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Abstract

Machining feature recognition is a key step in computer-aided process planning to improve the level of design and manufac-
turing, production efficiency, and competitiveness. Although the traditional feature recognition method using a graph-based
approach has advantages in feature logic expression, the calculation process is inefficient. Deep learning is a new technol-
ogy that can automatically learn complex mapping relationships and high-level data features from a large amount of data.
Therefore, this classification technology has been successfully and widely used in various fields. This study examined a
three-dimensional convolutional neural network combined with a graph-based approach, taking advantage of deep learning
technology and traditional feature recognition methods. First, the convex and concave machining features of a part were
determined using an attributed adjacency graph. Then, the machining features were separated using the bounding box method
and voxelized. Subsequently, a stretching and zooming method was proposed to obtain the training data. After training, the
test and comparison results demonstrated the high accuracy rate of the proposed method and the improvement in recognition

efficiency. The proposed method could also identify convex features, which further improved the recognition range.

Keywords Deep learning - Feature recognition - STEP - Convolution neural network - CAPP

Introduction

The rapid progress of economic globalization and informa-
tion integration has intensified the competition among enter-
prises. Part manufacturers must now improve their modes
of production and technological levels as well as shorten
their product manufacturing cycle to enhance their compet-
itiveness. Computer-aided process planning (CAPP) (Krot
& Czajka, 2018) bridges the gap between computer-aided
design (CAD) and computer-aided manufacturing (CAM)
to improve the levels of design and manufacturing, produc-
tion efficiency, and competitiveness. The Standard for the
Exchange of Product (STEP) model realizes a complete prod-
uct model data describing the whole product cycle, including
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design, manufacturing, utilization, maintenance, and scrap.
It covers aspects such as geometry, topology information,
behavior tolerance, surface roughness, material character-
istics, process characteristics, design characteristics, and
assembly characteristics (ISO 10303-1,1994). However, part
modeling by CAD requires pure geometric and topologi-
cal information in steps, which cannot be directly applied
to CAPP-CAM systems. Therefore, it is necessary to start
from the CAD model of the part and transform the geo-
metric and topological information for the machining of
meaningful shapes, that is, machining features; in other
words, machining feature recognition is essential. A CAPP
system functions as s an interpreter between CAM and
CAD systems, regardless of whether the CAD output is
pure geometric information or design features generated
by design feature modeling technology. Feature recognition
technology has received increasing attention in academic
and industrial circles. New feature recognition methods are
constantly emerging, while the scope of feature recogni-
tion has also expanded from the initial machining features
to detection features, analysis features, etc. After years of
development, common part-machining-feature recognition
methods include graph-based, logic rules and expert systems,
cell-based decomposition, convex hull volumetric decompo-
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sition, hint-based, and syntactic pattern approaches. The next
section reviews these methods.

Graph-based approach

Graph-based recognition is one of the most studied methods.
This approach was proposed by Joshi in 1987, to implement
feature recognition based on the geometric and topological
information of parts (Joshi & Chang, 1988; Malyshev, Slyad-
nev, & Turlapov, 2017; Weise, Benkhardt, & Mostaghim,
2018). It converts a boundary representation (B-rep) model
used in entity modelling into an attributed adjacency graph
composed of an arc and a node. It uses an attributed adja-
cency graph (AAG) to represent the boundary model (Joshi
& Chang, 1988). In the AAG, the node corresponds to the
face of the model, while the arc represents the connection
between the faces. An attribute is attached to the arc; if the
attribute value on the arc is 0, then a concave connection
exists between the two adjacent faces. If the attribute value
is 1, then there is a convex connection. This method mainly
defines an AAG feature in advance and then searches the
AAG to match the subgraph. If the corresponding subgraph is
found, then it is identified as the feature. With this method, it
is easy to add new feature types. The method also can be com-
bined with feature design and supports feature recognition in
various applications, such as machining, design, and analy-
sis (Hashemi, Dowlatshahi, & Nezamabadi-pour, 2020). This
approach recognizes independent features very well, and has
a high accuracy. However, it is difficult to apply to a negative
polyhedron. Venuvinod et al. (Venuvinod & Wong, 1994)
made improvements to the approach and proposed a mid-
dle axle-attributed adjacency graph (MAAM) for assigning
attributes that more precisely describe adjacency relations.
For example, if a plane and a curved face form a convex angle
(270°), the attribute is 2°. Subsequently, MAAM (Yuen &
Venuvinod, 1999) was considered as a ‘less expert system
and more algorithmic’ method for form pattern recognition.
However, this approach cannot solve a feature-intersection
problem.

