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Abstract
Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to 
vibration-related problems; chatter, which affects machining quality and efficiency, is more complex and difficult to monitor. 
In this paper, a variational mode decomposition-support vector machine (VMD-SVM) model based on information entropy 
(IE) is built to detect chatter in robotic milling. Significantly, the vibration signals are classified into four states for the first 
time: stable, transition, regular chatter, and irregular chatter. To improve the accuracy of the identification model based on 
VMD-SVM, a novel hyper-parameter optimization strategy—the kMap method—is proposed in this paper for optimizing 
three-dimensional hyper-parameters in the VMD-SVM model. The hyper-parameters of VMD-SVM are jointly optimized 
by the kMap method, with constant step sizes. As an improved grid search (GS), kMap reduces the operation time to the 
same order of magnitude as the heuristic algorithm (HA) [comprising particle swarm optimization (PSO) and genetic 
algorithm (GA)]. The VMD-SVM model with the hyper-parameters optimized by kMap exhibits higher accuracy and bet-
ter stability than the hyper-parameters optimized by PSO and GA. The results of the validation experiments show that the 
kMap-optimized identification model is effective in industrial robotic milling.
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Introduction

Industrial robots are used for milling large and complex 
parts owing to their advantages of low cost, wide workspace 
range, and high flexibility. However, compared with CNC 
machine tools, the low rigidity of the robot makes chatter 
more likely, influencing machining accuracy, quality, and 
efficiency. Extensive research has been conducted on the 
prediction of chatter and various chatter suppression meth-
ods have been summarized. Generally, chatter in robotic 
milling is composed of both regenerative and mode coupling 
chatter. However, differing from the typical issues concern-
ing regenerative chatter in conventional CNC machining, 
mode coupling chatter was identified as the dominant source 
of vibrations in robotic machining at low cutting speeds and 

regenerative chatter was the dominant source at high speeds 
(Pan et al. 2006; Gienke et al. 2019). The stiffness matrix 
depends on the current configuration in terms of the robot. 
The damping effect will always increase the stability of the 
system but is difficult to accurately identify. In addition, the 
main chatter mechanism of robotic milling is different for 
different machining cases; thus, chatter analysis cannot yield 
a confident result using their stability criteria. Except for 
chatter prediction, detecting the vibration state of milling 
timely is an efficient method to improve the performance of 
machining equipment, which reduces the frequency and time 
of chatter occurrence and contributes to further research on 
the chatter mechanism. Therefore, it is essential to study 
chatter identification in robotic milling.

Traditional chatter identification is mainly achieved by 
observing the processed surface and analysis of the physi-
cal signal spectrum. Recently, some scholars have identified 
chatter through feature extraction and setting thresholds for 
machined surface images (Lei and Soshi 2017), cutting force 
signals (Tangjitsitcharoen et al. 2015), vibration signals (Tao 
et al. 2019; Musselman et al. 2019) and current signals (Aslan 
and Altintas 2018). The value of the characteristic threshold 
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is important and significantly influences the accuracy of the 
identification model. By introducing a machine learning-based 
chatter identification model, with physical vibration signals 
as the input, the correspondence between the input and out-
put requires establishing. Generally, the chatter identification 
process is realized by feature extraction and classification. 
Deep learning such as deep belief networks (DBN) is used to 
extract feature automatically and classify chatter simultane-
ously (Fu et al. 2019b). However, the DBN needs more time to 
complete the model training. In addition, machine learning is 
more suitable for timely chatter monitoring than deep learning 
because of its small computation time. Feature selection and 
extraction of signals in machine learning have a significant 
impact on model accuracy. In addition, external disturbances, 
modeling errors, and uncertainties are common when measur-
ing in practical applications (Stojanovic and Prsic 2020; Nan-
napaneni et al. 2020). These noises and uncertainties affect the 
performance of feature extraction and classification. Generally, 
non-Gaussian noise is eliminated by designing appropriate 
filters. When chatter occurs during machining, the energy is 
concentrated near the mode frequency of the machining sys-
tem, and chatter frequency bands will be observed, while the 
frequency band centers are not fixed. Signal analysis methods 
based on modal decomposition, such as VMD and empirical 
mode decomposition (EMD) (Zhao et al. 2020), and empiri-
cal wavelet transformation (EWT) are usually used to extract 
features of the signals with these characteristics. VMD can 
accurately separate the harmonic components of non-station-
ary signals, regardless of how close their frequency compo-
nents are. Compared with VMD, EMD does not have a strong 
mathematical foundation. In addition, VMD can be used to 
reduce the impact of non-Gaussian impulsive noise (Dutta 
et al. 2016). Aneesh et al. (2015) compared the performance 
of VMD (Dragomiretskiy and Zosso 2013) with EWT in fea-
ture extraction. The classification results of SVM show that 
VMD feature extraction performs better than EWT. VMD, an 
adaptive signal machining method, is conducive to the extrac-
tion of chatter features, effectively dealing with the character-
istic that chatter frequency bands shift during machining. Liu 
et al. (2017) used the chatter of milling on an NC machine as 
the analysis object, extracted sample features by VMD and 
Shannon power spectral entropy, and classified and predicted 
samples using a probabilistic neural network (PNN). How-
ever, the parameters that affect the accuracy of the model are 
selected based on prior knowledge, without further optimiza-
tion processes. After the data features are extracted, SVM/
support vector classification (SVC) is usually used in chatter 
detection and prediction. Chen et al. (2020) used a multivari-
ate filter method to select the p-leader multifractal features 
and adopted SVM for chatter classification. The stability lobe 
diagram of milling was predicted using extended SVC and 
an artificial neural network (ANN) (Friedrich et al. 2017), 
and these continuously learning algorithms can be applied to 

