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Abstract
In this paper, the effects of two key process parameters of the selective laser melting process, namely laser power and scanning
speed, on the single-track morphologies and the bead characteristics, especially the depth-to-width D/W and height-to-width
H/W ratios, were investigated using both experimental and Machine Learning (ML) approaches. A total of 840 single tracks
were fabricated with several combinations of laser power and scanning speed levels. Surfacemorphologies of the single tracks
and bead profiles were thoroughly investigated, providing a track-type map and the evolutions of the bead characteristics as a
function of laser power and scanning speed. The results indicate neither severe balling nor keyholing effect for all combinations
of laser power and scanning speed. Besides, simple relationships cannot accurately describe the evolutions of the D/W and
H/W ratios as a function of laser power and scanning speed. TwoMachine Learning-based regression models, Random Forest
and Artificial Neural Network, were chosen to estimate the D/W and H/W ratios using laser power and scanning speed. The
Bayesian optimization algorithm was employed to optimize the model hyperparameter selection. Both Machine Learning-
based models appear to be able to predict reasonably well the two aspect ratios, D/W and H/W, with an overall R2 value
reaching about 90%, evaluated on the cross-validation dataset after a few seconds of training time, respectively.

Keywords Selective melting laser · Bead geometry · Single-track morphology ·Machine learning ·Artificial neural network ·
Bayesian optimization

Introduction

Known as one of the most attractive metal-based Addi-
tive Manufacturing (AM) processes, selective laser melting
(SLM) exhibits several advantages over the traditionalmanu-
facturing methods, such as its ability to produce high-quality
parts in a single step and a reduced lead time with almost
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no limitation in shape and geometry (Santos et al., 2006). In
addition, the items fabricated by this method can achieve a
very high dimensional accuracy and good surface roughness
(Zhang et al., 2018), reducing the number of post-processing
required. This allows the SLM process to become tremen-
dously attractive in the industry, especially for biomedical
applications (Trevisan et al., 2018), automotive (Leal et al.,
2017) and aerospace industries (Mohd Yusuf et al., 2019).

Technically, the SLM technology uses a laser as the
heat source to radiate and fully melt successive layers of
powder particles predeposited on a substrate, forming a
component whose shape and structure are predefined in
a three-dimensional computer-aided design model. As a
powder-based AM method, the SLM process may involve
several complex physical phenomena, such as interaction
laser-metallic particles (laser absorption and reflection); fluid
flow andMarangoni convection in themelt pool; heat transfer
by conduction, convection, and radiation; rapid particlemelt-
ing and solidification; heat accumulation and re-heating of
the printed layers leading to re-melting and re-solidification;
molten metal flow due to surface tension gradient affected
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by temperature variation; evaporation and mass transfer of
materials; recoil pressure due to metal evaporation (Papa-
zoglou et al., 2020). These phenomena are considered as
determining factors for the creation of the melt pool that,
in its turn, has a strong impact on the formation of defects
(porosity, surface roughness, residual stresses, distortion, and
cracking initiation) and the phase transformation (Guo et al.,
2019)—which determine the qualities of the final products.
As a result, to better understand the SLM mechanisms and
fabricate components with higher quality and fewer manu-
facturing defects, it is vital to comprehend and control the
melt pool geometrical characteristics as well as its affecting
parameters.

For that purpose, the geometries of the single-track and
multi-track melt pool created during the SLM process have
been extensively investigated to identify the effects of SLM
processing parameters on defect formation mechanisms,
especially porosity and surface roughness (Ahsan & Ladani,
2020; Di et al., 2012; Dilip et al., 2017; Gu et al., 2020; Guo
et al., 2019; Kusuma et al., 2017). Among them, laser power
and scanning speed have been found to affect single-track
beads themost anddirectly through the energy input (Di et al.,
2012; Greco et al., 2020; Kamath, 2016). Indeed, under high
energy input intensity, characterized by high laser power and
low scanning speed, the temperature absorbed by thematerial
particles can locally exceed the vaporization temperature of
someelements (Ahsan&Ladani, 2020), leading to the forma-
tion of cavities named keyhole within the melt pool or on the
surface of the final part. This can be considered as a result
of a high recoil pressure, which is higher than the surface
tension and hydrostatic pressure of the metal liquid (Papa-
zoglou et al., 2020). In this scenario, the melt pool creation is
principally dominated by recoil pressure and fluid dynamics
(Qi et al., 2017; Yang et al., 2016). Besides, a large penetra-
tion depth of the melt pool and a small heat-affected zone
(HAZ) can be observed, resulting in a very high depth-to-
width ratio. In contrast, at low or moderate energy intensity,
the heat transfer through conduction plays a dominant role in
themelt pool creation (Le&Lo, 2019), whichmay help form
a better bead morphology of the single tracks (Papazoglou
et al., 2020).

It was shown that a lower energy density, resulting from a
diminished laser power and/or an increased scanning speed,
can decrease the bead depth considerably by reducing the
transmission of energy absorbed, leading to a decrease in the
depth-to-width ratio (Guo et al., 2019; He et al., 2019). By
simulation, Papazoglou et al. indicated that a small depth-to-
width ratio lower than 0.5might be considered as an indicator
of conductionmode (Papazoglou et al., 2020). This is consis-
tent with experimental observations in He et al., (2019), King
et al., (2014). Additionally, Dilip et al. showed that a depth-
to-width ratio of around 0.37–0.6 is necessary to achieve
good welding of the printed track with the substrate (Dilip

et al., 2017). Besides, an insufficient energy input can lead to
a very high height-to-width bead ratio by slightly reducing
the bead width and dramatically increasing the bead height
(Guo et al., 2019). This phenomenon may be explained by
the fact that, in this condition, the input energy is not suf-
ficient so that the powders cannot be melted completely, or
only a part of them in the center of the laser beam is melted.
This tends to increase the metal liquid’s viscosity within the
molten pool as the laser power decreases and/or the scan-
ning speed increases, reducing its wettability and spreading
on the surface (Guo et al., 2019). Also, Tang et al. proposed
a criterion for the lack of fusion on the basis of the total bead
depth, including the cap height and the penetration depth
(Tang et al., 2017). Indeed, to avoid the lack of fusion, the
total depth of the bead needs to be larger than the layer thick-
ness in the SLM process (Tang et al., 2017). In summary, it
is essential to optimize the laser power and scanning speed
to assure good bonding between layers of the printed parts
as well as that with the substrate and avoid defect formation
due to the keyholing effect or the lack of fusion.

