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Abstract
Manufacturing and production processes have become more complicated and usually consist of multiple stages to meet 
customers’ requirements. This poses big challenges for quality monitoring due to the vast amount of data and the interac-
tive effects of many factors on the final product quality. This research introduces a smart real-time quality monitoring and 
inspection framework capable of predicting and determining the quality deviations for complex and multistage manufacturing 
systems as early as possible; introduces a hybrid quality inspection approach based on both predictive models and physical 
inspection in order to enhance the quality monitoring process, save resources, reduce inspection time and costs. Several 
supervised and unsupervised machine learning techniques such as support vector machine, random forest, artificial neural 
network, principal component analysis were used to build the quality monitoring model with considering the cumulative 
effects of different manufacturing stages and the unbalance and dynamic nature of the manufacturing processes. A complex 
semiconductor manufacturing dataset was used to verify and assess the performance of the proposed framework. The results 
prove the ability of the suggested framework to enhance the quality monitoring process in multistage manufacturing systems 
and the ability of the hybrid quality inspection approach to reduce the inspection volume and cost.

Keywords Multistage manufacturing · Quality prediction · Quality monitoring · Industry 4.0 · Machine learning · Smart 
manufacturing

Introduction

Product quality is a crucial element for manufacturing organ-
izations to appraise their production capability and enhance 
their market competitiveness. Traditional statistical process 
control (SPC) methods such as control charts have been 
widely used to detect defects due to their applicability and 
simplicity. The successful implementation of traditional SPC 

methods is associated with low complexity and stable manu-
facturing processes (Bai et al., 2019). Manufacturing and 
production processes have become more complicated with 
existing of high dimension variables, dynamic and uncertain 
environments (Cheng et al., 2018; Ou et al., 2020). Manufac-
turing and production processes usually consist of multiple 
manufacturing stages to produce complex products such as 
semiconductor manufacturing and automobile assembling. 
In a multistage manufacturing system (MMS), Many fac-
tors (e.g., equipment and manufacturing variables) have 
interactive and accumulative effects on final product quality 
(Kao et al., 2017). Consequently, traditional SPC techniques 
become insufficient in dealing with current problems and 
challenges (Kim et al., 2012; Wuest et al., 2014).

The development of data mining and analytics techniques 
offers a promising solution to enhance the quality moni-
toring processes and the industrial environment. Machine 
learning (ML) works as a computational engine for hidden 
pattern recognition and data mining as it can deal with com-
plex and high-dimensional data (Ge et al., 2017; Tao et al., 
2018). ML techniques can transform the vast amount of data 
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gathered by smart sensors and other data collection tech-
niques throughout all the manufacturing stages into useful 
information that explain the uncertainties, analyze the com-
plex and hidden relations and help in making more informed 
actions and decisions related to quality (Cohen & Singer, 
2021; Lee et al., 2013). Henceforth, ML can be seen as a key 
enabler of Industry 4.0 and what is called ‘Smart factories’ 
that make use of the advances in information and communi-
cation technologies. In a recent work by Diez-Olivan et al. 
(2019), the potential of using ML in the context of Industry 
4.0 was expanded; quality inspection and process monitor-
ing were among the main issues that they have addressed. 
As the product quality depends on how it was produced, ML 
can build a predictive model maps between the manufactur-
ing variables and the quality characteristics or the quality 
state of produced products (Lieber et al., 2013). The output 
from this model is a real-time quality index, which indicates 
the manufacturing process’s current performance so that the 
defects and potential failures can be detected and avoided 
(Kao et al., 2017).

There are seven major challenges that are faced when 
building a quality monitoring model for multistage manufac-
turing systems, they can be summarized as follows:

– the curse of dimensionality due to the vast amount of data 
gathered by smart sensors along the manufacturing chain 
(Cheng et al., 2018);

– the accumulative and interactive effect of the different 
workstations on the quality of the final product quality;

– the insufficient instances or samples of minority (defec-
tive) class samples, this happens as the failure instances 
do not happen frequently;

– some values may be missing due to poor calibration and 
errors in measurement (Lee et al., 2019);

– issues with the random sampling of products from the lot 
according to the inspection protocol;

– the changes in data characteristics, and the appearance of 
new patterns;

– the difficulties of technical implementation of the predic-
tive model in quality monitoring and inspection (Schmitt 
et al., 2020).

Most of the existing quality monitoring models concen-
trate on a single manufacturing stage and do not estimate the 
product quality until the end of the manufacturing sequence 
(Arif et al., 2013a, b). Waiting until the end of the manu-
facturing chain can cause a waste of resources and time; 
ignoring the relationships between manufacturing stages can 
negatively affect the performance of the quality monitoring 
models.

This paper aims to introduce a smart real-time quality 
monitoring and inspection system that uses different machine 
learning techniques to handle complex and multistage 

manufacturing processes with considering the accumula-
tive effects of workstations and the unbalanced and dynamic 
nature of the manufacturing processes. Also, a hybrid quality 
inspection strategy based on both physical inspection and 
predictive model was introduced to ensure high and constant 
product quality and reduce the inspection cost.

The remainder of this paper is structured as follows: in 
Sect. 2, a brief literature review is given on state-of-the-
art works of quality monitoring using machine learning 
techniques and the major challenges that affect building an 
effective quality monitoring model in MMS; In Sect. 3, the 
proposed quality monitoring framework is presented; In 
Sect. 4, a case study is presented to assess the performance 
of the proposed framework, and in Sect. 5, the conclusion 
and future work are presented.

Literature review

Machine learning

Machine Learning (ML) is a subfield of artificial intelli-
gence (AI) that enables engineers to analyze and interpret 
the vast amount of data generated due to the development 
of IoT technology and gathered by smart sensors and other 
data collection techniques. ML techniques play a vital role 
in information extraction, pattern recognition and data 
analysis to make more informed actions and decisions (Lee 
et al., 2013). ML has successfully applied in many indus-
trial fields and applications such as predictive maintenance, 
fault detection and diagnosis, quality monitoring, predic-
tion and improvement and manufacturing process optimiza-
tion (Aydemir & Acar, 2020; Escobar et al., 2021; Ge et al., 
2017; Köksal et al., 2011; Lee et al., 2020, 2021; Nti et al., 
2021; Quatrini et al., 2020; Weichert et al, 2019; yin et al., 
2018; Zhang et al., 2019). ML can be divided into unsuper-
vised, supervised,semi-supervised, reinforcement and active 
learning (Ge et al., 2017).

