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Abstract
Real-time Action Recognition (ActRgn) of assembly workers can timely assist manufacturers in correcting human mistakes
and improving task performance. Yet, recognizing worker actions in assembly reliably is challenging because such actions
are complex and fine-grained, and workers are heterogeneous. This paper proposes to create an individualized system of
Convolutional Neural Networks (CNNs) for action recognition using human skeletal data. The system comprises six 1-
channel CNN classifiers that each is built with one unique posture-related feature vector extracted from the time series skeletal
data. Then, the six classifiers are adapted to any new worker through transfer learning and iterative boosting. After that, an
individualized fusion method named Weighted Average of Selected Classifiers (WASC) integrates the adapted classifiers as
an ActRgn system that outperforms its constituent classifiers. An algorithm of stream data analysis further differentiates the
actions for assembly from the background and corrects misclassifications based on the temporal relationship of the actions in
assembly. Compared to the CNN classifier directly built with the skeletal data, the proposed system improves the accuracy of
action recognition by 28%, reaching 94% accuracy on the tested group of new workers. The study also builds a foundation
for immediate extensions for adapting the ActRgn system to current workers performing new tasks and, then, to new workers
performing new tasks.

Keywords Convolutional neural network · Action recognition · Transfer learning · Iterative boosting · Classifier fusion ·
Smart manufacturing · Deep learning

Introduction

Assembly is a process of coupling multiple workpieces
together to produce a product of full functionality. It accounts
for 20% of total production cost and 50% of total production
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time, respectively. In the automotive industry, the direct labor
cost spent on assembly is ranged from 20 to 70% (ElMaraghy
and ElMaraghy 2016). Therefore, the efficiency and quality
of assembly are critical to manufacturers. The ability to rec-
ognize actions of assembly workers in real-time provides an
opportunity to timely correct human mistakes and facilitate
workers to operate effectively based on their particular needs
(Zhou et al. 2013; Wang et al. 2021). Production innova-
tions are occurring faster than ever. Manufacturing workers
thus need to frequently learn new methods and skills. While
vigorous efforts have been devoted to human action recogni-
tion (ActRgn) for various purposes (e.g., Pham et al. 2018;
Moniruzzaman et al. 2021), action recognition for manufac-
turing assembly is rather limited for a few reasons. Such
actions are complex, involve many fine motions, require
interactions with various tools and parts, and have between-
action similarity. Recognizing the detail of such actions in
high accuracy is challenging. The lack of publicly avail-
able datasets on worker actions in manufacturing assembly
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is another obstacle facing the manufacturing research com-
munity (Al-Amin et al. 2020b).

RGB image-based action recognition has some limita-
tions such as occlusion, luminosity, and the privacy concern
(Chen et al. 2017). Therefore, wearable sensors have been
predominantly used to recognize actions in manufacturing
(Stiefmeier et al. 2008; Tao et al. 2018; Kong et al. 2019). To
capture the movement of different body parts, a worker may
need to wear multiple wearable devices on the body. This can
cause discomfort and pressure to workers in some circum-
stances, negatively impacting their productivity. Some depth
sensors such as theMicrosoftKinect can extract the 3D skele-
tal data of humans from the depth images they capture, thus
being an alternative when RGB and wearable sensors are
limited for use. Skeletal data provide a lower-dimensional
representation of actions than other sensor data, which make
action recognition faster, computationally efficient, and bet-
ter in accommodating the real-time inference (Pham et al.
2018). The spatially distributed body joints of a worker indi-
cate the posture of the worker. The temporal dynamics of
the posture contain features of worker actions (Du et al.
2015). Various approaches were proposed to capture human
actions from3Dskeletal data, including hiddenMarkovmod-
els (Rude et al. 2018), dividing the posture into body parts
and encoding them into images(Khaire et al. 2018), using
the coordinates of body joints directly (Pham et al. 2018),
and extracting statistical features from skeletal data (Shen
et al. 2020). These methods nonetheless neglect some useful
information that can be extracted from skeletal data.

Following the success of Convolutional Neural Network
(CNN) in image analysis (Krizhevsky et al. 2012), skele-
tal data are presented as images and processed by ActRgn
CNNs (e.g., Al-Amin et al., 2019; Li et al., 2017; Kamel
et al., 2019). Compared toMultilayer Perceptrons (MLP) and
Recurrent Neural Networks (RNN), CNN can automatically
extract discriminative features of subtle, complex actions
from the spatial and temporal relations of body joints, which
can be obtained from the time series skeletal data (Al-Amin
et al. 2020b). Thus, CNN is an attractive candidate classifier
for skeletal data-based action recognition. Yet, challenges
are also identified from those pioneer studies. First, how to
translate the time series skeletal data into a set of images
that capture temporal and spatial cues for action recognition?
Second, how to address the negative impact of human het-
erogeneity on the ActRgn performance, including both the
within-subject and thebetween-subject variances.Third, how
to fuse multiple features or classifiers that can be developed
from the skeletal data to provide more reliable ActRgn per-
formance?Last but not the least, how to address the limitation
of CNN classifiers in analyzing the stream data in real-time?
Answers to these questions will advance the knowledge of
skeletal data-based human action recognition in manufactur-
ing assembly.

To address the above-discussed challenges, this paper pro-
poses an individualized system of skeletal data-based CNN
classifiers for recognizing worker actions in manufacturing
assembly. Efforts to create this system are the development
and integration of the following capabilities:

– System architecting that involves extracting feature
images from the time series skeletal data to build indepen-
dent, complementary constituent classifiers and fusing
them as an ActRgn system;

– A method to adapt ActRgn classifiers to individual
workers, which addresses the issues of between-subject
heterogeneity and within-subject variance;

– A fusion method named Weighted Average of Selected
Classifiers (WASC) which maximizes the ActRgn per-
formance at the system’s level for any individual worker;

– Adata analysis algorithm that improves theActRgn result
from analyzing untrimmed stream data.

The remainder of the paper is organized as the following.
The Literature section summarizes the related literature, fol-
lowed by an elaborated description of the proposed approach
to developing the ActRgn system in the Methodology sec-
tion. Then, an illustrative example and the assessment of the
proposedActRgn system are presented. The conclusion from
this study and future work are summarized at the end.

The literature

The prior work on image analysis using CNN, transfer learn-
ing, classifier fusion, and temporal coherence information
build the foundation for the proposed ActRgn system. Gaps
in the literature inspire the technical approach to creating the
system.

CNN is a feed forward neural network that works well in
image analysis. When using it for action recognition, spatial
features of the skeleton in actions are presented as images
and a CNN is trained to classify the images (Khaire et al.
2018). The skeleton optical spectra (Li et al. 2019) and the
graph convolution (Hou et al. 2018) were proposed for learn-
ing dynamic features of the skeleton in actions. Moreover,
to incorporate both the spatial and temporal information of
actions, a multi-task learning network for action recogni-
tion was also developed to jointly process images in parallel
(Ke et al. 2017). Long Short Term Memory (LSTM) is an
advanced version of recurrent neural networks, which mod-
els long-term dependencies with memory cells. It has been
applied to skeletal-based action recognition aswell (Han et al.
2018). The body joints in each frame are of unequal impor-
tance, and so frames in a sequence. Therefore, certainweights
are automatically assigned to dominant joints and frames
(Song et al. 2017; Liu et al. 2017). CNN and LSTM were
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Fig. 1 The approach to creating an individualized action recognition (ActRgn) system of CNN classifiers

also used simultaneously through the score fusion (Li et al.
2017; Nunez et al. 2018). In this approach, spatial domain
features and temporal domain features can be extracted and
fed to the CNN and the LSTM, respectively. If the input to
a CNN classifier captures the spatio-temporal features of the
skeleton, the CNN by itself can learn features of actions well.
This approach is simple, but not explored thoroughly in the
literature.

