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Abstract
Cyber-Physical System (CPS) is one of the most promising directions of Industry 4.0 smart manufacturing. Abundant manu-
facturing data and information are available for decision-makers in real-time thanks to the application of various frontier 
technologies in CPS. However, the inherent complexity and uncertainty of manufacturing optimization still plague scholars 
and practitioners and impede further progress of smart manufacturing. The production planning and scheduling is such a 
complex and stochastic problem that has received considerable research attention. Whereas how to leverage the strengths 
of CPS for breaking the bottleneck of complexity and uncertainty, is still a question that needs further exploration. This 
paper proposes a novel “divide and conquer” approach, Spatial–Temporal Out-Of-Order execution (ST-OOO), for achieving 
real-time planning and scheduling in cyber-physical factories. ST-OOO divides the space and time scopes of a factory into 
finite areas and intervals to reduce complexity and localize uncertainties so that the original complex optimization problem 
is decomposed into a set of subproblems with different spatial and temporal characteristics. These small-size subproblems 
can be assembled using data and information visibility and traceability, and then solved in a rolling spatiotemporal manner 
to generate a global solution. A case study shows that ST-OOO has a well-balanced and more stable performance compared 
to traditional strategies. Sensitivity analysis is carried out to study the impacts of spatial and temporal scales on the results.

Keywords Advanced planning and scheduling (APS) · Spatial–temporal out-of-order execution (ST-OOO) · Cyber-physical 
system (CPS) · Synchronization · Smart Manufacturing

Introduction

The complex and stochastic nature of production optimiza-
tion is one of the greatest challenges that stand in the way of 
Industry 4.0 manufacturing. Automation alone can hardly 
resolve the complexity and uncertainty in the modern manu-
facturing environment with mixed product variety. Schol-
ars and practitioners of production optimization have been 
fighting the complexity and uncertainty for decades. The 
Advanced Planning and Scheduling (APS) is a typical com-
plex and stochastic optimization problem, such as the Hybrid 
Flow Shop (HFS) problem, determining the sequence of a 
number of products produced at several production stages, 
is NP-hard in most instances (Ruiz and Vázquez-Rodríguez 
2010). The advent of Cyber-Physical System (CPS) pro-
vides a promising direction forward and paves the way to 
Industry 4.0 manufacturing (Zhong et al. 2017; Yang et al. 
2019; Oztemel and Gursev 2020). Thus, how the planning 
and scheduling processes are reshaped in such a real-timely 
visible, traceable, and interconnected environment, and how 
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to solve the APS problem by leveraging the strengths of CPS 
factories, are of concern in this study.

Considerable efforts have been made from industry and 
academia to resolve the manufacturing complexity and 
uncertainty. Leading manufacturers developed various APS 
systems to allocate materials and production capacity to 
meet the demand optimally. The usefulness of these systems 
is widely appreciated. However, the current APS systems 
lack versatility and the costs for customization are usually 
high, and it is hard to use these systems to respond to the dis-
turbances and uncertain issues in actual production progress 
without utilizing real-time shopfloor data promptly. Besides, 
frequent rescheduling may cause resistance to change, which 
will be counterproductive for improving efficiency (Rahmani 
and Ramezanian 2016). Then again, manufacturers invested 
massively to build highly automated production lines. Still, 
the performance did not come up to expectations because 
automation is perfect for executing static schedules with 
its preciseness and efficiency, but it is not smart enough to 
tackle various uncertainties in a dynamic environment.

On the other hand, due to the NP-hardness of the plan-
ning and scheduling problem, researchers have tried a large 
variety of mathematical methods and computational algo-
rithms. These approaches have generated similar solutions 
that could obtain optimal value in theory but can hardly put 
into practice because the uncertainties are not well tackled. 
Afterward, Hierarchical Planning and Scheduling (HPS) and 
Multiperiod Planning and Scheduling (MPS) have emerged. 
HPS and MPS are two typical methods to locate and resolve 
complexity and uncertainty. HPS discretizes the original 
complex problem into a series of relatively deterministic 
subproblems (Hax and Meal 1973). MPS divides the deci-
sion horizon into multiple short periods with limited uncer-
tainty (Li and Ierapetritou 2010). Nevertheless, both HPS 
and MPS require but suffer from the lack of coordination 
and integration mechanisms for connecting subproblems.

Nowadays, the power of sharing information has been 
widely known for reducing the bull-whip effect. The new 
hope is to develop big data analytics to minimize complexity 
and uncertainty (Yang et al. 2019). Fortunately, the power 
of the Internet of Things (IoT) devices in CPS promises to 
capture real-time factory data (Sisinni et al. 2018; Fang and 
Zheng 2020). However, IoT, as it is, does not readily serve 
as effective solutions for sharing information. Only very few 
companies have eventually implemented such IoT solutions 
on a large scale. Moreover, how real-time shop floor data can 
be utilized for supporting decision-making is still a question 
to be answered.