Unsupervised learning is applied when the dataset con-
tains only training samples 

{

Xi

}N

i=1
 without any correspond-

ing target variable. It is usually used for dimensionality 
reduction, information extraction, data visualization, den-
sity estimation, process monitoring and outlier detection 
(Ge et al., 2017). There are many unsupervised learning 
techniques such as K-means clustering, Principal compo-
nent analysis (PCA), self-organizing map (SOM). In this 
research, PCA (Abdi & Williams, 2010; Dastile et al. 2020) 
was used to consider the accumulative effect in MMS, as 
discussed in the quality model section.

Supervised learning is applied when the dataset contains 
training samples 

{

xi
}N

i=1
 with the corresponding target vari-

ables 
{

yi
}N

i=1
 . The supervised learning can be formulated as 
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classification or regression problems based on the type of 
output variable. For a continuous output variable, regression 
algorithms such as linear, polynomial and support vector 
regression can be used; otherwise, classification algorithms 
can be used. Supervised learning is usually used for process 
monitoring, fault diagnosis, remaining useful life (RUL) 
estimation and quality prediction (Ge et al., 2017). In this 
research, random forest (Breiman, 2001), neural networks 
(Kotsiantis, 2007), K-nearest neighbors (Cunningham & 
Delany, 2007), support vector machine (Tsai et al., 2009), 
logistic regression, and Naïve Bayes algorithms were used 
to predict products’ quality state (Kotsiantis, 2007).

Quality monitoring using machine learning 
Techniques

Quality prediction and monitoring models that use different 
ML techniques have been applied in many manufacturing 
sectors such as semiconductor manufacturing (Al-Kharaz 
et al., 2019; Arif et al., 2013a, b; Kang et al., 2009; Kao 
et al., 2017; Melhem et al., 2015; Moldovan et al., 2017; 
Munirathinam & Ramadoss, 2016; Salem et  al., 2018), 
steel manufacturing (Cuartas et al., 2020; Li et al., 2018; 
Lieber et al., 2013), 3D printing (Amini & Chang, 2018; 
Baturynska & Martinsen, 2021; Li et  al., 2020), extru-
sion processes (García et al., 2019), battery manufacturing 
(Thiede et al., 2019), and automotive industry (Peres et al., 
2019). The quality control and improvement using ML can 
be divided into four main tasks: description of product and 
process quality by identifying and ranking the most signifi-
cant variables and factors related to the quality, prediction of 
the quality, classification of quality and optimization of the 
manufacturing parameters (Köksal et al., 2011).

The quality prediction models can be formulated as 
regression (second quality task) and classification (third 
quality task) problems based on output variable type. For 
continuous variables, regression models can estimate the 
quality characteristics of the intermediate and final prod-
ucts (Baturynska & Martinsen, 2021; García et al., 2019; 
Kang et al., 2009; Li et al., 2018; Thiede et al., 2019). Li 
et al., (2018) had successfully applied ML methods such as 
LR, SVM, K-NN and ensemble models by combining the 
used models with averaging and stacking methods to predict 
steel quality properties, e.g., tensile strengths, elongation. 
Thiede et al. (2019) have successfully applied multivariable 
regression to predict the characteristics of batteries, such as 
capacity. Kang et al. (2009) used virtual metrology (VM) 
based on regression models to estimate metrological values 
for each wafer based on manufacturing data and previous 
metrological results in an etching process of semiconductor 
manufacturing.

For discrete variables, classification models can pre-
dict the state of the product quality (conforming or 

nonconforming) (Al-Kharaz et al., 2019; Amini & Chang, 
2018; Arif et al., 2013a, b; Kao et al., 2017; Lieber et al., 
2013; Malaca et al., 2019; Melhem et al., 2015; Peres et al., 
2019). Lieber et al. (2013) have integrated supervised and 
unsupervised learning to predict steel quality and found that 
applying data mining had a significant effect on energy and 
time saving, especially in multistage manufacturing systems. 
Melhem et al. (2015) introduced a wafer quality prediction 
approach based on the health indicators’ historical dataset. 
They proposed using PCA first to extract significant health 
indicators, then applying these indicators to the training pro-
cess. The proposed approach has an acceptable performance. 
However, the health indicator extraction process could not 
be generalized to other applications.

Papers that applied ML algorithms for quality predic-
tion and monitoring in MMS were rarely found. Arif et al. 
(2013a, b) introduced a cascaded quality monitoring frame-
work to monitor the product quality in MMS. They used 
PCA to transform intercorrelated variables into a new set of 
variables that carry MMS characteristics then applied the 
iterative Dichotomiser (ID3) algorithm to predict the wafer’s 
quality. The proposed approach has an acceptable false alarm 
rate, but the sensitivity was low, which limits the application 
in the quality field. Kao et al. (2017) had combined PCA 
with different classification techniques such as naïve Bayes, 
SVM and decision trees to predict the final product quality 
in the MMS; had used associated rule mining to find the 
root causes of defective products. Amini and Chang (2018) 
introduced an approach to predict the likelihood of printing 
non-defective products during 3D metal printing processes, 
especially at critical layers. They used K-means algorithms 
and random forest to determine the most critical layers. The 
proposed approach ignored the accumulative and interactive 
effects of printed layers.

Challenges affect building an effective quality 
monitoring for multistage manufacturing system

In this section, we discuss four of the major challenges that 
affect building an effective quality monitoring model in 
MMS. The first is the curse of dimension, which can be 
handled by feature selection and extraction techniques. The 
second is the insufficient instances or samples of minority 
(defective) class samples which can be handled by using re-
sampling techniques. The third is the appearance of missing 
data, which can be handled by using data imputation tech-
niques. The fourth is the integration between the predictive 
model and quality inspection. Other challenges such as the 
accumulative and interactive effect of different workstations 
in the manufacturing chain and the changes in data charac-
teristics and appearance of new patterns will be discussed 
in the methodology section.
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Feature selection and extraction

Feature selection is the process of determining a subset of 
variables or features that are most relevant to the quality pre-
diction model. It simplifies the learning process, improves 
model performance, reduces computational time, and 
avoids overfitting. Many methods are used for feature selec-
tion, such as expert-based method, filter approach, wrapper 
approach, and embedded method (Colaco et al., 2019).