It is important to note that most above-mentioned research
conducted on the SLM bead geometry was based on thermo-
hydraulic and finite element simulations (Ahsan & Ladani,
2020; Andreotta et al., 2017; Gao et al., 2020; Gu et al.,
2020; Le & Lo, 2019; Le et al., 2020; Papazoglou et al.,
2020), which have been considered less costly and time-
consuming than experiments, leading to a limited number
of experimental data available in each published research.
However, due to the complexity of the physical phenomena
likely encountered in an SLM process, as mentioned above,
these models need many assumptions based on the heat
source, laser absorption coefficient, effective thermal con-
ductivity, heat losses, material properties, etc. (Papazoglou
et al., 2020), which cannot be strictly justified in practice
by experiments. For example, to simplify the problem, some
studies were conducted by assuming a fixed laser absorption
or temperature-independence formaterial properties and heat
loss (convection and radiation), which are not correct in real
life.

It should be noted that these researches mainly focused
on the individual characteristics of the bead morphology,
i.e., bead width, depth, height, and contact angle. The aspect
ratios, i.e., depth-to-width and height-to-width, appear to be
rarely mentioned in the literature for the SLM process. Char-
acterizing the individual bead characteristics (height, depth,
width) allows understanding of the effect of process param-
eters. However, the individual bead characteristics strongly
depend on the experimental equipment, i.e., machine, laser
type, laser spot size, etc., that potentially vary between
laboratories. Therefore, in the literature, only the relative ten-
dencies of the bead characteristics have been so far discussed,
not their absolute values. The transferability of experimen-
tal results appears not to be possible from one laboratory to
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another. In contrast, the aspect ratios can be considered as
normalized bead characteristics, which allows an overview
of the single-track bead resulting from multiple parameters.
Indeed, in the literature, several studies havementioned these
ratios as indicators of delimiting thedefects related to themelt
pool creation, for example, lack of fusion or keyhole mode
(Dilip et al., 2017; Guo et al., 2019; He et al., 2019; King
et al., 2014; Papazoglou et al., 2020).

So far, several studies have attempted to propose simple
relationships to correlate the bead characteristics, bead depth,
height, and width, to laser power and scanning speed (Gao
et al., 2020; Kusuma et al., 2017; Shi et al., 2017). All of them
were purely based on fitting curves established from a small
number of experimental data. From 25 experimental values,
Kusuma et al. described the evolution of the bead width
for commercially pure titanium as a linear function of the
natural logarithm of the energy density, expressed by power-
to-scanning speed ratio (P/v) (Kusuma et al., 2017).Gao et al.
suggest a quadratic relationship of the track height and width
with scanning speed on the basis of 5 simulations for 316L
stainless steel, without mentioning laser power (Gao et al.,
2020). From36 single tracks fabricated onTi-47Al-2Cr-2Nb,
Shi et al. proposed that their geometric characteristics could
be described by exponential models y � kPlvm , where k,
l, and m are 3 model parameters to be adjusted (Shi et al.,
2017). Except for the bead width for which the R2 value can
reach 0.94, those of the bead height and depth are relatively
low, 0.40 and 0.61 (Shi et al., 2017). However, none of the
two aspect ratios was studied using this approach up to now.

Machine Learning has been largely developed in the last
years, especially in the AMfield (Meng et al., 2020; Qi et al.,
2019; Wang et al., 2020a, b). This method provides robust
tools to deal with complex problems and data in a shorter
time, reducing the demand for experimental and computa-
tional costs. However, most of the applications were limited
to the printed components’ ultimate properties, such as den-
sity ratio, surface roughness, tensile strength (Garg et al.,
2018; Park et al., 2021; Wang et al., 2020a, b; Xia et al.,
2021). Some studies used the ML methods for defect detec-
tion (Khanzadeh et al., 2018, 2019; Scime & Beuth, 2019).
Others focused on developing models to predict temperature
field (Mozaffar et al., 2018; Ren et al., 2020; Roy & Wodo,
2020) or thermal-induced stress/deformation (Mohajernia
et al., 2019) during or after fabrication. A few studies on the
prediction of bead geometry are available in the literature
using the genetic algorithm for Wire Arc Additive Manu-
facturing (WAAM) (Panda et al., 2019) or using Artificial
Neural Network (ANN) for robotic Gas Metal Arc Welding
(GMAW)-based rapid manufacturing (Xiong et al., 2014).
Tapia et al. employed the Gaussian process to develop a sur-
rogate model to predict bead geometry fabricated by SLM
for 316L stainless steel (Tapia et al., 2018). However, this
study only focused on the depth penetration with a limited

number of experimental data, i.e., 97 data points collected
from 3 different sources in the literature, knowing that the
laser beam size used in these studies are different from one
another besides other experimental conditions and equip-
ment that potentially are not the same. Apart from this one,
to the authors’ best knowledge, none of the other Machine
Learning-based studies have been performed on the geomet-
rical characteristics of the bead made by the SLM process,
especially the two aspect ratios, depth-to-width and height-
to-width, for titanium-based alloy powders.

Our study is devoted to thoroughly investigating the influ-
ence of two key SLM processing parameters, including laser
power and scanning speed, on the geometrical characteris-
tics of the single tracks deposited by the SLM process for
Ti–6Al–4V powder, which has attracted much interest for
aerospace, biomedical, and defense applications (Dutta et al.,
2017). Precisely, it aims to:

• provide a complete experimental database and an in-depth
understanding of the bead characteristics’ evolutions as a
function of laser power and scanning speed, as well as the
potentially complex relationship between them.