Because of the high computational requirements of pat-
tern matching, it is difficult to build a feature template library.
Only polyhedral parts can be processed, while interactive fea-
tures cannot (Hashemi et al., 2020). Moreover, the method of
establishing the attribute adjacency matrix through the AAG
to match the machining feature subgraph is a nondetermin-
istic polynomial hard (NP-hard) computer problem, which
makes the method time-consuming and inefficient (Rai &
Vairaktarakis, 2019).
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Convolutional neural network (CNN) recognition
approach

With the rapid development of deep learning technology, the
idea of solving the complex and varying features of man-
ufactured parts using machine learning has been proposed.
Shi, Zhang, Baek, De Backer and Harik (2018) developed a
novel feature representation scheme wherein the heat kernel
signature (HKS), which is a concise and efficient pointwise
shape descriptor, was input into a 2D CNN. The recogni-
tion results for interacting features indicated that the HKS
feature representation scheme is effective in resolving the
boundary loss caused by feature interactions. Zhang, Yang,
Zhang and Zhu (2018) proposed FeatureNet, which showed
that a 3D CNN could effectively be used to classify the voxel
data of features. The watershed method was used to real-
ize feature decomposition; however, there was no definite
result for convex features. Zhou, Yang, Zhang, Li and Xiao
(2019) and Ghadai, Balu, Sarkar and Krishnamurthy (2018)
developed a method of recognizing special-shaped machin-
ing features, each of which is represented using multiple
drawing views that contain rich information for differenti-
ating each of these features. With these views as a training
set, a deep residual network (ResNet) is trained successfully
for feature recognition, recognizing manufacturing features
from low-level geometric data such as voxels with very high
accuracy. An approach and data structure for the automatic
recognition of machining features using CNN was proposed
by Ma, Zhang and Luo (2018), and a sample library for learn-
ing 3D point cloud data was constructed through CAD model
transformation and feature sampling. The developed CNN
recognition system could recognize 24 types of machined
features using sample training and recognition experiments,
and the recognition accuracy rate was higher than 95%. Cao,
Robinson, Hua, Boussuge, Colligan and Pan (2019) investi-
gated the application of deep learning methods to machining
feature recognition in CAD models and presented a concise
and informative graph representation for 3D CAD models.
Experiments were also performed to evaluate the effective-
ness of graph-based deep learning for interacting feature
recognition. Shi, Qi, Qin, Scott and Jiang (2020) established a
deep learning framework based on a multiple sectional view
(MSV) representation named MsvNet for feature recogni-
tion. In MsvNet, the MSVs of a 3D model are collected as
the input of the deep network, and the information obtained
from different views is combined using the neural network
for recognition.

In the design of parts, the influence of the mechanical anal-
ysis, structural analysis, and part processing modes should be
considered, which increases the complexity of the structural
form of the parts (Shi et al., 2020). It is difficult to establish
a complex reflection of the geometry and part machining
features. Because of the limited amount of known geomet-
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ric information, calculations must be repeated to obtain more
information. As a self-learning technology, deep learning can
establish complex mapping relationships and high-level data
features from a large amount of data. Therefore, classifica-
tion models based on deep learning can effectively solve the
abovementioned problems and improve the accuracy of part
feature recognition.

The contributions of this study are shown in terms of the
following. (1) To distinguish the convex and concave machin-
ing features of a part from the 3D model, the proposed method
for finding the minimum subgraph in an AAG was studied
to determine machining features. (2) The machining features
were separated using the bounding box method. The remain-
der of this paper is organized as follows. Section 2 proposes
a feature recognition method based on a three-dimensional
(3D) CNN and introduces the related progress. Section 3
describes the determination of the machining feature surface
of a part, and the machining features of convex and concave
bodies are split in the part using an AAG and a bounding box.
Section 4 introduces the part voxelization method and shows
how training data are obtained using a method for drawing
and scaling the part feature data. Section 5 describes how
a 3D CNN can be used to recognize features, and how the
effectiveness of the feature recognition method is verified
using real parts. Section 6 presents the conclusions.