In filter methods, features are selected by calculating a 
score for each feature using a specific statistical criterion. 
Filter methods do not depend on a specific machine learning 
algorithm. Filter methods include Fisher discriminant met-
ric, ANOVA, information gain and correlation coefficient. 
Filter methods have less computational burden compared to 
other feature selection methods, but they do not consider the 
interactions between features and have lower performance 
compared to other methods (Venkatesh & Anuradha, 2019).

Wrapper methods select a subset of features that maxi-
mize the performance of a specific learning algorithm. 
Wrapper methods include forward selection, backward 
elimination, genetic optimization and particle swarm optimi-
zation (Colaco et al., 2019). Wrapper Methods have higher 
performance than filter methods and consider the correla-
tion between features, but they have higher computational 
burden compared to other methods and risk of overfitting 
(Venkatesh & Anuradha, 2019).

Embedded methods combine the characteristics of both 
filter and wrapper approaches. The selection of the feature is 
part of the model construction. Embedded methods include 
ridge regression and LASSO regression (Tadist et al., 2019). 
Embedded methods have less computational burden com-
pared to wrapper methods and better performance than other 
methods, but they cannot work well for high dimensional 
data and have lower generalizability.

Re‑sampling methods

The insufficient samples of defective (nonconforming) prod-
ucts constitute a major challenge while building quality 
classification models. Since failure instances do not happen 
frequently, the number of positive class samples (noncon-
forming products) is smaller than the negative class sam-
ples (non-defective products). When a large majority or a 
small minority exists, the learning model will be forced to 
prefer the majority voice of the data to attain higher accu-
racy — This problem is called the imbalance problem —. 
Re-sampling methods can be used to rebalance the dataset. 
Re-sampling techniques are classified into oversampling and 
undersampling.

Undersampling techniques randomly remove sam-
ples from the majority class (conforming) samples, while 
oversampling increases the number of minority class 

(nonconforming) samples so that the two classes become 
containing the same number of samples (Kotsiantis et al., 
2006). The oversampling methods usually perform better 
than undersampling as removing samples increases the risk 
of losing useful information. However, the oversampling 
methods have higher learning time and risk of overfitting. 
Oversampling methods include techniques such as the syn-
thetic minority over-sampling technique (SMOTE) (Chawla, 
2009), duplicating the minor class samples and adaptive syn-
thetic (ADASYN) (He et al., 2008).

Missing value imputation methods

Missing data is a common problem in quality monitor-
ing due to many causes, such as the low measurement and 
inspection rate due to limited capacity and time-consuming 
of the measuring equipment, and the errors in machines 
or measurement equipment (Yugma et al., 2015). Missing 
data can cause bias in estimating model parameters and 
loss of information (Lee et al., 2019). There are three types 
of mechanisms in which missing values can occur. Miss-
ing completely at random (MCAR) where the probability 
of missing values of a variable is unrelated to the values 
of the variable itself and other measured variables — do 
not depend on unobserved or observed data —. Missing at 
random (MAR), Where the missing values are unrelated to 
unobserved data but related to other measured or observed 
variables. MAR is actually not random but it describes a 
systematic missing values where missing values is correlated 
with other associated variables in the analysis. Missing not 
at random (MNAR) when the probability of missing values 
in a variable is depending on the variable itself (Baraldi & 
Enders, 2010).

Imputing missing data include deletion method, Single 
imputation methods such as mean, stochastic regression 
imputation and regression imputation, and Multiple imputa-
tion techniques such as Markov chain Monte Carlo (MCMC) 
method and expectation maximization (EM) algorithm 
(Nakagawa, 2015).

Implementation of the predictive model in quality 
monitoring

Most of the quality prediction models in the literature 
(Sect. 2.2) show promising results in terms of model per-
formance; however, the integration between the prediction 
models and the quality inspection and planning or the imple-
mentation in quality activities was rarely found. Schmitt 
et al. (2020) introduced a technical implementation of pre-
dictive models in quality inspection. They found that using 
predictive models in the quality inspection had significantly 
reduced inspection volumes. Kang and Kang (2017) had 
introduced intelligent virtual metrology (VM) system based 
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on adaptive updates using an ensemble ANN to reduce the 
metrology cost and achieve superior performance.

Quality monitoring framework

In this section, we introduce a smart real-time quality moni-
toring system that integrates supervised and unsupervised 
ML techniques to predict the quality deviations for complex 
multistage manufacturing processes and introduce a hybrid 
quality inspection strategy based on predictive models and 
physical inspections to reduce inspection costs and time and 
achieve zero defect manufacturing. The proposed framework 
consists of two primary phases: Phase I is the data preproc-
essing and model building phase; phase II is monitoring the 
products, implementing the hybrid quality inspection strat-
egy and updating the monitoring model.

Phase I: Data gathering and model building

Phase I aims to build a quality monitoring and inspection 
system capable of overcoming the first five challenges while 
building the quality monitoring model for MMS. This phase 
consists of several procedures related to data gathering and 
preprocessing, building the quality prediction model with 
considering relationships between workstations in MMS and 
the unbalanced nature of the manufacturing process, and 
determining the most important variables and significant 
manufacturing stages in the manufacturing chain.

Data gathering

Smart sensors and other data collection techniques gather 
data and measurements from different sources along the 
manufacturing chain. The gathered data includes mainte-
nance records, state variables, process parameters, inter-
mediate product characteristics, final product quality and 
environmental sensing variables (Turetskyy et al., 2020). 
The quality-related data can be determined based on expert 
knowledge and previous manufacturing experiment.

Data preprocessing

The manufacturing environment contains many anomaly 
events, outliers, noises, missing and inconsistency values. 
Raw data needs to be preprocessed carefully to remove 
misleading, redundant and inconsistent information. Data 
Preprocessing improves the quality of the gathered raw data 
and enhances model performance (Xu et al., 2015). Data 
preprocessing involves data cleaning and transformation.