• identify the effects of process parameters on two aspect
ratios, namely penetration depth-to-bead width D/W and
bead height-to-width H/W, which have been rarely men-
tioned in previous studies.

• Build predictive models based on Machine Learning for
these ratios using laser power and scanning speed. This
can help optimize the process parameters to obtain high-
quality single-track morphology with good inter-layers
bonding as well as that between deposited layers and the
substrate. It is worth noting that the main goal of this
study is not to focus on Machine Learning development,
but the application of Machine Learning in a new field to
understand physical phenomena, more precisely in addi-
tive manufacturing.

The next section of this paper describes the materials and
the experimental procedures used in this study. The Machine
Learning methods and algorithms employed to build the pre-
dictive models as well as to optimize their hyperparameters
are detailed in Sect. 3. The following section focuses on the
experimental results and discussion on the effects of laser
power and scanning speed on the track surface morphologies
and the bead geometry. Also, in this section, the prediction
of bead characteristics based on simple relationships is dis-
cussed. The paper ends with Sect. 4.3, in which the results
obtained byMachine Learningmethods, as well as themodel
performance and reliability, are presented and discussed in
detail.
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Table 1 Chemical composition
of Ti–6Al–4V powder (in
weight %)

Elements Al V C Fe H N O Ti

Ti–6Al–4V ELI Grade 23 6.2 4.0 0.10 0.14 0.003 0.02 0.07 Bal

Fig. 1 Scanning electronmicroscopymicrographofTi–6Al–4Vpowder

Materials and experimental procedures

Materials

The material used in this study is Ti–6Al–4V ELI Grade 23
powder supplied by LPWTechnology Ltd, with the chemical
composition listed in Table 1. The ELI stands for extra-low
interstitial. As a result, thematerials contain a relatively small
amount of interstitial elements, i.e., Fe, C, andO, in the chem-
ical composition, which can help improve the strength and
fracture toughness. The powder particle size varies from 20
to 63 µm, with a spherical shape, as shown in Fig. 1.

The samples were fabricated using an AMP-160 SLM
machine supplied by TONGTAI Machine & Tool CO., LTD
under the protection of argon (Ar) with the oxygen (O2)
content below 1000 parts per million (ppm), limiting the oxi-
dation of the powder and printed samples at high temperature
during the SLM process. The machine uses a fiber laser as
the heat source with a nominal maximal power of 500 W, a
1070±10 nm wavelength, and a laser spot size of 50 µm.
The experiments were carried out at room temperature with-
out preheating.

Experimental procedures

In order to investigate the effects of laser power and scan-
ning speed, and generate the database for the predictive
models, 10-mm-length single lines were deposited on the
100×100 × 3 mm3 substrates made of the same materials
(Ti–6Al–4V) by considering 7 levels of laser power from 200
to 500 watts (W) with a 50W increment coupled with 20 lev-
els of scanning speed varying between 100 and 2000 mm/s,

Table 2 Laser power and scanning speed values used to fabricate the
single tracks by the SLM process

Process parameter Unit Level

Laser power (P) W 200, 250, 300, 350, 400, 450, 500

Scanning speed (v) mm/s 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 1100, 1200, 1300, 1400,
1500, 1600, 1700, 1800, 1900, 2000

as listed in Table 2. The laser power levels were chosen in
such a way that they can be uniformly distributed between
a low (200 W) and the maximal value of the machine used
(500 W). Regarding the scanning speed, its values were uni-
formly selected between a very slow, 100 mm/s, and a very
high speed, 2000 mm/s, based on our previous experience.
The experimentswere fabricated at a constant and sufficiently
small layer thickness of 30 µm in the hope of avoiding the
droplet formation by stabilizing the molten pool, which may
lead to maximizing the relative density of bulk samples, as
reported in Di et al., (2012), Greco et al., (2020), Park et al.,
(2021). The distance between the single lines was fixed to
1.05 mm to ensure no overlapping between successive lines.
For each combination of laser power and scanning speed,
6 experiments were carried out to assure the reliability and
reproducibility of the results. A total of 840 SLM single-
tracks were fabricated in this study, as shown in Fig. 2.

Bead characteristic measurements

For the single track’s geometrical characteristics, three fea-
tures were investigated: bead height H, bead width W , and
penetration depth D, as shown in Fig. 3. These charac-
teristics were measured using a NIKON LV100ND optical
microscope at the cross-section of the single tracks after sec-
tioning, grinding, and polishing. The brighter-colored area
under the bead (see Fig. 3) potentially corresponds to the
heat-affected zone formed by heat transfer from themelt pool
to the substrate during the AM process, commonly observed
in welding and additive manufacturing processes (Kistler
et al., 2019;Mahamood&Akinlabi, 2018). Twoaspect ratios,
depth-to-width (D/W) and height-to-width (H/W), were then
calculated from the bead characteristics, namely bead height,
width, and penetration depth. As discussed previously in
Sect. 1, these two ratios can be used as indicators to determine
the quality of a single track besides its surface morphology.

123



Journal of Intelligent Manufacturing (2023) 34:1241–1257 1245

Fig. 2 Photograph of
10-mm-length single-tracks
(thin horizontal lines) deposited
by the SLM process on
Ti-6Al-4 V plates

50 μm

WH

D

Fig. 3 Schematic of the geometrical characteristics (H: bead height, D:
penetration depth, and W : bead width) of a single track at the cross-
section

Machine learningmodels

Data preprocessing

This study aims to develop predictive models based on
Machine Learning (ML) methods to estimate the two aspect

ratios, depth-to-width (D/W) and height-to-width (H/W),
using two process parameters considered as input variables,
i.e., laser power (P) and scanning speed (v). For each couple
of laser power and scanning speed, 6 experiments were con-
ducted, and the reported values of D/W and H/W are those
averaged. As a result, the dataset contains a total of 140 data
points, corresponding to 140 averaged values, after perform-
ing 840 experiments, which were considered as output, as
detailed hereafter. In this study, the inputs were composed of
a vector of 140 rows containing 7 values of laser power and
another one with 20 values of scanning speed, which have
been shown in Table 2. The outputs consist of a matrix con-
stituted of 2 column vectors of 140 rows corresponding to 2
aspect ratios, D/W and H/W. The datasetD used to train and
validate the ML models can be represented as follows:

D � {(x(i), y(i)), i � 1, ..., 140} (1)

where x is the input vector ofP (laser power) and v (scanning
speed). y is the vector of D/W and H/W. The raw dataset
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used to train and validate the models can be found in the
supplementary material of this paper.