CNN
Related work

Deep learning is a method of machine learning based on
the representation of data, which can simulate the neural
structure of the human brain. The concept of deep learning
comes from research on artificial neural networks. An arti-
ficial neural network (ANN) abstracts the neural network of
the human brain from the perspective of information process-
ing, establishes a simple model, and forms different networks
according to different connection modes, which is referred to
as neural networks. Therefore, deep learning, also known as
deep neural networks, is developed from the previous ANN
model of artificial neural networks. As a deep learning appli-
cation technology, CNNs can automatically extract object
features, eliminating manual feature extraction steps (Mal-
han, Kabir, Shah, & Gupta, 2019). CNNs are a type of neural
network that is used for processing data with similar mesh
structures. Their main feature is the use of convolution oper-
ators. A large number of local features can be extracted and
mapped with interest features. Thus, they demonstrate excel-
lent performance in many application fields (Zhang, Yang,
Zhang, & Zhu, 2016). The applications of CNNs extend
from 2 to 3D models. They have been widely used in object
detection and vision research with 3D object models (Gong,

Zhong, Yu, Hu, & Li, 2019). A 3D model is usually expressed
by an irregular polygon mesh or a point cloud, and the repre-
sentation rules are more complex than those of a 2D model.
Every pixel in a 2D image is represented by a position coor-
dinate and color value. It is difficult for the polygon mesh or
point cloud to describe the internal features. Thus, only the
external shape can be expressed.

A voxel (Zhao, Zhang, Zhu, You, Kuang, & Sun, 2019)
is the smallest unit of digital data in 3D space segmentation.
Wu, Song, Khosla, Yu, Zhang and Tang (2019) proposed a 3D
ShapeNet. Through a simple five-layer convolution network,
they input 30° resolution voxel data, with 150,000 3D models
divided into 660 categories. Although 3D ShapeNet has a
simple structure and low accuracy, many researchers have
begun to pay attention to it.

Since then, Maturana and Scherer (2015) used Voxnet to
analyze the binary voxel mesh. In contrast to 3D ShapeNet,
VoxNet can process different 3D data, including polygon
mesh data, depth maps, RGB-D, and point clouds. However,
when the resolution of the processed data is improved, the
computational overhead will increase, and the low-resolution
model recognition and classification accuracy is not very
high. However, more importantly, these studies fully proved
that CNNs can extract the 3D structural features of an object
just as they can process 2D data, which further expands the
application scope of CNNs. Based on this, in subsequent
research, CNN learning was applied to more forms of 3D
data.

3DCNN

CNNs are the first successful deep learning algorithms
to train multilayer network structures, which are widely
employed to solve the problem of learning and extracting
deep features from image data. Their basic concept involves
adopting the local receptive field of an image as the input of
the network, transmitting the information to different layers,
and obtaining the significant features of invariance through
a digital filter for translation, rotation, and scale transforma-
tion. Weight sharing and pooling can significantly reduce the
number of model parameters; therefore, a 2D CNN method
for extracting deep image features can be extended to become
a 3D method, which can be used to extract effective 3D data
features. Figure 1 shows a CNN structure consisting of the
input, four convolutional layers, two fully connected layers,
and the output. The convolution and pooling layers are com-
bined to extract a large number of features layer-by-layer, and
the classification is completed in the fully connected layer.
The 2D CNN performs a 2D convolution operation on an
image and outputs a 2D image. The 3D CNN performs 3D
convolution on 3D data and outputs 3D data. 3D convolution
is the stacking multiple consecutive frames to form a cube,
and then using the 3D convolution kernel in the cube. As
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Fig. 2 Diagram of 3D convolution

shown in Fig. 2, H, W, and L represent the 3D height, width,
and length, respectively. The size of the convolution core is
kxkxd(d<L).

