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Abstract
This article studies the scheduling problem for a remanufacturing system with parallel disassembly workstations, parallel 
flow-shop-type reprocessing lines and parallel reassembly workstations. The problem is formulated as a multi-objective 
optimization problem which contains both energy consumption and makespan to be addressed using an improved multi-
objective invasive weed optimization (MOIWO) algorithm. Two vectors regarding workstation assignment and operation 
scheduling jointly form a solution. A hybrid initialization strategy is utilized to improve the solution quality and the Sigma 
method is adopted to rate each solution. A novel seed spatial dispersal mechanism is introduced and four designed mutation 
operations cooperate to enhance search ability. A group of numerical experiments and a practical case involving the disas-
sembly of transmission devices are carried out and the results validate the effectiveness of the MOIWO algorithm for the 
considered problem compared with existing methods.

Keywords  Remanufacturing system · Disassembly · Shop scheduling · Energy consumption · Multi-objective invasive 
weed optimization

Introduction

Rapid development of industrial civilization brings a sharp 
increase in the amount of end-of-life (EOL) products, which 
leads to our serious environmental concerns (Joshi & Gupta, 
2019; Tian et al., 2018). Deciding how to collect, upgrade 

and handle these EOL products in an environment-friendly 
approach is an important and pressing issue (Yu & Lee, 
2018). When products reach their EOL states, they can be 
treated in a number of approaches such as repair, recycling, 
reuse, remanufacturing, and disposal (Heese et al., 2005). 
Among them, remanufacturing is regarded as one of the 
advanced EOL options due to its characteristics of high 
profits, energy saving, and environmental friendliness (Liu 
et al., 2020; Parkinson & Thompson, 2003). According to 
British Standard BS 8887 (Part 2), remanufacturing refers 
to the process of “returning a product to at least its original 
performance with a warranty which is equivalent (to) or bet-
ter than that of the newly manufactured product.” Remanu-
facturing is important to the economy, the environment and 
society, providing skilled employment for people as well as 
reducing raw material and energy usage (Jiang et al., 2019; 
Wang et al., 2019; Tian et al., 2017).

A typical remanufacturing system for managing EOL 
products is composed of three core subsystems, i.e., disas-
sembly, reprocessing, and reassembly (Guide, 2000; Lund, 
1984). Its general process can be described as follows: an 
EOL product is taken apart into its constituent components 
with essential classification/inspection operations at a dis-
assembly shop (Tian et al., 2019; Wang et al., 2021; Yuan 
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et al., 2020; Zhu et al., 2020), and then the components 
are recovered to like-new conditions by various advanced 
processing technologies at a reprocessing shop (Kerin & 
Pham, 2019). Eventually, the new ones are gathered and 
assembled into remanufactured products at a reassem-
bly shop. These three shops are interdependent and it is 
necessary to operate them closely to realize an efficient 
remanufacturing system (Fu et al., 2021). Regarding the 
structure of the three shops, there are many distinct system 
configurations. In our article, we consider the one with 
parallel disassembly workstations, parallel flow-shop-type 
reprocessing lines, and parallel reassembly workstations. 
This configuration is common in many practical remanu-
facturing systems, for example, in automotive part reman-
ufacturing systems.

The scheduling problem in our studied type of remanu-
facturing systems is to decide the sequence and allocation of 
EOL products to be worked on parallel disassembly worksta-
tions, sequence of separated components to be processed at 
each workstation of parallel reprocessing lines, and sequence 
and allocation of products to be assembled on parallel reas-
sembly workstations, so as to achieve several specific goals. 
Theoretically, the scheduling problem can be regarded as 
an ordinary two-stage assembly flow shop scheduling prob-
lem with the additional scheduling problem of a disassem-
bly shop. However, the considered type of remanufacturing 
systems in this article is distinct from hybrid flow shops due 
to that the reprocessing shop is composed of several flow-
shop-type reprocessing lines.

The scheduling problem in remanufacturing systems has 
attracted the attention of many scholars in the world. Guide 
(1995) applied a production control method, named drum-
buffer-rope, to a Naval Aviation Depot that remanufactured 
a wide range of parts from aircraft to avionics components. 
Later, Guide et al. (1997), Guide and Srivastava (1997) and 
Daniel and Guide (1997) extended his work and examined 
a group of priority dispatching rules to find out one that 
best supported the drum-buffer-rope method used in the 
manufacturing system. Gungor and Gupta (2001) utilized 
a branch-and-bound algorithm to produce disassembly 
sequence plans for EOL products remanufacturing. Tian 
et al. (2018) extended their work and studied the disassem-
bly sequence planning problem with fuzzy information on 
component quality and operational cost. Further, to real-
ize a cost effective and profitable disassembly, Kalayi and 
Gupta (2013) studied the disassembly line balancing prob-
lem, i.e., assign tasks to workstations for EOL products to 
be disassembled and aim at realizing several objectives, and 
proposed the ant colony optimization algorithm to address 
it. Ozceylan et al. (2019) summarized the previous work on 
disassembly line balancing problem and pointed out that 
future researches ought to consider sustainability issues such 
as, energy usage, green technology and so on.

According to Yu and Lee (2018), the scheduling problem 
in remanufacturing systems was divided into two categories 
based on the type of reprocessing shop: flow-shop-type ones 
and job-shop-type ones. Chikhi et al. (2014) addressed a 
two-stage flow shop scheduling problem in a robotic cell, 
where dedicated machines were set at the reprocessing stage 
and a common machine was set at the assembly stage. Jolai 
et al. (2012) considered an m-machine identical parts robotic 
cell scheduling problem with swap and load lock, and pro-
vided a new robot move cycle that was proved to be better 
that the classical ones. Foumani and Jenab (2013) examined 
the robotic cell scheduling problem with two workstations 
and considered two different configurations, i.e., free-pick 
up category and non-wait category. Stanfield et al. (2006) 
established a network model to represent a reprocessing flow 
shop and adopted a heuristic approach to minimize work-in-
process inventory and maximize production system utiliza-
tion. Kim et al. (2015) studied remanufacturing systems with 
one disassembly workstation, flow-shop-type reprocessing 
lines and a group of reassembly workstations. To minimize 
total tardiness of EOL products processed in the remanu-
facturing system, priority scheduling rules were used and 
experimental results indicated that the rule combination 
approach where each subsystem adopted a different priority 
rule performed better than using a single priority rule in all 
subsystems. Soon after, Kim et al. (2017) studied another 
kind of remanufacturing systems that have one disassembly 
workstation, several flow-shop-type reprocessing lines and 
one reassembly workstation. Three solution algorithms were 
applied to obtain the minimum completion time. Recently, 
Yu and Lee (2018) studied remanufacturing systems with 
a job-shop-type reprocessing shop. In the systems, compo-
nents obtained from a disassembly shop were grouped into 
different job families and must meet component matching 
requirements before being sent to a reassembly shop.

Pedrielli et al. (2018) took the manufacturing system as 
an unusual type of queueing system and developed a discrete 
event optimization methodology to establish integrated mod-
els. To capture the physical aspects from practical manu-
facturing systems, Lugaresi et al. (2021) studied a real-time 
rescheduling problem under a lab-scale environment.