Knowledge transfer is critical for action recognition due
to the inevitable differences between the source and the target
population of workers (Cook et al. 2013). Zhao et al. (2011)
proposed a transfer learning algorithm named TransEMDT
that integrates the decision tree with the k-means cluster-
ing algorithm to achieve personalized activity recognition.
The use of transfer learning coupled with deep learning for
action recognition is still limited. Recently, Al-Amin et al.
(2020b) transferred an ActRgn CNN to new subjects through
fine-tuning the model with a small amount of data from new
subjects.While transfer learning is shown to work, rooms for
improvement are noticed.

Classicalmethods of classifier fusion such asmajority vot-
ing, Naive Bayes, Dempster-Shafer theory, average fusion,
and random forests usually treat classifiers equally. There-
fore, they overlook the strength and weaknesses of different
classifiers. To overcome this limitation, classifiers may be
assigned weights based on their abilities in a variety of
approaches. For instance, Ward et al. (2006) ranked classi-
fiers according to the highest rank, borda count, and logistic
regression. Hierarchical fusion is another approach (Banos
et al. 2013), and Guo et al. (2019) developed it based on the
entropy weight. Weighted linear opinion pools and weighted
logarithmic opinion pools were also implemented for the
classifier fusion (Guo et al. 2012). Weights for classifiers
are determined in various ways, including genetic algorithms
(Chernbumroong et al. 2015) and classifier performance
measurements such as the overall accuracy of classifiers
(Chung et al. 2019) and class-level recall values (Tsanousa

et al. 2019). However, strength and weaknesses of individual
classifiers are not consistent among workers.

The temporal information of objects in successive images
can help improve the object detection fromvideo data. Exam-
ples include the use of temporal and contextual information
from tubelets obtained from videos (Kang et al. 2018), the
propagation of deep feature maps from key frames to other
frames (Zhu et al. 2017b), and the flow-guided feature aggre-
gation that integrates features from nearby frames (Zhu et al.
2017a). Likewise, the temporal coherence information of
sequential actions in assembly can be used to improve the
ActRgn accuracy. This method has not been thoroughly
explored.

Methodology

The proposed approach to creating the ActRgn system is
illustrated in Fig. 1. First, Skeletal Feature Images (SFIs)
extracted from a group of existing workers are used to train
a set of CNN classifiers that each captures a unique aspect of
assembly actions. Then, these classifiers are refined with the
SFIs of a newworker to adapt to that worker through transfer
learning and iterative boosting. After that, the adapted clas-
sifiers are fused as a system for recognizing the actions of
the new worker. The stream data analysis algorithm corrects
possible mistakes that the ActRgn system made in analyzing
the stream data in real-time. The description of the symbols
used in this paper is presented in Table 1.

Data preparation

The study collects data from two mutually exclusive groups
of subjects. The first group is a sample of workers currently
assigned to perform the assembly operation of the study. The
second group is a sample of newworkers who will be joining
the assembly line to perform this operation. To capture the
within-subject variance in the operation, subjects are asked
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Table 1 Nomenclature

ActRgn: action recognition

CNN: convolutional neural network

CRT: the group of current workers

DNN: deep neural network

IB: iterative boosting

IL: incremental learning

LSTM: long short-term memory

NEW: the group of new workers

ReLU: rectified linear unit

RGB: red green blue

SDA: stream data analysis

SDI: skeletal data image

SFI: skeletal feature image

TC: temporal coherence

TL: transfer learning

WASC: weighted average of selected classifiers

Ai : angle feature vector in frame i

A′
i /A

′′
i : the first/second order derivatives of Ai

CNNm,n : the mth CNN attained from iteration n

CNN∗
m : the m

th CNN that achieves the best performance from the boosting process

Di : distance feature vector in frame i

D′
i /D

′′
i : the first/second order derivatives of Di

Ft : the number of filters

J : total number of tracked joints

K : total number of action classes

Kr /Pd/St : kernel size/padding size/stride size

L/L̃: no. of distances/angles calculated from J joints

SFIm,V : SFIs for evaluating CNNs in adaption process

SFIm,n : SFIs for boosting CNNs in iteration n

SFI fm,n : a subset of SFIm,n , which failed to be recognized by CNNs delivered from the last iteration

W : the span of the sliding window

[L(k),U (k)]: the CI estimation of p(k)
t

a1̃,i : the l̃
th angle feature in frame i

b j,i : 3D coordinates of joint j at frame i

d1,i : the l th distance feature in frame i

i : index of sequential frames

is /ie: the indices of the first/last frame of any SDI

Δi : the interval of frames for computing derivatives

j : index of tracked joints

to repeat the operation during the data collection. Each time
of operation by a subject is considered as one experiment.

Microsoft Kinect, an infrared light sensor, is used for col-
lecting data of individual workers in assembly operations at
a frequency of 30 frames per second. The Kinect outputs
the time series 3D coordinates of human body joints in a
Euclidean space. The number of joints tracked in this study
is J , and each joint has a unique index label, as Fig. 2 illus-

trates. Let i be the index of frames captured sequentially
over time and j be the index of body joints. In any frame i ,
b j,i = (x j,i , y j,i , z j,i ) represents the 3D coordinates of joint
j .
The assembly operation involves K classes of sequential

actions, indexed by k. Therefore, the time series of body joint
coordinates collected from each experiment are trimmed into
K sequential segments with each pertaining to one and only
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Table 1 continued

k: index of action class

l/l̃: index of distance/angle features

m: index of the classifiers

n: index of iterations for boosting

p(k)
t : the kth highest classification probability

pm,k : the weighted probability

pm,k : prediction score of the mth classifier on action class k

rm,k :the recall value of CNN∗
m for action class k

wm,k : the weight for pm,k

ŷ: the predicted action class

ŷt : classification of SDIt
ỹt : alternative classification of SDIt
Trm,n : dataset for boosting CNNm in iteration n

δ: overlap ratio between two successive SDIs

αm,n : classification accuracy of CNNm on SFIm,V

ΓT /ΓV : training/validation dataset for the adaptation

γ0/γn : dataset used for TL/IB

ξ : binary filter

Fig. 2 Tracked body joints in this study

one action class. Then, a sliding window in a length of W
frames is moving along the timeline at the stride size of
δW frames to extract skeletal data pieces, named Skeletal
Data Images (SDIs), from each time series segment. SDIs
extracted from a segment are labeled with the action class of
the segment. SDIs are in the size of W × J × 3 since each
contains the 3D coordinates of the J joints over W succes-
sive frames. The selection of the window size W is crucial.
SDIs with a very short time span lack sufficient information
to capture features of the performed action. Thosewith a very
long time span may contain data of more than one action. δ is
chosen to be a positive decimal so that two successive SDIs

extracted from a segment overlap with each other to capture
their temporal connectivity.

Feature extraction from SDIs

This study calculates two categories of geometric features
to capture the posture of workers in assembly. Derivatives
of the features are further calculated to capture the temporal
dynamics of the posture. Normalization is taken in calculat-
ing the features to make them invariant to the variations of
the location and view of the Kinect in data collection and to
the varied body size of subjects.