Here, x! € RH WL’ represents the input layer of the
CNN, and (il, itk ) represents the i’ th row, j’ th column,
and k' th layer in layer I. The ranges of these values are
0<i'<H. 0< jl < W and0 <k < Ll,respectively.
In addition, y is a short description of the convolution result
of layer I as x™*!, that is, y = x/*! € RHXW!xL!

In the convolutional layer, the /th layer is convoluted with
the self-learning convolutional layer k; ; r. The convolution
result is generated in the form of a characteristic graph y of
this layer by the activation function g(-).

H w L
— . ! .
y= g(E i—o E =0 L—k=0 Kijk® Xt i ¥ bz,J,k),

ey

where ® represents the convolution operation, b; j x rep-
resents the bias, and the convolution kernel k; j x can be
convoluted with one or more feature graphs of the previous
layer.

le+2XP1—K1+
A

Fmpy = 1, (2

where Fmy is the size of the layer [ + 1 feature map, Fm; is
the size of the layer [ feature map, K; is the size of the layer
[ convolution core, A is the step size of the convolution-core
movement, and P; is the number of columns with zero values
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for the edge filling (padding) of the previous feature map in
the convolution operation.

Softmax is widely used in machine learning and deep
learning, especially in dealing with multiclassification prob-
lems. The softmax function performs numerical processing
on the final output of the classifier and presents it in the form
of relative probability. The softmax function is defined as
follows:

S; = CGXPA, 3)
5 exp()
=

where v is the output unit of the classifier, and S; is the ratio
of the guidance of the classifier output elements and the sum
of the indices of all elements.

By using the cross-entropy function as a classification
objective function, the softmax loss function is defined as
follows:

1 n
f === (pilogs; + (1 = pplog(l = ), “)

i=1

where n is the number of training set samples and p; is the
label distribution. After the objective function is obtained,
the parameter weight is optimized using an error back-
propagation algorithm.

Machining feature splitting
Feature splitting method

The 3D geometric information in STEP AP203 includes
the normal vector of the vertex, the edge co-edge surface
plane, and the edge. According to the information in the
STEP file, the topological relationship between the machin-
ing features is obtained. First, all geometric models of the part
are obtained. Then, the faces are represented as nodes, and
the faces with intersecting edges are connected by straight
lines (according to the concavity and convexity of edges).
The connection mode between nodes is determined, and the
AAG is obtained (Maturana & Scherer, 2015). The mini-
mum subgraph is interpreted as an indicator of the existence
of potential features in element construction. The minimum
subgraph is generated by removing the convex connection
while keeping the concave connection. These minimal sub-
graphs are the machining feature surfaces. Figure 3 shows a
3D model that includes the machining features of the holes,
grooves, and columns. Figure 4 shows an AAG of the 3D part
model, where he solid lines represent the convex edges, while
the dotted lines represent the concave edges. The minimum
subgraph can be obtained from the concavity or convexity
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Fig.3 3D part

Fig.4 AAG of part

of the edge. Figure 5 shows the separation of the machining
features, which are the machining features of the holes and
grooves in the part.

Bounding box of machining features

The minimum subgraph of the AAG is the only machining
feature surface of the part. The question then becomes how
to create feature entities for the part without generating new
machining features during part substantiation. In this study,
the bounding box method was adopted. The basic idea of
this method is to replace complex geometric objects with
a geometry (i.e., a bounding box) that has a slightly larger

Fig.5 Minimum subgraph of
machining features

(a) Cylinder

(b) Cylinder

Fig. 6 Bounding box of a feature —

volume and simple characteristics, as shown in Fig. 6. The
axis-aligned bounding box (AABB) was the first bounding
box used. It is defined as the smallest hexahedron containing
the object with its edges parallel to the axis. Therefore, only
six scalars are needed to describe an AABB.

In this study, the feature surface of a part is judged by mini-
mum subgraph of AAG. Then, the processing feature surface
of the part is bounding-boxized. bounding-boxization refers
to the intersection of the six bounding box planes of the min-
imal subgraph and the processing features of the part. First,
judging the normal direction of the feature surface. If the
normal direction of the part diverges, the feature is a convex
body. Using the bounding box of the feature surface and the
feature surface to intersect and materialize the feature sur-
face. If the normal direction of the feature surface converges,
it means that the feature is a concave body. By extending
the non-intersecting edge of the feature surface, the feature
surface intersects the 1.1-fold bounding box, and the part
containing the smallest subgraph of the processing feature is
the feature entity of the part split. The split process is shown
in Fig. 7. Figure 8 is the processing feature entity of the part
split out in Fig. 3.

