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Abstract

Industrial big data and artificial intelligence are propelling a new era of manufacturing, smart manufacturing. Although
these driving technologies have the capacity to advance the state of the art in manufacturing, it is not trivial to do so.
Current benchmarks of quality, conformance, productivity, and innovation in industrial manufacturing have set a very high
bar for machine learning algorithms. A new concept has recently appeared to address this challenge: Quality 4.0. This name
was derived from the pursuit of performance excellence during these times of potentially disruptive digital transformation.
The hype surrounding artificial intelligence has influenced many quality leaders take an interest in deploying a Quality 4.0
initiative. According to recent surveys, however, 80-87% of the big data projects never generate a sustainable solution.
Moreover, surveys have indicated that most quality leaders do not have a clear vision about how to create value of out these
technologies. In this manuscript, the process monitoring for quality initiative, Quality 4.0, is reviewed. Then four relevant
issues are identified (paradigm, project selection, process redesign and relearning problems) that must be understood and
addressed for successful implementation. Based on this study, a novel 7-step problem solving strategy is introduced. The

proposed strategy increases the likelihood of successfully deploying this Quality 4.0 initiative.

Keywords Quality 4.0 - Quality control - Manufacturing systems - Artificial intelligence - Big data

Introduction

Manufacturing is a primary economic driving force. Modern
manufacturing began with the introduction of the factory sys-
tem in late eighteenth century Britain. This precipitated the
first industrial revolution (mechanical production) and later
spread worldwide. The defining feature of the first factory
system was the use of machinery, initially powered foot trea-
dles, soon after by water or steam and later by electricity. The
second industrial revolution (science and mass production)
was a phase of electrification, rapid standardization, and pro-
duction lines, spanning from the late nineteenth to the early
twentieth century. The introduction of the internet, automa-
tion, telecommunications, and renewable energies in the late
twentieth and early in the twenty-first century gave rise to
the third industrial revolution (globalization and digital rev-
olution) [1].
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Today, at the brink of the fourth industrial revolu-
tion (interconnectedness, data and intelligence) or Industry
4.0 [2], technologies such as Industrial Big Data (IBD) [3],
Industrial Internet of Things (IloT) [4], acsensorization [5],
Artificial Intelligence (Al) [6], and Cyber-Physical Systems
(CPS) [2] are propelling the new era of manufacturing,
smart manufacturing [7]. Mass customization, just-in-time
maintenance, solutions to engineering intractable problems,
disruptive innovation, and perfect quality are among the most
relevant challenges posed to this revolution. Manufacturing
systems are upgraded to an intellectual level that lever-
ages advanced manufacturing and information technologies
to achieve flexible, intelligent, and reconfigurable manufac-
turing processes to address a dynamic, global marketplace.
Some technologies also have Al, which allows manufactur-
ing systems to learn from experiences to realize a connected,
intelligent, and ubiquitous industrial practice [8].

Although the driving technologies in the fourth indus-
trial revolution have the capacity to move the state of the
art in manufacturing forward, it is not trivial to do so. Cur-
rent benchmarks of quality, productivity, and innovation in
industrial manufacturing are very high. Rapid innovation
shorten process lifespans, leaving little time to understand
and solve engineering problems from a physics perspective.
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Moreover, application of Statistical Quality Control (SQC)
techniques have enabled most modern processes to yield very
low Defects per Million of Opportunities (DPMO) (6 o, 3.4
DPMO). This ultra-high conformance rate sets a very high
bar for Al. These challenges will only intensify, since smart
manufacturing is driven by processes that exhibit increasing
complexity, short cycle times, transient sources of variation,
hyper-dimensional feature spaces, as well as non-Gaussian
pseudo-chaotic behavior.

To address this in the age of the fourth industrial revolu-
tion, a new concept has recently appeared: Quality 4.0. This
name was derived from the pursuit of performance excellence
during these times of potentially disruptive digital transfor-
mation [9].

The authors define Quality 4.0 as:

Quality 4.0 is the fourth wave in the quality move-
ment (1.Statistical Quality Control, 2.Total Quality
Management, 3.Six sigma, 4.Quality 4.0). This qual-
ity philosophy is built on the statistical and managerial
foundations of the previous philosophies. It leverages
industrial big data, industrial internet of things, and
artificial intelligence to solve an entirely new range
of intractable engineering problems. Quality 4.0 is
founded on a new paradigm based on empirical learn-
ing, empirical knowledge discovery, and real-time data
generation, collection, and analysis to enable smart
decisions.

In manufacturing, the main objectives of Quality 4.0
are: (1) to develop defect-free processes, (2) to augment
human intelligence, such as empirical knowledge discovery
for faster root cause analyses, (3) to increase the speed and
quality of decision-making, and (4) to alleviate the subjec-
tive nature of human-based inspection [9-11]. According to
recent surveys, although 92% of surveyed leaders are increas-
ing their investments in /BD and Al [12], a substantial portion
of these quality leaders do not yet have a deployment strategy
[11] and universally cite difficulty in harnessing these tech-
nologies [13]. This situation is reflected in the deployment
success rate: 80-87% of the big data projects never generate
a sustainable solution [14,15].