Geometric features of posture

Given J joints, L = (J
2

)

joint-to-joint distances can be calcu-
lated, indexed by l. The distance features recorded over time
form a time series of feature vector,

Di = [

d1,i , . . . , dl,i , . . . , dL,i
]

, ∀i, (1)

and the l th distance, dl,i , is calculated as

dl,i = ‖b j,i − b j ′,i‖2/d̄i , (2)

where j = �l/J� and j ′ = l − �l/J	J . d̄i in Eq. (2) is the
sum of three distances: the left shoulder (#11) to the right
shoulder (#6), the spine shoulder (#3) to the spine mid (#4),
and the spine mid to the spine base (#5),

d̄i = ‖b11,i − b6,i‖2 + ‖b3,i − b4,i‖2 + ‖b4,i − b5,i‖2, (3)
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which is used for normalizing the distance features.
Angle features are also calculated to supplement distance

features. With J body joints, L̃ = J
(J−1

2

)

angle features can
be calculated, indexed by l̃. The angle features recorded over
time form a time series of feature vector,

Ai =
[

a1,i , . . . , al̃,i , . . . , aL̃,i

]

, ∀i, (4)

and the l̃ th angle, al̃,i , is calculated as

al̃,i = arccos
(b j ′,i − b j,i ) · (b j ′′,i − b j,i )

|b j ′,i − b j,i‖2 · |b j ′′,i − b j,i‖2 , (5)

where b j,i , b j ′,i , and b j ′′,i are three different body joints in
frame i . ( j, j ′, j ′′) → l̃ is a bijection.

Temporal dynamics of the geometric features

The study calculates the first order and second-order deriva-
tives of the distance features, respectively, to capture the
temporal dynamics (linear speed and acceleration) of any
subject’s posture in the operation. The speed of distance
change is approximated by the first-order difference equa-
tions:

D′
i =

⎧

⎪

⎨

⎪

⎩

Di+Δi − Di

Δi
, if is ≤ i ≤ ie − Δi

Di − Di−Δi

Δi
, if ie − Δi < i ≤ ie.

(6)

where is and ie(= is + W − 1) are the indices of the first
frame and the last frame of any SDI, and Δi is the interval
of frames for calculating changes in distance features.

The acceleration of distance change is approximated by
the second-order difference equations:

D′′
i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Di − 2Di+Δi + Di+2Δi

Δi2
, if is ≤ i < is + Δi

Di+Δi − 2Di + Di−Δi

Δi2
, if is + Δi ≤ i ≤ ie − Δi

Di − 2Di−Δi + Di−2Δi

Δi2
, if ie − Δi < i ≤ ie.

(7)

Angle related dynamic feature vectors, A′
i and A′′

i , are
similarly calculated. Therefore, six Skeletal Feature Images
(SFIs) are calculated from each SDI, and each SFI is one
feature vector that spans W frames. The width of SFIs is
equal to W and the height, denoted by H , is the dimension
of the feature vector. H is equal to L for the distance related
feature vectors and L̃ for the angle related feature vectors.

Fig. 3 The architecture of the proposed CNNs

Training CNNs for action recognition

This study trains six CNNs for recognizing worker actions in
assembly.They respectively readoneof the sixSFIs extracted
from a SDI to predict the action class of the SDI. The six
CNNs share the same architecture illustrated in Fig. 3, which
is composed of three blocks in sequence. Each of the first two
blocks contains two convolutional layers followed by a max-
pooling layer. The kernel size (Kr), stride size (St), padding
size (Pd), and the number of filters (Ft) for each convolution
and pooling operation are displayed in Fig. 3. A feature map
is generated using the ReLU function from each of these
layers. The last feature map generated by the second block
is flattened and densified into a 1 × K score vector in the
third block, which is converted to a probabilistic prediction
of the action class for the SDI using the softmax function. To
prevent over-fitting, the dropout technique is applied to drop
50% neurons.

The six SFIs extracted from each SDI, indexed by m,
are respectively entered into the six CNNs to generate six
probabilistic predictions of the action class for the SDI. Let
{pm,k |k = 1, . . . , K } be the probabilistic prediction made
by the CNN classifier that analyzes the mth SFI, where pm,k

is the probability that the SDI would be action class k.

Adapting the CNNs to individual newworkers

Whennewworkers join the assembly line, the trainedActRgn
CNN classifiers need to adapt to each of the new workers
using transfer learning followed by iterative boosting. The
approach is summarized inAlgorithm 1 and discussed below.

For each new worker, the study collects a training dataset
ΓT for adapting the classifiers to the worker and a validation
dataset ΓV for evaluating the CNNs during the adaption pro-
cess. The training dataset is split into a number of smaller
mutually exclusive and collectively exhaustive subsets that
each contains data from a few experiments:

ΓT =
N

⋃

n=0

γn, (8)

where γ0 is used for transfer learning and γn is for the nth
iteration of the boosting process, for n = 1, . . . , N .
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Algorithm 1 Adapting ActRgn CNN Classifiers to a New
Worker
1: // Notations
2: m: index of the six classifiers, CNNm ∈{CNND , CNND′ , CNND′′ ,

CNNA, CNNA′ , CNNA′′};
3: n: index of iterations for boosting, n = 1, . . . , N ;
4: {CNNm,n}: CNNs obtained from iteration n;
5: {SFIm,V }: SFIs for evaluating CNNs in adaption process;
6: {SFIm,n}: SFIs for boosting CNNs in iteration n;

7: {SFI fm,n}: a subset of {SFIm,n}, which failed to be recognized by
CNNs delivered from the last iteration;

8: Trm,n : training dataset for boosting CNNm in iteration n;
9: αm,n : classification accuracy of CNNm on SFIm,V .

10: // Initialization Through Transfer Learning
11: {CNNm,0}: CNNs obtained through transfer learning;
12: Trm,0(={SFIm,0}): initial training dataset for boosting;
13: αm,0: the accuracy of CNNm,0 on {SFIm,V }.

14: // Iterative Boosting
15: for n = 1, . . . , N do
16: for any m do
17: Evaluate CNNm,n−1 on {SFIm,n} and obtain {SFI fm,n};

18: update training dataset: {SFI fm,n}∪Trm,n−1 → Trm,n .
19: Refine CNNm,n−1 using Trm,n ;
20: update the classifier: CNNm,n−1 → CNNm,n ;
21: evaluate CNNm,n on {SFIm,V } to find αm,n .
22: end for
23: end for

24: // Model Selection
25: for any m do
26: find the best model CNNm,n∗ → CNN∗

m where n∗ =
argmaxn{αm,n}.

27: end for

Initial adaption by transferring learning

Transfer learning can adapt CNN classifiers a new worker
who performs the same actions. The experimental study of
this paper found that low- and medium-level features of
assembly actions are well captured by the first two blocks
of the ActRgn CNNs in Fig. 3, and distinct features of het-
erogeneous workers are mainly captured by the third block.
Therefore, during transfer learning, the first two blocks of
any CNNm are frozen and the third block is retrained using
the SFIs extracted from the training dataset γ0, denoted as
{SFIm,0}. After the initial adaption through transfer learning,
the classifiers become {CNNm,0}, which are evaluated using
the SFIs extracted from the validation datasetΓV , designated
by {SFIm,V }, to find their classification accuracy {αm,0}.
A study by Al-Amin et al. (2020b) showed that an initial
adaption is not sufficient for achieving a satisfactory result
because of the within-subject variance.