Data preparation

Database creation

There are many types of machining features because of the
various functions and complex structures of parts. Thus, it is

(c) Steps

(d) Hole

(e) Groove
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Judge the normal direction of all
feature surfaces in the minimum
subgraph

hether the norma
direction diverges

h 4

The feature is a convex body,
materialize the feature surface

The feature is concave, extend non
intersecting edge of feature surface,
intersect with Bounding box

Get the minimum subgraph part

v

Feature separating complete

v
( End )

Fig.7 Logic diagram of part separation

v

difficult to systematically classify the parts. There are cur-
rently few methods to classify the machining features of
parts. To facilitate research on processing part-feature recog-
nition methods, 14 types of common machining features are
listed in Table 1, including convex and concave features, and
the names and 3D models of the parts. The proposed feature
recognition method can recognize any type of feature and

Table 1 Some features of common parts

J0==

(a) Cylinder (b) Cylinder (c) Steps (d) Hole

(e) Groove

Fig. 8 Machining features of separated parts

only needs to establish the corresponding feature training
set.

The machining features are separated in the part model,
and the feature surface is materialized in the bounding box.
For a concave feature surface, the split features will be fixed
on the bounding box of the part, the position of the feature
surface is fixed relative to the box, and the length and width of
the box may be different. The split convex features have the
same shape, but the size of the faces may be different. The
training of a 3D CNN is greatly influenced by the amount
of training data. A large amount of data can make the 3D
CNN converge within a period of short time. To obtain suf-
ficient data, the STEP file is first transformed into a standard
triangle language (STL) file. An STL file can describe the
surface geometry of 3D objects and realize the representa-
tion of a logical model using a triangle mesh. Then, triangle
meshes of the feature model with different scales [0.1-10]
along the Z-direction are randomly selected, and 1000 dif-
ferent models are generated by scaling or stretching each

Feature Nonthrough Square cube Cylinder Groove Circular groove  Ring Keyway
hole
Type Concave Convex Convex Concave Concave Concave Concave
Class 1 2 3 5 6 7
3D models — o
T | 5
} L - / KR
L — 7
—— L £z
Feature Four-sided Five-sided Through hole Straight groove  Four-sided Decahedron Three-facet hole
non-through non-through through hole
hole hole
Type Concave Concave Concave Concave Concave Convex Concave
Class 12
3D models

8 9 10 11
A@ ﬁ @ *J-j L

13 14
= ‘ @
L h .
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Table 2 Some training datasets of machining features of some parts

Feature STEP model Voxel model
[ —
Nonthrough T
hole
K S

Square cube

Cylinder /:— |
L.
\
Groove
oL
Circular
groove

1804

w
w
i
L)
-

machining feature. In this way, the feature models of parts
of different sizes and the same part of the machining fea-
ture are obtained. Some features are listed in Table 2. This
feature-scaling method can quickly and efficiently yield a
large amount of training data.

Voxelization

Based on the expression of the plane information, the 3D
information carrier adds depth information to the spatial
information, which is unique in the space. This increases
the 3D information. Voxelization transforms the geometric
representation of the model into a voxel representation clos-
est to the model, and generates voxel datasets. Therefore, it
is necessary to transform the 3D geometric model of a part
into voxel data via voxelization. The separated features are
expressed as voxel data, and subsequently used as input data
for the 3D CNN method.

A larger voxel resolution for a part results in a greater
amount of details for the voxel data contained in the model,
which induces the 3D CNN to learn the machining features
contained in the voxel data. However, this will also cause
greater difficulties in training. Therefore, a voxel resolution
of 1283 was selected. The models of some parts after the
machining feature voxelization are given in Table 2.

To reduce the amount of model training calculations, data
enhancement was included in the voxelization. New model
data was generated after the model data was rotated around
the X-, Y-, or Z-axis, as shown in Table 3.