This paper proposes a “divide and conquer” approach, 
Spatial–Temporal Out-Of-Order execution (ST-OOO), for 
achieving Real-Time Advanced Planning and Scheduling 
(RT-APS) in cyber-physical factories. ST-OOO divides the 
space and time scopes of a workshop into finite space and 

time units to reduce complexity and localize uncertainties 
so that the complex optimization problem is decomposed to 
a set of small-size subproblems with different spatial and 
temporal characteristics. These subproblems can be tackled 
in a rolling spatial–temporal manner to generate a global 
solution. Several research questions are answered in this 
paper. First, how to discretize the traditional monolithic 
APS decision into a series of real-time decisions, and how to 
establish their connections and dependencies using real-time 
visibility and traceability? Second, how to design a dynamic 
job distribution and execution mechanism considering the 
actual shop floor situation, such as the availability of men, 
machines, materials to organize production activities in a 
simple and resilient manner? Third, how the key parameters, 
spatial and temporal factors in the proposed method affect 
its performance?

This study aims to develop ST-OOO for real-time 
advanced production, planning, scheduling, and execu-
tion for cyber-physical factories. There are three research 
objectives:

• To innovate a novel “divide and conquer” approach, ST-
OOO, to resolve the complexity, uncertainty and localize 
the disturbances in real-life manufacturing optimization 
problem;

• To apply the proposed ST-OOO in a hybrid flow shop 
scenario with detailed steps for practically achieving RT-
APS;

• To conduct a case study for evaluating the performance 
of ST-OOO and investigating the impacts of the spatial 
and temporal factors, and some parameters of shopfloor 
configuration on the performance.

In terms of research significance, this study offers a 
brand-new perspective of complexity and uncertainty man-
agement using real-time data and information visibility and 
traceability. It contributes to the theoretical basis for solv-
ing optimization problems in the CPS environment. From 
a practical perspective, this article develops a new effec-
tive solution for optimization problems encountered in the 
real-life factory to reduce operational errors and improve 
efficiency, productivity, and resource utilization. In short, 
this study provides a novel solution that can obtain a good 
trade-off between theory and practice.

The rest of this paper is organized as follows. “Literature 
review” section gives a literature review. The general idea 
and two key components of ST-OOO are presented in “Spa-
tial–temporal out-of-order execution” section. “Five steps 
of the ST-OOO application in CP-HFS” section explains 
the detailed steps of ST-OOO with a HFS example. The case 
study is conducted in “Case study” section. Finally, “Con-
clusions” section summarizes this study and gives several 
research perspectives.
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Literature review

Hybrid flow shop scheduling problem

HFS scheduling has been receiving considerable research 
attention for decades (Ruiz and Vázquez-Rodríguez 2010). 
Given its theoretical complexity and practical significance, 
researchers have presented a wide variety of mathemati-
cal models and computational algorithms to tackle the 
problem, including exact approaches, heuristics, and 
metaheuristics.

Exact approaches including Branch and Bound (B&B) 
and Mathematical Programming were preferred in litera-
ture for tackling the HFS scheduling. The B&B algorithm 
is firstly proposed by Brah and Hunsucker (1991) to tackle 
a general m stages HFS scheduling problem for minimizing 
the makespan. Afterwards, Vandevelde et al. (2005) further 
presented more advanced lower and upper bounds. Wittrock 
(1988) decomposed the HFS problem and used DP to find 
a proper loading sequence. Besides, Liu and Karimi (2008) 
formulated several MILP models for m-stages HFS with par-
allel processors and evaluated their quality. These methods 
have been proven effective for small size HFS problems, but 
it is computationally impossible to handle real-world large 
scale HFS using exact methods.

Heuristics and metaheuristics usually required less com-
putational efforts when dealing with large-size HFS prob-
lems. Brah and Wheeler (1998) investigated 9 dispatch-
ing rules in a HFS with average flow time and makespan 
objectives. S. Wang and Liu (2013) designed a heuristics 
algorithm based on B&B for a two-stage HFS scheduling, 
near-optimal results were obtained in numerical studies. 
Metaheuristics including Genetic Algorithms (GA), Ant 
Colony Optimization (ACO), were also commonly used in 
HFS problems. Komaki et al. (2016) addressed a two-stage 
HFS problem followed by an assembly machine using the 
AIS algorithm. Qin et al. (2018) designed an ACO-based 
strategy to solve a HFS problem with uncertain processing 
time. Scholars tried various algorithms to solve the HFS 
problems given their NP-hardness. Nevertheless, similar 
results were produced, which were near-optimal in theory, 
but still suffer from the lack of resilience to handle fre-
quent uncertain events in industrial environment.

Hierarchical/multiperiod planning and scheduling

It is generally accepted that APS problems are complex 
and stochastic in nature (Efthymiou et al. 2016; Keller and 
Bayraksan 2009). Scholars realize that the breakthrough to 
Industry 4.0 manufacturing is impossible without resolv-
ing the complexity and uncertainty.

Hierarchical Planning and Scheduling (HPS) is a typical 
approach to reduce complexity by decomposing the APS 
problem into a set of subproblems (Bitran et al. 1982). 
Dempster et al. (1981) introduced a stochastic program-
ming framework that encompasses the entire multi-level 
decision process. More recently, O’Reilly et al. (2015) pro-
posed a theoretical framework of HPS for food manufac-
turers. Menezes et al. (2016) investigated bulk cargo ter-
minals and presented a HPS approach with a math model 
for scheduling and lot-sizing decisions integration. Multi-
period Planning and Scheduling (MPS) is another method 
to manage complexity and uncertainty by discretizing 
the decision horizon into multiple shorter time intervals 
(Sridharan et al. 1987). Balakrishnan and Cheng (2007) 
reviewed the research addressing the reconfiguration and 
uncertainty issues in cellular manufacturing with multi-
period planning horizons. Torkaman et al. (2017) studied 
a multi-stage multi-product multi-period capacitated flow 
shop planning problem and developed MIP-based heuris-
tics with rolling horizons.