higher-dimensional problems with arbitrary input dimensions. 
The dominant frequency bands are identified by localizing the 
frequency bands at which the energy is high in the average fast 
Fourier transform (FFT) plot to highlight the chatter-related 
characteristics. Furthermore, the combination of VMD and 
SVM (Abdoos et al. 2016) facilitated mechanical fault diagno-
sis. However, the VMD-SVM model is rarely used in chatter 
detection. The optimization of hyper-parameters can improve 
model accuracy. Mutation sine and cosine algorithm-particle 
swarm optimization algorithm (SCA-PSO) (Fu et al. 2019a), 
chaos sine and cosine algorithm (CSCA) (Fu et al. 2018), 
quantum chaos fly optimization algorithm (QCFOA) (Xu et al. 
2019) and other optimization methods have been used to opti-
mize the hyper-parameters of the VMD-SVM model, where 
VMD and SVM are optimized respectively.

The VMD-SVM model in the above literature is mainly 
used in the classification of power quality events, fault diag-
nosis of variable load-bearing, fault diagnosis for rolling 
bearings, vibration trend measurement for a hydropower 
generator, etc. Moreover, there are limited studies on the 
chatter identification method of robotic milling based on 
the VMD-SVM model. This study constructs a VMD-SVM 
model to identify robotic milling chatter. Generally, the 
hyper-parametric optimization of VMD and SVM is con-
ducted separately, which is insufficient to obtain the optimal 
performance of the VMD-SVM model. For better perfor-
mance of the chatter identification model in robot milling 
based on VMD-SVM, the kMap method is proposed in 
this paper to jointly optimize the hyper-parameters in the 
identification model. The remainder of this paper is organ-
ized as follows. In section “Dataset construction based on 
novel chatter classification”, the experiment settings and 
data augmentation methods for constructing the dataset are 
presented. An identification model based on VMD-SVM is 
constructed and the details of the proposed kMap optimi-
zation method are described in section "Chatter identifica-
tion model based on VMD-SVM". In section "Identification 
accuracy and experiment analysis", the identification mod-
els based on raw cutting data and the data containing non-
Gaussian noise optimized by different methods are analyzed. 
The effectiveness of the proposed approach was validated 
through 12 robot milling experiments. Finally, the conclu-
sions are presented in section "Conclusions".

Dataset construction based on novel chatter 
classification

The full-discretization method (Tang et al. 2017) was used 
to obtain the stability lobe diagram in this paper. The ranges 
of spindle speeds and cutting depths were selected for the 
cutting experiment according to the case and experience. 
The vibration data of the experiments were collected to build 
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vibration sample sets under different vibration conditions. 
Then, the chatter characteristics in robotic milling were ana-
lyzed and its identification model was trained.

Experimental platform and parameter 
setting

The planar milling experiments were conducted on the 
robotic milling platform with ABB IRB6660, as shown in 
Fig. 1. The vibration signals of the spindle and the vibra-
tion texture of the machined surface in the milling pro-
cess were recorded. A SANDVIK Φ 25 face milling cutter 
(600-025A25-10H) with 3 10 mm blade-diameter cutter 
teeth (600-1045M-ML 1030) was used to cut the Ni–Al 
bronze workpiece. Vibration signals were collected via an 
NI data acquisition system and a 3-dimensional acceleration 
sensor (DYTRAN 3263A2T). Simultaneously, an industrial 
vision measurement system (Camera: Basler aca2440-20gc, 
lens: OPT c1614-5m) was used to take pictures of the sur-
face of the workpiece to record the vibration texture of the 
surface.