To avoid the adverse effects potentially caused by the dif-
ference in the order of magnitude of the variables, hence
speeding up the training convergence process and improving
themodel performance (Yun et al., 2018), both input and out-
put variables were normalized in the range of 0 and 1 using
the following equation:

xscaled � x − xmin

xmax − xmin (2)

where x, xmin, xmax correspond to the actual value of a
variable and its maximum and minimum in the dataset,
respectively. Then, the dataset was randomly split into train-
ingDT and validation DV datasets with a conventional ratio
of 80 and 20%, respectively.

Machine learning regressionmodels

Our framework consists of a supervised learning problem
withmultiple outputs. Precisely, the relationship between the
input vector x and the output vector y is approximated by an
ML-based regression model F from R

2 → R
2 such that:

y � F(x|θ), (3)

where θ is the learnable parameter of the ML algorithm (i.e.,
theweights and biases of theArtificialNeuralNetwork-based
model).

Among theML-based regression algorithms, severalmod-
els F representing different regression algorithm categories,
from linear regression-based models, nonlinear regression-
based models, to Boosting regression-based models, were
tested. Two models were then selected: Random Forest
(Aldous, 1993) and Artificial Neural Network (ANN) (Jain
et al., 1996) due to their good accuracy for the prediction.
Random Forest is an ML method widely used in data anal-
ysis for regression and classification due to its advantages,
such as ease of use and interpretation, short training time,
and relatively high accuracy (Unpingco, 2019). This tech-
nique is based on the learning (fitting) of multiple decision
trees randomly built on sub-samples of the dataset, which are
then averaged to progressively improve the model’s predic-
tive accuracy. Artificial Neural Network consists of several
layers in which artificial neurons are interconnected, which
is inspired by the human neural networks. This allows itera-
tively learning and solving complex problems using an error
backpropagation algorithm (feedforward). The use of Artifi-
cial Neural Networks, as well as the involved parameters,
were detailed in Park et al., (2021). The Random Forest
and ANN models’ hyperparameters were obtained using the
Bayesian optimization algorithm (Snoek et al., 2012), as

detailed in Sect. 3.3 and Sect. 4.3.1. It is worth noting that
this study focuses on the application of Machine Learning
in an engineering field. Therefore, the detailed algorithms of
these models, commonly used in Machine Learning, are not
described in this paper.

The coefficient of determination R2 metric was employed
to assess the model performance. This metric measures the
fitting capacity of the values predicted by themodel and those
of the observed data, based on a set of errors, which are the
total sum of squares (SQTotal) and the error sum of squares
(SQError), calculated between them as follows (Heumann
et al., 2016):

R2 � SQregression

SQTotal
� 1 − SQError

SQTotal
, (4)

SQTotal �
n∑

i�1

(yi − y)2, (5)

SQError �
n∑

i�1

(yi − ŷi )
2 (6)

where yi, ŷi , and y are the actual value, the predicted value
from the model, and the mean of the actual value, respec-
tively. n represents the number of samples in the dataset.
From its above-presented definition, an R2 value closer to 1
signifies that the model is capable of producing a good fit for
the observation data. However, it does not present the same
conclusion for the model accuracy and goodness in terms of
overfitting and/or underfitting that need to be assessed oth-
erwise as detailed hereafter. Besides, it should be noted that
the model is only trained on the training dataset to obtain the
model weight and bias matrices, then the R2 value is eval-
uated on a previously-unseen dataset by the model, i.e., the
validation one.

Bayesian optimization for theMachine
learning-basedmodel hyperparameter selection

In the ML-based method, the model performance and its
training convergence ability strongly depend on the selec-
tion of its hyperparameters, i.e., the number of hidden
layers in an ANN model. As a result, selecting a suitable
set of hyperparameters is essential to obtain satisfactorily
good results. For this purpose, several algorithms were
developed and commonly used, such as Grid Search, Ran-
dom Search, and the most recently developed one is the
Bayesianoptimization (BO)-based algorithmusing theGaus-
sian process (Frazier, 2018). The irreplaceable advantage of
the latter, compared to the two first methods, consists of
its capacity to provide an automated hyperparameter opti-
mization process, which is less time-consuming and more
accurate. However, this method requires complex analyti-
cal capabilities, limiting its usage to real-life applications.
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Fig. 4 Optical micrographs of
the top surface of the SLM-built
single tracks deposited with
500 W laser power and different
scanning speed: a 100 mm/s,
b 600 mm/s, c 1500 mm/s, and
d 2000 mm/s

Following the recent development of a built-in Bayesian
optimization library, i.e., Scitkit-Optimize library (Skopt) in
Python, the aforementioned problem can be currently coped
with straightforwardly. As a result, in this study, Bayesian
optimization was chosen to optimize the selection of the
ML-based model hyperparameters. The underlying theories
(Bayes’ Theorem and Gaussian process) and the application
of the Bayesian optimization were detailed in Frazier (2018),
Snoek et al., (2012), a brief introduction of this method can
be presented as follows.