Improving accuracy through iterative boosting

The performance of the initially adapted CNNs from trans-
fer learning, {CNNm,0}, can be further boosted iteratively.
Let {SFIm,1} be the SFIs extracted from the training dataset

γ1 for the 1st iteration of boosting. {CNNm,0} are tested on
{SFIm,1}, and misclassified SFIs are denoted by {SFI fm,1}.
The training dataset for the 1st iteration of boosting, Trm,1,
is the union of {SFI fm,1} and the initial training dataset
Trm,0={SFIm,0} that has been used for transfer learning.
{CNNm,0} are refinedwith the updated training dataset Trm,1

to obtain the updated classifiers {CNNm,1}. Evaluated on
{SFIm,V }, the performance of the boosted classifiers from
this iteration, {αm,1}, is determined. This approach aims to
boost the performance of classifiers by letting them learn
from their weakness. This process continues for sufficient
number of iterations to assure that a satisfied performance
of the classifiers has been attained. The classifiers achieving
the best performance from the boosting process are chosen
as the final constituent classifiers of the ActRgn system for
the worker, denoted by {CNN∗

m}. That is,

CNN∗
m = CNNm,n∗ , where n∗ = argmaxn{αm,n}. (9)

The fusion of classifiers

The method to fuse the results of the six already adapted
CNN classifiers is critical because it directly impacts the
performance of the ActRgn system. This study proposes a
fusion method, named Weighted Average of Selected Clas-
sifiers (WASC).

For a SDI, CNN∗
m classifies it as action class k with the

probability pm,k , for any class k. The six classifiers have
unequal abilities to predict an action. Therefore, an individ-
ualized weight matrix is developed, where the element wm,k

is the weight for pm,k . Let rm,k be the recall value of CNN∗
m

in recognizing action class k of the worker, obtained from
evaluating {SFIm,V }. rm,k measures the ability of CNN∗

m
in recognizing action class k, which varies across the six
classifiers. First, the study normalizes rm,k’s across the six
classifiers to determine the weight wm,k :

wm,k = rm,k/
∑

m

rm,k, ∀k. (10)

Then, the weighted probability of classification by CNN∗
m

is:

pm,k = wm,k · pm,k, ∀k. (11)

For any action class k, a binary filter ξ is defined below to
select classifiers that assign the largest weighted probability
to it:

ξ(pm,k) =
⎧

⎨

⎩

1, if pm,k = max
k

{pm,k};
0, otherwise.

(12)
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Finally, theActRgn systempredicts the SDI as action class
k with the probability pk , which is the weighted average of
the classification probabilities of selected classifiers:

pk =

⎧

⎪

⎨

⎪

⎩

∑

m ξ(pm,k) · pm,k
∑

m ξ(pm,k)
, if

∑

m

ξ(pm,k) > 0;

0, otherwise

(13)

for any action class k. The final classification result by the
ActRgn system, ŷ, is:

ŷ = argmaxk{pk}. (14)

Stream data analysis

Besides taking the designated actions in the assembly, work-
ers may be idle or do something else for a variety of reasons
such as loss of attention, fatigue, lack of knowledge or infor-
mation, and so on. SDIs that are irrelevant to the actions for
assembly are background SDIs. In processing stream data,
the ActRgn system may read background SDIs and mistak-
enly recognize them as action SDIs. The ActRgn system
may have mistakes in classifying action SDIs too. This study
develops Algorithm 2 below that analyzes the probabilis-
tic classification result of the ActRgn system in processing
stream data to attempt to correct these two types of mistakes.

Algorithm 2 Stream Data Analysis
1: // Notations
2: {SDIt |t = 1, 2, . . . }: SDIs sequentially extracted from stream data
3: ŷt : classification of SDIt
4: ỹt : alternative classification of SDIt
5: p(k)

t : the kth highest classification probability
6: [L(k),U (k)]: the CI estimation for the kth highest classification prob-

ability of background SDIs
7: for t = 1, 2, . . . do
8: // Action Recognition
9: The ActRgn system classifies SDIt to yield ŷt and ỹt .
10: // Background Detection
11: if

∑4
(k)=1 1{p(k)

t ∈ [L(k),U (k)]} ≥ 2 then
12: ŷt=“Background";
13: // Temporal Analysis
14: else if t ≥ 2 & ỹt = ŷt−1 then
15: ŷt = ŷt−1.
16: end if
17: end for

From testing the ActRgn systemwith background SDIs, it
is noticed that the highest probability of classification is not
dominantly high, and quite a few action classes (2∼4) are
assigned with a non-trivial classification probability. This
pattern of background SDIs is quite different than that of
action SDIs, where one action class usually receives a dom-
inantly high probability than other classes do. Accordingly,

this study establishes a method to detect background SDIs
from untrimmed data. For any SDI, let p(k) be the kth highest
classification probability. Using the probabilistic classifi-
cation result of the background SDIs extracted from the
validation dataset, a 99% confidence interval (CI) is estab-
lished for the (k)th highest probability, named the (k)th CI
and denoted as [L(k),U (k)], for (k) = 1, . . . , 4. A SDI is
classified as a background SDI and labeled as “Background”
if two ormore than two of the top four classification probabil-
ities fall in their respective CI of classification probabilities
for background SDIs.

Actions for assembly are sequential. Therefore, their tem-
poral relationship may help correct some of the classification
mistakes. If a SDI is classified as an action class different than
that of the preceding SDI, this inconsistency may happen in
a transition to the next action or it is a mistake. Observing
an inconsistency, the temporal analysis yields an alternative
classification result ỹt , which is the action class with the
second-highest probability. The assumption is that the alter-
native classification result may contain partial information of
the SDI. If the alternative result is consistent with the classifi-
cation of the preceding SDI, the temporal analysis considers
the classification from the ActRgn system as a mistake and
thus accepts the alternative classification result to rectify it.
Otherwise, the classification result from the ActRgn system
is accepted.

Illustrative example and assessment

Experiment design

To demonstrate and assess the proposed ActRgn system,
this study analyzes one step in assembling the Bukito 3D
printer in a lab setting, which is “putting on the handle".
This step involves seven sequential actions (i.e., K=7) that
are described in Fig. 4. A Microsoft Kinect is used to out-
put the time series 3D coordinates of 17 body joints (i.e.,
J=17) displayed in Fig. 2 and the RGB images. The RGB
images are annotated with corresponding frame numbers and
are used as a reference for the data preparation described in
the Methodology section.

15 subjects are recruited including both males and
females. They are split into two mutually exclusive groups.
The group CRT has 10 subjects who perform the assembly
step for 10 times. Out of these, 8 times were used to cre-
ate the dataset for training the base classifiers, whereas the
remaining 2 times were for testing the classifiers. The group
NEW has 5 subjects who represent new workers coming to
perform the assembly. The group NEW repeats the assembly
step for 40 times. Among these, 20 times are training data
for adapting the classifiers to new workers through transfer
learning and iterative boosting (i.e., ΓT ); 10 times are the
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Fig. 4 The seven actions involved in the step “putting on the handle” for assembling the Bukito 3D printer

Table 2 Dataset summary: the size of SDIs in groups CRT and NEW

Act-1 Act-2 Act-3 Act-4 Act-5 Act-6 Act-7 Total

CRT 176 280 340 544 362 1,012 496 3,210

NEW 688 1,018 1,270 1,860 1,460 3,758 1,320 11,374

Sub-1 118 184 234 376 268 672 210 2,062

Sub-2 110 152 208 324 240 684 208 1,926

Sub-3 114 192 236 318 300 772 290 2,222

Sub-4 178 230 304 386 300 722 308 2,428

Sub-5 168 260 288 456 352 908 304 2,736

data for evaluating the classifiers during the adaption pro-
cess (i.e., ΓV ); the remaining 10 times are used to create the
dataset for testing the proposed ActRgn system. Partial data
can be accessed at Al-Amin et al. (2020a).