The first step of data cleaning is to remove outliers and 
gross errors as they mislead and disturb the training process 
and reduce model performance. 3σ rule or IQR (interquartile 

range) can be used to remove outliers and gross errors. Sec-
ondly, variables and instances that contain missing values 
above a tuned thresholds P1 and P2 needed to be removed. 
Third, the remainder missing values are substituted by attrib-
ute mean as attribute mean has low computational effort and 
can express initial estimation of the model performance and 
K-NN imputation for the best model as K-NN can deal with 
the three mechanisms of missing data and has an appropriate 
performance. Fourth, columns with constant and duplicated 
values needed to be removed as they do not contain any 
distinctive information (Xu et al., 2015). After cleaning the 
dataset, data transformation is required to adjust the scale 
difference between the manufacturing variables. Data are 
normalized between zero and one using Eq. (1). Finally, the 
preprocessed dataset is split into 80% and 20% for training 
and testing.

where  Xmin and  Xmax are minimum and maximum values 
for each variable.

Feature selection

In this research, The AUC-based permutation feature impor-
tance measure is used, as it is more robust against imbal-
anced datasets (Janitza et al., 2013). The AUC score of the 
out-of-bag (OOB) instances is calculated before and after 
randomly shuffling the values of a predictor variable. The 
main idea of this method is that if there is an association 
between a variable and the response, breaking this associa-
tion by randomly shuffling the values of this variable will 
influence the performance of the model. The variable impor-
tance scores can be calculated by averaging the difference in 
AUC score over the number of trees in the forest, as shown 
in Eq. 2 (Janitza et al., 2013).

where VIAUC
j

 is the variable importance, ntree is the number 
of trees in the forest.AUCij and AUCiĵ are the area under the 
ROC calculated from the OBB instances in the  ith tree before 
and after randomly permuting variable j.

Tackling the imbalance problem

Synthetic Minority Over-sampling Technique (SMOTE) is 
used in this research to rebalance the training dataset as it has 
lower computational effort, especially for high dimensional 
data, and has appropriate performance (Lee et al., 2019). 
SMOTE increases the number of defective class samples and 

(1)Y =
X − Xmin

Xmax − Xmin

(2)VIAUC
j

=
1

ntree

ntree
∑

i=1

(

AUCij − AUCiĵ

)
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makes them equal to the number of non-defective class sam-
ples by generating new samples using the K-NN concepts 
(Chawla, 2009). SMOTE can be summarized as for a sample 
x in the minority (defective) class, compute the Euclidean 
distance between this sample and all samples in the minority 
class, then list it K nearest neighbors based on the calculated 
distance. Based on the required percentage of oversampling, 
random samples  zi (i = 1 to k) from its K nearest neighbors 
are selected and for each  zi a new sample S is synthesized 
using the Eq. (3). the previous steps are repeated until the 
balancing is achieved.

where a is a random variable between [0,1].

Cascade qsuality model

In MMS, the quality of the produced product from a manu-
facturing stage is influenced by the manufacturing variables 
of this stage and the quality characteristics of the produced 
product from the former stage; thus, each manufacturing 
stage affects the final quality of the products (Arif et al., 
2013a, b). Partial and total quality principles needed to be 
introduced to represent the accumulation of variations and 
the relations between different manufacturing stages along 
the manufacturing chain (Zhai et al., 2004). Cascade Qual-
ity Prediction Method (CQPM) (Ge et al., 2017; Kim et al., 
2012) is used to describe and analyze the relationships in 
MMS. There are three kinds of relationships in MMS:  R1 
is the relationship between manufacturing variables in each 
manufacturing stage,  R2 is the relationship between different 
manufacturing stages in the MMS, and  R3 is the relation-
ship between manufacturing variables and the final product 

(3)S = x + a
(

zi − x
)

quality. Figure 1 shows the relationships in MMS and partial 
and total quality concepts.

Based on the CQPM approach (Arif et al., 2013a, b), it 
was assumed that the manufacturing chain consists of M 
manufacturing stages. Each stage has several manufacturing 
operation variables Xs and each intermediate product has 
many quality characteristics Ts. PCA was used to transform 
the intercorrelated and latent manufacturing variables into a 
new set of dimensions (Principal components) that carry the 
characteristics of MMS. Equation 4 shows how the interac-
tion between manufacturing variables (Xj,k) and the quality 
characteristics T(j−1),k from the former workstation can influ-
ence the quality of intermediate products, which expresses 
 R1 and  R2. Equation 5 shows how the quality characteristics 
from the final manufacturing stage (TM,s) influence the qual-
ity state of the final product quality Q, which expresses R3.

where: Xj,k is the kth manufacturing variable in jth manu-
facturing stage (j = 1, 2, …., M and K = 1, 2, …., p); Tj,s is 
the sth quality characteristic of the intermediate product pro-
duced from the jth manufacturing stage (s = 1, 2, …., r); as,k 
is the amount of contribution of Xj,k to Tj,s (the eigenvector 
of the covariance matrix in PCA) and Q is the quality level 
of the final product.

Building the quality prediction model

The selection of an adequate supervised ML algorithm at 
the beginning cannot be achieved in a general way. Different 

(4)Tj,s = f
(

T(j−1),s,Xj,k

)

=

p(j−1)
∑

k=1

as,kT(j−1),s +

pj
∑

k=1

as,kXj,k

(5)Q = f
(

TM,s

)

Fig. 1  Relationships in MMS and partial and total quality principals
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classification algorithms should be trained and evaluated for 
each application to choose the best performing one (Lee & 
Shin, 2020). The models’ preselection should be based on 
selected criteria, e.g., speed, complexity and interpretability, 
or the experience of data scientists and results from similar 
or previous projects. Several classification algorithms such 
as SVM, K-NN, naïve Bayes ANN, logistic regression and 
random forest should be applied and evaluated in order to 
select the best algorithm for the quality prediction. K Fold 
cross-validation and grid search were used to tune the hyper-
parameters of the predictive models and to avoid overfitting 
(Raschka, 2018).

Different performance metrics such as accuracy, specificity, 
sensitivity, precision, negative predictive value and AUC can 
be used to evaluate and compare the classification models. 
These metrics can be calculated from the confusion matrix, 
as shown in Fig. 2 and calculated by using equations from 6 
to 10 (Tharwat, 2018).