These efforts are widely appreciated, but the complex-
ity and uncertainty issues remain since both HPS and MPS 
require but suffered from the shortage of real-time coordina-
tion and integration of subproblems.

CPS for smart manufacturing

In recent years, frontier Industry 4.0 concepts such as IoT, 
blockchain, and CPS provide new paradigms to enhance vis-
ibility and traceability in the shop floor. Udoka (1991) pre-
sented an overview of automated data capture technologies 
and claimed that these technologies are crucial to the success 
of production automation. Zhong et al. (2013) investigated 
RFID-enabled manufacturing and proposed a real-time MES 
for planning and scheduling. Lin et al. (2018b) used iBeacon 
technologies to construct visibility in a HFS to facilitate real-
time decisions and operations. In addition, the applications 
of industrial wearables were also widely studied (Ming Li 
et al. 2019; Kong et al. 2019). Thanks to the deployment of 
IoT devices, abundant data are real-timely accessible. Kusiak 
(2017) revealed the crucial role of big data in Industry 4.0 
manufacturing and summarized five gaps to fill. Moreover, 
L. Wang and Haghighi (2016) provided a concept map and 
associated a CPS with the joint strength of operators, agents, 
and functional blocks to obtain higher performance. A CPS-
based Industrial IoT Hub was presented by Tao et al. (2017) 
to achieve real-time shop floor interconnection.

Indeed, manufacturing is getting smarter; however, tech-
nologies themselves are not readily served as effective solu-
tions for supporting APS decision-making. Moreover, how 
these cutting-edge concepts reshape the APS process and 
what are the new characteristics of APS in CPS factories, 
deserve more explorations.
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Finite elements method and out‑of‑order execution

This study also draws inspiration from the Finite Elements 
Method (FEM) and Out-Of-Order execution mechanism. 
FEM originated from structural analysis problems in the 
early 1940s and obtained its real impetus in the 1960s 
thanks to the power of software programs and computers 
(Zienkiewicz et al. 2013). The essential idea of FEM is to 
divide a complex system into smaller, simpler parts (finite 
elements) for which unknown function is approximated, and 
simple equations are easy to establish and solve. Then these 
simple equations are connected into an equivalent system 
of equations to model the original system. The method cap-
tures local effects and seeks for a global solution. Inspired 
by FEM, this study divides a factory into finite elements by 
meshing so that the complexity and uncertainty can be sig-
nificantly minimized. Thus, straightforward models can be 
formulated and tackled, and then they are integrated using 
visibility and traceability.

Out-Of-Order (OOO) execution, since its formation in the 
1960s and now widely implemented, has contributed to the 
advancement in high-performance CPUs. OOO makes full 
use of instruction cycles to overcome efficiency problems 
encountered in in-order processors. The concept of OOO 
is allowing the CPU to process instructions considering the 
real-time availability of input data and arithmetic logical 
units, rather than by the initial order in a program. In this 
way, OOO avoids a class of stalls that occur in in-order pro-
cessors and improves the efficiency of instruction process-
ing. OOO offers complex logics for dynamic analysis and 
resolution of data dependencies to enable more efficient use 
of multiple execution units. It inspires this study to introduce 
an OOO execution mechanism in CPS-enabled factories.

Spatial–temporal out‑of‑order execution

This section presents the general idea of the Spatial–Tempo-
ral Out-Of-Order execution (ST-OOO) and how this method 
leverages the strengths of Cyber-Physical Factories (CPF) 
for achieving Real-Time Advanced Planning and Schedul-
ing (RT-APS).

Real‑time visibility and traceability in CPF

In a CPF, the physical space is characterized by advanced 
connectivity between physical entities, real-time data and 
information acquisition. The cloud services, intelligent 
data analytics, and information sharing mechanisms are 
integrated into cyberspace to support decision-making. 
Real-Time Visibility and Traceability (RTVT) is the most 
crucial and indispensable characteristic of a CPF. RTVT 
visualize the flows of men, machine, and materials from 

4 dimensions (space, time, information, status) to pro-
vide a thorough understanding of the real-time situation. 
The dimensions of space and time describe “where and 
when” and present a straightforward spatial–temporal tra-
jectory. The dimension of information usually specifies 
“what” (basic facts such as ID, type, customer order, due 
date, etc.), while the dimension of status refers to “how” 
(such as whether the WIP is waiting in buffer or in opera-
tion, is there any errors, etc.). These help to establish the 
dependencies such as how the job pools update over time 
and how the jobs flow between stages. RTVT extended 
the manufacturing facts to a higher reality in which data 
are fully utilized along multiple dimensions. The novel 
ST-OOO can accommodate such a highly transparent, 
traceable, and interconnected environment with real-time 
decision-making. Instead of generating an optimal solution 
at the beginning and perform rescheduling frequently to 
cope with uncertainties, ST-OOO keeps monitoring the 
actual situation on the shop floor using RTVT to support 
real-time production decision-making. The role of RTVT 
is further explained with a hybrid flow shop example 
in  “Five steps of the ST-OOO application in CP-HFS” 
section. Spatial–temporal Analytics and Out-Of-Order 
execution are the two key components of ST-OOO.