To extract SDIs from the time series of skeletal data, a
sliding window in the length of 30 frames (i.e., W=30) and
the stride size of 15 frames (i.e., δ=0.5) are used. That is, for
every 0.5 seconds the ActRgn system reads the most recent
30 frames to classify the action of the worker during the past
one second. Table 2 summarizes the distribution of SDIs in
groups CRT and NEW.

The assembly operation mainly involves the 17 joints of
the upper body shown in Fig. 2. Given 17 joints, L = (17

2

) =
136 distance features can be calculated. Angles that can be
formed by the 10 joints of the upper extremity (i.e., joints #6-
#15) are calculated because the assembly operation mainly
involves the worker’s upper extremity. The 10 joints provide
L̃ = 10

(9
2

) = 360 angle features.Therefore, the dimensionof
the three distance related SFIs (i.e., SFID , SFID′ , and SFID′′ )
is 30 × 136. The dimension of three angle related SFIs (i.e.,
SFIA, SFIA′ , and SFIA′′ ) is 30×360. SFIs are all normalized
to take values within [−1,1] before being used for training,
validating, and testing the ActRgn CNN classifiers.

In training theActRgnCNNclassifiers, the adaptive learn-
ing rate optimizer (Adam) along with the cross-entropy loss
function is used. Initially, the learning rate of Adam is set as
0.001. It is dynamically decreased over iterations. To avoid

Fig. 5 ActRgn accuracy achieved by the individualized ActRgn system
and its constituent classifiers: An illustrative example (the new worker
Sub-1)

the issue of overfitting, L2 and dropout regularization are
implemented.

An illustrative example

Using a worker in the group NEW (Sub-1) as an example,
the ActRgn system individualized for this worker achieves
97.4%accuracy on the testing dataset. Figure 5 describes how
thisActRgnperformance is achieved. The six base classifiers,
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Fig. 6 The class-level performance of the ActRgn system individual-
ized for the new worker Sub-1: a recall matrix and b precision matrix

trained on the dataset of group CRT, achieve an accuracy
ranging from 48.6% (classifier A′) to 76.5% (classifier A′′)
in recognizing the actions of this worker. The performances
of the base classifiers are far below the satisfaction and vary
largely. Transfer Learning (TL) is implemented for achieving
an initial adaption of the base classifiers to the worker, which
increases the accuracy of the six classifiers by 5.3% (classi-
fier A′) to 29.4% (classifier A). Then, the initially adapted
classifiers are further improved through Iterative Boosting
(IB), achieving an accuracy ranging from 75.3% (classifier
D′) to 96.0% (classifier D). While the ActRgn accuracy of
the adapted classifiers still varies largely, four out of six
classifiers have an accuracy higher than 90%. The ActRgn
system, as an ensemble of the already adapted classifiers
using the WASC fusion, achieves 97.4% accuracy, higher
than the accuracy of any constituent classifier of the system
by 1.4% (compared to classifier D) to 22.1% (compared to
classifier D′).

The study further reviews the recall and precision matri-
ces in Fig. 6 to determine the class-level performance of the
ActRgn system. For worker Sub-1, the SDIs of classes 2, 3,
and 4 are perfectly recognized; the SDIs of classes 1, 6, and
7 SDIs are recognized with a recall value greater than 96%;
only class 5 has a relatively low recall value, 87.1%. The
incorrectly classified class 5 SDIs are all recognized as class
7, which is a major reason for the low precision for class 7.
Some action classes share a certain similarity, thus causing
confusions. For example, action classes 5 and 7 all involve
taking the tool from, or returning it to, a similar location using
the same hand. The confusion matrix is found to vary among
the tested subjects in this study, because different workers
may perform the same action in a slightly different way.

Figure 7 illustrates the result of the ActRgn system in ana-
lyzing the untrimmed stream data of the newworker Sub-1 in
an experiment. The experiment lasts 41 seconds and 81 SDIs
in total are extracted from the stream data, with 66 action
SDIs (action classes 1 to 7) and 15 background SDIs (labeled
as “Background"). 63 out of 66 (95.5%) action SDIs are cor-
rectly recognized, and so 8 out of 15 (53.3%) background

Fig. 7 An illustration of the stream data analysis

SDIs. Among the 7 misclassified background SDIs, 5 SDIs
occur during the transition from one action to the next action
and other 2 SDIs are 1.5∼2 seconds before Act-1 takes place.
Moreover, 5 out of the 7 misclassified background SDIs are
classified as the preceding or the succeeding action. This is
due to the fact that SDIs during the transition may contain
data either from the preceding or the succeeding action.

Comparison of basic ActRgn classifiers

This study chose CNN as the basic classifier for building the
ActRgn system. To verify the rationale of choosingCNN, this
study compares the performances of CNN, MLP, and LSTM
as the basic classifiers. Here, both the SDIs and the six types
of SFIs are considered as the input to the classifiers. The
experimental result in Table 3 shows that CNN outperforms
MLP and LSTM in analyzing any of the seven inputs on the
CRT testing dataset. The result on the NEW testing dataset
is similar except for one exception; that is, the accuracy of
CNN in analyzing SFID′ is 0.56% lower than that of LSTM.
This comparative study verifies the advantage of using CNN
as the underlying classifiers for building the ActRgn system.

Advantages of the ActRgn system architecture

This study proposes extracting six posture related feature
vectors to respectively create six 1-channel (1-C) ActRgn
CNN classifiers and then fusing them as an ActRgn system.
This architecture is based on two hypotheses. On one hand,
each of the six feature vectors conveys unique information of
actions to independently support action recognition to a cer-
tain degree. On the other hand, the six individual classifiers
have complementary strengths. To demonstrate its advan-
tage, the proposed systemarchitecture is compared to a single
CNN built on SDIs (i.e., the raw data) and a system of two 3-
channel CNNs with one built with the three distance related
features [SFID , SFID′ , SFID′′ ] and the other built with the
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Table 3 The accuracy (%) of CNN, MLP, and LSTM as the basic classifiers, on the CRT and NEW testing datasets, respectively

CRT NEW

CNN MLP LSTM CNN MLP LSTM

Classifiers SDIs 76.26 74.33 70.03 66.30 59.33 51.56

SFID 83.53 60.39 76.71 70.40 57.49 64.34

SFID′ 77.30 51.78 71.51 54.30 44.36 54.86

SFID′′ 82.49 60.09 69.44 67.40 56.32 59.79

SFIA 80.56 55.64 57.99 61.50 53.69 46.88

SFIA′ 78.48 50.89 49.26 51.40 47.30 47.30

SFIA′′ 81.15 52.52 71.66 62.90 51.53 59.26

three angle related features [SFIA, SFIA′ , SFIA′′ ]. Table 4
shows the ActRgn accuracy of the raw data CNN, the six 1-
channel (1-C) CNNs, the two 3-channel CNNs, and the 1-C
and 3-C ActRgn systems respectively built with four fusion
methods—maximum, average, product, and majority voting
(Maj Vot). All CNNs in Table 4 are base classifiers that have
not been individualized yet. They are firstly tested on the
CRT testing dataset and then on the NEW testing dataset to
verify the challenge of worker heterogeneity on action recog-
nition. When tested on the group of new workers, both the
subject-level and the group-level accuracy are provided.