Process Monitoring for Quality (PMQ) [5] is a data-driven
quality philosophy aimed at addressing the intellectual and
practical challenges posed to the application of A/ in manu-
facturing. It is founded on Big Models (BM) [16], a predictive
modeling paradigm that applies machine learning, statis-
tics, and optimization to process data to develop a classifier
aimed at real-time defect detection and empirical knowledge
discovery aimed at process redesign and improvement. To
effectively solve the pattern classification problem, PMQ
proposes a 4-step approach—acsensorize, discover, learn,
predict (ADLP). Figure 1 describes the PMQ Quality 4.0 ini-
tiative in the context of Industry 4.0.
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Fig.1 PMQ in the context of
Industry 4.0

Industry 4.0

Quality 4.0

In this review, four relevant-to-manufacturing issues are
identified that quality and manufacturing engineers/res-
earchers, managers, and directors must understand and
address to successfully implement a Quality 4.0 initia-
tive based on PMQ: (1) the paradigm problem, (2) project
selection problem, (3) process redesign problem, and (4)
relearning problem. Based on this study, the original PMQ
4-step problem solving strategy is revised and enhanced to
develop a comprehensive approach that increases the likeli-
hood of success. This novel strategy is an evolution of the
Shewhart learning and improvement cycle (widely used in
manufacturing for quality control) to address the challenges
posed to the implementation of this Quality 4.0 initiative.

This paper does not attempt to offer new methods, algo-
rithms or techniques. The agenda of the problem solving
strategy is pragmatic: defect detection through binary classi-
fication and empirical knowledge discovery that can be used
for process redesign and improvement. Its scope is limited to
discrete manufacturing systems, where a deterministic solu-
tion for process monitoring and control is not available or
feasible.

The rest of the paper is organized as follows: a review of
the state of the art in “Similar work” section. A brief descrip-
tion of PMQ in “PMQ and its applications” section. The four
problems are discussed in “Challenges of big data initiatives
in manufacturing” section. Then, the PMQ 4-step problem
solving strategy is updated in ‘“Problem solving strategy for a
Quality 4.0 initiative” section. An implementation strategy is
presented in “Strategy development and adoption for Qual-
ity 4.0” section. Finally, conclusions and future research are
contained in “Conclusions” section.

Similar work

Manufacturing has been a primary economic driving force
since the first industrial revolution in the nineteenth century
and continues to be so today. The Industry 4.0 paradigm
has necessitated a similar paradigm shift in manufacturing to
keep up with quick launch, low volume production, and mass
customization of products [17], all while conforming to high
quality and productivity requirements. This new manufactur-
ing paradigm has been termed smart manufacturing, and it
has been enabled by technologies such as IloT, CPS, cloud
computing [18], Big Data Analytics, Information and Com-
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munications Technology, and Al [8]. IBD offers an excellent
opportunity to enable the shift from conventional manufac-
turing to smart manufacturing. Companies now have the
option of adopting data-driven strategies to provide a com-
petitive advantage.

In 2017, Kusiak [19] advocated for manufacturing indus-
tries to embrace and employ the concepts of Big Data
Analytics in order to increase efficiency and profits. Tao
et al. [20] studied big data’s role in supporting this transi-
tion to smart manufacturing. Fisher et al. [21] investigated
how models generated from the data can characterize process
flows and support the implementation of circular economy
principles and potential waste recovery.

Though smart manufacturing has taken off in more recent
years, the concept has been around for decades. In 1990,
Kusiak [22] authored Intelligent Manufacturing Systems,
which was designed to provide readers with a reference text
on such systems. For a more recent reviews, the reader is
referred to [23,24]. The wealth of data has both contributed
to and enabled the rise of smart manufacturing practices. In
2009, Choudhary et al. [25] provided a detailed literature
review on data mining and knowledge discovery in vari-
ous manufacturing domains. More recently (2020), Cheng
et al. [26] proposed data mining technique to enhance train-
ing dataset construction to improve the speed and accuracy
of makespan estimation. Wei et al. [27] proposed a data
analysis-driven process design method based on data mining,
a data + knowledge + decision backward design pattern, to
enhance manufacturing data.

Quality is a fundamental business imperative for man-
ufacturing industries. Historically, i.e., pre-Industry 4.0,
manufacturing industries have produced higher volumes for
products with longer intended lifecycles. Consequently, there
was more time and data on which to refine processes and
reduce process variance. In other words, there was a longer
learning curve to enable the production of high-quality prod-
ucts. In the era of smart manufacturing, the luxury of these
long learning curves is removed. This has propelled the adop-
tion of intelligent process monitoring and product inspection
techniques. Some examples of these Quality 4.0 applications
will now be presented.

In 2014, Wuest et al. [28] introduced a manufacturing
quality monitoring approach in which they applied cluster
analysis and supervised learning on product state data to
enable monitoring of highly complex manufacturing pro-
cesses. Malaca et al. [29] designed a system to enable the
real-time classification of automotive fabric textures in low
lighting conditions. In 2020, Xu and Zhu [30] used the con-
cept of fog computing to design a classification system in
order to identify potential flawed products within the produc-
tion process. Cai et al. [31] proposed a hybrid information
system based on an artificial neural network of short-term
memory to predict or estimate wear and tear on manufac-

turing tools. Their results showed outstanding performance
for different operating conditions. Said et al. [32] proposed
a new method for machine learning flaw detection using
the reduced kernel partial least squares method to handle
non-linear dynamic systems. Their research resulted in a cal-
culation time reduction and a decrease in the rate of false
alarms. Hui et al. [33] designed data-based modeling to
assess the quality of a linear axis assembly based on nor-
malized information and random sampling. They used the
replacement variable selection method, synthetic minority
oversampling technique, and optimized multi-class Support
Vector Machine.