Let Dt−1
T � {(θ (i), x(i), y(i)), i � 1, ..., t − 1} be the

training dataset consisting of the input–output pair x, y, and
the hyperparameter θ ∈ X to be optimized such that y �
F(x|θ ). The general procedure of BO to find the optimal
hyperparameter θ is summarized as follows:
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Fig. 5 Distribution of
single-track types as a function
of laser power and scanning
speed for 840 experiments (type
I: continuous and homogeneous
track, type II: continuous and
non-homogeneous track, type
III: irregular track)

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
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1 1 1 1 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3
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1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2
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450
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1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3
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resaL
re

wop
(W

)

Scanning speed (mm/s)

Type I Type II
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In summary, the BO requires constructing an approximate
surrogate model using the Gaussian process of the objective
function U , and then continuously updating the posterior of
U on the basis of the new posterior (see Step 3) to find the
optimal θ .A detailed explanation of each step can be seen in
Snoek et al., (2012). It isworth noting that theBOalgorithm is
only applied to find the optimal hyperparameter (i.e., number
of hidden layers in the ANN model) and must not be used
in the training process of the ML models (i.e., to optimize
the weights of the ANN model). These two processes are
completely different. Hereafter, the results and discussion
are introduced.

Results and discussion

Experimental results

Track surface morphology

In this study, the surface morphologies of single tracks
printed by SLM can be classified into three categories,
depending on laser power and scanning speed, as shown in
Fig. 4: continuous and homogenous track (Fig. 4a, b), con-
tinuous and non-homogeneous track (Fig. 4c), and irregular
track (Fig. 4d). The single track deposited with high energy
density, i.e., high laser power and low scanning speed, tends
to form continuous tracks with homogenous width along the
track except for the two extremities with rounded and wider
shapes, as can be seen from Fig. 4. This may be due to the
speed ramping of the laser beam at the start and the end of
a deposition, especially a laser scanning speed fluctuation
when moving from a track to another one. As the energy
density is diminished, the track width decreases progres-
sively. When the energy density continues to decrease, for
example, keeping the laser power and increasing the scan-
ning speed (see Fig. 5), the energy input becomes insufficient

500 μm

Unmelted particles

500 μm

DistortionNecking formation Denudation
Spatters

Continuous and narrow track

Solidified melt pool
a)

b)

Fig. 6 Typical surface defects of SLM-built single tracks

to homogeneously melt the metal particles, single tracks are
noticed more and more unstable and inconstant, the neck-
ing formation is observed between short and narrow tracks,
as shown in Fig. 6b. The last track type observed in this
study consists of semi-continuous tracks with the presence
of a nearly-spherical shape. This phenomenon is commonly
observed when the energy input is too low to melt the metal
powder, leading to a high viscosity of the molten pool and
poor wettability (Di et al., 2012).

In this study, a severe balling effect is not observed. This
may be explained by a relatively thin layer thickness, which
may help to improve the bounding between deposited tracks
and the substrate and reduce the formation of balling effect
(Di et al., 2012; Yadroitsev & Smurov, 2010). The irreg-
ular surface morphology observed in Fig. 4.d may result
from the humping effect (Gunenthiram et al., 2018) noticed
at very high laser power and scanning speed. The balling
and humping effects are sometimes confusing due to their
nearly similar surfacemorphologies.However, the difference
between these two phenomena lies in the depth penetration
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of the tracks into the substrate or the previously printed lay-
ers. More precisely, the balling effect is caused by the lack of
dilution due to low energy density, while the humping effect
is observed with a combination of high laser power and scan-
ning speed, consisting of a variation of melt pool along the
track. The latter mainly results from a large length-to-width
track ratio, which can promote the Rayleigh-Plateau insta-
bility (Gunenthiram et al., 2018). These phenomena will be
discussed more in detail in the next part with the bead char-
acteristics.

Figure 6 shows typical surface defects observed in SLM.
At high energy, the spatters, consisting of unmelted particles,
can be noticed trapped into the tracks (see Fig. 6a) or along
the tracks (see Fig. 6b). They are also found at the end and in
front of the track, as shown in Fig. 4a. These spatters can be
considered as defects that strongly affect the laser stability
and the mechanical properties of the final items fabricated by
the SLM process. The origin of the spatters has been mainly
assumed to be a result of the melt pool instability caused
by the recoil pressure during the process (Khairallah et al.,
2016). The amount and size of the spatters can be consider-
ably reduced by increasing the laser power or lowering the
scanning speed as reported in Gunenthiram et al., (2018),
Taheri Andani et al., (2018). Along with this phenomenon,
single tracks deposited by very high energy density are found
to be covered by a thin black layer on their surface, as seen
in Fig. 4a. This may be due to (1) the surface oxidation and
(2) the vapor flow plume resulting from metal vaporization,
which may pollute the track surface. Besides, Gunenthiram
et al. reported that the higher the energy density, the closer to
the track surface the vapor flow plume (Gunenthiram et al.,
2018). Finally, the denudation consisting of a presence of
powder-depleted areas near printed tracks is also observed
in our study. Matthews et al. proposed that the denudation
areas are created by blowing away the power around the
melt pool during single track deposition (Matthews et al.,
2016). This phenomenon may be due to the interaction recoil
pressure—melt pool—powder particles or argon protection
gas—powder particles, depending on the SLM chamber’s
environmental gas pressure (Matthews et al., 2016). The
denudation cannot be considered as a defect, but it should
be carefully taken into account when choosing the hatch dis-
tance between successive tracks to avoid the lack of fusion.
However, it should be noted that profound insights about the
formation and propagation of the defects during the process,
as well as their impact on ultimate mechanical properties,
are needed to be thoroughly investigated at different scales,
macroscopic andmicroscopic. Besides, it is worthy perform-
ing the characterizations not only on single tracks, but also
on thin walls, then bulk components fabricated by the SLM
process. This could be the subject of our ongoing studies.
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Fig. 7 Examples of SLM-printed bead profiles as a function of laser
power and scanning speed

Measured bead geometric characteristics

The previous section discussed the main surface morpholo-
gies of 840 single tracks performed in our study. In this
section, the effects of laser power and scanning speed on the
bead characteristics, including bead depth, height, andwidth,
as well as two aspect ratios (depth-to-width and height-to-
width ratios), will be detailed.