In recognizing the actions of any group or any individual
in Table 4, at least one 1-C CNN outperforms the raw data
CNN, and at least one 3-C CNN is as good as, or better
than, the raw data CNN. For example, the six 1-C CNNs
and the two 3-C CNNs all outperform the raw data CNN in
recognizing the actions of Sub-3. For Sub-2, the 1-C CNN
built with SFIA′′ is better than the raw data CNN and the
3-C CNN with [SFIA, SFIA′„ SFIA′′ ] is as good as the raw
data CNN. The observation suggests that some of the feature
vectors calculated fromSDIs convey informationmoreuseful
for action recognition than SDIs.

No single feature-based classifier dominates other clas-
sifiers for all the five individual subjects. For example, the
best 1-C CNN for Sub-1 is the classifier built with SFIA′′ and
the best 3-C CNN is the classifier built with [SFID , SFID′„
SFID′′ ]. But for Sub-3, the best 1-C CNN is the classifier
with SFIA and the best 3-C CNN is the one built with [SFIA,
SFIA′„ SFIA′′ ]. Therefore, a system of fused classifiers is
more robust to worker heterogeneity than an individual clas-
sifier.

Both the 1-CCNN system and the 3-CCNN system can be
built through the maximum fusion, average fusion, and prod-
uct fusion. The 1-C CNN system can also be built through
the majority voting. These seven configurations have varied
performance, displayed in the seven rows from the bottom
in Table 4. At the group level, the seven configurations all
outperform the raw data CNN. At the individual level, all the
seven configurations are better than the raw data CNN in rec-

ognizing the actions of Sub-1, -3, and -4. For Sub-2, the 1-C
CNN systems with the average fusion, product fusion, and
majority voting outperform the raw data CNN. For Sub-5,
the 1-C CNN systems with the average fusion and product
fusion achieve higher accuracy than the raw data CNN. This
comparison further confirms the advantage of posture-related
feature images over the raw data images.

At least one fusion method can build a 1-C CNN system
better than all the constituent classifiers, but this is not true
for the 3-C CNN system. For example, no 3-C CNN system
outperforms all its constituent classifiers for Sub-1 and Sub-
2. This indicates the fusion of six 1-C CNN classifiers is a
better system architecture than the fusion of two 3-C CNN
classifier. The 1-C CNN system indeed is a better ActRgn
system than the 3-C CNN system, evidenced by the com-
parison in Table 4. When testing them on the group CRT,
the 1-C CNN system always achieves higher accuracy than
the 3-C CNN system, ranging from 5.7% (maximum fusion)
to 8.8% (average fusion). Similarly, on the group NEW, the
1-C CNN system has higher accuracy than the 3-C CNN
system built with any fusion method. The improvement is
up to 6.1% (product fusion). At the individual level, the 1-C
CNN system outperforms the 3-C CNN system built with
any fusion method, with only one noticed exception. That is,
the 1-C CNN system for Sub-2 is outperformed by the 3-C
CNN system if the maximum fusion is used. The compara-
tive study in Table 4 supports the use of the proposed ActRgn
CNN architecture of this paper.

Effectiveness of transfer learning and iterative
boosting

Table 5 evaluates and confirms the effectiveness of transfer
learning and iterative boosting for adapting the six classi-
fiers to individual workers. The group-level assessment is
also provided at the bottom. The ActRgn accuracy before
the adaption (Bfr) is the accuracy of the base classifiers in
Table 4. Then, increment due to transfer learning (TL) and
that from iterative boosting (IB) are determined. The accu-
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Table 4 The accuracy (%) of ActRgn systems and their constituent CNN classifiers, respectively tested on groups CRT and NEW

CRT NEW Sub-1 Sub-2 Sub-3 Sub-4 Sub-5

Classifiers SDIs 76.3 66.3 74.9 67.0 51.2 70.3 66.4

SFID 83.5 70.4 74.9 63.8 64.8 80.0 68.2

SFID′ 77.3 54.3 54.7 51.7 53.8 56.0 54.5

SFID′′ 82.5 67.4 69.8 64.4 61.3 76.8 64.5

SFIA 80.6 61.5 51.0 65.1 65.3 70.2 56.1

SFIA′ 78.5 51.4 48.6 46.5 51.4 58.5 50.6

SFIA′′ 81.2 62.9 76.5 67.7 56.6 58.0 59.6

[SFID , SFID′ , SFID′′ ] 78.2 67.3 77.7 65.3 54.7 74.5 65.8

[SFIA, SFIA′ , SFIA′′ ] 77.6 62.9 73.7 67.0 55.4 63.5 58.3

Systems max 1-C 85.5 70.6 75.9 64.9 67.9 78.0 66.5

3-C 79.8 67.2 74.7 66.8 57.3 73.2 65.1

Average 1-C 87.7 73.5 82.8 69.0 67.5 80.0 69.0

3-C 78.9 67.7 77.1 66.8 57.6 74.0 64.5

Product 1-C 87.8 73.8 82.2 70.1 67.0 80.7 70.0

3-C 79.2 67.7 77.1 66.4 57.8 73.7 65.1

Maj Vot 1-C 88.4 70.7 75.7 68.6 65.5 79.0 65.5

racy after the adaption (Aft) and the corresponding change
in accuracy (chg) due to the classifier adaption are calculated
too.

Using the newworker Sub-1 as an example, transfer learn-
ing increases the ActRgn accuracy by an amount ranging
from 5.3% (classifier of SFIA′ ) to 29.4% (classifier of SFIA).
Iterative boosting contributes an additional 6.3% (classifier
of SFIA′′ ) to 31.8% (classifier of SFI′A). The classifier adap-
tion improves the accuracy by 17.6% (classifier of SFIA′′ ) to
40.3% (classifier of SFIA). Helped by transfer learning and
iterative boosting, the classifier D has reached 96% accu-
racy, becoming the best 1-C CNN classifier for Sub-1. The
classifier D′, though being the least capable classifier for
Sub-1, still reaches 75.3% accuracy. Both transfer learning
and iterative boosting effectively adapt the six base classifiers
to other new workers too. Yet their contributions vary among
workers and classifiers. The most improved classifier is the
classifier of SFIA for Sub-1, whose accuracy is increased by
40.3%. The least improved classifier is the classifier of SFID
for Sub-4, with an increase of 12.8%. At the group level, the
classifier adaption increases the ActRgn accuracy by 17.8%
to 25.1%.Among the six already adapted classifiers, the clas-
sifiers built on the velocity features (i.e., SFID′ and SFIA′ )
are usually not among the top classifiers in terms of accuracy.