According to the stability lobe diagram (Fig. 2) and 
actual machining experience, a rotation speed range of 
3000–6000 rpm and a cutting depth range of 0.2–2 mm were 
selected for the cutting experiments. In the milling process, 
the feed per tooth and cutting width remained constant. The 
feed per tooth was fz = 0.05 mm/ft and the cutting width was 
8 mm. The sampling frequency of the vibration data was 
10 kHz. A total of 160 sets of different machining param-
eters were selected for cutting. Up milling was performed 
along the positive direction of the Y-axis of the robotic 

coordinate system. The machining parameters are shown in 
Table 1, represented visually by four types of differently 
shaped/colored symbols in the stability lobe diagram. Spe-
cifically, the red point and the green ‘ × ’ express the stable 
and transition machining parameter states, respectively. The 
black ‘#’ and the blue ‘*’ both denote the chatter state; the 
black ‘#’ signifies regular chatter and the blue ‘*’ represents 
irregular chatter. In the stability lobe diagram, above the 
curve is unstable and below is stable. Stable data are in the 
stable region and chatter (regular chatter and irregular chat-
ter) data are in the unstable region. In addition, the transition 
cutting parameter points are around the curve. The accuracy 
of prediction is not sufficiently high but the cutting data of 
the four vibrations are similar in size. The practical mean-
ings of these four types used to distinguish different machin-
ing vibration states are expounded in section "Classification 
of vibration states in robotic milling".

Construction of vibration dataset based 
on the sliding window method

Generally, the original vibration data are collected in three 
stages: the feeding, cutting, and relieving stages, as shown 
in Fig. 3. The spectrum features of the three stages are not 
completely consistent (Fig. 4). To ensure the consistency of 
the sample characteristics in the sample splicing and sliding 
window operation, the samples in the feeding and relieving 
stages were not considered. By intercepting the raw vibra-
tion data of each section, the data of the cutting stage can 
be obtained as samples. Simultaneously, multiple cutting 
during the experiment will be conducted to collect suffi-
cient vibration samples for analysis under each set of cutting 
parameters.

Fig. 1   Planar milling experiment setup on the robotic milling plat-
form Fig. 2   Stability lobe diagram
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In this study, the machined plane size of the workpiece 
in the experiments is 70 × 120 mm and the single cutting 
range is 8 × 70 mm. In the cutting area, it can be seen from 
Fig. 5 that the features of the vibration signal under the same 
machining parameters maintain good consistency. Therefore, 
it is assumed that the robot maintains the same vibration 
state under the same processing parameters when the cutting 
area is small. In this way, for the same parameters, vibra-
tion data from the cutting stage of multiple data files can be 
directly collected to represent the vibration state. To facili-
tate training the identification model in the following chap-
ters, sliding window sampling is conducted for the vibration 
signals under the same processing parameters to construct 
standard vibration data sample sets (Fig. 6), according to 
the following:

where Sij is the jth vibration sample obtained from the vibra-
tion signal of the ith parameter group. j is the number of 

(1)

Sij = Si[1 + j ∗ s_len, fs + j ∗ s_len] ,

(
j = 0, 1, 2, ..., INT(

Ni − fs

s_len
)

)

sliding windows, and fs is the sampling frequency. fs is uni-
formly set to 10 k. s_len represents the sliding step size of 
the window, and INT() is the integer component of the value 
in parentheses. The process is shown in Fig. 7.

Classification of vibration states in robotic 
milling

Previous studies conducted FFT on vibration signals and 
analyzed their frequency components to determine whether 
chatter occurs. In addition to the tool passing frequency and 
its frequency multiplication, the data of the chatter state 
contains other obvious frequency components. However, it 
is found that the frequency distribution in the spectrum dia-
gram of the data in the chatter state is not completely similar 
in the experimental process. The frequency of some chatter 
data is regular in the spectrum diagram, while the frequency 
of others is chaotic. When the time–frequency information 
of the vibration data is input into the image through a con-
tinuous wavelet transform (CWT), it can be found that the 

