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Abstract
Alongwith the coming of industry 4.0 era, industrial internet of things (IIoT) plays a vital role in advancedmanufacturing. It can
not only connect all equipment and applications in manufacturing processes closely, but also provide oceans of sensor data for
real-time work-in-process monitoring. Considering the corresponding abnormalities existing in these sensor data sequences,
how to effectively implement temporal anomaly detection is of great significance for smart manufacturing. Therefore, in
this paper, we proposed a novel time series anomaly detection method, which can effectively recognize corresponding
abnormalities within the given time series sequences by standing on the hierarchical temporal representation. Extensive
comparison experiments on the benchmark datasets have been conducted to demonstrate the superiority of our method in
term of detection accuracy and efficiency on IIOT-enabled manufacturing.

Keywords Advanced manufacturing · Temporal representation · Anomaly detection

Introduction

Along with the coming of industry 4.0 era, the modern
manufacturing goes beyond the traditional assembly but
rather strives to adopt some new enabling technologies (e.g.,
Internet of Things, Cyber-Physics System, Big Data Analyt-
ics, and Cloud Computing) to realize smart manufacturing.
Specially, one critical enabling technology for smart manu-
facturing is the Industrial Internet of Things (IIoT). It can not
only connect all equipment and applications in manufactur-
ing processes closely for dynamic cooperative controlling,
but also provide vital data-driven innovations for promoting
manufacturing performance (Yang et al. 2019; Cheng et al.
2020).

Taking the assembly integration test, dubbed as AIT, on
engine manufacturing in Fig. 1 as an example, AIT contains
different processing stages. Each stage performs independent
assembly and testing, and then these assembled components
in the current stage are transferred to the next stage for
corresponding processing. In other words, AIT closely con-
nects the production processes of different stages to achieve
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overall assembly and performance controlling. To ensure the
processing stability at different stages and the reliability of
overall assembly, AIT utilizes some pervasive sensing tech-
nologies and devices, such as radio frequency identification
(RFID), sensor network, ultra wide band, and etc, to pro-
duce oceans of sensor data for real-time work-in-process
monitoring and controlling. As illustrated in Fig. 1, these
sensor data are collected in the temporal order, expressed
as T = {< v1, t1 >, . . . , < vi , ti > . . . ,< vn, tn >},
where element < vi , ti > indicates that the received value
vi at the time ti , with the time strictly increasing. Obviously,
these time series sensor data reflect the real-time process-
ing status of specific components in different stages. More
importantly, there are corresponding abnormalities in these
sequences, revealing specific defects in the components.
Therefore, accurate and efficient anomaly detection is not
only the basis for avoiding assembly risks, but also of great
significance for optimizing manufacturing process (Sellami
et al. 2020).

Towards this end, in this paper,we concentrate on anomaly
detection on time series, which generally have large volume,
high dimensionality, real-time generation/updating features,
thus dubbed as time series in what follows. Time series
anomaly detection, aiming for identifying unexpected obser-
vations within the given time series, attracting great interest
from both industry and academia over the last decade (Huang
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Fig. 1 Schematic illustration of
time series sensor data involving
anomalies in AIT
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Fig. 2 Illustration on the defects of two existing methods

et al. 2020;Hsu et al. 2021;Dong et al. 2019; Pang et al. 2018;
Abdulla and Hashimy 2018; Xue et al. 2018).

Considering the large amount, high dimensional and con-
tinuous accumulating features of time series, it is incapable
for anomalydetectiondirectly on the raw time series (Huet al.
2019, 2020a, b). Therefore, Keogh et al. (2006) proposed
a symbolic aggregate approximation (SAX) representation
based method for anomaly detection, dubbed as SAX–AD in
this paper. This method first divides the given time series into
a series of sequences (segments) with equal length, and then
it transforms the mean values into the corresponding SAX
representation set for all the sequences to further implement
anomaly sequence detection. Considering that only adopting
mean value based symbolic representationmay cause the loss
of key information to affect the final detection accuracy, Ren
et al. (2018) proposed an amplitude domain division based
Piecewise Aggregate Approximation method for anomaly
detection, dubbed as APAA–AD in this paper. Compared
to SAX–AD, on the one hand APAA–AD directly uses
the real mean values rather than value-transformed symbols
to complete representation, thus reducing the quantization
error; on the other hand, APAA–AD further subdivides all

the sequences into equal size subsections according to the
oscillation of amplitude domain to implement fine-grained
representation, while improving the detection accuracy.