From the literature review, the scheduling models and 
solution algorithms in remanufacturing systems are exten-
sively addressed. However, their applications are system-
specific to some extent. Besides, awareness of energy con-
servation in the remanufacturing industry and scheduling 
is increasing (Foumani & Smith-Miles, 2019; Fu et al., 
2019). According to Fang et al. (2011), industrial produc-
tion takes up about 50% of the total energy usage in the 
world. Further, remanufacturing processes can consume 
approximately 23% of the energy of production. Energy 
usage is regarded as one of the most considerable fac-
tors that contribute to environmental deterioration, such 
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as resource depletion and global warming (Lu et al., 2017; 
Yuan et al., 2020; Yang et al., 2020). Therefore, in this 
article, we treat the remanufacturing system scheduling 
problem with energy usage and time consideration. To 
the best of the authors’ knowledge, no previous work has 
been conducted on this configuration and its energy and 
time-oriented scheduling objectives are worthwhile to 
be studied in the aspects of scheduling theory and actual 
application.

To represent the scheduling problem, a multi-objec-
tive mathematical model is established for the purpose of 
simultaneously minimizing the energy consumption and the 
makespan. Since a two-stage assembly flow shop schedul-
ing problem with total flow time consideration is already 
NP-hard, so is the problem studied in the paper. The meth-
ods for solving shop scheduling problems can be classified 
into three categories: exact methods (Fattahi et al., 2014), 
heuristic algorithms (Thornton & Hunsucker, 2004), and 
meta-heuristics algorithms (An et al., 2020). Among them, 
meta-heuristics algorithms are commonly used due to their 
excellent characteristics of simple implementation, fast 
convergence and strong search ability for optimal solutions 
(Mousavi et al., 2019; Natarajan et al., 2020; Zhang et al., 
2020).

The Invasive Weed Optimization (IWO) algorithm 
proposed by Mehrabian and Lucas (2006), is an effective 
population-based meta-heuristics algorithm. It is inspired 
by a natural phenomenon from agriculture and simulates 
the colonization of invasive weeds. Due to its remarkable 
performance in robustness and self-adaptation (Sang et al., 
2018), the IWO algorithm has been successfully applied in 
no-idle flow shop scheduling (Zhou et al., 2014), permu-
tation flow-shop scheduling (Chen et al., 2013), inventory 
routing (Jahangir et al., 2019), optimal design of PID con-
troller (Misaghi & Yaghoobi, 2019) and many other fields. 
To the best of the authors’ knowledge, the IWO algorithm 
has not been utilized in the studied problem. Moreover, the 
scheduling algorithm for this problem is still in its infancy. 
Fresher and more effective solution methods are desired. 
Regarding the successful application of IWO algorithm veri-
fied in literature, a multi-objective invasive weed optimiza-
tion (MOIWO) algorithm is proposed for addressing the 
multi-objective remanufacturing system scheduling problem 
considering energy efficiency and productivity.

Compared with previous work, this study makes the fol-
lowing three contributions.

(1)	 Investigating the scheduling of remanufacturing sys-
tems with parallel disassembly workstations, parallel 
flow-shop-type reprocessing lines and parallel reas-
sembly workstations, where energy and time-oriented 
objectives are optimized simultaneously.

(2)	 Formulating a multi-objective mathematical model with 
several constraints to represent this NP-hard scheduling 
problem and developing an improved MOIWO algo-
rithm to solve it.

(3)	 Through numerical experiments and a case study, 
demonstrating the feasibility and effectiveness of the 
proposed algorithm, compared with non-dominated 
sorting genetic algorithm II (NSGA-II) and multi-
objective evolutionary algorithm based on decomposi-
tion (MOEA/D), in addressing scheduling problems in 
remanufacturing systems.

The structure of this manuscript is as follows. Section 2 
describes remanufacturing systems and illustrates the sched-
uling problem mathematically. The MOIWO algorithm is 
discussed in Sect. 3. Numerical experiments and a case 
study are conducted and their results are presented in Sect. 4. 
Section 5 concludes this work and outlines our future study 
lines.

Problem formulation

System description

As explained in Sect. 1, the studied type of remanufacturing 
systems is composed of parallel disassembly workstations, 
several flow-shop-type reprocessing lines and parallel reas-
sembly workstations. Its basic procedure is described as: 
a group of EOL products are decomposed into constituent 
components on parallel disassembly workstations (DWs) 
in a disassembly shop, then the separated components (Cs) 
are reprocessed at several parallel reprocessing lines (RLs) 
in a reprocessing shop and eventually the remanufactured 
components are reassembled into remanufactured products 
on parallel reassembly workstations (AWs) in a reassembly 
shop. The DWs/AWs are identical and thus EOL products 
can be disassembled/reassembled with a same processing 
time on any DW/AW. Note that components must be pro-
cessed at their corresponding RLs in which the necessary 
reprocessing processes are done on its serial workstations 
(Kim et al., 2015), due to the fact that each line is dedicated 
to processing one kind of component. Besides, components 
are serial number-specific because they must be matched on 
AWs. Further, disassembly operations, reprocessing opera-
tions and reassembly operations cooperate with each other. 
In other words, the reassembly operation of a remanufac-
tured product can be executed only after all of its compo-
nents are reprocessed at the parallel RLs.

In general, a remanufacturing system can be regarded 
as a three-stage hybrid flow shop, but it is different from 
the usual hybrid flow shop since it has several parallel 
RLs in its second stage (i.e., in the reprocessing shop). 
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Theoretically, the scheduling in the reprocessing shop can 
be taken as an extension of permutation flow shop sched-
uling problem. Note that the processing times could be 
distinct even for the EOL products of the same category 
with respect to the conditions of EOL products (Kim 
et al., 2015).

Figure 1 describes an example of studied remanufac-
turing system with two parallel DWs, three flow-shop-
type RLs and two parallel AWs. Two EOL products, i.e., 
P1 and P2 with different statuses (use environment or 
serve time) are remanufactured through the three serial 
subshops, where Cij refers to component j of EOL product 
i. As seen from Fig. 1, EOL products P1 and P2 are both 
with three components. EOL product P1 can be disas-
sembled on DW1 or DW2, and then its constituent compo-
nents C11, C12, C13 can only be reprocessed through RL1, 
RL2, and RL3, respectively. Finally, those remanufactured 
components can choose AW1 or AW2 to reassemble them 
into remanufactured P1. EOL product P2 has the same 
routing condition as P1. Specifically, P1 and P2 are firstly 
taken apart into their constituent components (C11, C12, 
C13 and C21, C22, C23) on DW1 or DW2; the components 
are reprocessed through one of RL1, RL2, and RL3; and 
the remanufactured and new components are sent to a 
reassembly shop where AW1 and AW2 are waiting to put 
them together. Figure 2 presents an example schedule of 
the remanufacturing system described in Fig. 1. It can be 
found that EOL products P1 and P2 are allocated to DW1 
and DW2, respectively, and their reprocessing sequences 
are C23 → C13, C22 → C12, and C21 → C11 on RL1, RL2, and 
RL3, respectively. Finally, P1 and P2 are allocated to AW1 
and AW2, respectively.

Problem description

The problem studied in this paper can be summarized as fol-
lows: Given a set of EOL products, the scheduling problem 
is to decide the sequence and allocation of EOL products 
to be worked on parallel DWs, the sequence of separated 
components to be processed at each workstation of paral-
lel RLs, and the sequence and allocation of products to be 
assembled on parallel AWs, so as to minimize both energy 
consumption and makespan.