The cases briefly presented include fault detection sys-
tems, classifiers development techniques, or process control
systems. The common denominator is that they are all data-
driven approaches based on artificial intelligence algorithms.
In most cases, a particular problem is solved. Therefore,
unless managers or directors have a similar problem, they
cannot develop a high impact Quality 4.0 initiative from what
isreported. In this context, this article highlights several man-
ufacturing issues that must be understood and addressed to
successfully deploy a Quality 4.0 initiative across manufac-
turing plants.

PMQ and its applications

Though quality inspections are widely practiced before, dur-
ing, and after production, these inspections still highly rely
on human capabilities. According to a recent survey, almost
half of the respondents claimed that their inspections were
mostly manual (i.e., less than 10% automated) [34]. Man-
ual or visual inspections are often subject to the operators’
inherent biases, and thus only about 80% accurate [35]. This
generates the hidden factory effect, where unforeseen activi-
ties contribute to efficiency and quality reduction [36]. PMQ
proposes to use real-time process data to automatically mon-
itor and control the processes, i.e., identify and eliminate
defects. Where defect detection is formulated as a binary
classification problem. PMQ originally proposed a 4-step
problem solving strategy, Fig. 2:

— Acsensorize, this step refers to observe (e.g., deploy sen-
sors, cameras) the system to generate the raw empirical
data to monitor the system [5,37].

— Discover, refers to the step of creating features from the
raw empirical data [38,39],

— Learn, refers to the step of applying machine learning,
statistics, and optimization techniques to develop a clas-
sifier. The big models learning paradigm addresses the
main challenges posed by manufactuirng derived data
sets for binary classification of quality [16].
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Acsensorize Discover Learn Predict

Fig.2 Original problem solving strategy proposed by PMQ

Table 1 Confusion matrix

Predicted good Predicted bad

Good item True negative (TN) False positive (FP)

Defective item False negative (FN) True positive (TP)

— Predict, classifier fusion to optimize prediction is the
main goal of this step. An ad-hoc multiple classifier sys-
tem is presented in [40].

The confusion matrix is a table used to summarize the
predictive ability of a classifier, Table 1. Where a positive
result refers to a defective item, and a negative result refers
to a good quality item. Since prediction is performed under
uncertainty, a classifier can commit FP (type-I, o) and FN
(type-1II, B) errors [41].

To explain how PMQ is applied to advance the state of the
art in manufacturing, three common quality control scenar-
ios! without intelligent systems are presented, Fig. 3. Their
counterparts are then presented in Fig. 4, followed by a brief
description about how PMQ can boost them. More insights
about this analysis can be found in [42].

The processes of most mature manufacturing organiza-
tions generate only a few defective items, Fig. 3. The majority
of these defects are detected (7P) by either a manual/visual
inspection, Fig. 3a or by a statistical process monitoring sys-
tem (SPC/SQC), Fig. 3b. Detected defects are removed from
the value-adding process for a second evaluation, where they
are finally either reworked or scrapped. Since neither inspec-
tion approaches are 100% reliable[35,43], they can commit
FP (i.e., call a good item defective) and FN (i.e., call a defec-
tive item good) errors. Whereas FP create the hidden factory

1" Authors acknowledge that this is an oversimplified analysis, which is
only presented to convey the ideas of this section.
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effect by reducing the efficiency of the process, FN should
always be avoided as they cause warranties.

In extreme cases, Fig. 3c, time-to-market pressures may
compel a new process to be developed and launched even
before it is totally understood from physics perspective. Even
if a new SPC/SQC model/system is developed or a pre-
existing model or system is used, it may not be feasible to
measure its quality characteristics (variables) within the time
constraints of the cycle time. In these intractable or infeasible
cases, the product is launched at a high risk for the manufac-
turing company.

Boosting the state of the art

PMQ is applied to eliminate manual or visual inspections, as
well as to develop an empirical-based quality control system
for the intractable and unfeasible cases, Fig. 4a. The real case
of ultrasonic welding of battery tabs in the Chevrolet Volt is
a good example of this approach [5]. In a process statisti-
cally under control, PMQ can also be applied to detect those
few DPMO (FN) not detected by the SPC/SQC system to
enable the creation of virtually defect-free processes through
perfect detection [10], Fig. 4b. Finally, the empirical knowl-
edge discovery component-aimed at process redesign and
improvement-of PMQ is described in “The redesign prob-
lem” section.

From the initiative of implementing Quality 4.0 in the
plants, to actually develop and deploy a sustainable solution
(i.e., predictive system) that would endure the dynamism of
manufacturing systems, a plethora of managerial, intellec-
tual, technical, and practical challenges must be effectively
addressed. Manufacturing knowledge and a solid learning
strategy must therefore be in place to avoid painful lessons
characterized by over-promises and under-deliveries.