To make our point more clear, we take parts of momen-
tum wheel (MW) time series data from aircraft industry,
as an example. In Fig. 2a, two time series Q and C are
divided into 4 equal-length sequences and further repre-
sented into the exact same results by SAX–AD, i.e. SRQ =
SQC = {a, a, b, c}, thus fails to effectively identify these
two different sequences. Conversely, with the amplitude
domain division strategy, APAA–AD can represent these
two sequences as SR′

Q = {−1.29,−0.23, 0.57, 1.95} and
SR′

C = {−2.35,−0.63, 0.60, 2.21} respectively, and distin-
guish them from each other effectively. AlthoughAPAA–AD
does improve the detection accuracy to some extent, it only
focuses on amplitude domain oscillation based represen-
tation, which cannot comprehensively identify abnormal
sequences from their amplitude and temporal features, and
thus fails to further improve detection performance. As
shown in Fig. 2b, two time series are represented into the
exact same results by APAA–AD, i.e. SRQ = SQC =
{−2.17,−0.64, 1.12, 2.66}, in other words, only rely on the
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amplitude oscillation trend for representation may result in
missing temporal information, and hence fails to detect the
corresponding anomaly sequences.

Motivated by the above analyses, we presented a novel
hierarchical representation for anomaly detection, dubbed as
HR–AD. Compared with other anomaly sequence detection
methods, HR–AD not only pays close attention to the signifi-
cant changes of time series in the amplitude domain, but also
keeps a watchful eye on the corresponding variations in the
hierarchical representation domain. Therefore, all anomaly
sequences can be detected effectively through multi-domain
representation based anomaly score calculation. The main
contributions of this work are three-fold:

1. We proposed a novel time series hierarchical repre-
sentation, which can present the significant amplitude
and temporal features of time series, by standing on a
multi-domain view, to provide more differentiable repre-
sentation.

2. We developed an effective anomaly detection method,
which comprehensively measures the corresponding
features from multi-domain space, while enhancing
anomaly recognition capability.

3. We performed extensive experiments on benchmark
datasets, to justify the superiority of our method on IIOT-
enabled manufacturing.

Related work

For a given time series, anomaly detection focuses on find-
ing some observations, which are maximally different to the
rest part of time series (Keogh et al. 2006). According to
the detailed introduction on outlier detection by Gupta et al.
(2014), anomaly detection within a given time series can be
categorized as follows.

Anomaly point detection

Anomaly point detection aims to identify outlier data points
within a given time series. Helman and Bhangoo (1997) uti-
lized a normal data model to build histograms for anomaly
detection, which can be applied to many applications, such
as computer security, biomedical testing, networks. Yaman-
ishi et al. (2004) proposed a smartsifter from the viewport
of statistical learning theory to detect network intrusion.
Tsay et al. (2000) proposed a vector autoregressive inte-
grated moving-average model to detect anomalies. Although
the above statistical model based methods do have certain
effectiveness. The main obstacle of them are how to set cor-
responding appropriate models for different types of time
series. In other words, for different data types, the corre-
sponding data distribution is diverse, especially facing with

the high-dimensional time series, the appropriate data dis-
tribution is difficult to estimate. Considering this defect,
Breunig et al. (2000) introduced a density-based anomaly
detection method, which is called the Local Outlier Fac-
tor (LOF). This method detects anomalies by comparing the
local density of each data to its neighbor local density, which
captures the relative degree of isolation. Compared to other
statistical model based methods, LOF does not need to be
restricted by the data distribution. Nevertheless, it has to cal-
culate the distance between any two objects of object set
for anomaly detection, which is not suitable for detecting
anomalies on large amount, high-dimensional time series.