This paper touches upon a static and deterministic type 
of remanufacturing system scheduling problem, i.e., all nec-
essary parameters, such as the count of EOL products, the 
count of workstations in the three shops, processing power 
and processing time, are determined and given in advance. 
Moreover, the assumptions are as follows: (1) preemption 
among products/components is not allowed, i.e., once a 
product/component starts to be worked, it must be completed 
without any interruption; (2) a workstation can only work a 
single product/component at a specific time and a product/
component can only be worked by a single workstation at a 
specific time; (3) buffers between two consecutive process-
ing stages are sufficiently large; (4) transportation times of 
products/components among workstations are negligible; 
(5) random failure or preventive maintenance of the work-
stations are not considered; (6) setup times are sequence-
independent and are integrated into processing time.

The notations used in this article are summarized as 
below.

	 (1)	 i: index of EOL products, i ∈ I = {1, 2, …, m}.

Fig. 1   Material flows in the studied type of remanufacturing systems: An example
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	 (2)	 j: index of components/reprocessing lines, j ∈ J = {1, 
2, …, n}.

	 (3)	 k: index of reprocessing workstations in RLj, 
k ∈ Mj = {1, 2, …, |Mj|}.

	 (4)	 g: index of DWs, g ∈ MD = {1, 2, …, p}.
	 (5)	 r: index of AWs, r ∈ MA = {1, 2, …, q}.
	 (6)	 tD

i
 : processing time of disassembling EOL product i.

	 (7)	 tR
ijk

 : processing time of working component j of EOL 
product i at reprocessing workstation k.

	 (8)	 tA
i
 : processing time of reassembling EOL product i.

	 (9)	 BD
i
 : beginning time of disassembling EOL product i.

	(10)	 FD
i

 : finishing time of disassembling EOL product i.
	(11)	 BR

ijk
 : beginning time of reprocessing component j of 

EOL product i at reprocessing workstation k.
	(12)	 FR

ijk
 : finishing time of reprocessing component j of 

EOL product i at reprocessing workstation k.
	(13)	 FR

i
 : finishing time of reprocessing all components of 

EOL product i.
	(14)	 BA

i
 : beginning time of reassembling EOL product i.

	(15)	 FA
i
 : finishing time of reassembling EOL product i.

	(16)	 L: a very large positive number.
	(17)	 xxig: a binary variable. If EOL product i is disassem-

bled on DWg, xxig = 1; otherwise xxig = 0.
	(18)	 xii': a binary variable. If EOL product i is disassembled 

before EOL product i', xii' = 1; otherwise xii' = 0.

	(19)	 yii': a binary variable. If components of EOL product i 
is reprocessed before those of EOL product i', yii' = 1; 
otherwise yii' = 0.

	(20)	 zzir: a binary variable. If EOL product i is reassembled 
on AWr, zzir = 1; otherwise zzir = 0.

	(21)	 zii': a binary variable. If EOL product i is reassembled 
before EOL product i', zii' = 1; otherwise zii' = 0.

Scheduling objectives

Based on the above descriptions, major energy consumption 
(MEC) and makespan Cmax in the studied type of remanu-
facturing systems are taken as its optimization objectives, 
which are described as follows:

where Cmax is calculated as:

It is worth mentioning that the considered MEC focuses 
on the energy consumption for processing products/com-
ponents on workstations, while energy consumption from 

(1)f1 = MEC

(2)f2 = Cmax

(3)Cmax = max
i∈I

{
FA
i

}
.

Fig. 2   An example remanufac-
turing system schedule
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other auxiliary parts, such as lighting, ventilation and so 
on are not considered in our work. It should be noted that 
the energy consumption rates of workstations may vary 
with respect to their types and conditions (Albertelli et al., 
2016). To illustrate MEC in the studied type of remanu-
facturing systems, the following notations on power are 
defined.

(1)	 pD
i

 : disassembly power for disassembling product i 
(kW).

(2)	 pR
ijk

 : processing power for working component j of EOL 
product i at workstation k (kW).

(3)	 pA
i
 : reassembly power for reassembling product i (kW).

(4)	 pR
ojk

 : idle power of reprocessing workstation k in RLj 
(kW).

(5)	 pA
o
 : idle power of parallel reassembly workstations 

(kW).

The MEC consists of three parts, i.e., disassembly shop 
energy consumption ED, reprocessing shop energy con-
sumption ER, and reassembly shop energy consumption 
EA, which is formulated as:

Note that once the allocation and sequence of EOL 
products are determined, the parallel DWs continue to 
work until the last product in their respective process-
ing sequences is disassembled. Thus energy consumption 
caused by the idle state of DWs need not be considered. 
That is why there is no symbol representing idle power of 
parallel DWs.

Directly, ED, ER and EA are calculated as:

where tR
ojk

 refers to the idle time of the k-th reprocessing 
wo rk s t a t i o n  i n  R L j  a n d  i s  ex p r e s s e d  a s 
tR
ojk

=
∑

i∈{2,…,m} F
R
ijk
− FR

i−1,jk
− tR

ijk
 . tA

or
 means the idle time 

of RWr and is calculated as tA
or
=
∑�PNr�

f=2
FA
f
− FA

f−1
− tA

f
 , 

where |PNr| refers to the element count in set PNr that stores 
the products reassembled on RWr. FA

f
 is the f-th smallest of 

finishing time of reassembling those products. Note that an 
example of processing time and idle time of reprocessing 
workstation is marked in Fig. 2.

(4)MEC = ED + ER + EA.

(5)ED =
∑

i∈I

pD
i
× tD

i

(6)ER =
∑

i∈I

∑

j∈J

∑

k∈Mj

pR
ijk
× tR

ijk
+
∑

j∈J

∑

k∈Mj

pR
ojk

× tR
ojk

(7)EA =

m∑

i=1

pA
i
× tA

i
+

q∑

r=1

pA
o
× tA

or

Model formulation

Based on the above descriptions, a multi-objective mathemati-
cal model is established for the scheduling problem in the stud-
ied type of manufacturing systems:

s.t.