Experiments
Experimental introduction

A 3D CNN was used to train the machining feature data of
the parts to realize machining feature recognition. The dataset
contained voxelated data splitinto three subsets: 84,000 train-
ing datasets, 28,000 validation datasets, and 28,000 testing
datasets. The network structural and training parameters used
in the experiment are listed in Table 4.

Training process and analysis of results

The stochastic gradient descent (SGD) optimizer and root
mean square prop (RMSProp) algorithm were used. The
RMSProp algorithm was used to calculate the differential
squared weighted average for the gradient. The advantages of
this method include eliminating the swing amplitude direc-
tion and correcting the swing amplitude so that the swing
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Table 3 Implementing results of some data enhancements

Table 4 Network structural parameters and training hyperparameters

Structure Layer (type) Output shape
Convolution Con3d_1 1,64,64,32
Con3d_2 1,64,64,32
Con3d_3 1,32,32,32
Con3d_4 1,32,32,64
Con3d_5 1,16,16,64
Fully connected dense 124
dense 124
dense 14

amplitude of each dimension was small (Ning, Shi, Cai, Xu,
& Zhang, 2020). The activation function used the rectified
linear unit function, and the initial learning rate was set as
0.001.

Training with the SGD optimizer ended after 37 epochs,
which took 2 h. An 19 graphics processor, GeForce 2080Ti
graphic card (11 GB), and a 1.2-TB hard disk were required.
As shown in Fig. 8, the loss value of the network decreased
with further iterations, and the classification accuracy of the
network improved. The training and validation accuracies of
the learning model were 93.57% and 92.89%, respectively.
The accuracy of the test dataset obtained using the learned
model was 90.73%. Training with the RMSProp optimizer
ended after 33 epochs. As shown in Fig. 9, the loss value of

@ Springer

the network decreased with further iterations, and the clas-
sification accuracy of the network improved. The learned
model achieved training and validation accuracies of 98.62%
and 98.51%, respectively. The accuracy of the test dataset
obtained using the learned model was 95.85%.

Table 5 summarizes the voxel data of 14 randomly features
from the testing data used as the input of the learned model of
the RMSProp optimizer. It also presents the predicted labels
as the predicted features of the learned model and the true
labels as the actual features. The probability of the extracted
feature information was calculated using the classification
probability classifier output by the softmax function.

From Table 5, it can be concluded that the accuracy of the
test results is high, particularly for the features of the square
cube and cylinder, which have significantly different shapes.
Therefore, the proposed 3D CNN method has a high degree
of shape recognition.

Figure 10 is the confusion matrix of 14 features in the
test dataset classification using the learned model. It can be
concluded from Fig. 10 that the 3D CNN had low accu-
racy in the classification of circular grooves (class 5) and
straight grooves (class 11). The shapes of these two features
are similar, and the voxel data weakens the difference when
representing these two shapes. Therefore, improving voxel
resolution can solve this problem.
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Fig.9 Training process using 1.0+
the SGD optimizer 094

Train data
Val data

Train data

1 /
08 Val data

0.7 4
064/

Loss

0.5+

Accuracy

0.4
0.34
0.2

01 : : - - : - )
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch

(a) Convergence of the accuracy function and (b) loss function

Table 5 Recognition and classification for 3D models

Predicted label Nonthrough Square cube Cylinder Groove Circular groove  Ring Keyway
hole

True label Nonthrough Square cube Cylinder Groove Circular groove  Ring Keyway
hole

Probability 0.9523 0.9811 0.9714 0.9421 0.9511 0.9639 0.9514

3D models

Predicted label ~ Four-sided Five-sided Through hole Straight groove  Four-sided Octahedron  three-facet hole
nonthrough nonthrough through hole
hole hole
True label Four-sided Five-sided Through hole Straight groove  Four-sided Octahedron  three-facet hole
nonthrough nonthrough through hole
hole hole
Probability 0.9611 0.9423 0.9438 0.9558 0.9678 0.9614 0.9637
Fig. 10 Training process using 1.0+ 24 —
the RMSProp optimizer 0ol “ \'/":'3,‘:‘““
- Train data 204 ncala
1 Val data
> 074, ig)
£ 059 2
3 os] 512
0.4 0.8+
03+
04-
0.2+
0.1 : e 00 : : ; ; ; : - .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch
(a) Convergence of the accuracy function and (b) loss function
Verification of results such as holes, through holes, and grooves, as listed in Table