Table 1   Milling parameters 
table

Speed n (rpm) Feed f (mm/s) Depth d (mm)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3000 7.5 1 17 33 49 65 81 97 113 129 145
3200 8 2 18 34 50 66 82 98 114 130 146
3400 8.5 3 19 35 51 67 83 99 115 131 147
3600 9 4 20 36 52 68 84 100 116 132 148
3800 9.5 5 21 37 53 69 85 101 117 133 149
4000 10 6 22 38 54 70 86 102 118 134 150
4200 10.5 7 23 39 55 71 87 103 119 135 151
4400 11 8 24 40 56 72 88 104 120 136 152
4600 11.5 9 25 41 57 73 89 105 121 137 153
4800 12 10 26 42 58 74 90 106 122 138 154
5000 12.5 11 27 43 59 75 91 107 123 139 155
5200 13 12 28 44 60 76 92 108 124 140 156
5400 13.5 13 29 45 61 77 93 109 125 141 157
5600 14 14 30 46 62 78 94 110 126 142 158
5800 14.5 15 31 47 63 79 95 111 127 143 159
6000 15 16 32 48 64 80 96 112 128 144 160

Fig. 3   Original milling vibration data
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Fig. 4   FFT spectra of samples with different vibration states at different cutting stages
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Fig. 4   (continued)

Fig. 5   The vibration data in the same machining parameters

Fig. 6   Standard vibration data 
sample sets
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frequency components of the data with regular frequency 
have little change with time, while the frequency compo-
nents of the data with a disordered frequency vary with time. 
The vibration data in the chatter state is divided into regular 
chatter (time-invariant chatter) and irregular chatter (time-
varying chatter). All vibration data can be divided into four 
types: stable, transition, regular chatter, and irregular chatter. 
FFT is conducted for the vibration signals of the different 
vibration types with their frequency components being ana-
lyzed. The results of the FFT are shown in Fig. 8 and the 
CWT results are shown in Fig. 9.

According to the wavelet time–frequency spectrum dia-
gram, its frequency component is constant in the stable state 
and the frequency bands are continuous. In the transition 
state, most of the frequency components remain unchanged 
and some frequency bands are discontinuous. In the regular 
chatter state, there is a small number of time-varying fre-
quency components with discontinuous frequency bands. 
In the irregular chatter state, most frequency components 
are time-varying and each frequency band is almost com-
pletely discontinuous. Therefore, the time-varying chatter 
components in robotic milling can be reflected and captured 
by wavelet analysis.

Obvious differences can be found by observing the vibra-
tion patterns of the machined surface (Fig. 10) under four 
states:

1.	 Stable state
	   There are sometimes normal visible gear marks on the 

surface but no obvious vibration marks. When directly 
observed by the naked eye, the surface is very smooth 
and clean, as shown in Fig. 10a.

2.	 Transition state
	   Compared with the stable state, there is a slight vibra-

tion texture on the surface, as shown in Fig. 10b.
3.	 Regular chatter state
	   Compared with the stable state, there is an obvious 

regular vibration texture on the surface, as shown in 
Fig. 10c.

4.	 Irregular chatter state

Compared with the previous states, the surface has obvi-
ous irregular vibration textures and the surface quality is the 
worst, as shown in Fig. 10d.

According to the above standards, vibration textures 
generated using all the processing parameters are observed. 
Among them, the stable state and transitional state accounted 
for 28.75 and 15%, respectively. The percentages of regular 
chatter and irregular chatter states are 26.875 and 29.375%, 
respectively.

Chatter identification model based 
on VMD‑SVM

The entire framework of the identification model is shown 
in Fig. 11. After obtaining the vibration signal datasets, 
VMD and IE are used in the preprocessing of raw signals. 
VMD is used to decompose the original signal in the fre-
quency domain. The chaotic characteristics of the vibration 
signal are further extracted and the dimension of the data 
is reduced by computing IE. Then, an SVM-based classifi-
cation model is trained to divide the vibration signals into 
four types. Finally, the hyper-parameters of the VMD-SVM 
model are optimized by kMap to improve the accuracy of 
the identification model.

VMD‑SVM model based on IE

In view of higher decomposition accuracy, VMD is used to 
process signals adaptively, which extracts features of vibra-
tion better by considering the characteristic that vibration 
frequency bands are variable. The solution target of the 
VMD is shown below:

where {uk(t)} = {u1(t), u2(t),… , uk(t)} represents the K 
intrinsic mode function (IMF) components to be preset and 
estimated. {�k(t)} = {�1(t),�2(t),… ,�k(t)} is the relevant 

(2)

min
{uk(t)},{�k(t)}

∑
k

lk

s.t.
∑
k

uk(t) = f (t)

Fig. 7   Sliding window sampling process under the same processing 
parameters
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center frequency and f(t) is the raw signal. uk, ωk, and f are 
simplified to represent uk(t),�k(t) , and f(t).