Key component 1: spatial–temporal analytics

Inspired by the “divide and conquer” spirit of the Finite 
Element Method (FEM), a Spatial–Temporal Analytics 
(STA) is proposed in this subsection as the first key com-
ponent of ST-OOO (Mingxing Li et al. 2020). The FEM 
becomes feasible thanks to modern computing power, 
while STA relies on the strengths of RTVT in a CPF.

Figure 1 shows the general process of STA. Firstly, 
dividing the space scope � and time scope � of the origi-
nal problem � into a series of simple subproblems � , 
which are called Spatial–Temporal Elements (ST-Ele-
ments). ST-Elements are of smaller space scale Δ� and 
shorter time scale Δ� . Secondly, formulating the element 
decision models, which should be relatively simpler As the 
complexity and uncertainty of ST-Elements are slashed in 
meshing. Thirdly, identifying the connectivity and depend-
ency of ST-Elements as well as boundary conditions using 
RTVT for the assembly of all isolated ST-Elements. 
Lastly, solving the subproblems under RTVT in a rolling 
spatial–temporal manner to generate a global solution.

STA provides a new perspective to solve manufacturing 
optimization problems by minimizing complexity, approx-
imating uncertainties, and localizing disturbances. Real-
time information and data collected in a CPF are fully 
exploited in STA to facilitate decision-making.
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Key component 2: out‑of‑order execution

The key idea of OOO in computer engineering is to allow 
CPU to process instructions considering the real-time avail-
ability of input data and arithmetic logical units. In this way, 
OOO avoids a class of stalls and improves resource utiliza-
tion and processing efficiency. It inspires this study to intro-
duce an OOO in CPF. That is, within a ST-Element, jobs 
are processed in an order governed by the availability of 
materials, machines, and men.

Figure 2 presents an example of OOO. Considering a 
simple CPU with 4 independent instructions in the queue, 
each instruction consists of 4 steps: Fetch (F), Decode (D), 

Execution (E), and Writeback (W). An in-order proces-
sor will process instructions one by one in the original 
order. If hazards occur, for instance, a cache miss (the 
data requested for I2 is not found in the cache, it will take 
a longer time for RAM to check the address, retrieve the 
data, etc.), the execution of I2 delays and I3, I4 have to wait 
in the queue. In an OOO processor, when such a hazard 
occurs, the CPU will check the availability of data for 
I3, I4 and process instructions out of the original order to 
avoid Stalls (S). Similarly, in a simple shop floor with 4 
jobs in the queue, each job consists of 3 steps: Fetch (F), 
Execution (E), and Transfer (T). When a disturbance like 

Fig. 1  Spatial-temporal Analyt-
ics

Fig. 2  An Example of OOO in 
CPU and shop floor
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material deficiency or loss occurs, the operator can decide 
to process other available jobs rather than wait.

OOO offers a robust way and complex logic for dynamic 
job distribution to cope with disturbances and enable more 
efficient use of production facilities in the shopfloor by giv-
ing operators a certain degree of autonomy.

Five steps of the ST‑OOO application 
in CP‑HFS

As shown in Fig. 3, this section gives detailed steps and 
explanations on how to achieve RT-APS using proposed 
ST-OOO in a Cyber-Physical HFS. Firstly, discretizing the 
space and time scopes of factory to generate spatial–tempo-
ral mesh for minimizing complexity, localizing disturbances, 
and approximating uncertainty; Secondly, formulating the 
elemental models that are relatively simpler as the complex-
ity and uncertainty of APS are slashed in meshing; Thirdly, 
implementing job pools and the Out-Of-Order execution 
mechanism to support decision making within each ST-
Element; Fourthly, identifying the connectivity between 
ST-Elements and boundary conditions of the problem for 
the assembly of isolated ST-Elements; Lastly, designing a 
clustering-based synchronization strategy for making the 
decision. The notations are given in Table 1.

Step 1 Spatial–Temporal Meshing in CPS‑enabled 
HFS

In a highly visible, transparent, and interconnected CPS-
enabled HFS, the first step is to generate spatial–temporal 
mesh for minimizing complexity, localizing disturbances, 
and approximating uncertainty.

In this step, the original problem �(�,�) is discretized 
into finite ST-Elements for generating the spatial–tempo-
ral mesh. Each ST-Element denotes a simpler subproblem 
�(Δ�,Δ�) with limited system size. The ST-Elements 
should be small enough with reduced complexity and 
uncertainty and yet large enough to give valid results. All 
the uncertain events that occur in the current period Δ� are 
postponed to the next Δ� . The loss of service quality (as 
postponement cost) is negligible since the time scale Δ� is 
short enough relative to the original decision horizon � . In 
the HFS case, machines at different stages usually have dif-
ferent functionalities. The space scale Δ� of ST-Element is a 
single-stage. There are two main reasons: On the one hand, 
in traditional approaches, the HFS problems were solved by 
considering all production stages to generate results close 
to the theoretical optimum, but these solutions can hardly 
be applied when problem size grew beyond the available 
computing power. On the other hand, if the space scale Δ� 