Designing the classifier

Although the intention of this paper is not to train data sci-
entists in machine learning techniques (this task may take
months or even years), this section provides an overview of
the most relevant challenges posed by the development of a
binary classifier using manufacturing-derived data and sug-
gests a direction to address these challenges. This subsection
aims to contextualize and provide some background for the
next section.

In Quality 4.0, process data is generated, collected and
analyzed real-time. Developing the real-time infrastructure
is one of the last steps of the project and is usually addressed at
the deployment stage. Proof-of-concepts are based on asyn-
chronous analyses, as the first challenge for the data scientists
is to demonstrate feasibility.

Prior to developing a model, the training data is gen-
erated or collected; each sample must have the associated
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Fig.3 Traditional quality
control scenarios
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quality characteristic (good, defective) for the algorithm to
learn the pattern. In general, there are two common cases:
(1) plant data and (2) lab-generated data. When available,
plant data is the most desirable since it is a representative,
relevant environment, data-rich option in which the process
is already observed (i.e., data generated and stored). This
allows for feasibility assessment to be performed promptly.
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|
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Warranty

(c) Intractable/unfeasible control.

Lab-generated data aims to imitate relevant environmental
conditions and is usually limited to smaller data sets. The
principle of acsesorization describes good insights about
exploring different options for data generation [5].

The process data is usually found in three common for-
mats: (1) pictures, (2) signals, and (3) direct measurements
of quality characteristics (features). For the first two formats,
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Fig.4 PMQ applications

features can be created following typical construction tech-
niques [38,39,44]. Feature creation followed by a feature
relevance analysis helps engineers to determine the driving
features of the system, information further used for deriving
physics knowledge and augment troubleshooting. This con-
cept is explained in more detail in the following section. Raw
signals and images can also be used to train a deep neural
network architecture for quality control [45,46]. Although
these black boxes can efficiently solve many engineering
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problems from a prediction perspective, they do not facili-
tate information extraction. More theory about deep learning
architectures can be found in [47,48].
Manufacturing-derived training data for binary classi-
fication of quality poses the following challenges: (1)
hyper-dimensional features spaces, including relevant, (2)
highly/ultra unbalanced (minority/defective class count <
1%), irrelevant, trivial and redundant, (3) mix of numerical
and categorical variables (i.e., nominal, ordinal or dichoto-
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mous), (4) different engineering scales, (5) incomplete data
sets and (6) time dependent.

To address these challenges, the BM learning paradigm
has been developed [16]. This paradigm is comprised of
several well known ad-hoc tools plus many particular devel-
opments aimed at addressing specific challenges. Since the
data structure is not known in advance, there is no a priori dis-
tinction between machine learning algorithms [49], therefore
the BM learning paradigm suggests to explore eight diverse
options to develop a multiple classifier system [40]. Due
to the time effect, models are usually validated following
a time-ordered hold-out scheme. The training set is parti-
tioned in training, validation, and test sets, where the latest
set is used to emulate deployment performance and compare
it to the learning targets to demonstrate feasibility. Different
data partitioning strategies can also be explored based on the
data characteristics (see in [50]).

To induce information extraction and model trust, BM
is founded on the principle of parsimony [51]. Parsi-
mony is induced through feature selection [52]% and model
selection [51]. These methods help to eliminate irrelevant,
redundant and trivial features. To address the highly/ultra
unbalanced problem, hyperparameters are tuned with respect
to the Maximum Probability of Correct Decision [53], a met-
ric based on the confusion metric highly sensitive to FN.
Since most machine learning algorithms work internally with
numeric data, it is important to develop a strategy to deal with
categorical variables [54] (i.e., encode them in a numeric
form). For binary features, it is recommended to use effect
coding (— 1 and 1) instead of dummy coding (0 and 1) [55].
Moreover, since features tend to have different engineering
scales, it is important to normalize or standardize the data
before present it to the algorithm. Feature scaling generally
speeds up learning and leads to faster convergence [56]. More
insights about when to normalize or standardize can be found
in [57,58]. To deal with missing information, deleting rows
or columns is a widely used approach; however, this method
is not advised unless the proportion of eliminated records is
very small (< 5%) [59]. Imputation is a better approach. This
technique refers to the process of replacing missing values
with statistical estimations. Before selecting the imputation
method, the data set should be thoroughly assessed, to deter-
mine the most appropriate statistical method (that minimizes
bias) to handle missing data. A review of imputation methods
can be found in [59-61]. Permuting rows and columns is a
different approach that helps to minimize the bias induced by
estimates, as it maximizes the number of samples that can be
used for learning [62]. Finally, manufacturing systems tend to
be time-dependent, the data correlation effect must be taken

2 Authors do not encourage dimensionality reduction methods such as
Principal Component Analysis, since they do not help to identify the
driving features of the system.

into consideration when creating the features, selecting the
neural network architecture and the model validation method.
Case studies analyzing manufacturing-derived data sets that
illustrate the application of most of the tools described in this
section are presented in [5,16,52].