Two types of errors occur during the prediction and inspec-
tion process. Type Ӏ error occurs when the prediction model 
or the inspection process wrongly rejects a conforming (non-
defective) product. In contrast, Type II error occurs when the 
prediction model or the inspection process wrongly accepts a 
nonconforming (defective) product (Sarkar & Saren, 2016). 
False positive (FP) and False negative (FN) that are shown 
in the confusion matrix (Fig. 2) represent Type Ӏ and Type 
II errors, respectively. Type II error is more serious for most 
companies as its effects are touched directly by customers, 
leading to losing customers’ trust.

(6)Accuracy =
TP + TN

TP + FP + TN + FN

(7)specificity =
TN

TN + FP

(8)Sensitivity =
TP

TP + FN

Stage selection

In MMS, not all the manufacturing stages have an equal 
influence on the final product quality. So, it is suggested to 
determine the most influencing manufacturing stages on the 
final product quality then build quality checkpoints at these 
critical stages to predict the likelihood of producing non-
defective products instead of checking and predicting the 
quality only at the final manufacturing stages. The conven-
tional methods for identifying the critical stages are based 
on the knowledge and experience of engineers. Currently, 
the manufacturing chain can contain more than 500 steps 
(e.g., semiconductor manufacturing) (Lee et al., 2019). In 
this research, the critical stages were identified by summing 
the variables’ importance values computed from the AUC-
based permutation feature importance for each manufactur-
ing stage. After that, a significant level was set to identify the 
significant stages. Identifying the critical steps can help to 
enhance the production yield and reduce waste of resources 
and time.

Phase II: Process monitoring and implementing 
the hybrid quality inspection strategy

This phase aims to monitor the product quality along the 
manufacturing chain, make informed decisions about the 
product’s quality in real-time and cope with the last two 
challenges that affect building an effective quality moni-
toring model in MMS. This phase consists of three steps: 
monitoring the intermediate product quality at the critical 
manufacturing stages and final product quality at the end of 
the production line in order to take appropriate actions to 
save resources; implementing the quality prediction in qual-
ity inspection and planning through hybrid quality inspec-
tion strategy; updating the monitoring model to cover any 
data characteristics change.

Online quality monitoring

CQPM is implemented to the manufacturing variables in 
each manufacturing stage and quality characteristics from 
the former stage. When the first important stage is attained, 
the first prediction model will give an initial estimation of 
the final product quality. If the likelihood of prediction is -1 
(conforming product), the manufacturing process continues 
until the following significant stage is attained. Otherwise, 

(9)Precision =
TP

TP + FP

(10)Negative prediction value =
TN

TN + FN

Fig. 2  Confusion matrix
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the process engineer or an automated adjustment system can 
take preemptive action to save time and resources or adjust 
the manufacturing parameters in the following stages so that 
the intermediate product may have a chance of being good 
at the final stage. When the final stage is reached, the final 
product quality can be estimated.

Hybrid quality inspection strategy

When a product is produced by certain manufacturing equip-
ment, a small number of products are inspected according 
to the quality inspection protocol using destructive or non-
destructive inspection (Filz et al., 2020; Foumani & Tavak-
koli-Moghaddam, 2019; Li et al., 2018; Mineo et al., 2016). 
This inspection approach assumes that the manufacturing 
conditions of each produced product are the same and the 
manufacturing errors between samples are identically dis-
tributed and statistically independent (Lee, 2020). Due to 
the high number of variables that needed to be monitored 
and controlled in MMS, abnormalities usually appear. So, 
the sampling approach may not fully reflect the actual qual-
ity, especially in complex manufacturing processes. As the 
final product’s quality state based on the prediction model 
only requires a too high confident model that exceeds or at 
least reaches the conventional inspection level, the hybrid 
inspection strategy seems promising for the MMS. Thereby, 
the inspection strategy will be given by the combination of 
conventional inspection and quality prediction models. It is 
suggested to apply physical inspections only on the products 
predicted to be defective by the predictive model. The hybrid 
inspection strategy requires tuning the prediction model with 
respect to zero false negatives (FN) to reduce Type II error. 
The reason for tuning the model with respect to zero FN is 
that the risk and cost of Type II error are usually higher than 
Type I error (Sarkar & Saren, 2016). This promising strategy 
will save inspection time, cost and ensure the consistency of 
the output quality.

Model updasting

The monitoring model should be updated periodically to 
handle any new patterns and any changes in the data char-
acteristics (Hirai & Kano, 2015). The changes occur due to 
some expected and unexpected events such as maintenance, 
change in loads and internal and external disturbances 
(Kang & Kang, 2017). These changes make monitoring 
models unreliable. So the quality monitoring model should 
be updated to reduce the chance of performance degrada-
tion and misclassification. The updating of the model can 
be made after some known events such as maintenance; 
however, the change can sometimes happen due to some 
unknown events. So, it is suggested to use a critical thresh-
old to give a warning when the performance decreases and 

the misclassification increases. Hence, the quality monitor-
ing model can be updated by retraining the model using the 
newly collected data from the physically inspected products 
plus the initial dataset. The quality monitoring system is 
summarized in Fig. 3.

Cases study

A complex semiconductor manufacturing dataset (called 
SECOM) was used to verify the proposed framework 
(McCann & Johnston, 2008). This dataset contains 1567 
samples of semiconductor wafers and 590 manufacturing 
variables gathered by different sensors along the semicon-
ductor wafer production line. Each sample has one qual-
ity index, which is labeled with -1 for non-defective wafers 
and 1 for defective wafers; each sample is associated with 
a particular timestamp. The dataset is highly imbalanced 
as there are 104 defective wafers and 1463 non-defective 
wafers (1:14 approximate ratio between the two classes). The 
dataset contains 41,951 (4.6%) missing values distributed 
with different percentages in manufacturing variables and 
116 irrelevant and constant values variables.

The dataset was divided into five groups; each group rep-
resents a workstation to emulate the MMS scenario. Two 
quality monitoring systems were built based on the pro-
posed framework. The first system is based on the suggested 
framework and the second system is based on single-point 
approaches where the whole dataset was treated as a single 
point. The two systems were compared using different met-
rics to evaluate the capability of the suggested system for 
quality monitoring in MMS. The most influencing stages 
were identified and used as quality checkpoints. Also, the 
hybrid quality inspection strategy was successfully imple-
mented. All the computations were conducted by using R 
Studio (RStudion, 2020).