Figure 7 summarizes the main bead profiles obtained in
this study for different laser powers and scanning speeds.
It can be seen that the cross-sectional morphologies of the
melt pool are all dense with elliptical or nearly-spherical
shapes. Besides, the keyhole effect, characterized by a very
large penetration depth and usually the presence of pores
caused by gas and alloy element evaporation entrapped in the
bead, as shown in King et al., (2014), is not noticed for all
combinations of laser power and scanning speed used. This
phenomenon is commonly accepted as a result of excessively
high energy (King et al., 2014).

Figures 8 and9 show the influence of laser power and scan-
ning speed on the bead depth, width, and height, respectively.
The bead dimensions in occasionally discontinuous zones of
the single tracks were not taken into account. The error bars
represent the standard deviation from 6 repeated experiments
for each laser power and scanning speed combination, as
mentioned earlier. When the laser power or scanning speed
is extremely high, the standard deviation becomes more sig-
nificant. This is mainly due to the uncertainty and variation
in the bead height and penetration depth measurements in
such conditions.

As shown in Fig. 8, it can be seen that the bead depth and
width increase continuously and in a roughly linear trend
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Fig. 8 Laser power dependence of the bead depth, width, and height for
different scanning speeds (200, 500, 1000, and 2000 mm/s)

as the laser power increases. This can be explained by an
increased energy input absorbed by themetal powders, which
tends to deepen and widen the created melt pool. Regarding
the bead height, which varies between about 40 and 90µm, it
appears that it decreases slightly with the laser power, espe-
cially for low and moderate scanning speed, which may be
due to a diminution in the viscosity of the molten pool, lead-
ing to an improvedwetting ability. However, at high scanning
speed, the bead height’s evolution appears to be more com-
plex, which may result from the instability of the molten

Fig. 9 Scanning speed dependence of the bead depth, width, and height
for different laser power levels (200, 350, and 500 W)

pool and humping effect at high scanning speed and high
laser power, as discussed previously. This result is consistent
with the observation reported in Li et al., (2017) and Scipioni
Bertoli et al., (2017).

As shown in Fig. 9 for the scanning speed, a significant
effect is noticed for the scanning speed between 100 mm/s
and about 500mm/s on the penetration depth, then it becomes
less noticeable for higher scanning speed, especially at low
laser power. The smallest depth measured in this study is
about 10–15 µm for a laser power of 200 W and scan-
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ning speeds varying from 500 to 1500 mm/s. In these
conditions, the penetration depth seems to be small with a
nearly-spherical bead shape and nearly right contact angle,
as shown in Fig. 7. Besides, the surface track observations
show that the tracks deposited with this laser power and scan-
ning speed remain semi-continuous, assuring that no severe
balling effect can occur (see Fig. 5). At high laser power, i.e.,
from 350 W, the penetration depth appears to increase with
the scanning speed varying between 1500 and 2000 mm/s.
This trend may be attributed to the humping effect occurring
at very high laser power and scanning speed, as discussed in
Gunenthiram et al., (2018).

The bead width tends to decrease considerably as the
scanning speed increases due to a decrease in the energy
density to melt the metal particle. As for the bead height,
it seems that it increases with the scanning speed up to
1000–1200 mm/s, then decreases for the higher scanning
speed. This appears to be in good agreement with the results
observed by Li et al. (2017) for Inconel 625 and scan-
ning speeds of 500–2500 mm/s. In contrast to the laser
power’s effect, at low scanning speed, the energy input tends
to be diminished as the scanning speed increases, leading
to an increase of the molten pool’s viscosity and wetting
ability. However, very high scanning speeds cause unsta-
ble/insufficient energy, leading to several phenomena in the
molten pool, such as humping, denudation, etc., as discussed
in Sect. 4.1.2, which may result in the bead height fluctuation
of the printed tracks.

The effects of laser power and scanning speed on the evo-
lution of two aspect ratios, D/W and H/W, are presented in
Figs. 10 and 11. It can be seen that the maximum values of
D/W and H/W ratios obtained in this study are about 0.8 and
0.6, respectively, with the smallest values of about 0.1. This
can help to reconfirm the absence of both balling and keyhole
mode.

Regarding the evolution of these two ratios, on the whole,
the D/W ratio tends to increase gradually while the H/W ratio
decreases progressively with increasing the laser power, as
shown in Fig. 10. Besides, it seems that the laser power-
related effect is intensified as the scanning speed increases
from 200 to 2000 mm/s. More precisely, for 200 mm/s of
scanning speed, the D/W ratio appears to remain constant
as the laser power increases from 200 to 500 W. How-
ever, it should be noted that for the laser power higher
than 400 W, the D/W ratio decreases slightly with the
laser power for high scanning speed, for example, between
1500 and 2000 mm/s. This is probably due to the variation
of the penetration depth, as mentioned earlier in this sec-
tion. In summary, the relationship between the D/W ratio
and the laser power seems not to be monotone. Neverthe-
less, a nearly-linear relationship can be noticed between the
H/W ratio and the laser power, as illustrated in Fig. 10.
However, at very high laser power and scanning speed,

the relationship becomes slightly different with fluctua-
tion.

In contrast to the laser power, the effect of the scan-
ning speed appears to be more complex, as shown in
Fig. 11. Indeed, the evolution of the D/W ratio with the
scanning speed is found to be similar to that observed on
the penetration depth, as shown in Fig. 9. More precisely,
it exhibits a diminution for scanning speeds from 100 to
500 mm/s followed by a nearly-steady trend for scanning
speed between 500 and 1500 mm/s; then, it increases con-
siderably for higher scanning speeds. Nonetheless, the bead
width decreases continuously with the increase in the scan-
ning speed, as shown in Fig. 9. Although the scanning
speed seems not to exhibit a clear effect on the height,
the H/W is noticed to increase continuously as the scan-
ning speed increases. However, some fluctuations can be
observed, especially for high scanning speed and high laser
power.

Fitting curve-based prediction of bead
characteristics

In the previous sections, the bead characteristics were
deeply investigated with different laser powers and scan-
ning speeds. This section aims to provide models that can
help predict the two aspect ratios with regard to laser power
and scanning speed. These models can be used for opti-
mization frameworks that facilitate the SLM processing
parameter selection to obtain suitable bead characteris-
tics.