Anomaly sequence detection

Anomaly sequence detection dedicates to find unusual
sequences within the given time series. The brute force solu-
tion iteratively calculates the distance of each two sequences
in the given time series, so as to find abnormal sequences
that are far away from normal sequences. This method is
simple and intuitive. However, due to the large overhead
of traversal calculation, the processing efficiency of brute
force method is not ideal. Considering the above defects,
Several faster variations have been proposed to improve
the efficiency of detecting anomalies. Pruning based detec-
tion methods are proposed to improve the corresponding
processing efficiency. Keogh et al. (2005) proposed a heuris-
tic reordering of candidate subsequences to accelerate the
process of detection, called HOT SAX. HOT SAX first
transforms the given time series into symbolic words, and
then embeds all the symbols into an augmented tree, whose
leaves contain a linked list index for corresponding symbolic
words. With the help of this index structure, heuristic sorting
and pruning can be applied in both outer and inner loops,
which accomplished three to four order of magnitude of
speed-up compared with the brute force approach. Wei et al.
(2006) utilized locality-sensitive hashing to estimate simi-
larity between sequences more efficiently. Considering that
Piecewise Linear Representation (PLR) (Keogh and Smyth
1997; Zhan et al. 2020) can preserves the trend features of
time series. Leng et al. (2013) proposed an anomaly detection
algorithm based on PLR representation and density-based
function (LOF). However, finding appropriate segmenting
points for PLR is not a trivial task (Guerrero et al. 2010) and
the corresponding search efficiency is relatively low.Accord-
ingly, Kha and Anh (2015) proposed a novel LOF based
anomaly detectionmethod,which utilized cluster-basedLOF
to improve detection accuracy. However, the corresponding
clustering operation is also affect the efficiency, especially
when facing large volume of time series, the performance of
this method decreases sharply. To address this defect, Ren
et al. (2018) proposed aamplitude domain division based
Piecewise Aggregate Approximation for anomaly detection
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(APAA–AD). It directly uses the real mean values rather
than value-transformed symbols to complete representation,
thus reducing the quantization error. Besides, the processing
efficiency of APAA–AD is also improved while reducing
the data dimension. Although APAA–AD does improve
the detection performance, it only focuses on amplitude
domain oscillation based representation, which cannot com-
prehensively identify abnormal sequences to further improve
detection accuracy.

After reviewing the previous work on time series anomaly
detection, we got two inspirations as follows. On the one
hand, time series representation, which can reduce the origi-
nal dimensionality while retaining the important features of
the raw time series, is the basis of anomaly detection. On
the other hand, an effective abnormal measurement is the
key to anomaly detection. For such reasons, in this paper, we
aim to not only comprehensively represent the correspond-
ing sequences within the given time series by standing on a
multi-domain view, but also propose an efficient abnormal
evaluation strategy for anomaly detection.

Preliminaries

Definition 1 (Time Series) For a given time series T with n
data points could be expressed as

T = {< v1, t1 >, . . . , < vi , ti > . . . ,< vn, tn >}, (1)

Thereafter, we utilize the traditional sliding window (SW)
approach (Keogh et al. 2001; Luo et al. 2020) to produce
temporal continuous sequences from T .

Definition 2 (Sequence Set) Supposing the length of SW is
k (k < n), T is divided into L(�n/k�) sequences to form the
sequence set (˜S), expressed as

˜S = {S1, S2, · · · , Sl , · · · , SL}, (2)

where the l-th sequence in Set , can be indicated as

Sl = {vl×k, vl×k+1, · · · , vl×k+k−1}, (3)

To detect all the anomaly sequences in Set , we propose a
hierarchical representation to project all the sequences into
a series of multi-domain representation space. Related defi-
nitions are given as follows.

Definition 3 (Hierarchical Representation) For the lth
sequence Sl ∈ Set , it is projected into D hierarchical multi-
domain space to transform corresponding representations,
expressed as

Rl = {Υ 1
l , · · · , Υ d

l , · · · , Υ D
l } (4)

where the dth Υ d
l is evenly subdivided into λ(2d) regions,

expressed as

Υ d
l =

⎡

⎢
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⎢

⎢
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rλ,1 · · · rλ, j · · · rλ,λ

...
. . .

...
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, (5)

where 1 ≤ j ≤ λ (2d), each element r j, j ∈ Υ d
l contains the

amplitude value m j, j and the temporal ratio u j, j , expressed
as r j, j = {m j, j , u j, j }. Specially, m j, j is the mean value of
the corresponding subsequences with the ( j, j)th region, and
u j, j denotes the ratio of the current duration to the length of
sequence.