Building the quality monitoring model

To handle this complex dataset, first, the data was cleaned 
by removing variables and samples containing a percent-
age of missing values higher than thresholds P1 = 40% and 
P2 = 25%. Some papers suggested using a threshold of 37% 
or 55% for the same dataset (Munirathinam & Ramadoss, 
2016; Salem et al., 2018), but it was found that our thresh-
olds perform better for our proposed framework. No samples 
were removed from the dataset as the performance decreased 
when we removed instances at different thresholds. The 
Irrelevant and low variance features were removed from 
the dataset as they do not hold any distinctive information. 
Outliers and gross errors were removed using the 3σ rule as 
they reduce the model performance and increase the train-
ing time. The former steps helped to decrease the dimension 
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of data to 431 features. The rest of the missing values were 
substituted by the attribute mean for each variable. The pre-
pocessed data were normalized between zero and one using 
Eq. 1. The dataset was randomly divided into 80% and 20% 
for training and testing. The training dataset was rebalanced 
by using a re-sampling technique called SMOTE, so that 
the proportion between the defective and non-defective 
samples in the training dataset is approximately equal to 1. 
The AUC-based permutation feature importance measure 
(Janitza et al., 2013) was used to order the manufacturing 
variables based on their importance to the quality of the 
semiconductor wafers and remove variables that are less rel-
evant to the quality in order to simplify the learning process, 
reduce computational time, avoid overfitting and improve 

model performance. Figure 4 shows the performance at a 
different number of features. According to Fig. 4, the perfor-
mance increases with increasing the number of features, and 
then it decreases with a small fluctuation in performance of 
some metrics after reaching the optimum number of features. 
It was found that using the highest 65 important features 
gives the best performance in terms of sensitivity and AUC 
and an acceptable specificity value (Fig. 4). The previous 
preprocessing steps helped to reduce the dimension of data 
from 590 to 65 variables.

In order to emulate the MMS scenario, the dataset 
was divided into five groups; each group represents a 
manufacturing stage as recommended by (Kim et  al., 
2012). Figure 5 represents the 65 top selected features 

Fig. 3  summary of the Quality monitoring framework. P(Ai): Prob-
ability of producing a conforming product.  Pwi: a threshold for prob-
ability of producing a conforming product at critical manufacturing 
stages.  COPPA: the chance of process parameter adjustment in the 

following workstation to produce a good product. CQPM: Cascade 
quality prediction method.  P5: a threshold for updating the training 
dataset
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distributed over the five workstations. Each workstation’s 
accumulative and interactive effect was considered by 
applying the CQPM based on PCA to each workstation’s 
manufacturing variables and the previous workstation’s 
quality characteristics. Principal components that repre-
sent 95% of the variance for manufacturing variables of 
each manufacturing stage and quality characteristics from 
the previous stage were chosen. Table 1 shows the number 
of principal components that represent the accumulative 
effect for each workstation.

Six ML algorithms were applied, namely K-NN, Naïve 
Bayes, random forest, SVM, ANN and logistic regres-
sion, to estimate the quality of the wafers. tenfold cross-
validation and grid search were used to avert overfitting 
and for hyperparameter tuning for each ML model.

Evaluating and enhancing the capability 
of the proposed system

The suggested quality monitoring system (first system) 
was compared with the single-point approach to ensure 
the capability of the suggested system for quality monitor-
ing in MMS. The single-point approach was built on the 
same proposed framework, but instead of using CPQM, the 
whole dataset was treated as a single point. The number 
of principal components for the single point approach was 
35 and it represents 95% of the variance in data. Figure 6 
shows the comparison between the two quality monitoring 
approaches. The comparison between the two approaches 
was made using sensitivity, specificity and accuracy metrics. 
Sensitivity, specificity represents the ability to detect the 
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Fig. 4  Model performance at a different number of features

0.00

0.01

0.02

0.03

21_erutaeF
22_erutaeF
62_erutaeF
72_erutaeF
92_erutaeF
23_erutaeF Fe

at
ur
e_

57
Fe

at
ur
e_

59
Fe

at
ur
e_

60
Fe

at
ur
e_

65
Fe

at
ur
e_

66
Fe

at
ur
e_

77
Fe

at
ur
e_

80
Fe

at
ur
e_

81
Fe

at
ur
e_

96
Fe

at
ur
e_

10
1

Fe
at
ur
e_

10
2

Fe
at
ur
e_

10
3

Fe
at
ur
e_

10
4

Fe
at
ur
e_

12
2

Fe
at
ur
e_

12
3

Fe
at
ur
e_

12
4

Fe
at
ur
e_

12
5

Fe
at
ur
e_

12
6

Fe
at
ur
e_

12
8

Fe
at
ur
e_

13
0

Fe
at
ur
e_

13
1

Fe
at
ur
e_

14
8

Fe
at
ur
e_

15
3

Fe
at
ur
e_

17
6

Fe
at
ur
e_

18
1

Fe
at
ur
e_

18
4

Fe
at
ur
e_

19
8

Fe
at
ur
e_

20
1

Fe
at
ur
e_

20
6

Fe
at
ur
e_

22
0

Fe
at
ur
e_

24
0

Fe
at
ur
e_

28
2

Fe
at
ur
e_

28
3

Fe
at
ur
e_

28
8

Fe
at
ur
e_

29
1

Fe
at
ur
e_

29
9

Fe
at
ur
e_

31
1

Fe
at
ur
e_

31
7

Fe
at
ur
e_

32
0

Fe
at
ur
e_

33
4

Fe
at
ur
e_

33
7

Fe
at
ur
e_

34
2

Fe
at
ur
e_

34
9

Fe
at
ur
e_

35
8

Fe
at
ur
e_

37
8

Fe
at
ur
e_

41
8

Fe
at
ur
e_

42
1

Fe
at
ur
e_

42
4

Fe
at
ur
e_

42
6

Fe
at
ur
e_

44
7

Fe
at
ur
e_

45
3

Fe
at
ur
e_

45
6

Fe
at
ur
e_

46
9

Fe
at
ur
e_

47
0

Fe
at
ur
e_

47
8

Fe
at
ur
e_

48
6

Fe
at
ur
e_

49
2

Fe
at
ur
e_

51
1

Fe
at
ur
e_

58
3

Predictors

ecnatrop
mI

Importance of predictors

Fig. 5  The distribution of the 65 top importance features over the five workstations

Table 1  Principal components that represent 95% of the variance and 
the accumulative effect at each workstation

Worksta-
tion 1

Worksta-
tion 2

Worksta-
tion 3

Worksta-
tion 4

Work-
station 
5

Principal 
Com-
ponents 
(Mean 
Imputa-
tion)

9 17 23 24 26

Principal 
Com-
ponents 
(K-NN 
Imputa-
tion)

10 18 25 29 31
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defective and non-defective wafers; also, specificity can refer 
to the false alarm rate, which are essential in evaluating the 
quality monitoring processes.