(8)min f1 = MEC

(9)min f2 = Cmax

(10)
∑

g∈MD

xxig = 1,∀i ∈ I

(11)xii� + xi�i ≤ 1, i, i� ∈ I

(12)BD
i
≥ 0,∀i ∈ I

(13)FD
i
= BD

i
+ tD

i
,∀i ∈ I

(14)
BD
i�
− FD

i
+ L ×

(
3 − xii� − xxig − xxi�g

)
≥ 0,∀i, i� ∈ I, g ∈ MD

(15)BR
ij1

≥ FD
i
,∀i ∈ I, j ∈ J

(16)yii� + yi�i ≤ 1, i, i� ∈ I

(17)FR
ijk

= BR
ijk
+ tR

ijk
,∀i ∈ I, j ∈ J, k ∈ Mj

(18)BR
ijk
− FR

ij,k−1
≥ 0,∀i ∈ I, j ∈ J, k ∈

{
2,… ,

|||Mj
|||
}

(19)BR
i�jk

− FR
ijk
+ L ×

(
1 − yii�

)
≥ 0, i, i� ∈ I, j ∈ J, k ∈ Mj

(20)FR
i
= max

{
FR
ijhj

}
,∀i ∈ I, j ∈ J

(21)BA
i
− FR

i
≥ 0,∀i ∈ I

(22)
∑

r∈MA

zzir = 1,∀i ∈ I

(23)zii� + zi�i ≤ 1, i, i� ∈ I

(24)FA
i
= BA

i
+ tA

i
,∀i ∈ I

(25)
BA
i�
− FA

i
+ L ×

(
3 − zii� − zzir − zzi�r

)
≥ 0,∀i, i� ∈ I, r ∈ MA
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The optimization goal is to minimize both MEC and Cmax, 
as expressed in Eqs. (8) and (9). Equation (10) specifies that 
each EOL product can only be disassembled at one DW. 
Equation (11) specifies the sequence of disassembling EOL 
products. Equation (12) guarantees that no products can 
begin to be worked on DWs before time zero. Equation (13) 
describes the relationship between the beginning time and 
finishing time of disassembling each product. Equation (14) 
illustrates that no two products are disassembled on a same 
DW simultaneously, i.e., disjunctive constraints. Equa-
tion (15) specifies the beginning time of the first reprocess-
ing operation of all components and guarantees that a series 
of reprocessing operations can be conducted on components 
until their relevant disassembly operations finish. Equa-
tion (16) specifies the sequence of reprocessing components 
of EOL products. Equation (17) describes the relationship 
between the beginning time and finishing time of reprocess-
ing each component on reprocessing workstations. Equa-
tion (18) defines the time relation between two successive 
reprocessing processes. Equation (19) guarantees that no 
two components can be processed on a same workstation at 
RLs. Equation (20) stipulates the completion times of repro-
cessing all the components of EOL products. Equation (21) 
stipulates that an EOL product cannot be reassembled until 
all of its corresponding components finish their necessary 
reprocessing operations. Equations (22) and (23) stipulate 
the sequence and allocation of products to be worked on 
parallel AWs, which resembles the disassembly stage. Equa-
tion (24) describes the relationship between the beginning 
time and finishing time of reassembling each product on 
AWs. Equation (25) illustrates that no two products are reas-
sembled on a same DW simultaneously. Finally, Eqs. (26) 
and (27) define the conditions of corresponding variables.

Note that these three sub-scheduling problems in dis-
assembly, reprocessing, reassembly shops could be taken 
as parallel-machine, permutation flow shop and parallel-
machine scheduling models. An improved MOIWO algo-
rithm will be presented in next section to resolve this NP-
hard problem.

Solution algorithm

The general invasive weed optimization algorithm

The IWO is a stochastic search algorithm developed by Meh-
rabian and Lucas (2006), which simulates the natural behav-
ior of weeds in colonizing and finding appropriate place for 

(26)
xii� ∈ {0, 1}, yii� ∈ {0, 1}, zii� ∈ {0, 1},∀i, i� ∈ I, j ∈ J, k ∈ Mj

(27)xxig ∈ {0, 1}, zzir ∈ {0, 1},∀i ∈ I, g ∈ MD, r ∈ MA

growth and reproduction. IWO makes use of some interest-
ing properties of weeds, such as strong invasiveness, fast 
reproduction, selective distribution and competitive exclu-
sion. The general IWO works on the following four basic 
phases: initialization, reproduction, spatial dispersal and 
competitive exclusion.

To be specific, the IWO algorithm starts with initializing 
a weed population of size PS0 , where each weed represents 
a solution. And then, in the reproduction phase, each weed 
is allowed to produce a certain number of seeds and the 
seed number depends on its relative fitness in the population. 
Afterwards, in the spatial dispersal phase, the new produced 
seeds are scattered over the search space near to their respec-
tive parent weeds by a normal distribution with mean zero 
and varying standard deviation adaptive to iteration index. 
Obviously, the number of weeds in the colony will reach its 
maximum limit PSmax by fast reproduction, and the popula-
tion will enter the competitive exclusion phase. In this phase, 
an elimination mechanism is activated where the weeds with 
lower fitnesses are abandoned by the population to reach 
the limit PSmax and the survived seeds will go for the next 
generation. The above four phases repeat until the predefined 
termination condition is achieved.

Flow chart of MOIWO

Like many other population-based meta-heuristics, the gen-
eral IWO algorithm is designed for the single-objective and 
continuous optimization problems. To solve multi-objective 
and discrete optimization problems, some improvements are 
needed. Based on the characteristics of the studied problem, 
an improved MOIWO algorithm is proposed and its proce-
dure is shown in Fig. 3. MOIWO is composed of the follow-
ing five core phases: weed initialization, weed reproduction, 
seed spatial dispersal, plant competitive and external Pareto 
archive set.

Weed initialization

(1) Solution Encoding and Decoding: Based on the model 
established in Sect. 2, a solution in MOIWO is encoded 
in two vectors through the segment encoding method: the 
workstation assignment vector Xw and the operation sched-
uling vector Xp. Such encoding approach has low decoding 
complexity and is easy to understand, which gains practical 
applications (Cai et al., 2020; Tang et al., 2019). As shown in 
Fig. 4, a solution is denoted as Xi = {Xw, Xp} = {d1, d2, …, dm, 
a1, a2, …, am, Pd1, Pd2, …, Pdm, Pa1, Pa2, …, Pam}, where 
Xw = {d1, d2, …, dm, a1, a2, …, am} and Xp = {Pd1, Pd2, …, 
Pdm, Pa1, Pa2, …, Pam}. In vector Xw, di and ai (i = 1, 2, …, 
m) represent the workstation index used by product Pi in the 
disassembly shop and reassembly shop, respectively. Recall 
that m refers to the count of EOL products to be scheduled. 
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In vector Xp, Pdi and Pai represent the processing priority 
of product Pi in the disassembly shop and the reassembly 
shop, respectively, and a smaller number indicates a higher 
processing priority. di and ai in vector Xw are randomly taken 
from {1, 2, …, p} and {1, 2, …, q}, respectively. Recall that 
p and q refer to the count of DWs and AWs to process EOL 
products, respectively. The integers from 1 to product count 
m are rearranged and then assigned to Pdi and Pai, where 
Pdi ≠ Pdj, and Pai ≠ Paj.

For example, a scheduling scheme can be denoted as 
Xi = {2 1 3 2 1 2 2 1∣3 2 4 1 4 2 1 3}. The first element in 
Xw is 2, denoting that DW2 is applied to disassemble prod-
uct P1 (for d1 = 2); the eighth element in Xw is 1, denoting 
that AW1 is employed to reassemble product P4 (for a4 = 1). 
Products P1 and P4 share the same disassembly worksta-
tion DW2 (for d1 = d4 = 2), and product P4 will be processed 
first since it has a smaller priority value than product 1 (for 
Pd4 = 1 < Pd1 = 3).

The sequence and allocation of EOL products to be dis-
assembled/reassembled on the parallel DWs/AWs can be 

directly determined from the encoding scheme. However, 
the encoding scheme does not reveal the sequence of com-
ponents to be worked at RLs. To address this problem, the 
well-accepted first come first serve (FCFS) heuristic rule is 
utilized based on the characteristics of the studied problem 
(Kim et al., 2017). Due to the close relationship between the 
disassembly shop and the reprocessing shop, priority values 
in the disassembly stage will be reused in the reprocessing 
stage for convenience. As a result, a component/job with the 
earliest release time and the lowest processing priority value 
will be reprocessed first at its specified reprocessing line.