With the help of hierarchical representation, all the
sequences in ˜S can be represented by standing on a hierar-
chical amplitude-temporal view. Thereafter, we propose an
anomaly evaluation strategy to find the corresponding abnor-
mal sequences from ˜S, defined as follows.

Definition 4 (Anomaly Sequence) For a given sequence set
˜S, the representations of two sequences (Sp,Sq ) are Rp and
Rq , the difference between Sp and Sq can be calculated as

Dist(Sp, Sq) = ‖Rp − Rq‖ =
√

√

√

√

D
∑

d=1

(

∣
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∣Υ d
p − Υ d

q

∣

∣

∣)2, (6)

where 1 ≤ p, q ≤ L . Therefore, all the sequences in ˜S can
be evaluated in pairs to form the matrixM, expressed as
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(7)

due to the commutative law of distance calculation (i.e.,
Dist(Sp, Sq) = Dist(Sq , Sp)), M is an upper triangular
matrix. Besides, the distance between Sl and itself is 0 (i.e.,
Dist(Sl , Sl) = 0). Accordingly, the total distance from Sp
to other sequences in˜S, dubbed as anomaly score of Sp, can
be calculated as

Dl =
L

∑

j=1

(Dist(Sl , S j )), (8)
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without loss of generality, the anomaly threshold is set to ξ ,
if Dl ≥ ξ , Sl is recognized as an anomaly sequence in ˜S.

Our proposedmethod

In this section, we first introduced our proposed hierarchical
representation (HR). Subsequently, we illustrated HR based
anomaly sequence detection.

Algorithm 1 Hierarchical representation
Input: T : time series, k: length of sliding window, D: the number of

hierarchical space;
Output: ̂R: HR results of T ;
1: for each sequence Sl in ˜S do
2: vlmax = Maximum(Sl );
3: vlmin = Minimum(Sl );
4: Rl = BuildHieSpace(Sl , D, vlmax , v

l
min) //build hierarchical

multi-domain space Rl according to Definition 3.
5: for each Υ d

l in Rl do
6: r j, j = (m j, j , u j, j ); // obtain each representation r j, j according

to Definition 3.
7: insert each r j, j into Υ d

l ;
8: end for
9: complete Rl ;
10: end for
11: return ̂R; // return hierarchical representation of T .

Hierarchical representation

According to Definition 1, Definition 2, all the sequences of
time series T can be generated by sliding window. To make
our point of viewmore clearly, the part of time series is taken
as an example. In Fig. 3a, time series T with length 400 is
divided into two sequences S1 and S2.

Thereafter, accordingly to Definition 3, each sequence is
projected into D hierarchical representation space. As shown
in Fig. 3b, S1 is projected into 3 hierarchical representation
space (Υ 1

1 , Υ 2
1 , and Υ 3

1 ). The 3-th representation layer is
shown in Fig. 3c, containing 16 regions. According to Defi-
nition 3, the corresponding amplitude and temporal features
of each region can be obtained, shown in Fig. 3d.We take r4,1
within Υ 3

1 as an example, r4,1 = (0.85, 0.075) denotes the
corresponding amplitude value and temporal duration. Obvi-
ously, the original sequence S1 containing 200 data points
is transformed into R1 with 21 elements, each of which
contains two scalars (mean value, duration ratio). In other
words, with the help of HR, R1 is compressed to 10.5%
(21 ∗ 2/200 ∗ 2) compared to the original length, which is
undoubtedly reduce the overhead of storage and calculation.

The corresponding pseudo code for HR on T is shown in
Algorithm1. For each sequence Sl , the corresponding bound-
aries should be determined in the first place (line 2 − 3).

Secondly, a loop is utilized to project each sequence Sl into
the hierarchical space to generate the corresponding repre-
sentation Rl (line 4 − 9). Thirdly, similar operations are
repeated until all the sequences in ˜S have been represented
completely. Finally, time series T is represented as ̂R for
subsequent anomaly evaluation.