It was found that using the proposed system for MMS 
performed better than using the single point approach in 
terms of accuracy, specificity and sensitivity. The average 
capability of detecting the nonconforming product for the six 
models, which can be described by sensitivity, has improved 
by 5.6%. The average false alarm rate for the six models has 
reduced by 2.7% and the average accuracy has improved by 
2.9%. The results show the ability of the proposed model 
to represent the accumulative and interactive effect of each 
manufacturing stage and the ability to enhance the quality 
monitoring in MMS.

With the focus on the quality monitoring for the first sys-
tem; accuracy, sensitivity, specificity, precision, negative 
prediction value and AUC were used to evaluate and com-
pare the performance of different quality predictive models. 
Table 2 represents the performance of classification models 
on the test set.

The random forest algorithm performed the best between 
all classification models (Table 2). With sensitivity and 

specificity of 0.952 and 0.785, respectively, most of the 
defective wafers were detected correctly with a 21.5% false 
alarm rate. ANN had the highest AUC score, but in overall, 
the random forest was the best classification algorithm as it 
has the highest sensitivity and specificity, precision and neg-
ative prediction value. The strength of the RF model comes 
from merging the idea of bagging with bootstrap samples 
and random subspace. This merging reduces and smooths 
the variance by building multiple and uncorrelated trees. 
Those trees spread potential errors, cancel them out through 
the majority voice and make the model predict results that 
are less away from the actual values.

In order to enhance the random forest model performance 
in terms of specificity and precision, K-NN was used for 
missing data imputation instead of mean imputation (García-
Laencina et al., 2010). The previous steps for the model 
building were repeated and the random forest algorithm 
was re-evaluated. The optimum number of features when 
using K-NN for missing value imputation was 70 features 
and the distribution of features along the manufacturing 
chain is shown in Fig. 7. Table 1 shows the number of prin-
cipal components that represent the accumulative effect for 
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Fig. 6  Performance of the quality monitoring models using a) single point quality monitoring approach and b) the proposed framework (first 
system)

Table 2  Performance for 
different quality monitoring 
models

Evaluation Metrics Naive Bayes K-NN RF SVM LR ANN

Accuracy 0.768 0.742 0.796 0.783 0.729 0.783
Sensitivity 0.714 0.762 0.952 0.857 0.810 0.905
Specificity 0.771 0.741 0.785 0.778 0.724 0.775
Neg Pred Value 0.974 0.977 0.996 0.987 0.981 0.991
Precision 0.183 0.174 0.241 0.217 0.173 0.224
AUC 0.747 0.794 0.849 0.796 0.802 0.873
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each workstation. Using K-NN for missing data imputation 
helped to improve specificity and precision by 2% and 1.9%; 
other metrics except sensitivity had also improved. Table 3 
shows the performance of random forest when using K-NN 
for missing value imputation.

Identifying the most influencing manufacturing 
stages

The critical stages can be identified by summing the vari-
ables’ importance values computed from the AUC-based 
permutation feature importance for each workstation, as it 
is shown in Fig. 7. A significant level of 0.2 was chosen 
to select the most critical workstation. Table 4 shows the 
importance of each workstation. Based on the significant 
level, the first and second workstations were identified as 
critical workstations. Hence, quality checkpoints were built 
at those important stages to provide an initial estimation 

about the intermediate product quality and at the final stage 
to estimate the final product quality state.

As the random forest performance was better than other 
classification algorithms, it was used to predict the likeli-
hood of producing non-defective products at the critical 
manufacturing stages and provide an initial estimation of 
the final product quality. The performance of estimating the 
final product quality of the intermediate products at the criti-
cal stages (first and second manufacturing stages) is shown 
in Table 5.

If the likelihood of prediction at critical stages (stage 
1,2) is -1 (conforming product), the manufacturing pro-
cess continues until the following significant stage is 
attained. Otherwise, the process engineer or an auto-
mated adjustment system can take preemptive actions 
to save time and resources or adjust the manufacturing 
parameters in the following stages so that the interme-
diate product may have a chance of being good at the 
final stage. The performance of all metrics at the second 
quality checkpoint increased due to the addition of more 
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Fig. 7  the distribution of the 70 top importance features over the five workstations

Table 3  Random forest 
performance after using K-NN 
for missing data imputation

Model Accuracy Sensitivity Specificity Precision Neg Pred Val AUC 

Random Forest 0.815 0.952 0.805 0.26 0.996 0.86

Table 4  The importance of each workstation

Worksta-
tion 1

Worksta-
tion 2

Worksta-
tion 3

Worksta-
tion 4

Work-
station 
5

Impact 
of each 
worksta-
tion

0.239 0.278 0.147 0.187 0.15

Table 5  Performance at significant manufacturing stages

Sig-
nificant 
stages

Accuracy Sensitiv-
ity

Specific-
ity

Neg Pred 
Value

Precision

Stage 1 0.694 0.619 0.7 0.962 0.129
Stage 2 0.723 0.762 0.72 0.977 0.163
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influencing variables from the second manufacturing 
stage to the quality characteristics from the first stage.