The Lagrangian multiplier method (LMM) is utilized to 
solve the optimization problem in Eq. (3). The secondary 
penalty factor α and Lagrangian multiplier λ(t) are intro-
duced to obtain the Lagrangian equation and solution, as 
follows:

Then, the alternate direction method of multipliers 
(ADMM) is used to solve Eq. (3), and the extreme point is 

(3)

L
({

uk
}
,
{
�k

}
, �
)
= �

∑
k

lk +
‖‖‖‖‖
f −

∑
k

uk

‖‖‖‖‖

2

2

+

⟨
�(t), f −

∑
k

uk

⟩

found by alternately updating un+1
k

,�n+1
k

 , and �n+1 , obtaining 
k signal sub-sequences (Liu et al. 2017).

The IE of the sub-signals can be obtained as the char-
acteristic variable according to the characteristics that the 
frequency components of vibration signals become increas-
ingly complex when chatter occurs. The calculation equation 
for IE is:

where Ei is the IE of the ith signal subsequence, and xi rep-
resents the signal subsequence extracted with VMD. The 
feature vector obtained from IE is taken as the input and the 
SVM classification model based on the radial basis function 
(RBF) is used to realize identification of the vibration state 

(4)Ei = −�i log �i, i = 1, 2, ..., n

Fig. 8   Frequency spectra of 4 vibration states based on FFT
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in the process of robotic milling (the vibration signal col-
lected in this paper is the signal sequence of sampling points 
with a sampling frequency of 10 kHz).

kMap identification model optimization 
method

Generally, the SVM algorithm is used for classification, 
which involves the hyper-parameters σ and C. The opti-
mization of hyper-parameters is a two-dimensional hyper-
parameter optimization problem. With the use of the VMD 

algorithm, the modal decomposition number K and the 
second penalty factor α in VMD will also become hyper-
parameters of the model. The optimization of hyper-param-
eters becomes a 4-dimensional hyper-parameter optimiza-
tion problem. According to the influence of K and α on the 
reconstruction characteristics of simulation signals, the 
value of α should be greater than or equal to half of the sam-
pling frequency (Lv et al. 2016). The GS is used to optimize 
multi-dimensional hyper-parameters but its operation time 
is long. This paper sets α = 5000 and proposes a GS-based 
method, the kMap method, to solve the VMD-SVM three-
dimensional hyper-parameter optimization problem.

Fig. 9   Time–frequency spectra of 4 vibration states based on CWT​
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First, the range of hyper-parameters and step length are 
set:

where the value of C and σ are discretized with 2 as the 
basis number. C_step and σ_step represent the discrete step 
lengths of the corresponding hyper-parameters. K is the 

(5)

⎧⎪⎨⎪⎩

C ∈ [2C_min, 2C_max], C_n = INT((C_max−C_min)∕C_step)

� ∈ [2�_min, 2�_max], �_n = INT((�_max−�_min)∕�_step)

K ∈ {1, 2, ..., n}

number of modal decompositions, so its value is generally a 
discrete integer. Within this range, the optimal hyper-param-
eter combination, (C, σ, K), is determined to ensure that the 
VMD-SVM model achieves higher training accuracy.

Then, a group value range of hyper-parameters is set 
with a small degree of dispersion. The influence trend of 
these 3 hyper-parameters on the model precision is first ana-
lyzed using the GS. The accuracy distributions in different 
parameters obtained by setting C_min = σ_min =  − 5, C_
max = σ_max = 5, C_step = σ_step = 0.2, and K ∈ {2, 3...10} , 
as shown in Fig. 12. Where the surfaces of different colors 

Fig. 10   Vibration texture of 
workpiece surface under 4 
vibration states
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represent the model training accuracy under combinations 
of C and σ when K is set as different values.

It can be seen from Fig. 12 that the influence of the 3 
hyper-parameters on the model precision studied in this 
paper is not a linear relationship. Especially, when the 
model precision reaches a higher value range, the influ-
ence relationship becomes more complex. Convert Fig. 12 
to a plane perspective of C − σ, as shown in Fig. 13. The 
differently colored regions in the figure correspond to dif-
ferent values of C and σ, representing the value of K that 
can maintain the highest accuracy of the model in the cur-
rent region. According to the figure, the optimal value of 
K is not fixed. However, it is not difficult to find from the 
figure that these colored areas are divided into continu-
ous blocks in most cases. Therefore, as long as the value 
of K in each C − σ region can be determined to ensure 
that the model has the highest accuracy, the 3-dimensional 

Fig. 11   Chatter identification model framework for robotic milling

Fig. 12   Training accuracy distribution under different parameter 
combinations

Fig. 13   Training accuracy 
distribution diagram on the 
C − σ plane
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hyper-parameter optimization problem can be transformed 
into the C − σ two-dimensional optimization problem.