of ST-Element is set as a single machine, there is barely 
room for further optimization due to the limited capacity. 
Moreover, weak resilience is another problem if a rigid job 
processing sequence is determined for every single machine. 
Frequent rescheduling may cause resistance to change, 
which will be counterproductive for improving efficiency 
(Rahmani & Ramezanian, 2016). From the temporal point 
of view, the overall APS decision horizon � is discretized 
into a series of medium-length time intervals � , which is a 
day or a standard work shift. Subsequently, � is subdivided 
into elementary time units Δ� that represent 1 h or several 
hours. By this time, the complex HFS has been spatiotem-
porally discretized into an equivalent system of finite space 
and time units; Hence, for a ST-Element (Δ�,Δ�) (at a sin-
gle stage Δ� in an elementary time unit Δ� ), the downsized 
subproblem considers only a small set of jobs. Complexity 
and uncertainty are slashed.

Step 2 Mathematical Formulation of ST‑Elements

As the complexity and uncertainty of the APS problem are 
slashed in meshing, the element models should be relatively 
simpler. In the discretized HFS, a ST-Element represents a 
single stage in a time unit (i.e., the parallel machine sched-
uling problem in a given time unit). All ST-elements have 
their own decision autonomy and they are assumed to be 
self-centered. Supervisors and operators of a single produc-
tion stage intend to complete the assigned jobs as soon as 
possible. This assumption is also in line with the observa-
tions in the real-life industry. Therefore, the objective func-
tion for each ST-Element is the makespan of that element. 
The overall benefits of the system are considered using a 
synchronization mechanism, which will be discussed further 
in Step 5. The other assumptions are: (1) all processing time 
and setup time are known; (2) parallel machines at the stage 
are identical; (3) preemption of jobs is not allowed. The ST-
elements are formulated as MILP models.

MinimizeCk,�

Subject to ∶

(1)
mk

∑

l=1

Yk
j,l
= 1,∀j

(2)Xk
j,i
+ Xk

i,j
≤ 1,∀i ≠ j, j

(3)Ck
j
≥ Sk

j
+ pk

j
,∀j
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Fig. 3  Five Steps of Spatial–Temporal Out-Of-Order Execution
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(4)Sk
i
≥ Ck

j
+ sk

j,i
−M ⋅

(
3 − Xk

j,i
− Yk

j,l
− Yk

i,l

)
,∀i ≠ j, j, l

(5)
Sk
j
≥ Ck

i
+ sk

i,j
−M ⋅ Xk

j,i
−M ⋅

(
2 − Yk

j,l
− Yk

i,l

)
,∀i ≠ j, j, l

(6)
Ck
i
≥ Ck

j
+ pk

i
+ sk

j,i
−M ⋅

(
3 − Xk

j,i
− Yk

j,l
− Yk

i,l

)
,∀i ≠ j, j, l

(7)
Ck
j
≥ Ck

i
+ pk

j
+ sk

i,j
−M ⋅ Xk

j,i
−M ⋅

(
2 − Yk

j,l
− Yk

i,l

)
,∀i ≠ j, j, l

(8)Ck,� ≥ Ck
j
,∀j

(9)Xk
j,i
∈ {0, 1},∀i, j

Step 3 Implementation of Job Pool 
and Out‑Of‑Order Execution

Step 3 aims at implementing job pools and the OOO execu-
tion to support decision-making within each ST-Element. 
The concept of job pool is proposed to real-timely manage 
the production activities with simplicity and resilience (Guo 
et al. 2020; Lin et al. 2018a). By introducing the concepts of 
order pool, stage pool, machine pool in a CPF, supervisors 
can easily obtain precise information on orders, jobs at each 
stage even each machine for better monitoring and control 
of the manufacturing process. Job pool offers a simple but 

(10)Yk
j,l
∈ {0, 1},∀j, l

(11)Sk
j
,Ck

j
≥ 0,∀j

Table 1  Notations and descriptions

Notations Descriptions

�(�,�) A complex and stochastic problem with space scope � and time scope �
�(Δ�, Δ�) The subproblem with space scale Δ� and time scale Δ� after spatial–temporal meshing
CO CO = {1, 2,… , o,… ,O} , the set of customer orders
JOB JOB = {1, 2,… , i, j,… , J} , the set of jobs
pk
j

Standard operation time of job j at space unit k

sk
j,i

Setup time for changeover between job j and job i at space unit k

mk Number of parallel machines at space unit k
Xk
j,i

Binary variable: 1 if job j is processed before job i at space unit k , and 0 otherwise

Yk
j,l

Binary variable: 1 if job j is processed at machine l of space unit k , and 0 otherwise

Sk
j

Continuous variable: the starting time of job j at space unit k

Ck
j

Continuous variable: the completion time of job j at space unit k

Ck,� The finish time of the last job at space unit k in time unit �
M A sufficiently large constant
�′ �� = {1, 2,… , k,… ,K,K + 1} , the set of finite space units, 1,… ,K represent stages and K + 1 denotes 

finished product area
�′

T
� = {0, 1, 2,… , �,… ,T} , the set of finite time units, 0 represents the initial time

N
�−1,k The set of new jobs assigned to job pool of space unit k in time unit � − 1