(2) Initial Population/Weeds Construction: The initial 
weeds size of MOIWO is denoted as PS0 and the population 
size will increase with iteration, but there exists an upper 
limit subject to environmental capacity. In the process of 
generating initial population Population(0), two generation 
approaches, i.e., the random generation strategy and the 
balanced allocation strategy are utilized to produce well-
satisfied solutions. The random generation strategy refers 
to that the range of the individual vector elements is known, 

Fig. 3   Flow chart of MOIWO 
algorithm

Fig. 4   Encoding scheme of a 
solution/a weed
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and the random value is taken based on the upper and lower 
limits of the range. This strategy is simple to implement 
and can produce feasible solutions in short times. The bal-
anced allocation strategy refers to distributing EOL products 
evenly to the DWs and AWs, which can help improve the 
disassembly efficiency and also enable the components to 
enter reprocessing/reassembly shop earlier, thus gaining a 
good performance in both reducing energy consumption and 
improving processing efficiency. Therefore, Population(0) is 
initialized through the above two strategies evenly so as to 
improve the solution efficiency and quality.

Weed reproduction

(1) Pareto Domination and Sigma Method: The studied 
problem is with two optimization objectives, i.e., MEC and 
Cmax, as shown in Eqs. (4) and (3). Our goal is to minimize 
they two simultaneously, thus the optimization problem is a 
minimization multi-objective optimization problem (MOP). 
When it comes to a MOP, a solution X is thought to be domi-
nated by another solution X' if solution X performs better 
than solution X' in each objective, which is denoted as X 
≺ X'. X* is thought to be a Pareto-optimal solution once no 
other solutions can dominate it (Feng et al., 2019). Usually, 
a group of Pareto-optimal solutions which forms a Pareto 
optimal set will be obtained for a MOP (Wang et al., 2020b; 
Zhang et al., 2019). The curve that represents the Pareto 
optimal set in the objective space is said to be Pareto front 
(PF).

In the basic IWO, the count of seeds each weed can pro-
duce depends on its fitness and the highest and lowest fit-
ness of the whole population (Mehrabian & Lucas, 2006). 
Thus, the calculation of individuals’ fitness is essential 
for the whole algorithm. Due to the fact that there are two 
optimization objectives in our work, it is with difficulties 
in calculating their fitness. The NSGA-II adopts the local 
crowding distance for assessing chromosomes in the same 
rank (Deb et al., 2002), yet it cannot give quantitative val-
ues for all the chromosomes that are in different ranks. To 

address this problem, we adopt the Sigma method proposed 
by Enayatifar et al. (2013) to work out the fitness with a 
sigma value. From the literature, the Sigma method which 
can qualify every individual has been successfully employed 
in solving a number of MOPs (Li et al., 2018a). It contains 
the following two steps:

Step 1: Use the fast non-dominated sorting method on 
weeds/individuals to divide them into different ranking sets. 
Note that the first set consists of Pareto-optimal solutions 
which form PF. The second ranking set contains solutions 
which are only dominated by several solutions in the first 
set and this procedure will continue until each solution gets 
their corresponding rankings.

Step 2: Calculate the sigma values for all weeds by:

where nobj represents the count of objectives in a MOP, obvi-
ously, is 2 in this paper. fl(i) refers to the fitness value of the 
l-th objective of the i-th solution, and Nrank denotes the count 
of solutions with the same ranki. Obviously, the rankings of 
solutions in PF are set to 1 and solution with a lower sigma 
value is preferred. Figure 5 presents the procedure of Sigma 
method.

(2) Seed Number Determination: As basic IWO presents, 
the count of seeds that a weed allowed to reproduce is deter-
mined by a prefixed maximum and minimum and increases 
linearly (Mehrabian & Lucas, 2006). In the MOIWO algo-
rithm, we replace fitness values in basic IWO with sigma 
values due to the studied problem is mathematically a MOP. 
And since the lower the better principle on operating sigma 
values, the count of reproduced seeds n(xi) of weed xi is 
calculated as follows:

(28)Sigmai =

nobj∑

l=1

[
fl(i)

/
Nrank∑

j=1

fl(j)

]
+
(
ranki − 1

)
× 2

(29)

n
(
xi
)
= floor

(
smin +

Sigmai − Sigmamax

Sigmamin − Sigmamax

×
(
smax − smin

))

Fig. 5   Procedure of the Sigma method
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where floor () is a round-down function. smax is the maxi-
mum count of seeds that a weed can reproduce and smin is the 
minimum count of seeds that a weed can reproduce, which 
are prefixed in MOIWO.

Seed spatial dispersal

(1) Distance Based Spatial Dispersal: Due to the fact that 
our studied problem is discrete and a solution is represented 
by the workstation assignment vector and the processing 
priority vector but not a real-valued vector, thus real-valued-
based calculation equation on spatial dispersal in Mehra-
bian and Lucas (2006) cannot be used. Sang et al. (2018) 
consider the distance of the seeds spread from their parent 
weed under normal distribution with mean equal to zero. 
The distance is measured as the smallest execution times of 
mutation operations required to convert one sequence into 
another sequence. For example, a mutation operation on 
sequence π = (π1, π2, …, πm), denoted as κ (π, i, j), i, j ∈ {1, 
2, …, m} and i ≠ j, generates a sequence �′ by swapping the 
elements in positions i and j from π. Let π0 = (3, 2, 1, 4, 5) 
and πe = (4, 2, 5, 1, 3) be two sequences. Figure 6 shows 
the procedure of how we use κ (π, i, j) to convert π0 to πe. It 
can be seen that the mutation operation κ (π, i, j) should be 
performed at least three times whatever execution order is 
employed. Thus, the distance from π0 to πe is equal to three. 
Let πa = (3, 2, 2, 1, 1) and πb = (1, 2, 3, 2, 1) be another two 
sequences. It can be seen that the mutation operation κ (π, 
i, j) should be performed at least two times whatever execu-
tion order is employed, which means that the distance from 
πa to πb is equal to two. And this kind of distance measure 
approach will be adopted in this paper.

Then, the formula of standard deviation (SD) for the 
normal distribution is needed to produce the specific dis-
tance and an alternative one proposed in Sang et al. (2018) 
is adopted, which is designed as follows:

(30)�iter = tan

(
�

4
×
itermax − iter

itermax

)
×
(
�0 − �f

)
+ �f

where iter is the index of current iteration and σiter is its SD 
value. σ0 and σf are the initial SD value and final SD value, 
respectively. tan () is a usual tangent function, the factor π/4 
guarantees that σiter is equal to σ0 at the first iteration.