Asreviewed in this subsection, developing a binary classi-
fier using manufacturing-derived data is a complicated task.
It is important to only select appropriate projects for the
data science team. Selecting appropriate projects not only
increases the likelihood of success, but also avoids unnec-
essary allocation of data science team resources. Moreover,
developing a classifier with the capacity to satisfy the learn-
ing targets for the project (i.e., demonstrate feasibility), is just
the beginning: higher order challenges must be understood
and addressed to develop a sustainable solution that creates
value to the company. The following section, provides deeper
insights about these challenges.

Challenges of big data initiatives in
manufacturing

In this section, four relevant issues posed by big data initia-
tives in manufacturing are discussed. These problems should
be effectively addressed to increase the chances of success
in the deployment of Quality 4.0. The following discussion
frames the problems and takes place more from a philosoph-
ical perspective than from a technical perspective. In the
context of these issues, an evolved problem solving strat-
egy is proposed in “Problem solving strategy for a Quality
4.0 initiative” section.

The paradigm problem

Access to large amounts of data, increased computational
power, and improvement of machine learning algorithms
have contributed to the sharp rise of machine learning imple-
mentation in recent years. It is important, however, to discern
whether and/or which Al techniques are appropriate for a
given situation. This section will discuss some of the pitfalls
and limitations of A/ techniques, including low “understand-
ability” and “trustability”. Much of the following will be
discussed from a manufacturing perspective.

The big data approach conflicts with the pre-Industry 4.0
traditional philosophy, where models were developed and
necessarily ground in physics-based theory. The inherent
unknown nature of Al-based solutions, therefore, naturally
leads to issues in trust, i.e., low “trustability.” Further con-
tributing to the trustability issue is the fact that many machine
learning techniques are black boxes, where the patterns used
to classify a problem are not accessible or understandable. To
atrained and practiced experimentalist, the inherent lack of a
physics-based understanding can seem alarming. However,
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from a data scientist perspective, as long as the model can
accurately predict unseen data, the model is validated.

The lack of understanding also causes problems from a
root-cause standpoint. If machine learning-based models are
to be used from a feedback control standpoint to identify
“failures”, the inability to tie the model results with the phys-
ical system render it difficult to root-cause these failures and
adjust the system parameters accordingly. Moreover, corre-
lation does not imply causation, a feature predictive power
does not necessarily imply in any way that that feature is
actually related to or explains the underlying physics of the
system being predicted.

It is a complicated task to attempt to understand these
black box models [63], especially if the derived solution is
based on a deep learning model. Though significant efforts
are taking place to elucidate black box models [64—66], such
efforts are still in their infancy. It is therefore recommended to
determine, in advance, if a black box solution is an acceptable
approach for a given application, with the caveat that little to
no time should be expended in understanding the model.

In this context, it is sensible to approach a problem by
starting with simpler models (e.g, support vector machine,
naive Bayes, classification trees). Most of today’s problems
can be more effectively solved by simple machine learn-
ing algorithms rather than deep learning [63]. Of course,
deep learning is suitable in certain applications. For example,
deep learning is well suited to image classification prob-
lems, where the resulting model does not need to be well
understood, but if root cause analysis (or physics knowledge
creation) is part of the project goals, creating features from
images [44], followed by feature ranking and interpretation
is a better approach.

The existence of a large amount of available data, smart
algorithms, and computational power does not mean that the
creation of a machine learning model is a value-add, nor
is there necessarily even a straightforward machine learning
solution. This is especially true in manufacturing, where sys-
tems are complex, dynamic, with many sources of variation
(e.g., suppliers, environmental conditions, etc.). It is impor-
tant to discern whether an machine learning model is even
required by determining if it fits in one of the following prob-
lem types: (1) regression, (2) classification, (3) clustering, or
(4) time-series. If the problem does not fall into one of those
four categories, it is not a straightforward machine learning
problem.

Even if machine learning is an appropriate approach for
a given problem, an abundance of data does not necessarily
imply that such data contains discriminative patterns or con-
tains the intrinsic information required to accurately predict.
A deep understanding of the process is therefore necessary to
develop a customized solution. Developing such a solution
is an iterative process, and it requires collaboration between
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the model developers and subject matter experts (engineers
with domain knowledge).

In-lab solutions tend to be an overoptimistic represen-
tation of predictive system capabilities, since lab data is
generated under highly controlled conditions. These con-
ditions are likely not entirely representative of the plant
environment. For this reason, lab-generated data is useful for
developing proof-of-concept models; however, more work is
required to increase the manufacturing readiness for plant
deployment.

Many applications suffer from a scarcity of data. Lab data
is often generated to develop prototype machine learning
models. Been manually produced, the data is consequently
often limited to hundreds (or in very fortunate cases, thou-
sands) of samples. To perform hyperparameter tuning, these
small data sets are used to create and test hundreds or even
thousands of classifiers. Therefore, the chances of creating a
spurious model that exhibits high prediction ability are very
high [51]. But this model will never generalize beyond the
training data.

As illustrated in the above text, Al techniques are pow-
erful, but they are not a one-size-fits-all. Many intractable
engineering problems are also Al-intractable. For this rea-
son, project selection becomes an important problem and
will be discussed in the following subsection.

The project selection problem

A vision can be created, resources invested, teams formed,
projects selected, yet there are many situations in which little
to no value is obtained. Project selection drives the success
of Quality 4.0. Today, the hype and success stories of Al
have influenced most organizations to have an interest in
deploying an A[ initiative. But what is the current success
rate? According to recent surveys, 80—-87% of projects never
make it into production [14,15]. Improper project selection
is the primary cause of this discouraging statistic, as many
of these projects are ill-conditioned from the launch.