Z
�,k The set of jobs in job pool of space unit k in time unit �

Zin
�−1,k,g

The set of jobs whose operation in element (� − 1, g) has been performed and will flow to the space unit k
Zout
�−1,k,h

The set of jobs whose operation in element (� − 1, k) has been performed and will flow to the space unit h
hj,co 1 if job j belongs to customer order o , and 0 otherwise
d1 d1 takes value 0 if the two jobs are in the same order, 1 otherwise
d2 d2 is positively correlated with the setup time for changeover between job i, j
w1,w2 w1 and w2 are the weights of d1 and d2 respectively
d(i, j) The distance between job i and j in the clustering
a, b Indexes for job clusters
ā, b̄ The centroids of clusters a and b
na, nb The number of jobs in clusters a and b
d(a, b) The distance between clusters a and b in the clustering
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robust way to manage orders and jobs in a synchronized 
manner and facilitates the implementation of OOO execu-
tion. OOO is a paradigm used in modern CPUs to avoid 
stalls and improve processing efficiency. OOO allows the 
CPU to process instructions considering the real-time avail-
ability of input data and arithmetic logical units. By analogy, 
the OOO execution in factories organizes the onsite produc-
tion execution considering the real-time availability of mate-
rials, machines, and men. Operators look ahead in a window 
of jobs through smart devices and find those that are ready to 
be processed. The key features of OOO are the high degree 
of autonomy, flexibility, and resilience at the operational 
level. Therefore, the influence of uncertainties like stochastic 
processing time, material deficiency/loss, or machine failure 
on the whole system is negligible compared to the effects of 
those uncertainties on a rigid production schedule. Operators 
have autonomy because the jobs assigned to the ST-element 
are similar, which will be further discussed in the synchro-
nization mechanism in Step 5.

In the HFS scenario, a ST-Element represents a single 
stage during a given period. The scale of the job pool of 
ST-Element is the size of the job (instruction) window in 
the OOO mechanism. Job pools update real-timely by uti-
lizing RTVT. For example, a logistics operator completes a 
logistics job for transferring the material/WIP to the stage, 
and this means the material/WIP is now ready; thus, the 
corresponding production job is validated in the job pool of 
current ST-Element. The first available production operator 
looks ahead in the job pool and picks the ready production 
job. Once the operation is completed and submitted by the 
production operator, a new logistics job (transferring the 
material/WIP to the next stage) is generated logistics job 
pool for operators. The job pool and OOO execution mecha-
nism offer robust and straightforward logic to tackle frequent 
disturbances within ST-Elements. Operators make decisions 
and act under the OOO mechanism in a highly visible and 
transparent environment supported by RTVT.

Step 4 Assembly Using Real‑Time Visibility 
and Traceability

Step 4 aims to identify the connectivity between ST-Ele-
ments and boundary conditions of the problem for the 
assembly of isolated ST-Elements using RTVT. The nodes 
and nodal equilibrium are indispensable to connect the ele-
ments for obtaining the global model in FEM. In compari-
son, the Elemental Connectivities (ECs) in ST-OOO refer 
to how the job pools update over time, how the jobs are 
transferred between ST-Elements, and the elemental time 
dependency. RTVT plays a crucial role in identifying and 
establishing ECs because all these data can only be accessed 
through RTVT (space, time, information, status). In the HFS 
case, three kinds of ECs are considered:

Firstly, the update of job pools utilizes four dimensions 
of RTVT. The input of the element (�, k) includes two parts. 
The first one is the output of (� − 1, k)(space and time dimen-
sions); the second one is the new information in time unit 
� − 1 that is postponed to � (information dimension). And 
the sets Zin

�−1,k,g
 and Zout

�−1,k,h
 are also affected by various 

uncertain events such as stochastic operation time, machine 
breakdown, etc. (status dimension). The job pools are 
updated as

The second EC uses the space and time dimensions of 
RTVT. The jobs that are completed in element (� − 1, k) 
will flow to the subsequent space units k, k + 1,… ,K . And 
the jobs flow to the job pool of element (�, k) , are com-
posed of the jobs that completed in the previous space units 
1, 2,… , k − 1.

The following formula (15) defines the time dependency 
between element models using the space and time dimen-
sions of RTVT. An operation of job j can start in space unit 
k only when the operation of that job in space unit k − 1 has 
bn completed.

In FEM, certain Boundary Conditions (BCs) must be 
specified for each point on the solid surface to remove the 
singularity problem. In the HFS, three kinds of BCs are con-
sidered: (1) the initial state of the workshop, including the 
configuration and the production capacity of the HFS, the 
job pools Z0,k,∀k ∈ K ; (2) the new information (e.g., new 
orders, availability of machine and worker) to be consid-
ered N

�,k,∀k ∈ K,∀� ∈ T  ; (3) the objectives will also affect 
the APS decisions. There are three objectives to minimize: 
(1) Makespan (MS); (2) Total Setup Time (TST); (3) Mean 
Order Flow Time (MOFT, defined as the difference between 
the starting time of the first job in one order and the comple-
tion time of the last job in the order). MOFT incorporates 
both job flow time measure and the waiting time/holding 
time measure. The waiting time/holding time is commonly 
used as a manufacturing synchronization measure. (Lin et al. 
2018b; Chen et al. 2019; Luo et al. 2019)

(12)
Z
�,k =

(

Z
�−1,k�

K

∪
h=k+1

Zout
�−1,k,h

)

∪

(

N
�−1,k ∪

k−1

∪
g=1

Zin
�−1,k,g

)

,∀k ∈ K,∀� ∈ T

(13)Zout
�−1,k

=
K

∪
u=k+1

Zin
�,k,u

,∀k ∈ K,∀� ∈ T

(14)Zin
�,k

=
k−1

∪
v=1

Zout
�−1,v,k

,∀k ∈ K,∀� ∈ T

(15)Sk
j
≥ Ck−1

j
,∀k ∈ K,∀j
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With the ECs and BCs, all isolated ST-Elements can be 
assembled into a global structure.