Consider a weed with X = {2 1 3 2 1 2 2 1∣3 2 4 1 4 2 1 
3}. Regarding the encoding scheme, weed X has two parts 
that are the same as πa in structure (i.e., [2 1 3 2] and [1 
2 2 1]) and two parts that are the same as π0 in structure 
(i.e., [3 2 4 1] and [4 2 1 3]). Suppose that σ0 = 5, σf = 0.1, 
itermax = 50, and current iteration is iter = 20. The corre-
sponding SD is calculated σiter = tan(0.875 × (50 − 20)/5
0) × (5 − 0.1) + 0.1 = 0.145. Therefore, the distance from 
π0 obeys the normal function N (0, 0.1452). Suppose the 
generated random number is 0.6, then the distance is deter-
mined by ceil (0.6) = 1, where ceil () is the usual round-up 
function that rounds the element to its nearest integers 
toward positive infinity. By conducting a mutation opera-
tion κ (π, 1, 3) on X once, we have Xʹ = {3 1 2 2 2 2 1 1∣4 
2 3 1 1 2 4 3}and Xʹ is a seed of weed X. The seed gen-
eration procedure repeats until all of a weed’s seeds are 
obtained. Due to the structural differences between Xw and 
Xp, mutation operations should be carefully determined. 
Next, we will introduce the mutation operations designed 
and adopted in this article.

(2) Mutation Operations: Four kinds of mutation opera-
tions are specially designed to produce seeds from their par-
ent weeds. As Fig. 7 shows, two of them are for workstation 
assignment vector Xw while the rest are for operation sched-
uling vector Xp. Various mutation operations and stochastic 
execution times ensure the population diversity and search 
depth. The general process of four mutation operations will 
be discussed one by one next.

For generating a new workstation assignment vector from 
Xw, two mutation operations, i.e., random mutation and ± 1 
mutation are designed. Random mutation: randomly choose 
a position h in Xw, suppose the element in position h is x, 
then replace x with x′ which is generated from a uniform dis-
tribution on [1, M], where M represents the count of parallel 
workstations and varies with respect to the shop type (M 
equals p for disassembly shop, while M equals q for reas-
sembly shop). ± 1 mutation: randomly select a position h in 
Xw and suppose its corresponding element is x. Randomly 
produce a number in the interval 0 and 1. If the generated 
number is smaller than 0.5, then produce a new element x′ by 
x′ = x − 1; else x′ = x + 1 is activated. Note that this mutation 
operation may produce infeasible solutions and those solu-
tions need to be adjusted. The adjustment process is similar 
to Tian et al. (2016) and is described as: assign M to x′ if 
x + 1 > M and assign 1 to x′ if x − 1 < 0.

Considering the uniqueness of elements in operation 
scheduling vector Xp, two mutation operations, i.e., swap 
mutation and insert mutation are introduced to generate a 
new operation scheduling vector. Swap mutation: randomly 

Fig. 6   The distance based seed spatial dispersal: example. a Distance 
(π0, πe) = 3. b distance (π0, πe) = 3
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decide two different positions in Xp and exchange their cor-
responding elements. Insert mutation: randomly decide two 
different positions h and v in Xp, where h < v; and then insert 
the v-th element before the h-th element.

It should be referred that we define the unit distance as 
executing, one of the dedicated two mutation operations on 
Xw and one of the other dedicated two mutation operations 
on Xp. Obviously, four combinations can be generated and 
they will be called randomly but evenly in runs of MOIWO.

Plant competitive exclusion

After going through some iterations, the count of weeds in 
the colony will exceeds its maximum limit PSmax by fast 
reproduction. Therefore, an elimination mechanism for dis-
carding weeds with poor fitness, called plant competitive 
exclusion is activated. It works as follows: after all weeds 
reproduce their seeds, we put weeds and their seeds together 
and apply a screening mechanism to remove identical solu-
tions. Then the Sigma method is used again to rank them 
with respect to their sigma values. Finally, the top PSmax 
solutions (recall that a smaller sigma value indicates a bet-
ter solution, see Sect. 3.4. Weed Reproduction) will survive 
and are selected as potential weeds for next iteration. For 
convenience, the colony size is kept unchanged in the runs 
of MOIWO, i.e., PSmax = PS0.

Pareto archive set

In MOIWO, an external archive set A is used to store all 
Pareto-optimal solutions that make up PF in the objective 
space. After the execution of plant competitive exclusion, 
PSmax solutions are produced and updated, then they will 
be compared with the solutions in A through Pareto domi-
nance, and finally, A is updated iteratively by removing its 

solutions that are dominated by iteratively produced solu-
tions and adding those non-dominated produced ones (Tian 
et al., 2016). When the index of predetermined maximum 
iterations reaches (i.e., the termination condition meets), 
the algorithm will be out of action and export final Pareto-
optimal solutions.

Experimental results and discussion

In this section, we evaluate the performance of MOIWO by 
conducting a series of numerical experiments. MOIWO is 
programmed in MATLAB 2018a software and executed on 
an Intel(R) Core(TM) i7-8700 (3.20 GHz/8.00 GB RAM) 
PC with a Windows 10 operating system. Its parameters 
include PS0 = PSmax = 60, Gmax = 500, smax = 4, smin = 1, 
σ0 = 3, and σf = 0.5, which are determined from a series of 
preliminary tests.

Instances and chosen algorithms

To test the performance of the proposed MOIWO, a set of 
experimental instances is designed based on characteristics 
of the studied scheduling problem. Several relative param-
eters such as count of EOL products, count of components, 
count of DWs, count of AWs, count of workstations in RLs, 
processing times, processing powers and idle powers should 
be determined. Experimental instances are designed on the 
basis of Kim et al., (2015, 2017), as described as below.

The count of EOL products has five levels, m ∈ {10, 
15, 20, 40, 60}, the count of components has three levels, 
n ∈ {3, 5, 7}, and the count of DWs/AWs is with two levels, 
p/q ∈ {3/2, 4/3}. Specially, when m belongs to {10, 15, 20}, 
each EOL product contains two quantity levels of compo-
nent {3, 5}. However, when m belongs to {40, 60}, each 

Fig. 7   Four mutation opera-
tions. a Random mutation. b ± 1 
mutation. c Swap mutation. d 
Insert mutation
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EOL product will contain another two quantity levels com-
ponent {5, 7}. Therefore, we produce 20 test instances by 
the different combinations of m, n and p/q, as is presented 
in Table 1.

In the studied problem, there are serial workstations 
in each RL to process specific components. For each test 
instance, the count of workstations at RLs are produced from 
DU(2, 4) if m belongs to {10, 15, 20} and produced from 
DU(4, 6) if m belongs to {40, 60}. DU(a, b) represents the 
discrete uniform distribution with range [a, b]. Note that 
reprocessing times, disassembly times and reassembly times 
may be distinct even for products of the same type according 
to the actual conditions of EOL products and their constitu-
ent components, which are produced from DU(100, 300), 
DU(120, 180), and DU(150, 220) (unit: s), respectively. In 
addition, processing powers of DWs, processing powers and 
idle powers of reprocessing workstations in RLs and AWs 
are produced by DU(15, 25), DU(5, 20), DU(1, 5), DU(20, 
30), and DU(5, 10) (unit: kW), respectively.

The results obtained from MOIWO are compared with 
two well-accepted optimization algorithms NSGA-II (Deb 

et al., 2002) and MOEA/D (Zhang & Li, 2007) which are 
based on the Pareto rule and the decomposition approach, 
respectively. To guarantee a fair comparison, parameters 
of these different algorithms must be set consistent. For 
comparison algorithm NSGA-II, tournament selection is 
determined as the selection operator and crossover and 
mutation operators are selected from Chen et al. (2020). 
Differential mutation and polynomial mutation are incor-
porated into MOEA/D.