Whereas generic questions for choosing Al projects [67]
and two dimensional feasibility approaches such as the pick
chart (Fig. 5) from lean six sigma [68] and the machine learn-
ing feasibility assessment from Google Cloud [69] (Fig. 6)
are useful and widely used [70], they do not to provide enough
arguments to find the winners [71] in manufacturing appli-
cations.
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A strong project selection approach is founded on deep
technical discussions, and business value analysis is required
to develop a prioritized portfolio of projects. In this section, a
list of 18 basic questions® aimed at evaluating each candidate
project is presented.

1. Can the problem be formulated as binary classification

problem?

2. What is the profitability?

3. Are predictor features available?

4. Are all sources of variation captured by the predictor

features?

5. Are the predictor features strongly related to the under-

lying physics of the project?

Is the training data (i.e., sample size) big enough?

Does the system exhibit chaotic behavior?

Are the quality labels (i.e., good, defective) available?

If there are no quality labels, how long it would take to

generate labels?

10. Can warranty data be used?

11. Does the project align with the overall team strategy and
expertise?

12. In terms of plant dynamics and restrictions (e.g, cycle
times), how difficult it would be to implement the solu-
tion?

13. Interms of the plant requirements (i.e., «, B errors), what
is the probability to solve the problem?

14. How long it would take?

15. Are machine learning methods more suitable than other
conventional SQC methods?

16. Since prediction may not provide causation insights, is
there any value in predicting without causation?

17. Can this project leverage/enable more projects?

18. Considering the nature of Information Technology (IT),
business intelligence and descriptive statistics projects,
does this project promote learning, support automatic
decisions and control?

O 2N

3 Questions are not comprehensive and/or ordered by relevance.
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Fig.7 Weighted project decision matrix for Quality 4.0

These questions can be aggregated in a weighted decision
matrix using the 0 (none), 1 (low), 3 (mid), 9 (most desirable
condition) scoring system [72] to develop the data science
portfolio of projects, Figs. 5, 7.

First projects should deliver value within a year. There-
fore, even low rewarding “low hanging fruit” projects that
may create business synergy and trust in these technologies
are better starting points than highly rewarding “moon shots”.
Projects with data already available can be a good place to
start, since data generation is manual and time consuming.

If there is no in-house Al expertise, working with external
partners is a good idea-while developing in-house expertise-
to catch up with the pace of AI’s rise. However, the
overoptimistic bias induced by vendors and the fallacy of
planning should be avoided when selecting and defining a
project.

It is important to keep in mind that data science projects
are not independent from one other. To increase success
likelihood, data science teams should be working on sev-
eral projects concurrently. Once the first successful project
is implemented, it will inspire new projects and ignite new
ideas towards the development of the mid/long term visions.
Companies with a well defined project selection strategy will
be more likely to succeed in the era of Quality 4.0.

The redesign problem

Machine learning algorithm are trained using observational
data [73]. In contrast with experimental data that can be used
for causal analysis, machine learning-derived information
is ill conditioned for this task [63,64,74,75], as discovered
patterns may be spurious representations. To address this sit-
uation, the relevant features identified through data-driven
methods (e.g., feature ranking/selection) should be used to
extract information (e.g., uncover hidden patterns, associa-
tions, and correlations). This empirically-derived informa-
tion, along with a physics analysis, can be used to generate
useful hypotheses about possible connections between the
features and the quality of the product. Then statistical
analyses (e.g., randomized experiments) can be devised to
establish causality to augment root-cause analyses and to

@ Springer
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Fig.8 Causal analysis and a road-map for process parameter optimization

find optimal parameters to redesign the process, as shown in
Fig. 8. A real case study of this concept is presented in [10].

The relearning problem

In machine learning, the concept of drift embodies the fact
that the statistical distributions of the classes of which the
model is trying to predict, change over time in unfore-
seen ways. This poses a serious technical challenges, as
the classifiers assume a stationary relationship between fea-
tures and classes. This static assumption is rarely satisfied in
manufacturing. Consequently, the prediction capability of a
trained model tends to significantly degrade overtime, result-
ing in friction, distrust, and a bad reputation for the data
science teams. Although this concept has been widely stud-
ied [76,77], in this section a few insights from manufacturing
perspective are provided.

The transient and novel sources of variations cause manu-
facturing systems to exhibit non-stationary data distributions.
Therefore, developing an in-lab model with the capacity to
predict well the items in the test set and satisfy the learn-
ing targets for the project, is only the beginning since the
model will usually degrade after deployment. In Fig. 9a, a
real situation is presented, in which the model exhibited less
than 1.5% of « error (target set by the plant) in the test set
(lab environment) to satisfy the defect detection goals (8 <
5%) of the project. Immediately after deployment, the « error
increased to 1.78%. A few days later, the « increased to 4%,

@ Springer

an unacceptable FP rate for the plant. Although this model
exhibited good prediction ability and made it into production,
it was not a sustainable solution, and therefore never created
value.