In this study, several simple models based on linear, poly-
nomial, and exponential relationships were developed, as
the first approach, to describe the evolutions of the D/W
and H/W ratios as a function of two process parameters,
i.e., laser power and scanning speed. Table 3 lists the mod-
els based on simple mathematical equations used in this
study. These equations were chosen purely by observing the
evolutions of the two aspect ratios, D/W and H/W, mea-
sured experimentally as a function of the laser power and
scanning speed (see Figs. 10 and 11). Besides, Model 2
was tested, following the example of the study reported in
Shi et al., (2017). It should be noted that none of the two
aspect ratios measured in our study can exhibit a signifi-
cant relationshipwith the laser power-to-scanning speed ratio
(P/v).

Table 4 presents the R2 values obtained using the sim-
ple models for the prediction of the two aspect ratios,
D/W and H/W. It can be seen that the accuracy of these
models remains very limited, with relatively low R2 val-
ues, due to complex evolutions of these ratios and their
quality that is highly affected by noise due to uncertainty
resulting from experimental conditions or/and measurement
methods, as mentioned previously. Additionally, Model 2
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Fig. 10 Laser power dependence of the D/W and H/W ratios for different scanning speeds (200, 500, 1000, and 2000 mm/s)

Fig. 11 Scanning speed dependence of the D/W and H/W ratios for different laser power levels (200, 350, and 500 W)

Table 3 Summary of the simple fitting curve-based models used for the
aspect ratio predictions

Model Equation

Model 1 y � a(1 + bP)(1 + cv)

Model 2 y � aPbvc

Model 3 y � a(1 + bP)(1 + cv + dv2)

Model 4 y � a(1 + bP + cP2)(1 + dv)

Model 5 y � a(1 + bP + cP2)(1 + dv + ev2)

is not suitable for the H/W prediction, expressed by a
negative value of R2. Besides, it should be emphasized
that the fitting curves were established, and their corre-
sponding R2 values were calculated through the whole
dataset, leading to potentially higher R2 values. As a result,
Machine Learning-based models were employed in the hope
of improving the model accuracy, as discussed hereafter in
this section. It has been shown that the ML-based meth-
ods become helpful for dealing with complex situations
with multidimensional datasets composed of a huge data
number and without requiring existing physics-based equa-
tions.

Table 4 R2 values obtained by the simple models listed in Table 3 for
two aspect ratios, D/W and H/W

Model 1 Model 2 Model 3 Model 4 Model 5

D/W ratio 0.47 0.44 0.69 0.55 0.70

H/W ratio 0.68 – 0.75 0.70 0.78

Machine learning-based prediction of bead
characteristics

Model hyperparameter selection

In our study, the Bayesian optimization for hyperparame-
ter tuning was performed using the gp_optimize package
provided by the Scikit-Optimize library (Skopt) in Python
version 3.7.3. The TensorFlow and Keras libraries were used
for the artificial neural network. First, the algorithm is applied
to the dataset using the initial set of hyperparameters defined
by the user, known as default parameters, to compute the
corresponding loss value in the validation dataset. The next
sets of hyperparameters will be identified in each iteration,
called n_call, by the Bayesian optimization algorithm, from
their predefined ranges to minimize the target function, i.e.,
Mean Squared Error (MSE) for ANN and the negative value
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of the R2 for Random Forest model. The MSE is calculated
as follows:

MSE � 1

n

n∑

i�1

(yi − ŷi )
2 (7)

where yi, ŷi , and n are the actual value, the predicted value
from the model, and the number of samples in the dataset,
respectively. It should be noted that the dataset was before-
hand split into training and validation datasets, as mentioned
previously. The training set is used to train the model for
this task; then, the hyperparameter optimization process is
performed on the validation set. In this study, Bayesian opti-
mization was employed to search for the best sets of model
architecture (number of hidden layers, number of neurons in
each hidden layer), dropout rate, learning rate for the ANN
model. Regarding theRandomForestmodel, 4 hyperparame-
ters, namely max depth, min samples leaf, min samples split,
and the number of estimators, were tuned using the Bayesian
optimization. Asmentioned in Sect. 3.2, RandomForest is an
ML-based algorithm widely used for regression and classi-
fication, which is based on the learning of multiple decision
trees that are randomly constructed from the sub-samples
of the whole dataset. 4 hyperparameters, which are tuned
using the BO algorithm, correspond to the maximum depth
of the tree, the minimum number of samples required at a
leaf node, the minimum number of samples required for an
internal node, and the number of trees.

Figure 12 shows the lowest mean squared error optimized
for each iteration by the Bayesian optimization algorithm
for the ANN hyperparameters. The optimization process can
converge rapidly after about 20 iterations to obtain an MSE
lower than only 0.007. Besides, in the beginning, the MSE
obtained seems to be constant with a relatively low value.
This may be explained by the fact that the initial set of
hyperparameters selected is quite good, leading to reason-
ably good results. In terms of tuning time, the algorithm took
about 46 min to tune 5 hyperparameters of the ANN models
with 40 iterations, 4000 epochs for each iteration, as against
about 33 min for 4 Random Forest model parameters with
400 iterations.

Tables 5 and 6 list the parameters used in this study for
the ANN and Random Forest models. In general, the larger
the max depth value; in other words, the deeper the deci-
sion trees are allowed to grow, the more complex the model
becomes and the more it can capture information from data.
However, this may cause overfitting in the case of an exces-
sively complex model. The max features correspond to the
number of features that the model considers when looking
for the best split. In our model, the ‘auto’ option was chosen
to speed up the tree’s stability and training process. The num-
ber of estimators consists of the number of samples on which
the algorithm will work, then averages the predictive result.

Fig. 12 Convergence trace obtained by the Bayesian optimization algo-
rithm for ANN hyperparameter tuning

Fig. 13 Training and validation losses of the ANN model as a function
of epoch

The higher the number of trees, the better performance the
model can achieve, but this can considerably slow down the
calculation.