Performance metrics

Several performance metrics that can be employed to 
assess the results of multi-objective optimization algo-
rithms. In the experiment, three following evaluation 
metrics are selected finally. Note that PFobtain and PFtrue 
refer to the PF obtained by a specific algorithm and the 
PF gotten from PFs among all runs of different algorithms 
after Pareto dominance, respectively.

Table 1   Comparison of NSGA-II, MOEA/D and MOIWO

a Count of EOL products
b Count of components (parallel RLs)
c Count of DWs/AWs

CPa CCb CD/CAc GD Δ IGD

NSGA-II MOEA/D MOIWO NSGA-II MOEA/D MOIWO NSGA-II MOEA/D MOIWO

10 3 3/2 2.44E−02 6.20E−02 1.54E−02 6.74E−01 8.57E−01 6.52E−01 1.65E−02 2.90E−02 1.14E−02
4/3 3.23E−02 6.27E−02 1.68E−02 6.91E−01 7.87E−01 6.61E−01 2.22E−02 3.17E−02 1.29E−02

5 3/2 2.16E−02 4.36E−02 1.41E−02 7.25E−01 8.18E−01 7.13E−01 1.65E−02 2.65E−02 1.23E−02
4/3 3.73E−02 6.69E−02 1.98E−02 6.76E−01 7.45E−01 7.13E−01 2.58E−02 3.70E−02 1.81E−02

15 3 3/2 4.97E−02 8.82E−02 1.40E−02 7.70E−01 7.67E−01 7.85E−01 2.96E−02 8.82E−02 1.40E−02
4/3 3.53E−02 8.47E−02 1.19E−02 8.29E−01 8.34E−01 6.82E−01 2.42E−02 8.47E−02 1.39E−02

5 3/2 3.47E−02 6.16E−02 1.25E−02 7.35E−01 8.17E−01 7.14E−01 2.20E−02 2.79E−02 1.12E−02
4/3 5.37E−02 9.70E−02 1.34E−02 8.74E−01 8.09E−01 6.87E−01 3.13E−02 3.87E−02 1.36E−02

20 3 3/2 4.01E−02 7.13E−02 8.70E−03 8.02E−01 7.49E−01 8.02E−01 2.19E−02 2.59E−02 9.80E−03
4/3 5.73E−02 9.70E−02 7.70E−03 9.20E−01 8.42E−01 9.47E−01 1.96E−02 2.27E−02 7.70E−03

5 3/2 3.97E−02 6.08E−02 9.00E−03 8.70E−01 8.28E−01 8.10E−01 2.48E−02 2.51E−02 9.30E−03
4/3 3.67E−02 8.66E−02 9.40E−03 8.20E−01 7.65E−01 7.22E−01 2.26E−02 2.77E−02 9.90E−03

40 5 3/2 3.42E−02 7.11E−02 6.30E−03 9.33E−01 8.06E−01 7.50E−01 2.22E−02 2.19E−02 6.80E−03
4/3 4.19E−02 6.41E−02 5.40E−03 9.14E−01 6.79E−01 8.78E−01 2.14E−02 2.22E−02 7.50E−03

7 3/2 3.73E−02 6.52E−02 9.70E−03 9.93E−01 8.01E−01 7.92E−01 2.31E−02 2.27E−02 1.11E−02
4/3 4.60E−02 6.83E−02 8.90E−03 8.93E−01 7.48E−01 7.93E−01 2.24E−02 2.27E−02 8.70E−03

60 5 3/2 3.17E−02 7.79E−02 7.90E−03 9.56E−01 8.14E−01 8.25E−01 2.05E−02 2.27E−02 8.50E−03
4/3 2.95E−02 6.11E−02 7.50E−03 9.75E−01 7.81E−01 8.88E−01 1.65E−02 1.68E−02 6.00E−03

7 3/2 2.87E−02 5.60E−02 1.02E−02 9.97E−01 8.18E−01 9.00E−01 3.01E−02 3.00E−02 2.01E−02
4/3 4.53E−02 7.16E−02 1.29E−02 9.61E−01 8.34E−01 8.17E−01 2.36E−02 2.47E−02 1.02E−02

Avg 3.79E−02 7.09E−02 1.11E−02 8.50E−01 7.95E−01 7.77E−01 2.28E−02 3.24E−02 1.12E−02
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(1)	 Generational Distance (GD) (Li et al., 2018b): this met-
ric is used to measure how close PFobtain is to PFtrue, 
formulated as:

where N refers to the size of PFobtain, di refers to the 
Euclidean distances between the i-th solution in PFobtain 
and its nearest point in PFtrue. Usually, a smaller GD 
value indicates an algorithm is with better convergence.

(2)	 Spread (Δ) (Deb et al., 2002): this metric is to illustrate 
the diversity of solutions in PFobtain, formulated as:

where d refers to the average of all distances di, df and 
dl represent the Euclidean distances between extreme 
solutions in PFobtain and boundary solutions in PFtrue. 
The smaller Δ is, the better the PFobtain is in terms of 
distribution and diversity. To eliminate the influence of 
dimensions, a normalization process is utilized.

(3)	 Inverted Generation Distance (IGD) (Li et al., 2018b): 
this a comprehensive metric to reflect both convergence 
and diversity, formulated as:

(31)GD =
1

N

√√√√
N∑

i=1

d2
i

(32)Δ=
df + dl +

∑N−1

i=1

���di − d
���

df + dl + (N − 1)d

where N* represents the count of solutions in PFtrue. 
As a variation of the GD indicator, d∗

i
 in IGD refers to 

Euclidean distances between the i-th solution in PFtrue 
and its nearest point in PFobtain. Similar to the GD indi-
cator, a smaller IGD is preferred.

Experimental results

The results obtained from NSGA-II, MOEA/D, and MOIWO 
are presented and analyzed below. As mentioned above, ten 
independent runs of each instance on each algorithm are 
executed to get the average of metrics GD, Δ, and IGD. 
Obtained results are presented in Table 1 and the optimal 
ones will be shown in bold. The PF comparisons of NSGA-
II, MOEAD and MOIWO in the twelfth instance are pre-
sented in Fig. 8. The horizontal axis refers to the Cmax, while 
the vertical axis refers to the MEC. The magenta “◇” points 
indicate the PF of NSGA-II, the blue “○” points signify 
the PF of MOEAD, the red “☆” points represent the PF of 
MOIWO.

These experimental results tell that the GD values and 
IGD values of MOIWO are smaller than those of NSGA-
II and MOEA/D, which indicates good solving ability of 
MOIWO. As the problem scale increases, the GD values 

(33)IGD =
1

N∗

√√√√
N∗∑

i=1

d∗ 2
i

Fig. 8   PF comparison of 
MOEA/D, MOIWO, and 
NSGA-II
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and IGD values show a decreasing trend, which means our 
proposed algorithm is more suitable for addressing large-
scale problem. Regarding the Δ values, MOIWO wins in 
the majority of these experiments (11 out of 20). However, 
MOEA/D be the winner instead of MOIWO in the rest 
experiments (except the fourth experiment). This may be 
owing to that MOEA/D naturally does well in producing 
an even distribution of solutions along the PF (Zhang & Li, 
2007). In summary, the effectiveness of MOIWO algorithm 
for addressing multi-objective scheduling problem in studied 
remanufacturing systems is verified based on the obtained 
results.