Effectiveness of theWASC fusion

To verify the advantage of the proposed Weighted Aver-
age of Selected Classifiers (WASC) fusion, it is compared
to other five methods: maximum, product, average, major-
ity voting (Maj Vot), and weighted average (Wgt Avg). The

Fig. 8 A comparison of fusion methods. The accuracy of constituent
classifiers is indicated by grey columns (for individuals) and blue
columns (for the group); the accuracy of ActRgn systems built with
different fusion methods is represented by bars on top of them

weighted average fusion is similar to the proposed WASC
fusion except that it does not implement the filter in Eq.
(12) to select classifiers. The comparative study is performed
at both the individual level and the group level, with the
result summarized in Table 6 and visualized in Fig. 8. Figure
8 shows only the weighted average fusion and the WASC
fusion outperform all the constituent classifiers across the
five tested workers. This verifies the helpfulness of discrimi-
nating individual classifiers by their strength at the class level.
Furthermore, the WASC is better than the weighted average
fusion for recognizing the actions of every individual in the
groupNEW, increasing the accuracyby0.4%(Sub-1) to 2.5%
(Sub-5). The higher accuracy of the WASC method over the
weighted averagemethod confirms the unique strength of the
WASC fusion.
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Table 5 Effectiveness of transfer learning (TL) and iterative boosting (IB) for adapting the constituent classifiers: the before (Bfr)-after (Aft)
comparison of ActRgn accuracy on group NEW

SFID SFID′ SFID′′ SFIA SFIA′ SFIA′′ Median Min Max

Sub-1 Bfr 74.9 54.7 69.8 51.0 48.6 76.5 62.2 48.6 76.5

TL 8.9 13.8 8.1 29.4 5.3 11.3 10.1 5.3 29.4

IB 12.2 6.9 16.0 10.9 31.8 6.3 11.5 6.3 31.8

Aft 96.0 75.3 93.9 91.3 85.6 94.1 92.6 75.3 96.0

chg 21.1 20.7 24.1 40.3 37.0 17.6 22.6 17.6 40.3

Sub-2 Bfr 63.8 51.7 64.4 65.1 46.5 67.7 64.1 46.5 67.7

TL 11.6 15.3 4.8 1.8 7.9 6.8 7.3 1.8 15.3

IB 14.0 12.2 24.2 13.3 24.7 13.8 13.9 12.2 24.7

Aft 89.3 79.3 93.5 80.1 79.0 88.2 84.2 79.0 93.5

chg 25.6 27.5 29.1 15.1 32.5 20.5 26.5 15.1 32.5

Sub-3 Bfr 64.8 53.8 61.3 65.3 51.4 56.6 58.9 51.4 65.3

TL 8.3 5.4 11.6 8.9 9.2 16.2 9.0 5.4 16.2

IB 8.3 16.2 2.3 7.5 14.5 8.5 8.4 2.3 16.2

Aft 81.4 75.4 75.2 81.6 75.1 81.3 78.3 75.1 81.6

chg 16.7 21.5 13.9 16.3 23.7 24.7 19.1 13.9 24.7

Sub-4 Bfr 80.0 56.0 76.8 70.2 58.5 58.0 64.3 56.0 80.0

TL 6.0 12.8 0.3 2.3 4.0 18.8 5.0 0.3 18.8

IB 6.8 11.8 14.2 11.2 11.2 6.5 11.2 6.5 14.2

Aft 92.8 80.7 91.3 83.7 73.7 83.3 83.5 73.7 92.8

chg 12.8 24.7 14.5 13.5 15.2 25.3 14.8 12.8 25.3

Sub-5 Bfr 68.2 54.5 64.5 56.1 50.6 59.6 57.8 50.6 68.2

TL 6.8 6.8 7.8 4.5 8.1 8.1 7.3 4.5 8.1

IB 9.9 16.1 11.6 10.3 13.3 12.3 12.0 9.9 16.1

Aft 84.8 77.4 83.9 70.9 72.0 80.0 78.7 70.9 84.8

chg 16.6 22.9 19.4 14.8 21.5 20.4 19.9 14.8 22.9

Group Bfr 70.4 54.3 67.4 61.5 51.4 62.9 62.2 51.4 70.4

TL 8.6 10.4 6.6 8.9 6.9 12.4 8.8 6.6 12.4

IB 9.2 12.0 13.1 10.4 18.2 9.5 11.2 9.2 18.2

Aft 88.3 76.6 87.0 80.9 76.5 84.8 82.8 76.5 88.3

chg 17.8 22.3 19.6 19.3 25.1 21.9 20.7 17.8 25.1

Table 6 Comparing the accuracy (%) of ActRgn Systems built with different classifier fusion methods, tested on the group NEW

Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Group

Classifiers SFID 96.0 89.3 81.4 92.8 84.8 88.3

SFID′ 75.3 79.3 75.4 80.7 77.4 76.6

SFID′′ 93.9 93.5 75.2 91.3 83.9 87.0

SFIA 91.3 80.1 81.6 83.7 70.9 80.9

SFIA′ 85.6 79.0 75.1 73.7 72.0 76.5

SFIA′′ 94.1 88.2 81.3 83.3 80.0 84.8

Fusion methods Maximum 95.3 93.4 81.8 88.5 86.1 88.6

Product 95.5 95.0 82.8 91.2 87.4 89.9

Average 96.4 95.0 83.3 92.0 85.5 89.9

Maj Vot 96.4 96.3 83.9 92.3 84.8 90.1

Wgt Avg 97.0 96.5 82.8 93.0 87.2 90.9

WASC 97.4 97.2 84.7 94.5 89.7 92.3
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Table 7 The accuracy (%) in detecting the background and recognizing actions by the stream data analysis: a before (Bfr) - after (Aft) comparison

All Bdg Acts Act-1 Act-2 Act-3 Act-4 Act-5 Act-6 Act-7

Sub-1 Bfr (%) 85.4 0.0 97.2 100.0 98.4 100.0 100.0 95.1 100.0 78.9

Aft (%) 93.4 68.7 96.9 95.3 96.7 97.4 99.0 97.6 100.0 82.5

Size 687 83 604 43 61 78 100 82 183 57

Sub-2 Bfr (%) 84.2 0.0 94.4 94.0 98.1 100.0 86.0 85.1 100.0 91.1

Aft (%) 90.9 46.5 96.3 92.0 98.1 100.0 76.0 94.6 99.5 91.1

Size 658 71 587 50 54 72 93 74 188 56

Sub-3 Bfr (%) 78.5 0.0 86.0 78.3 95.1 91.7 83.6 87.1 95.1 65.0

Aft (%) 85.2 46.3 88.9 73.9 95.1 90.5 86.9 95.0 97.8 70.9

Size 768 67 701 46 61 84 122 101 184 103

Sub-4 Bfr (%) 86.2 0.0 94.3 89.5 98.4 94.7 96.7 91.4 98.5 84.3

Aft(%) 90.7 41.8 95.3 80.7 100.0 97.9 95.1 96.8 98.0 91.0

Size 784 67 717 57 61 95 122 93 200 89

Sub-5 Bfr (%) 82.0 0.0 90.5 90.7 92.7 93.9 89.0 90.4 88.8 92.3

Aft (%) 88.6 38.6 93.8 87.0 92.7 94.9 89.0 93.3 96.8 97.4

Size 876 83 793 54 82 98 127 104 250 78

Group Bfr (%) 83.2 0.0 92.2 90.4 96.2 95.8 91.0 89.9 96.0 80.9

Aft (%) 89.6 48.8 94.1 85.6 96.2 96.0 92.4 95.2 98.3 85.6

Size 3773 371 3402 250 319 427 564 454 1005 383

Stream data analysis

This paper performs a before-after study to demonstrate that
Algorithm 2 can improve the results of the ActRgn system
in analyzing stream data. Table 7 computes the accuracy (%)
in recognizing all the testing SDIs (All), background SDIs
(Bdg), action SDIs (Acts), and individual action classes (Act-
1,…, -7). The study is performed using the untrimmed stream
test data of the NEW group. At both the subject level and
the group level, the comparison shows the ActRgn accuracy
before implementing Algorithm 2 (Bfr) and after (Aft). The
volume of testing SDIs (size) for the accuracy calculation
is provided too as a reference. Although the ActRgn system
has a good capability in classifying action SDIs, its accuracy
in recognizing background SDIs is zero. This is because the
ActRgn system is designed to classify SDIs into one of the
seven action classes.