To put prediction decay into a binary classification con-
text, it means that either or both o or § errors increase to
a problematic point. In the case of « error, excessive FP
generate the hidden factory effect (e.g., reducing process effi-
ciency), whereas an increase of the § error, would generate
more warranties, a less desirable situation.

The main goal of relearning, is to keep the predictive sys-
tem in compliance with the restrictions set by the plant («
error), Fig. 9b, and the detection goals (8 error). This is
accomplished by ensuring that the algorithm is learning the
new statistical properties of both classes (good, defective).
Continual learning or auto-adaptive learning is a fundamental
concept in artificial intelligence that describes how the algo-
rithms should autonomously learn and adapt in production
as new data with new patterns comes in. Broadly speaking,
arelearning scheme should include the following four com-
ponents:

1. Learning strategy A learning scheme must be defined in
advance. This is basically a research challenge where the
following topics are addressed: (1) data generation and
pre-processing, (2) machine learning algorithm(s), (3)
hyperparameter tuning strategy, and (4) model validation.
The outcome of this component is the final model along
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with the estimated prediction performance on unseen
data. This information is compared with the learning
goals before deployment.

2. Relearning data set Since the rework/revaluation station
contain TP and FP cases that are usually further inspected
by a human, the labels of the latter can be updated to 7N.
Then, this information along with warranty data should
be used to generate the retraining data set (note that the
FN labels of the warranties must be updated too). Thus,
the algorithm will be able to constantly learn the statis-
tical properties of the good and defective items, Fig. 10.
Some algorithms use a window of a fixed size (e.g.,
time windowed forgetting), while others use heuristics
to adjust the window size to the current extend of the
concept drift (e.g., adaptive size) [78].

3. Relearning schedule Algorithms should be retrained as
often as possible to promptly adapt the classifier to the
new sources of variations. Therefore, a relearning sched-
ule based on the plant dynamics should be defined in
advance.

4. Monitoring system Even if a relearning scheme has been
defined, there is no guarantee that the classifier would
perform within tolerances all the time. Therefore, it is
important to make sure that if the model is losing its pre-
diction ability (e.g, corrupted data), there is an alerting
mechanism in place to implement temporary solutions
(e.g, 100% manual inspections or random sampling).
Basically a monitoring system it is necessary to to keep
track of both errors, Fig. 11. When the statistical prop-
erties of the good classes change, usually the number
of FP significantly increase, overloading the inspec-
tion/revaluation station. Whereas if novel defects are
created or the statistical properties of the defective class
change, the number of FN increases, generating more
warranties than expected. In general, the main goal here
is to develop an algorithm with the minimal number of
false alarm rates and the maximal number of early drift
detections [77].

Other applications of machine learning tend to be more
stable. For example, a neural network is trained to identify
a stop sign. The stop sign will not change over time, and
the algorithm can only improve with more data. This is not
true for many manufacturing scenarios. To develop a sus-
tainable solution, a relearning scheme should be developed
before deployment that considers the type of drift the manu-
facturing system exhibits, e.g., temporal, gradual, recurring
or sudden [78]. Although continual learning will ultimately
optimize models for accuracy and save manual retraining
time by making models auto-adaptive, even the more advance
solutions would need the human supervision to ensure the
predictive system is behaving as expected.
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Fig.9 Error analysis after deployment

Problem solving strategy for a Quality 4.0
initiative

In the context of the issues presented in “Challenges of big
data initiatives in manufacturing” section, an evolved prob-
lem solving strategy is presented to effectively implement
Al in manufacturing. This evolved strategy is an update
to the initial problem solving strategy—acsensorize, dis-
cover; learn, predict—proposed by PMQ [5]. Three more
issues—identify, redesign, relearn—relevant to big data in
manufacturing are included as extra steps to develop a
comprehensive problem solving strategy for a successful
implementation of a Quality 4.0 initiative, Fig. 12.

Since its introduction into the manufacturing world, the
quality movement has continuously included new tech-
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niques, ideas, and philosophies from the various fields of
engineering and science. Modern quality control can be
traced back to the 1930’s when Dr. Walter Shewhart devel-
oped a new industrial SQC theory [79]. He proposed a
3-step problem solving strategy (specification, production,
inspection—SPI) based on the scientific method. This prob-
lem solving method is known as the Shewhart learning and
improvement cycle [80], Fig. 13a.

The TOM philosophy emerged in the 1980’s [81], where
the Shewhart’s problem solving strategy was refined by Dem-
ing, also known as the Deming cycle, Fig. 13b, to develop
a more comprehensive problem solving approach (plan, do,
check/study, act,—PDCA or PDSA).

A few years later, in 1986, six sigma was introduced by Bill
Smith at Motorola. Six sigma is a reactive approach, based
on a 5-step problem solving strategy (define, measure, ana-
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lyze, improve, control—DMAIC) aimed at identifying and
eliminating the causes of defects and/or sources of varia-
tion from processes. Its complement Design for Six Sigma
(DFSS) appeared shortly after, a proactive approach aimed
at designing robust products and processes so that defects are
never generated, Fig. 13d, [82,83]. It is founded on optimiza-
tion techniques which are usually applied through a 6-step
problem solving strategy (define, measure, analyze, design,
optimize, verify—DMADOV).