The hybrid quality inspection strategy

When the product reaches the final manufacturing work-
station, the hybrid inspection approach can be imple-
mented. As the negative predictive value is 0.996 as 
shown in Table 3, most of the conforming wafers (99.6% 
of the wafers) were correctly predicted by the quality pre-
diction model to be non-defective. Instead of inspecting 
a few samples of wafers from each lot according to the 
inspection protocol or inspecting all the produced wafers, 
which are time and cost consumption, or using only pre-
diction models. Only those wafers that were predicted to 
be defective will be inspected. We will suffer from false 
alarms as the precision = 0.26, which means that 26% of 
the predicted products are truly defective while the others 
are non-defective. Nevertheless, the hybrid strategy still 
has promising results as physical inspection was reduced 
by 75.2%. The inspection time and cost will significantly 
be reduced due to the reduction in inspection volume; 
also, the confidence in the quality of the produced prod-
uct will be increased.

There are some complex inspection scenarios that can 
happen in the actual manufacturing environment. One 
scenario includes the limited inspection allowance where 
products cannot be reworked for an infinite number of 
times until it succeeds, inspection process with decreas-
ing failure rate and limited inspection time. We refer the 
readers to Foumani et al. (2020) and Rezaei-Malek et al. 
(2019) for more about those complex scenarios.

The training dataset should be retrained and updated 
periodically to handle any new patterns and any change 
in data characteristics to reduce the chance of perfor-
mance degradation and misclassification. So, it is sug-
gested to use a critical threshold based on the precision or 
false alarm rate to give a warning when the performance 
decreases and the misclassification increases. Hence, the 
quality monitoring model can be updated by retraining the 
model using the newly collected data from the physically 
inspected products plus the initial dataset.

Ablation study

We implemented an ablation study on the proposed frame-
work to identify the contribution of different steps and com-
ponents to the overall performance (Lipton & Steinhardt, 
2019). The ablation study was performed using the random 
forest algorithm because its performance was better than 
the other classification algorithms. Three models were con-
ducted based on the proposed framework; the first model 
was constructed by using all pre-processed features without 
considering the problem of high dimensional data (except 
the feature selection step). The second model was built with-
out balancing the training dataset or without considering the 
imbalanced nature of the manufacturing processes (except 
the resampling step). The third model was constructed with-
out CQPM. In order to have a fair comparison, the same 
steps for model building and evaluation (in phase I) were 
used for the three models. Table 6 shows the results of the 
ablation study on the random forest algorithm.

It can be observed that removing one of the three previ-
ous steps causes degradation of the model performance. For 
the first model, sensitivity has reduced by 28.5% and speci-
ficity has not changed. For the second model, sensitivity 
and specificity have reduced by 28.5% and 15.5%, respec-
tively, which was the highest performance degradation. The 
sensitivity has not changed for the third model, while the 
specificity has decreased by 6.8%. From the ablation study, 
we concluded that using the full model would be better for 
quality monitoring in MMS.

Limitation of the study

In this study, it was assumed that the manufacturing chain 
consists of five workstations. However, In the real-world, the 
semiconductor manufacturing process consists of hundreds 
of steps to produce a wafer. This requires enormous data 
and high computational effort. In such a case, the quality 
monitoring model can be built by using the most important 
stages (Amini & Chang, 2020; Lee et al., 2019). Using the 
most important stages may cause losing some information 
that may be related to the final product quality. However, 
this can reduce computational time and effort. Also, in this 
research, we deal with quantitative data. However, The data 
can be gathered from different sources with different types 
(e.g. text data from manual inspections). So, various data 

Table 6  Ablation study on the 
proposed framework

Models Accuracy Sensitivity Specificity Neg Pred Value Precision AUC 

Without feature selection 0.799 0.667 0.808 0.971 0.2 0.741
Without resampling 0.656 0.667 0.655 0.965 0.122 0.747
Without CQPM 0.748 0.905 0.737 0.991 0.198 0.814
Full Model 0.815 0.952 0.805 0.996 0.26 0.86
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types should be considered, e.g., text mining methods for 
text data.

The effect of the suggested quality monitoring and inspec-
tion model on time, resources and cost-saving have not been 
evaluated as a secondary dataset was used. To overcome this 
limitation, a real case study can be used in the future. The 
optimum time to update the training data before the per-
formance of the prediction degradation reaches the defined 
threshold needs more investigation and study.

Conclusion and future work

This research introduces a smart real-time quality monitor-
ing and inspection framework to predict and determine the 
quality deviations for complex and multistage manufacturing 
processes as early as possible. The proposed framework con-
sists of two primary phases: Phase I is the data preprocessing 
and model building phase, which includes data gathering 
and preprocessing, feature selection, building the quality 
prediction model considering the accumulative effects of 
workstations and identifying the critical stage to the final 
product, while phase II includes monitoring products qual-
ity, implementing the hybrid quality strategy based on the 
prediction model and the physical quality inspection and 
updating the quality monitoring model to handle any new 
patterns to decrease the chance of misclassification.

The proposed framework was verified using a complex 
semiconductor manufacturing dataset. The quality monitor-
ing model based on the proposed system and single-point 
approach was compared. The results show the ability of 
the proposed framework to enhance the quality monitoring 
performance in the multistage manufacturing processes. 
The average performance of the six classification models 
in terms of specificity and sensitivity has increased by 2.7% 
and 5.6%, respectively. The random forest algorithm per-
formed the best between all classification model models with 
95.2% sensitivity and 80.5% after using K-NN for missing 
value imputation. Stages 1 and 2 were identified as the most 
influencing stages on the final product quality and were used 
as quality checkpoints to provide an initial estimation of the 
final product quality. The hybrid quality inspection strategy 
based on predictive models and physical inspection is imple-
mented when the product reaches the final workstation. It 
shows promising results in reducing inspection volume by 
75.2%, also the inspection cost and time will probably be 
decreased.

There is a direct relation between inspection volume, 
cost, and time. The testing operation and physical metrol-
ogy operations are usually expensive and time consuming, 
especially in some applications such as semiconductor man-
ufacturing processes and steel production processes. Reduc-
ing the inspection volume will directly reduce both testing 

operation and physical metrology operations cost and time, 
which will lead to reducing both inspection cost and time.

For future work, we plan to use more advanced data min-
ing and preprocessing techniques to achieve nearly 100% 
negative predictive value, reduce the false alarm and the 
useless inspection of conforming products. We also plan to 
implement the proposed framework into a real case study to 
measure the system’s impact on resources, cost, and time-
saving. Finally, some challenges, such as model reliability, 
updating and the initial estimation of product quality, needed 
to be deeply investigated.
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