11 0.45 99.84 99.84 99.95 99.84 99.84 0.36

C12 0.44 99.69 99.68 99.89 99.68 99.68 0.43

C13 0.28 99.69 99.68 99.89 99.68 99.68 0.43

C14 0.13 100 100 100 100 100 0

Bold values correspond to the best values of each column

improved SSAE performance. The technique which pre-
sented the best result was the second version of the hybrid
method (C14), which resulted in an improvement of 4.42%
in precision, 5.12% in recall, 1.07% in specificity, 4.77%
in accuracy, 3.53% in F1-score, a reduction of 3.10% in
standard deviation and reduced the processing time in 0.45
seconds against the baseline (C8).

Discussion

The results also demonstrate that feature normalization is
a relevant step for the K -NN, SVM, and SSAE methods, as
thesemethods are sensitive to different feature scales. Avoid-
ing the characteristics that have lowvalueswhen compared to
other ones has little influence on the decision of these classi-
fiers. The application of the AWGN and SMOTE techniques
improves the results of the four classifiers analyzed when
compared to the baseline results. This is due to the small
number of examples of faulty classes available in the orig-
inal data sets, which hinders the individual training stages.
The scarcity of machine failure signals is a frequent occur-
rence in real industrial environments, making the case for
data augmentation approaches.

By analyzing the results it is possible to conclude that the
SVM classifier achieved the best behavior when using the
original dataset for both the normalized and non-normalized
approaches (C1 and C8). Application of undersampling
increased the performance of (i) K -NN when applied to
normalized features; and (ii) RF when non-normalized fea-
tures were used. RF performance through normalization only
improved when the original dataset was employed (C8) and
when using SMOTE (C10). The K -NN technique was able
to deliver the fastest classification times. Overall:

– SVM exhibited the best results when using the second
version of the hybrid method applied to the normalized
features;

– K -NN exhibited the best results when using the second
version of the hybrid method applied to normalized fea-
tures;
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Fig. 8 Radar plot of the best
classifiers: SVM using hybrid
method version 2 applied to
normalized features, K -NN
using hybrid method version 2
applied to normalized features
and; RF using hybrid method
version 2 applied to
non-normalized features; SSAE
using hybrid method version 2
applied to normalized features
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– RF exhibited the best results when using the second ver-
sion of the hybrid method applied to non-normalized
features;

– SSAE exhibited the best results when using the second
version of the hybrid method applied to the normalized
features.

Version 2 of the proposed hybrid method is the data aug-
mentation technique that resulted in the best performance,
surpassing the application of the AWGN and SMOTE tech-
niques individually. This shows the effectiveness of the
approach when identifying combined failures in rotating
machines. The hybrid proposal was able to produce new
data examples with greater randomness than when using
onlyAWGNorSMOTE.Consequently, themodels generated
from the hybrid approach are more generalist, resulting in an
improvement in classifier performance. Figure 8 presents a
radar plot comparing the performance of these classifiers.

Overall, the SSAE classifier stood out, outperforming the
other ones, except for classification time where K -NN per-
formed better. As a result, in the context of this research, the
SSAE with feature normalization alongside the second ver-
sion of the hybrid data augmentation proposal exhibits the
best performance. In addition, it is also important to empha-
size that the less time a classifier takes to identify a test
example, the less complex the generated classifier model will
be (Qin et al. 2021). Classification time can be a determining
factor for online fault diagnosiswhen deploying a classifier in

an industrial setting. The data obtained show that the K -NN
algorithm is recommended due to its processing speed and
for exhibiting good performance among the four classifiers
examined.

Conclusions

In this paper, a hybrid data augmentation method based
on AWGN and SMOTE techniques were proposed to diag-
nose combined faults in rotating machines, which is a more
complex task than identifying isolated failures. In industrial
rotating machines, little data is available regarding faults
when compared to normal operation, which leads to an
imbalanced dataset. Consequently, it is necessary to use data
augmentation techniques to increase the number of minority
classes examples to improve classifier performance.

To validate the generalization and effectiveness of the
proposed method, a comparison with 4 classifiers was per-
formed considering 14 different cases. Each one of these
tested a specific configuration such as using the original
dataset, undersampling the majority class, applying feature
normalization, utilizing AWGN, employing SMOTE and our
hybrid proposal. The results obtained show that the latter sur-
passed the other approaches used in this paper. This resulted
in more generalist classifier models, which improved their
performance.
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The best result was achieved by combining the hybrid data
augmentation with the SSAE algorithm using normalized
features. This method was able to achieve a processing time
of 0.13 seconds whilst attaining 100% of accuracy. However,
if the classifier is to be deployed in industrial applications
where execution time is crucial then the K -NN classifier is a
good option due to its compromise of high processing speed
(0.04 seconds) and elevated accuracy (99.46%). Overall, the
proposed hybrid data augmentation method is effective in
improving classifier performance.

For future work, it is our intention to: (i) add the classes
of horizontal and vertical misalignment separately; and (ii)
the combined failure of horizontal misalignment associated
with vertical misalignment. The addition of these classes
will require a reevaluation of classifier performance. We
also intend to use techniques such as genetic algorithms and
minimum-redundancy maximum-relevancy to select the best
features in order to perform dimensionality reduction. This
procedure has the potential to improve classifier performance
and avoid overfitting.
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