Step 5 Solve the Problem with a Clustering‑based 
Synchronization Strategy

After meshing, formulating the models, establishing elemen-
tal connectivities, and identifying boundary conditions. The 
critical decision to be made for achieving RT-APS is which 
jobs to release to each ST-Element. The last step proposes a 
Clustering-based Synchronization Strategy (CSS) for mak-
ing the decision.

Computationally efficient algorithms are preferable since 
the decisions need to be made in real-time. A CSS is pro-
posed to make decisions for the HFS case. The spatial–tem-
poral similarity of jobs is measured from the perspective of 
Horizontal and Vertical Synchronization (HSync, VSync). 
Besides, other synchronizations such as material delivery, 
operator skills, and order due date can also be taken into 
account. The production progress consistency of one order is 
controlled through HSync to lower the holding/waiting time 
of finished jobs, while VSync aims at coordinating similar 
jobs to reduce setup time for changeover (Lin et al. 2018a). 
Thus, the jobs within the same customer order and the jobs 
that need less setup for changeover tend to be clustered. The 
similarity between each pair of jobs are given by calculating 
their Euclidean distance. And then, linkages are generated 
between pairs of jobs that are close together to form binary 
job clusters. These newly formed binary job clusters are fur-
ther linked to each other to create bigger clusters until all the 
jobs are linked together to form a hierarchical tree. And the 
similarity of clusters a, b is given as

The original intention of ST-OOO is to cope with shift-
ing events by sticking to a fundamental principle. Instead of 
generating a rigid schedule, ST-OOO clusters similar jobs 
and assign them to each ST-element. It is precisely because 
the jobs in the same cluster are similar, an exact process-
ing sequence within the cluster is less significant. Besides, 
there is no absolute division of job clusters, it is possible to 

(16)MS ≥ CK
j
,∀j

(17)TST =
∑

i

∑

j

∑

k

∑

l

Yk
j,l
⋅ Yk

i,l
⋅
(
Xk
j,i
⋅ sk

j,i
− Xk

i,j
⋅ sk

i,j

)

(18)
MOFT =

∑
o

�

max
hj,o=1

�
CK
j

�
− min

hj,o=1

�
Sk
j

��

O

(19)d(a, b) =

√
2nanb

na + nb

‖‖ā − b̄‖‖2

cut the clusters of arbitrary sizes that are best fit in with the 
preset ST-Element. Then these clusters are released to ST-
Elements based on spatial and temporal characteristics, the 
level of urgency, and the customer requirement, etc. This is 
the decision made by supervisors to answer “which jobs to 
release”. When a job cluster is released to shopfloor, related 
production and logistics tasks are generated accordingly, 
operators process these tasks under the OOO, which guar-
antees great flexibility and resilience for onsite production 
execution. Thus, RT-APS is achieved with the coordination 
of CSS and OOO.

Case study

This section presents a prototype case study to examine the 
performance of the ST-OOO for general hybrid flow shop 
scenarios, including four parts: (1) implementation of cyber-
physical HFS with RTVT, (2) parameter setting, (3) perfor-
mance evaluation, (4) sensitivity analysis.

Implementation of CP‑HFS with RTVT

Motivated by the case from a collaborative company of 
the research group, a prototype of cyber-physical HFS is 
implemented in the laboratory for demonstration, as shown 
in Fig. 4.

There are three kinds of smart devices in the physical 
HFS, including smart tags (iBeacon tags) attached to pro-
duction resources, gateways deploy at key areas, and visual 
devices for supervisors and operators. iBeacon tags serve 
as the flexible and reusable carriers of manufacturing data 
(basic facts such as ID, location, type, etc.). Smart gateways 
are set to monitor critical areas, such as raw materials/fin-
ished product area, buffer areas, machines areas. Gateways 
detect the iBeacon tags to capture real-time location data, 
checking job status, and monitoring mistakes and distur-
bances automatically. The production and logistics depart-
ments play the principal roles in the CP-HFS. Smart services 
are provided to operators and supervisors through smart 
visual devices (mobiles and desktops). Operation execution 
and control services are offered in the mobile application 
for onsite operators. Planning and scheduling services are 
integrated into the desktop application for supervisors.

The seamless connectivity among production entities 
and multi-dimensional real-time data capture are the key 
characteristics of the physical HFS. Master gateways are 
applied to achieve cyber-physical synchronization, capture 
the state of entities, and defined the interoperability of enti-
ties. The manufacturing data are collected and transmit-
ted to the cyber HFS through master gateways to achieve 
RTVT. Cloud services, intelligent data analytics, and sharing 
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mechanisms are integrated into the cyber HFS. Supported by 
cyber services and RTVT, managers can easily make APS 
decisions based on the real-time system status and state. CPS 
provides the HFS with higher visibility and traceability of 
resources, better circulation of manufacturing data flow as 
a solid foundation for applying ST-OOO.