Algorithm 2 Hierarchical representation based anomaly
detection
Input: ̂R: HR results of T ;
Output: A: anomaly sequence set;
1: A = ∅
2: L = si zeof (̂R);
3: initializes M filled with 0;
4: for p in 1 : L do
5: for q in (p + 1) : L do
6: M[p, q] = Dist(Sp, Sq ); // calculate the difference between

Sp and Sq according to Eq. 6.
7: end for
8: end for
9: ̂D = calcD(M); // calculate the anomaly score for all the sequences

in ˜S, according to Eq. 7 and Eq. 8.
10: for l in 1 : L do
11: θl = ̂D[l];
12: if ζl > ξ then
13: insert Sl into A;
14: end if
15: end for
16: return A; // identify all the anomaly sequences according to Def-

inition 4.

HR for anomaly detection

Subsequently, according to Definition 4, the corresponding
anomaly sequences in˜S can be detected effectively. The cor-
responding pseudo code on anomaly detection is shown in
Algorithm 2. Concretely, from line 4 to line 9, the upper
triangular matrixM and all the anomaly scores can be gen-
erated. Subsequently, from line 10 to line 15, for a certain
sequence, whose anomaly score is larger than the threshold
(ξ ), is selected and inserted into anomaly sequence set A.
Finally, A containing all the anomaly sequences within T
can be obtained and Algorithm 2 ends.

Experiment and analysis

In this section, we first introduce the corresponding experi-
mental settings. And then we perform extensive comparison
experiments to evaluate the detection performance.

Experimental settings

To evaluate the performance objectively, we select 18 real
word time series datasets, including 15 open source datasets
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Fig. 3 The details of hierarchical representation on T . a Time series T is divided into 2 sequences S1, S2 by SW. b S1 is projected into 3 layers
hierarchical representation space. c Υ 3

1 is composed of 16 regions. d Each region of Υ 3
1 can be jointly represented by the corresponding amplitude

and temporal features

from UCR Time Series Archive1 and 3 our collected IIoT
time series datasets (Inflow, Outflow, and Totalflow), for
comparison experiments. On the other hand, we choose 3
highly cited anomaly detection methods SAX–AD (Keogh
et al. 2006), PAA–AD (Keogh et al. 2001) and APAA–
AD (Ren et al. 2018) as the baseline methods for the
following comparison experiments.

Moreover, to thoroughly measure our method and the
baselines, the number of actually detected anomaly sequences
(N ), and anomaly detection accuracy (Ω), are selected as the
evaluationmetrics.According toDefinition 4,Ω is calculated
as follows

Ω = N
N

, (9)

where N is the total number of anomaly sequences. Accord-
ing to Definition 4, with the fixed threshold ξ , the largerΩ is,
the stronger detection ability of corresponding method has,
and vice versa.

Comparison experiments on anomaly detection

To evaluation the anomaly detection performance of HR–
AD and three baseline methods, we perform extensive
comparison experiments on 18 time series datasets. The cor-
responding comparison results of 4 methods on 18 datasets

1 https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

are shown in Table 1. L and N denote the total number of
sequences in sequence set ˜S, and the number of abnormal
sequences in anomaly sequence set A, respectively.

According to the experimental results in Table 1, we have
three observations.

1. Compared with other competitors, SAX–AD and PAA–
AD deliver inferior detection performance, which can be
attributed their temporal representation via either mean-
value transformed symbols or roughly mean values,
and thus fail to effectively recognize the corresponding
anomaly sequences.

2. APAA–AD has relatively higher detection rate Ω than
SAX–AD and PAA–AD, which verifies that the effec-
tiveness of amplitude domain representation for anomaly
detection.

3. Compared with 3 competitors, HR–AD achieves the
highest detection rate Ω . Concretely, the average Ω of
HR–AD is at least 7%higher than that of three benchmark
methods, which demonstrates the effectiveness of our
proposed hierarchical representation for anomaly detec-
tion.