Using the new worker Sub-1 as an example, the accuracy
in recognizing action SDIs is 97.2% whereas the accuracy
in recognizing background SDIs is 0%. The accuracy in
recognizing all the SDIs extracted from the stream data is
only 85.4%. After implementing Algorithm 2, the accuracy
in recognizing background SDIs is 68.7% and the accu-
racy in recognizing actions drops about 0.3%, to 96.9%.
The accuracy in analyzing the stream data, including both
the background and action SDIs, is 93.4%, which is an
8% increase compared to the accuracy before implement-
ing the stream data analysis algorithm. For the other four
subjects, the improved accuracy in analyzing the stream data

is 6.7% (=90.9-84.2), 6.7% (=85.2-78.5), 4.5% (=90.7-86.2),
and 6.6% (=88.6-82.0), respectively. At the group level, the
accuracy is improved by 6.4%, from 83.2% to 89.6%.

The capability of the stream data analysis algorithm in
detecting the background SDIs varies among the tested sub-
jects. The accuracy is the highest in detecting the background
SDIs of Sub-1 (68.7%) and it is the lowest for Sub-5 (38.6%).
This variation is mainly caused by the heterogeneity of indi-
vidual workers. At the group level, the algorithm detected
48.8% of background SDIs correctly, and other background
SDIs are recognized as actions. The background SDIs recog-
nized as actions are mainly in the transition of two successive
actions.

Although the accuracy in recognizing actions drops about
0.3% for Sub-1, the accuracy in recognizing the actions for
the other four subjects increases. Therefore, at the group level
the accuracy in recognizing actions increases 1.8%, from
92.2% to94.1%.This indicates the temporal analysis inAlgo-
rithm 2 helps improve the accuracy in recognizing worker
actions. By comparing the change in accuracy at the class
level in Table 7, it is noticed that the accuracy improvement
for some classes may be at the cost of lowering the accuracy
of others. Using the new worker Sub-5 as an example, the
temporal analysis increases the accuracy in recognizing Act-
3, -5 -6, and -7, but decreases the accuracy in recognizing
Act-1.
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Table 8 The impact of occlusion on the accuracy (%) in recognizing actions and background from stream data

Level No. Duration (sec) STA All Bdg Acts

Partial 2 3 Bfr 80.64 0.0 91.72

Aft 81.66 19.28 90.23

6 Bfr 73.65 0.0 83.77

Aft 74.09 28.92 80.30

3 3 Bfr 76.86 0.0 87.42

Aft 78.31 15.66 86.92

6 Bfr 70.45 0.0 80.13

Aft 70.60 8.43 79.14

Full 2 3 Bfr 72.93 0.0 82.95

Aft 73.36 16.88 81.12

6 Bfr 57.93 0.0 65.89

Aft 58.66 12.04 65.07

3 3 Bfr 65.65 0.0 74.67

Aft 67.54 15.66 74.67

6 Bfr 43.38 0.0 49.34

Aft 43.96 10.84 48.51

Impact of occlusion

Occlusion is one of the key challenges for skeletal data-based
human action recognition. There are a few crucial factors that
vary the impact of occlusion. To what extent does occlusion
impact the skeletal data-based action recognition? To study
this problem, an experimental study is performed to evaluate
the impact of occlusion. In the design of experiments, three
factors with two levels of each have been considered:

– The level of occlusion (Level): partial (the left hand) vs.
full (the entire human body)

– Thenumber of occlusions in each timeof operation (No.):
2 vs. 3

– The duration of each occlusion (Duration (sec)): 3 vs. 6

to investigate the impact occlusion.
The untrimmed streaming data of Sub-1 from the NEW

group are assessed in the above-said eight experiments (=23).
The data comprise 687 SFIs in total, with 604 action SFIs and
83 background SFIs, obtained from ten times of operation by
the subject. Table 8 summarizes the accuracy in recognizing
actions, the background, and all of them, before (Bfr) and
after (Aft) the stream data analysis (SDA) is applied to the
fusion result from the Weighted Average of Selected Classi-
fier (WASC). From the table is can be seen that:

– The impact of full occlusion is more severe than par-
tial occlusion. When a full occlusion happens, input
SFIs contain no skeletal data. The ActRgn system lacks
the ability to recognize them, which is reflected by the

reduced overall accuracy, the accuracy in detecting the
background (fully blocked SFIs reduce the ability of
STA), and the accuracy in action recognition.

– When a partial occlusion happens, missing features in the
affected SFIs are estimated as the average of the remain-
ing features. TheActRgn system can still recognize some
of the partially occluded SFIs.

– The accuracy declines when the number of occlusions
and/or the duration of occlusion increase.

– Occlusion impairs the ability of stream data analysis on
top of WASC. But the stream data analysis still helps
improve the overall performance slightly, mainly due to
its ability to detect the background.

Conclusion and future work

This paper proposes a system of skeletal data-based CNN
classifiers for action recognition, which is individualized for
heterogeneous workers to recognize their actions in assem-
bly reliably. The paper demonstrates the advantage of the
proposed system architecture that computes posture-related
feature vectors using the skeletal data extracted from depth
images, builds the constituent classifiers using individual fea-
ture vectors, and fuses them to become a system. The study
further verifies the importance of individualizing the system
for heterogeneous workers, which adapts the ActRgn sys-
tem to individual workers through transfer learning, iterative
boosting, and the WASC fusion method. The algorithm of
stream data analysis not only improves the accuracy of the
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individualized system in recognizing theworker’s actions but
differentiate background data and actions to some extent.

The paper builds a foundation for important exten-
sions and future explorations. The revision or an update of
the assembly process usually introduces additional actions.
Adding new action classes to an existingActRgn system is an
important research problem. We plan on exploring this prob-
lem by developing a class incremental learning (Class-IL)
strategy (Tao et al. 2020). When the classifiers learn to rec-
ognize new action classes, the classifiers might suffer from
catastrophic forgetting, which is a long-standing challenge in
class-IL that tends to override the previous classes when con-
fronted with new classes. To address this challenge, multiple
crucial components of a class-IL algorithm will be explored:
including a memory buffer to store a few exemplars of old
classes, a constraint on keeping previous knowledge in learn-
ing new classes, and a learning system that balances old and
new classes (Mittal et al. 2021). Another immediate exten-
sion of the study is to adapt the ActRgn system to existing
workers performing new tasks and then to new workers per-
forming new tasks. This extension is critical to the scale-up
of system implementation. While transfer learning and iter-
ative boosting effectively adapt the constituent classifiers to
individuals, a faster adaption is desired to accommodate the
quickly changing, highly unpredictable condition of future
manufacturing. A hypothesis is that layers of neural networks
to refine is dependent on the new subject or new task that the
systemwill adapt to.Amethod that can optimize the classifier
refining process is needed. The current stream data analysis
algorithm can detect some background data, but not all of
them. The ability to detect background in high accuracy and
to differentiate different types of background data is useful
in applications. These exciting opportunities call for future
research.
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