The continuous region can be identified by deter-
mining the boundaries of different continuous regions. 

Specifically, a large step size is given and the values of C 
and are σ updated by GS. The optimal value of K under the 
current values of C is σ, obtained as follows:

where acc represents the training accuracy of the model. 
At the same time, the higher the value of K, the higher the 
computational complexity of the VMD algorithm. There-
fore, with the constraint condition set, a smaller value of K 
is selected as the optimal K when the difference between 
the model accuracies corresponding to the current K and 
the previous K is less than the convergence accuracy. The 

(6)
k(C, �) = argmax

K∈{1,2,3,...,n}

acc(C, �,K)

s.t. k(C, �) = i − 1, ( ||acci − acci−1
|| ≤ � )

Start

Initialize kMap, σ _min,σ _max,
C_min,C_max, K_min, K_max, step_1

2σ_min σ 2σ_max

and
2C_min C 2C_max

Fix C, σ, obtain the optimal K
value by GS.

kMap(C, σ ) = K

Update values of C, σ by GS 
with step_1

Output kMap

End

Y

N

Fig. 14   First step: obtain the K-contour map (kMap) under the large 
step

Fig. 15   Optimal K distribution 
on the C − � plane

-3 -2 -1 0 1 2 3
-3

-2
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1

2

3

k(C1,σ1)
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lo
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Fig. 16   Bilinear Interpolation
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optimal K matrix corresponding to all grid points at the cur-
rent large step size can be obtained when all values of C and 
σ are traversed. The specific process is as follows:

1.	 The value ranges and step sizes of C, σ, K are set.
2.	 Execute the loop body, update C and σ with GS until the 

search is completed. Then execute (4).

3.	 According to Eq. (6), the optimal K of the current C and 
σ is calculated.

4.	 Obtain the optimal K distribution diagram for all values 
of C and σ, referred to as kMap.

The process of obtaining a contour map of K is shown 
in Fig. 14:

Fig. 17   kMap obtained from BI

Fig. 18   Flow chart with the middle and small step size
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Taking the parameter settings in Fig. 14 as an exam-
ple. When the optimal matrix K is calculated with 
C_step = σ_step = 0.5 rather than C_step = σ_step = 0.2, the 
contour map of the K matrix is drawn in the C − σ plane, 
as shown in Fig. 15. Different colors represent the K val-
ues in different regions corresponding to the highest model 
accuracy.

As shown in Fig. 15, each optimal K region is a con-
tinuous block; its range is similar to that of when 
C_step = σ_step = 0.2. Therefore, kMap can be used to fur-
ther search for the optimal solution with the two-dimensional 
C − σ grid method under the middle step size, until the target 
step size is reached.

Bilinear interpolation (BI) is required to interpolate kMap 
to obtain the same optimal K values as the discrete grid 
points with a middle step size. The interpolation formula is 
shown below:

where k(C1, σ1), k(C1, σ2), k(C2, σ1), and k(C2, σ2), are the 
4 known points closest to the current interpolation point, 
as shown in Fig. 16. According to Eq. (7), the kMap cor-
responding to the middle step size can be obtained. Set-
ting C_step = σ_step = 0.2, the kMap obtained by the BI 
of the kMap generated by C_step = σ_step = 0.5 is shown 
in Fig. 17. Its continuous region and boundary are well 
preserved.

After obtaining kMap with a middle step size, the optimal 
solution can be further searched according to the GS. The 
specific process of the algorithm is shown in Fig. 18a. The 
optimal combination (C, σ, K) generated from the discrete 
step length can be taken as the value range center. A small 
value range and search distance are given and the optimal 
solution can be searched using the GS. If the optimal (C, σ, 
K) is not updated, the optimal solution can be considered 
found. The specific process is shown in Fig. 18b.

For the optimization of the values of the 3 hyper-param-
eters, the overall algorithm flow based on the kMap method 
is as follows:

1.	 Initialize parameters.
2.	 Search for all K values with the highest accuracy under 

large step sizes of C, σ and obtain kMap.
3.	 According to kMap with the large step size, the BI 

method is used to update and expand kMap. The GS is 
used to search for the current optimal (C, σ, K) with the 
middle step size.

(7)

k(C, �) =
[

C2−C

C2−C1

C−C1

C2−C1

][
k
(
C1, �1

)
k
(
C1, �2

)
k
(
C2, �1

)
k
(
C2, �2

)
][ �2−�

�2−�1
�−�1

�2−�1

]

4.	 Taking the optimal hyper-parameter combination gener-
ated in (3) as the center point, update the optimal (C, K) 
by GS with a small step size.