To cope with the ever increasing complexity of manufac-
turing systems, each new quality philosophy has redefined
the problem solving strategy. It started with a basic 3-step
approach and has gradually evolved and increased its com-
plexity up-to the 7-step approach (identify, acsensorize, dis-
cover, learn, predict, redesign, relearn—I ADL P R?) herein
proposed, Fig. 13.
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Fig. 13 Evolution of quality, problem solving strategy by quality phi-
losophy

Manufacturing systems pose particular intellectual and
practical challenges (e.g., cycle times, transient sources of
variation, reduced lifetime, high conformance rates, physics-
based) that must be effectively addressed to create value out
of IBD. The I ADL P R? problem solving strategy is founded
on theory and our knowledge studying complex manufactur-
ing systems. According to empirical results, this new problem
solving strategy should increase the chances of successfully
deploying a Quality 4.0 initiative.

Strategy development and adoption for
Quality 4.0

Adopting a new philosophy will inevitably suffer from resis-
tance. Broadly, this resistance to adoption falls into three
categories: psychological reservations, infrastructural lim-
itations, and business impediments. A strategic vision for
adopting the Quality 4.0 philosophy can help mitigate against
this. The strategy should be developed and driven by business

Learn Predict

Discover

imperatives, and should be used to create a project portfo-
lio. Any successful strategy should comprise strength, scope,
and synergy. Strength defines the competitive advantage, i.e.,
what makes the company “stand out” from the rest. Scope
encompasses not only what the company should do, but what
they choose not to do. Finally, synergy ensures that all parts
work together in support of the overall vision, i.e., there are
no contradictory practices. Figure 14 contains a map for strat-
egy development and adoption of Quality 4.0. In this section,
some of the considerations that should be taken into account
when developing/adopting such a strategic vision will be dis-
cussed. In the interest of brevity, this discussion will be kept
short. The reader is referred to Porter [84], Cheatham et. al
[85], Kotter [86], Bughin [87], and Davenport and Ronanki
[88] for more detailed discussions on A and strategy.
Having the appropriate infrastructure is crucial to the
ability to adopt Quality 4.0 practices. Quality 4.0 prac-
tices require a fully connected lab/production environment
to enable data acquisition and analysis. /T should support
and enable any updates required while ensuring that ade-
quate security and access polices are adopted. Adequate
infrastructure should exist for data storage, computation, and
deployment (to enable scaled-up solutions). Ultimately, for
a new vision to be successfully adopted, the company cul-
ture must accept it. For this reason, it is important that the
philosophy is advocated for and supported by management.
It can help the overall attitude to locally implement relevant
aspects of Quality 4.0 practices, i.e., not all at once. Local
successes can promote positive attitudes towards adoption.
Companies should perform a risk-benefit analysis, such as
projections on investments versus the benefits of developing
Quality 4.0 capabilities. Since Al in manufacturing is in an
early stage, there is no guarantee of return-on-investment (at
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Fig. 14 Map of strategy
development and adoption of
Quality 4.0
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least in the short term). The company therefore may need to
incorporate this analysis into budget planning to determine
if deployment of Quality 4.0 resources (e.g., staff, hard-
ware and software) is possible. Once the company culture,
infrastructure, and business conditions allow for adopting a
Quality 4.0 strategy, successful deployment should consist
of cross-functional teams. Cross-functional teams enable the
successful execution of Quality 4.0 projects. For example,
management should select impactful projects. In house data
science expertise should exist (although this can be comple-
mented with some consulting work too). Data science teams
should confirm that the projects that are actually machine
learning projects (i.e., fit within the scope of Quality 4.0
paradigm). Management and /7 should coordinate with plant
teams to ensure proper collection of data. /7 should facilitate
projects by ensuring collected data is available for analy-
sis and the solution scaled and deployed. Finally, engineers
and subject matter experts should confirm that the solution
satisfies the engineering requirements and that the model is
trustable (i.e., it captures the underlying physics of the pro-
cess).

Conclusions

The hype surrounding artificial intelligence and big data
have propelled an interest by many quality leaders to deploy
this technology in their companies. According to recent sur-
veys, however, 80-87% of these projects never develop a
production-ready sustainable solution and many of these
leaders do not have a clear vision of how to implement Qual-
ity 4.0 practices. In this article, four big data challenges
in manufacturing are discussed: the change in paradigm,
the project selection problem, the process redesign prob-
lem, and the relearning problem. These challenges that must
be fully understood and addressed to enable the successful
deployment of Quality 4.0 initiatives in the context of Pro-
cess Monitoring for Quality. Based on this study, a novel
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7-step problem solving strategy (identify, acsensorize, dis-
cover, learn, predict, redesign, relearn) is proposed. This
comprehensive approach increases the likelihood of success.

The importance of developing and adopting a Quality 4.0
strategy is also discussed. A well defined strategy ensures that
business imperatives are met, mitigates against resistance to
adoption, and enables the appropriate selection of projects.

Future research should focus on evaluating project poten-
tial via the 18 questions herein presented in order to describe
the characteristics associated at each level, i.e., none, low,
mid and desirable. This would increase the effectiveness of
using the weighted project selection matrix to rank (priori-
tize) projects. This work can also be extended by redefining
the problem solving strategy based on deep learning, as
the discovered step (i.e, future creation/engineering) is not
required.
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