6. These parts also included a transition surface, which was
Some parts of a linear electric cylinder were selected to test  identified and deleted in this study. For example, for part 1,
the proposed part machining feature recognition method. The ~ the number of actual machining features was 77; the number
part structure was complex and included machining features  of features split by this method was 77; the number of accu-
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Table 6 Machining feature identification of actual parts

Part 1

Part 2 Part 3

3D model

Characteristic quantity
Number of separation features

Number of correct convex
features identified

Number of correct concave
features identified

Accuracy

3D model

Characteristic quantity
Number of separation features

Number of correct convex
features identified

Number of correct concave
features identified

Accuracy

3D model

Characteristic quantity
Number of separation features

Number of correct features
identified

Accuracy

21

18

95.45%
Part 7

14
13
13

92.86%

14
14

8 5

5 8

92.86% 92.86%

Part 5 Part 6

44
43

42

97.73%
Part 9

20

19 38

19 38
95.00% 97.44%
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Fig. 11 Confusion matrix of 14 features in the test dataset classification
using the learned model

rate recognitions of the split features by the trained 3D CNN
was 77; and the feature recognition accuracy was 100%. The
identification accuracies for the rest of the parts are listed in
Table 6.

Fig. 12 3D model of a complex
part

Thus, it can be concluded that the proposed separation
method can realize accurate separation of the machining fea-
tures listed in Table 7. The recognition results include convex,
concave, and polyhedral features. Part processing starts from
a blank, and the shape features of the blank are often con-
vex. Therefore, the initial features of the part could not be
determined by the minimum subgraph of the AAG. However,
for the machining features of the parts, the proposed method
performed well for the split features, which was recognized
by the 3D CNN with high accuracy.

Figure 11 shows a 3D model of a complex part contain-
ing numerous holes and grooves. When the proposed method
was used to identify the features of this part, the number of
features identified was 34, the number of machining features
of the split part was 37, and the feature recognition accu-
racy was 89.48%. There were 38 features in this part model
(including one shape feature) among which three machining
features were untrained, making it impossible to recognize
them.

Comparison of feature recognition results

Compared with the method in Sebastian (2016), a new hybrid
feature recognition method based on the graph + rule is pro-
posed. As presented in Fig. 12, both parts (a) and (b) contain

(2)

Fig. 13 3D model from reference (Sebastian, 2016; Zhang et al., 2018)

®)
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21 machining features. The proposed method recognized
them in less than 1 s, and all the features were correctly iden-
tified. The method presented in Sebastian (2016) required 2 s
to identify parts (a) and (b), and features 2, 4, 11, and 15 in
part (a) were identified as stepped holes. (Sebastian, 2016)
defines as a series of coaxial holes, one inside another, such
as a counterbore. The features are defined by graphics and
rules that require complex definitions and take a long time to
find specific definitions. In Zhang et al. (2018), 19 machining
features of part (a) were separated by watershed method, and
18 machining features were identified correctly.

Conclusions

The feature recognition method using the graph-based
approach can only recognize polyhedral and concave fea-
tures. 3D CNNs have a strong ability to recognize large data
features and features of interest for classification. Thus, a 3D
CNN combined with a graph-based approach was proposed
to take advantage of deep learning technology and traditional
feature recognition methods to recognize the machining fea-
tures of parts.

To distinguish the convex and concave machining features
of a part from the 3D model, the proposed method for finding
the minimum subgraph in an AAG was studied to determine
machining features. Then, its separation was realized using
the bounding box concept.

Furthermore, a stretching and zooming method was pro-
posed to obtain the training data. Fourteen common machin-
ing features were designed, which realized stretching and
scaling in the Z-axis direction. The data enhancement method
was used to obtain the feature data to train the 3D CNN.

The test results demonstrate that the proposed method
accurately identified convex, concave, and polyhedral fea-
tures, and improved the recognition efficiency. The ability
to identify convex features further improved the recognition
range.
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