5.	 Output the optimal (C, K), end.

The overall flow chart is shown in Fig. 19.
To select optimal hyper-parameters, assuming that n C, 

m σ and g K values are used to identify the model for opti-
mal parameter selection, the time complexity of kMap is 
O(nmg). The time complexity of kMap is the same as that 
of the GS algorithm proposed in the following section. How-
ever, the number of parameters taken by kMap is far less 
than that of GS and part of the calculation process is greatly 
simplified, with the computational burden greatly reduced.

Start

Initialize global 
variables 

Generate the optimal K 
value distribution map,
kMap, under the large 

step size

Under the middle step 
size, kMap is extended 
by BI, and the optimal 
solution is determined 

by GS

Under the small step 
size, the optimal solution 

is determined by GS 

Output the optimal 
hyper-parameters

(C, σ , K)

End

Fig. 19   Overall flow chart of kMap algorithm
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Identification accuracy and experiment 
analysis

Optimization result and analysis of kMap

As an improved GS algorithm, the operation time of kMap 
is far less than that of GS. The operation results are shown 
in Table 2. In the optimizing process of GS, C_min = σ_
min =  − 5, C_max = σ_max = 5, C_step = σ_step = 0.02, 
and K ∈ {2, 3...10} . The obtained optimal model accuracy 
was 92.59% and the time used was approximately 37 h. The 
hyper-parameters of the VMD-SVM model are optimized by 
kMap with the same parameter ranges. The sizes of the large 
step, middle step, and small step are set as 0.5, 0.2, and 0.02, 
respectively. The accuracy of the model optimized by kMap 
was 92.45%. kMap saves large computational expense with 
a small accuracy cost.

The heuristic algorithm (HA) [e.g., PSO (Kennedy and 
Eberhart 1995) and GA (Holland 1973)] is an effective opti-
mization method. Compare these methods in kMap, with 
the following optimization settings of PSO, GA, and kMap: 
optimization ranges of C, σ, K: [− 5, 5], [− 5, 5), [2, 10], 
evolution time number is 200, and population size is 20. In 
addition, the maximum velocity of the particle and termina-
tion error value are set as 0.02 and 1e-25, respectively, in 
PSO. The individual length of the gene and the termination 
error value are 11 × 2 and 1e-25 in GA. The step sizes of 

kMap are taken as three different sets of values; (0.5, 0.2, 
0.02), (0.5, 0.1, 0.02), and (0.4, 0.12, 0.024).

It is assumed that the stochastic disturbance has a non-
Gaussian distribution in the case of industrial robotic mill-
ing. The measured acceleration data X(t) is written as:

where X�(t) and e(t) are the real acceleration data and sto-
chastic noise, respectively. It is assumed that the meas-
urement noise e(t) has a non-Gaussian distribution, with 
approximately normal distribution classes (Stojanovic and 
Prsic 2020):

where the probability density p(e) represents a mixture of 
primary probability density p1(e): N(0, R1) and contaminat-
ing probability density p2(e): N(0, R2). The degree ε is in 
range 0 < ε < 1, while R1 and R2 are covariance matrices of 
primary and contaminating terms in a non-Gaussian distri-
bution. Non-Gaussian noises with different R1, R2, and ε are 
added to the cutting data. These datasets containing noise 
are used to train the identification model, and PSO, GA, 
and kMap are used to obtain optimal hyper-parameters. The 
results are shown in Fig. 20.

The operation time of kMap is of the same order of 
magnitude as PSO and GA, i.e., hundreds of seconds. 

(8)X(t) = X�(t)+e(t)

(9)P
�
= {p(e) ∶ p(e) = (1 − �)p1(e) + �p2(e)}

Table 2   The results optimized 
with GS and kMap

Accuracy (%) Time C σ K

GS 92.59 37 h 1.35 0.43 4
kMap 92.45 261 s 7.2602 0.1303 8

Fig. 20   Identification model accuracies
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However, the average optimization performance of kMap 
is slightly better than that of PSO and GA. It is worth 
noting that kMap inherits the advantages of stable opti-
mization of the GS; this means that in the same optimi-
zation range, the optimization result of kMap is almost 
unchanged when the lengths of the searching steps are 
changed. It is obvious that non-Gaussian noise affects the 
accuracy of the identification model so it is important to 
appropriately design a cutting signal filter.