Thereafter, we perform the detection efficiency compari-
son experiments. Concretely, after completing corresponding
temporal representations, we utilize them for anomaly detec-
tion on 18 datasets. Moreover, to compare the efficiency
of these methods more clearly, we set the detection time

123

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


Journal of Intelligent Manufacturing (2021) 32:1669–1678 1675

Table 1 Comparison experiments on detection accuracy

Dataset L N SAX–AD PAA–AD APAA–AD HR–AD
N N N N

BirdChicken 512 9 5 8 8 9

CBF 128 9 8 7 7 7

Computers 720 12 9 9 8 10

Cricket_Z 300 14 9 8 9 11

FaceFour 350 15 11 11 10 13

FacesUCR 131 23 17 16 17 19

Fish 463 22 20 21 19 20

Ham 431 14 6 8 9 10

Inflow 288 2 0 0 1 2

Mallat 1024 20 15 16 17 18

Meat 448 8 4 6 8 6

OliveOil 570 15 14 11 15 12

OSULeaf 427 12 8 8 7 9

Outflow 288 2 1 2 2 2

Plane 144 32 26 24 26 28

Symbols 398 11 10 8 8 11

Totalflow 288 2 1 1 1 2

Yoga 426 14 10 12 12 12

Average Ω 73.7% 74.5% 77.9% 85.1%

Table 2 Comparison experiments on detection efficiency

Dataset SAX-AD PAA-AD APAA-AD HR-AD

BirdChicken 1.00 0.82 0.56 0.35

CBF 1.00 0.58 0.76 0.52

Computers 1.00 0.69 0.51 0.29

Cricket_Z 1.00 0.58 0.47 0.31

FaceFour 1.00 0.59 0.66 0.64

FacesUCR 1.00 0.44 0.59 0.25

FISH 1.00 0.11 0.11 0.09

Ham 1.00 0.18 0.19 0.14

Inflow 1.00 0.59 0.44 0.26

MALLAT 1.00 0.17 0.10 0.08

Meat 1.00 0.23 0.14 0.11

OliveOil 1.00 0.21 0.15 0.48

OSULeaf 1.00 0.61 0.59 0.31

Outflow 1.00 0.67 0.45 0.36

Plane 1.00 0.37 0.37 0.23

Symbols 1.00 0.46 0.23 0.39

Totalflow 1.00 0.61 0.46 0.31

Yoga 1.00 0.48 0.56 0.28

Average normalized time 1.00 0.47 0.41 0.30
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Fig. 4 Anomaly detection results on Inflow dataset
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Fig. 5 Anomaly detection results on Totalflow dataset
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of SAX–AD as the benchmark (1.00), and normalize the
execution time of the other 3 methods accordingly. The cor-
responding experimental results are listed in Table 2.

According to the normalized experimental results in
Table 2, we can find our proposed HR–AD is more effi-
cient than 3 competitors, which illustrates that HR–AD has
stronger detection capability.

To further illustrate the effectiveness of HR–AD, we
visualize the detection results of the above four methods
on dataset Inflow and Totalflow respectively. In Fig. 4, we
present the detection results of 4 methods on Inflow. Specif-
ically, in Fig. 4a, b, the distance based calculation results
Ds are lower than the threshold. As a result, both SAX–
AD and PAA–AD fail to detect anomalies. In Fig. 4c, due
to D29 > ξ , the sequence S29 is detected by APAA–AD.
However, the obvious abnormal sequence S31 is missed by
APAA–AD. As for HR–AD, the sequences S29 and S31 are
detected successfully.

In Fig. 5, we visualize the detection results on Totalflow.
Compared to other 3 baselines, the corresponding anomaly
scores calculated by HR–AD are much higher than that of
other 3 methods. Specially, D6 and D31 of HR–AD are 3.12
and 2.19, which not only exceeds the threshold ξ = 2.00,
but also significantly higher than the values calculated by the
other 3 baselines under the same conditions.

According to the above experimental analysis, we can find
that hierarchical representation based HR–AD has stronger
anomaly detection ability than other 3 baselines.

Conclusion

In this paper, we propose an effective hierarchical representa-
tion for time series anomaly detection, namedHR–AD. It can
not only capture the hierarchical amplitude and temporal fea-
tures to provide more differentiable representation for time
series, but also utilize comprehensively evaluation strategy to
complete abnormal sequence detection. Extensive compari-
son experiments on benchmark datasets have demonstrated
the superiority of our proposed method. In future, we plan
to combine HR–AD with the parallel computing strategy to
further improve detection performance on streaming time
series.
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