Case study

The proposed MOIWO algorithm is also applied to address a 
case from practical EOL products, i.e., transmission devices 
(Tian et al., 2012). The structure of transmission devices 
is illustrated in Fig. 9 and its detailed list of components 
in shown in Table 2. Main failures of transmission devices 
mainly occur on parts such as box, bearings, shafts, and 
gears (Wang et al., 2020a). It is of great benefits to remanu-
facture those parts and reuse them, and their remanufactur-
ing processes are represented in Fig. 10.

As can be seen from Fig. 10, the box remanufacturing 
process is as: clean → pol4ish → cold welding → brush 
plating → polish; the gear remanufacturing process is as: 
clean → polish → laser cladding → shot peening → hon-
ing; the shaft remanufacturing process is as: clean → pol-
ish → brush plating → grinding; the bearing remanufacturing 
process is as: clean → repair welding → raceway grind-
ing → rollers replacement (Zaretsky & Branzai, 2005).

In this case study, a set of 5 EOL transmission devices are 
waiting to be remanufactured in the remanufacturing system 
where three DWs, two AWs, four RLs are set. Their detailed 
parameters are shown in Tables 5, 6, 7, 8 and 9 of Appendix. 
The proposed MOIWO algorithm and its comparison algo-
rithms NSGA-II and MOEA/D are utilized again to address 
this case, whereas each algorithm are executed ten times 
independently. The PFs of these three algorithms are illus-
trated in Fig. 11. Besides, the mean and standard of each 
metrics in the ten execution times are analyzed in Table 3.

From Fig. 11, each of NSGA-II and MOIWO finally 
receives six Pareto solutions and PFs gotten by NAGA-II and 
MOIWO are similar. Though the PF obtained by MOEA/D 
is similar to PFs by NSGA-II and MOIWO, MOEA/D only 
obtains five Pareto solutions and two of them lie in the true 

Fig. 9   Structure of the transmission device

Table 2   Detailed list of the components in the transmission device

Code Name Figure Code Material Quantity

1 Left cover HT150 1
2 Screw I GB70 35 4
3 Washer I 08F 1
4 Box HT200 1
5 Bearing I GB/T276 GCr15 1
6 Step shaft 45 1
7 Gear GB/T10095 40Cr 1
8 Flat key GB/T1096 45 1
9 Axle bush Q235 1
10 Bearing II GB/T276 GCr15 1
11 Washer II 08F 1
12 Screw II GB70 35 4
13 Right cover HT150 1
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PF. It can be gotten from Fig. 11 and Table 3 that the pro-
posed MOIWO algorithm has the strongest domination abil-
ity. In Table 3, numbers in brackets indicate the standard of 
each algorithm in ten runs and best results will be shown in 
bold. It can be seen that MOIWO is feasible and effective 
for addressing the remanufacturing system scheduling prob-
lem based on the results of comparison with NSGA-II and 
MOEA/D. In Fig. 11, points A and B are the solution with 
optimal makespan and optimal MEC in the PFs, respectively. 
Point C is an example of solutions with comprehensive con-
sideration of objectives. Points A, B, and C are with (1953, 
73.8247), (2330, 73.4287), and (2053, 73.6675), respec-
tively. Besides, the solution of point A is [1 2 3 2 1 2 1 1 2 2 
| 2 4 5 3 1 1 3 2 5 4], the solution of point B is [1 2 3 2 2 1 1 
1 2 1 | 1 3 2 5 4 2 1 5 3 4], and the solution of point C is [1 
2 3 2 1 1 2 2 1 2 | 3 2 5 4 1 3 2 5 4 1].

For solution B, it has the highest makespan and the lowest 
MEC. This is due to the fact that an appropriate schedul-
ing in the disassembly shop allows workstations at parallel 
reprocessing lines to avoid long-term idle when processing 
components. Besides, to gain an ideal energy consumption, 
components tend to be reassembled on a small number of 
AWs to avoid idle times, which obviously reduces the pro-
duction efficiency and leads to a higher makespan. For solu-
tion A, it has the lowest makespan and the highest MEC. 
This is mainly due to the fact that if a lower makespan is 

Fig. 10   Major components remanufacturing process/layout

Table 3   The comparison indexes values of each algorithm for case 
study

Indexes NSGA-II MOEA/D MOIWO

GD 2.01E−02 
(0.0092)

1.13E−01 
(0.0648)

1.98E−04 
(2.88E−05)

Δ 5.36E−01 
(0.1827)

3.94E−01 
(0.1850)

3.85E−01 (0.1137)

IGD 1.22E−02 
(0.0032)

3.18E−02 
(0.0069)

5.50E−03 (0.0064)

Fig. 11   PF comparison of MOEA/D, MOIWO, and NSGA-II in the 
case study
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preferable, components will be reassembled immediately 
once there exists a ready machine and the difference in pro-
cessing times required to reassemble components may cause 
some workstations to be on idle for a long time, which will 
lead to an additional energy consumption.

To further illustrate the relationship between idle powers 
of workstations and MEC, a sensitivity analysis is also con-
ducted. We take the case study as an experimental object and 
its data are set as the default group. Next, we just increase the 
idle powers of workstations by 10%, 20%, 50% and 75% in 
turn based on the default group, and then MOIWO algorithm 
is utilized again to solve the four newly generated cases. For 
each case, MOIWO will be executed ten times independently 
and finally Pareto solutions are obtained. The maximum 
MEC and minimum MEC are stored, as reported in Table 4. 
To be clearly show the experimental results, we calculate 
the proportion of idle power consumption in MEC and the 
outcome is visualized in Fig. 12. It can be seen from Table 4 
and Fig. 12 that the idle powers of workstations are relevant 
to MEC and they are approximately positively correlated. 
Though idle energy consumption takes a small part of MEC, 
the maximum MEC and minimum MEC will both increase 
when the idle powers of workstations become bigger.

Conclusions

In this article, we have studied an energy- and time-oriented 
scheduling problem of remanufacturing systems with paral-
lel disassembly workstations, parallel flow-shop-type repro-
cessing lines and parallel reassembly workstations. First, a 
multi-objective mathematical model with consideration of 
minimizing both energy consumption and makespan is for-
mulated. Second, an effective MOIWO algorithm includ-
ing the notions of the basic IWO, Pareto-optimal, Sigma 
method, and distance-based spatial dispersal, external 
Pareto archive is designed. Thirdly, the effectiveness of the 
MOIWO algorithm is examined with two well-accepted 
multi-objective algorithms: NSGA-II and MOEA/D against 
a numerical experiment. Finally, the established model and 
proposed algorithm are utilized again to address a case of 
EOL transmission devices, in which MOIWO performs bet-
ter than NSGA-II and MOEA/D. Future work directions can 
concentrate on: (1) considering the scheduling problems of 
remanufacturing systems with more detailed optimization 
objectives; (2) introducing some energy control strategies 
into this field for energy saving (Frigerio & Matta, 2015).

Table 4   Experiments for 
sensitivity analysis

Idle powers (kW) Default Default + 10% Default + 20% Default + 50% Default + 75%

Max MEC (kW·h) 73.8275 74.1518 74.4761 75.4490 76.2598
Min MEC (kW·h) 73.4316 73.7163 74.0009 74.8550 75.5668

Fig. 12   Proportion results of 
sensitivity analysis for 5 experi-
ments
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Appendix

See Tables 5, 6, 7, 8 and 9.
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