Chatter identification experiment

The chatter identification model optimized by kMap was 
used in the experiments of robotic milling. The hardware is 
a Henrywaltz data acquisition module (Fig. 21). The cutting 
tools and the material used in the experiment are the same as 
section "Experimental platform and parameter setting" and 
are machined by up-milling. Different machining parameters 
were set for the robotic milling experiments. The experimen-
tal machining parameters are listed in Table 3. The results of 
the software used to monitor vibration states are shown in 
Fig. 22. The results are presented in the form of four types 
of vibrations in robotic milling.

Take experiments 3, 4, 11, and 12 as examples for analy-
sis. The machined surfaces under the four sets of process-
ing parameters are shown in Fig. 23. In experiment 3, an 
irregular vibration pattern appears on the machined surface, 
which is judged as irregular chatter according to experience. 
In experiment 4, there are slight vibration marks on the 

processed surface except for the gear mark, which is judged 
as a transition state according to experience. In experiment 
11, the machined surface is smooth and clean, except for 
the gear mark, and is judged as a stable state according to 
experience. In experiment 12, the processed surface shows 
an obvious regular vibration pattern, which is determined as 
regular chatter according to experience.

On average, it takes 1.256 s to identify the vibration 
state, with the vibration data of 5000 sampling points, 
and the time for data feature extraction is relatively large. 
Notably, the identification model can be used for chatter 
identification when more than 5,000 data are collected in 
the identification experiment, i.e., after 0.5 s of sampling. 
The identification results of the 4 groups of experiments 

Fig. 21   Robotic milling vibra-
tion monitoring experiment

Table 3   Processing parameters of chatter identification experiment

Number Speed (rpm) Feed (mm/s) Depth (mm) Width (mm)

1 3200 8 1.1 8
2 3200 8 2 8
3 3600 9 2.1 8
4 4000 10 0.5 8
5 4000 10 1.2 8
6 4400 11 0.3 8
7 4400 11 0.7 8
8 5000 12.5 1.2 8
9 5200 13 0.5 8
10 5200 13 0.9 8
11 5800 14.5 0.5 8
12 5800 14.5 1.7 8
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are irregular chatter, transition, stable, and regular chat-
ter states. The validity of the model in chatter identifica-
tion is verified by the same results as those obtained from 
machining surfaces and experiment results.

Conclusions

To better fit the actual situation of robotic milling and 
provide the basis for further study of chatter mechanisms, 

Fig. 22   Robotic milling chatter monitoring



1500	 Journal of Intelligent Manufacturing (2022) 33:1483–1502

1 3

Fig. 22   (continued)
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this paper divides the vibration states of industrial robotic 
milling into four types: stable, transitional, regular chatter, 
and irregular chatter. The VMD-SVM model is applied 
for chatter detection of robotic milling for the first time, 
which is trained using 160 robotic milling experiments. To 
improve the accuracy of the chatter identification model, 
a novel optimization method—the kMap algorithm—is 
proposed in this paper for the optimization of 3-dimen-
sional hyper-parameters of the VMD-SVM model. Finally, 
validation experiments in 12 parameter sets are used to 
confirm the effectiveness of the chatter identification 
model. Through the research of this paper, the efficiency 
and accurate identification of chatter in robotic milling 
can be realized. Based on the above research on chatter 
detection in robotic milling, some conclusions are sum-
marized as follows:

1.	 The vibration data is identified by classifying the vibra-
tion data promptly measured using a VMD-SVM model 
based on IE where VMD adaptively decomposes the 
vibration signals and IE quantifies the clutter degree of 
vibration data. VMD and IE can effectively extract the 
features of vibration data. The experimental results show 
that the frequency and time–frequency characteristics of 
the 4 types of vibration signals proposed in this paper 
(stable, transitional, regular chatter, and irregular chat-
ter) correspond to the textures on the machined surfaces 
in robotic milling. The identification accuracy of VMD-
SVM model is 92.59% and can effectively identify chat-
ter in robot processing.

2.	 Compared to the optimization performance of GS, GA, 
and PSO, the kMap proposed in this paper shows com-
prehensive advantages in terms of optimization time, 
accuracy, and stability. The optimization time of kMap 
was 261 s; this is far less than that of GA (37 h). The 
average optimization performance of kMap is slightly 
better than that of PSO and GA. Furthermore, kMap 
inherits the advantages of stable optimization of GS, 
i.e., the optimization result of kMap is almost unchanged 
within the same optimization range. In addition to the 
application case in this study, the kMap algorithm can 
be applied to other multidimensional hyper-parameter 
optimization. To apply kMap to other applications, it is 
necessary to adjust the optimization range and step size.
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