Note that in theANNmodel, there are 4 layers inwhich the
first and last layers with 2 nodes for each layer correspond
to the number of input and output variables. Additionally,
the model contains 2 hidden layers constituted of 503 and
19 nodes, respectively. Besides, dropout regularization and
EarlyStopping were used to deal with the overfitting issue
that may occur in the case of complex ANN model archi-
tecture (Dahl et al., 2013; Goodfellow et al., 2016). Other
hyperparameters, including Adam optimizer (Kingma & Ba,
2017) and ReLU activation function (Nair & Hinton, 2010),
were used in the optimization algorithm tominimize theMSE
loss function of the neural network for the predictive model
presented in Sect. 4.3.2 for the prediction of bead character-
istics.

123



1254 Journal of Intelligent Manufacturing (2023) 34:1241–1257

Table 5 ANN model
hyperparameters Model architecture Loss function Activation function Optimizer Dropout rate Learning rate

2–503–19–2 MSE ReLU Adam 0.1 0.007

Table 6 Random Forest model
parameters Max depth Max features Min samples leaf Min samples split Number of estimators

110 ‘auto’ 1 2 100

Table 7 Summary results obtained by the ANN and Random Forest models for D/W and H/W ratios

Training Validation

Overall R2 (%) D/W
R2 (%)

H/W
R2 (%)

Training time (s) Overall
R2 (%)

D/W
R2 (%)

H/W
R2 (%)

ANN 95.8 98.7 92.9 18.27 90.4 92.4 88.4

Random forest 98.0 98.1 97.9 0.05 85.6 90.4 80.8

Machine learning-basedmodel performance

Figure 13 shows the evolution of the loss function (mean
squared error) in each epoch for the training and validation
processes of the ANN model. Note that an epoch consists of
an entire process of training and validation. It can be seen
that the model converges relatively rapidly, after only about
18 s (see Table 7), to reach a satisfactorily low value of losses
for both training and validation processes. Besides, neither
overfitting nor underfitting is observed for our model. This
can help to assure the reliability of the results obtained. In
terms of the training time, it is shown in Table 7 that the
Random Forest needs much less time to finish the whole
process, only 0.05 s as against 18 s in the case of the ANN
model.

Regarding the model performance, Fig. 14 indicates that
both ANN and Random Forest models are capable of esti-
mating reasonably well the two aspect ratios, D/W and H/W,
using two process parameters, with satisfactorily good accu-
racy of 85–90% of R2 assessed on the validation dataset that
is never seen before by the model. However, it seems that the
models tend to underfit the two ratios at very high values.
Nevertheless, it can be seen from Fig. 14 that the models
can predict very well both D/W and H/W ratios with values
smaller than 0.6. It should be noted that these value ranges are
expected to provide good printed bead quality, as mentioned
earlier in the introduction. In other words, the model accu-
racy could be significantly increased by considering only the
D/W and H/W ratios’ values below 0.6. Besides, as shown in
Table 7, the models can estimate the D/W ratio more accu-
rately than the H/W ratio, although the latter’s relationships
with the laser power and scanning speed seem to be less com-
plex, as discussed in Sect. 4.1.2. The results presented in this
section indicate that ML-based models are useful to develop
a prediction tool.

Conclusion

In order to obtain high-quality items fabricated by the SLM
processwith fewer defects, it is vital to thoroughly investigate
the effects of twokey process parameters, namely laser power
and scanning speed, on the single-track characteristics. In
this study, 840 single tracks were printed by the SLMprocess
with various laser power and scanning speed levels, covering
a large range of values, from very low to very high. The bead
geometric characteristics, i.e., depth, width, height, aswell as
two aspect ratios, penetration depth-to-bead width D/W and
bead height-to-width H/W ratios, were characterized using
both experimental and Machine Learning approaches.

From the experimental point of view, among the important
findings:

• Several surfacemorphologies of the single tracks and bead
profiles were thoroughly investigated, providing a track-
type map and the evolutions of the bead characteristics as
a function of laser power and scanning speed.

• The observations performed on the track surface, as well
as the analyses of the bead characteristics at the cross-
section, indicate neither severe balling nor keyhole mode
for all the combinations of laser power and scanning speed
adopted in this study.

• Three types of single tracks are noticed: continuous and
homogeneous track, continuous and non-homogeneous
track, and irregular track, depending on laser power and
scanning speed.

• The bead characteristics’ evolutions are found not to be
monotone and strongly depend on the laser power and
scanning speed levels.

• This helps provide a complete experimental database for
the bead characteristics as a function of process parame-
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Random Forest modelANN model

Fig. 14 Comparison of the D/W and H/W ratios’ values in the validation dataset with those predicted by the ANN and Random Forest models

ters, as well as an in-depth understanding of the complex
relationship between them.

In order to predict the bead geometry using laser power
and scanning speed, several fitting curves based on simple
relationships were proposed as the first approach. It is shown
that they are unable to sufficiently accurately predict the evo-
lutions of theD/WandH/Wratios as a function of laser power
and scanning speed, with relatively low R2 values, due to the
complexity in the evolutions of these ratios.

Regarding the application of Machine Learning:

• Two Machine Learning-based regression models, includ-
ing Random Forest and Artificial Neural Network, were
employed to estimate the D/W and H/W ratios using laser
power and scanning speed. Besides, the Bayesian opti-
mization algorithm was employed to optimize the model
hyperparameter selection in an automated way with more
accuracy.

• The results obtained by the numerical approach show that
both models are capable of predicting reasonably well the
two aspect ratios, D/W and H/W, with an overall accuracy
up to 90% of R2 evaluated on an unseen dataset and an R2

reaching 98–99% for the training dataset, after only a few
seconds to about tenths of seconds of training time.

• The results indicate that Machine Learning is useful to
develop a prediction tool for additive manufacturing field-
relevant applications.

Thesemodels are expected to be used to develop optimiza-
tion frameworks based onMachine Learningmethods, which
can help facilitate the process parameter selection to obtain
target characteristics of single-track and multi-track deposi-
tions and bulk components fabricated by the SLM process.
This is also the next step of our work in the future.
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