Parameters setting

Three performance measures are used: (1) MS; (2) TST; 
(3) MOFT. Table 2 gives the details of the experiment 
data. As this paper aims at providing a general solution for 
HFS scenarios, these data and their distributions, as well 

Fig. 4  Cyber-Physical HFS
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as the assumptions, are similar to the literature that also 
investigated HFS (Kurz and Askin 2004; Chen et al. 2019; 
Weng et al. 2012). The assumptions are: (1) All process-
ing time and setup time are known; (2) Parallel machines 
at each stage are identical; (3) A job might skip some 

production stages; (4) Preemption of jobs is not allowed; 
(5) The transportation time of jobs between stages is 
negligible.

In the clustering-based synchronization strategy, the dis-
tances of jobs are given as:

The descriptions of the notations are in Table 1. The more 
similar two jobs are, the smaller their distance is. 21 combi-
nations of weights are considered in Table 3.

As shown in Fig. 5, when w1 increases and w2 decreases, 
the MS ranges from about 7750 min to over 8000 min, 
the TST ranges from slightly over 13,500 min to almost 
17,500 min. Both MS and TST present the rising trend 
in fluctuations. While on the whole, the MOFT generally 
shows the declining trend ranging from nearly 4850 min to 
around 4500 min. It is noteworthy that the MS and MOFT 
show obvious and similar fluctuations, this may on account 
of the mutual effect between MS and MOFT. For example, 

(20)d(i, j) = w1 ⋅ d1 + w2 ⋅ d2

Table 2  Experiment data

Data Value

Number of stages 5
Number of machines per stage 3, 6, 9
Total number of customer orders 48, 60, 72
Number of jobs per order 10
Ratio of dynamically arriving orders 1/3, 1/2, 2/3
Stage skipping probability 20%
Processing time (min) U [31, 50]
Setup time (min) U [0, 15]
Orders inter-arrival time (min) Pois (90)

Table 3  The performance 
of different combinations of 
weights

(0.0, 1.0) (0.05, 0.95) (0.1, 0.9) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75) (0.3, 0.7)
MS 7842 7807 7820 7823 7748 7820 7853
TST 13,987 13,943 14,032 14,377 13,681 13,859 13,838
MOFT 4838.5 4719.95 4681.8 4717.4 4712 4784.8 4714.9

(0.35, 0.65) (0.4, 0.6) (0.45, 0.55) (0.5, 0.5) (0.55, 0.45) (0.6, 0.4) (0.65, 0.35)
MS 7808 7887 7794 7880 7853 7950 7946
TST 13,971 14,307 14,227 14,169 14,598 15,527 15,671
MOFT 4682.1 4799.2 4655.3 4781.8 4744.0 4699.2 4651.6

(0.7, 0.3) (0.75, 0.25) (0.8, 0.2) (0.85, 0.15) (0.9, 0.1) (0.95, 0.05) (1.0, 0.0)
MS 7965 8025 8082 8000 8013 8041 8064
TST 16,162 16,234 16,742 16,653 16,661 16,817 17,297
MOFT 4672.7 4699.1 4668.5 4713.8 4614.0 4693.9 4492.5

Fig. 5  The performance of different combinations of weights
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as w1 grows, jobs in the same customer order tend to be 
clustered to reduce MOFT so that the TST tends to grow. 
Consequently, the MS is prolonged, and part of processing 
jobs flow in the shopfloor for a longer time. To attain well-
balanced performance, the weights are set as (0.2, 0.8) for 
the subsequent experiments.

Performance evaluation

This subsection evaluates the performance of ST-OOO 
under various patterns of customer demand. Three typical 
dispatching rules are adopted as references. Since the deci-
sions should be made real-timely and frequently, it is more 
appropriate to use the algorithms that require less compu-
tational efforts (even if in large instances): (1) Least Work 
Remaining (LWKR) is found to be effective in reducing job 
flow time (Kia et al. 2010); (2) Shortest Processing Time 
(SPT), which is one of most classical rules in literature; (3) 
First-Come First-Served (FCFS), intuitively, as orders are 
processed one by one under FCFS, this rule should be use-
ful to reduce MOFT. These rules are very flexible, no matter 
what kinds of uncertainties occur, jobs are always dispatched 
based on the priority.

The number of customer orders is set as 48, 60, and 72, 
and the ratio of dynamically arriving orders is set as 1/3, 1/2, 
and 2/3. 10 instances are generated for each setting. The total 
number of customer orders represents the total demand, and 
the ratio of dynamically arriving orders reflects the dynam-
ics of the market. The primary consideration for this setting 
is to evaluate the stability and adaptiveness of ST-OOO in a 
dynamic environment. Table 4 presents the average value of 
the results. It is observed that FCFS performs better in terms 
of MOFT, but compromises on other measures. ST-OOO can 
obtain well-balanced solutions that minimizing MS and TST 

with reasonable MOFT. To obtain a more reliable comparison, 
Fig. 6 gives the scattered boxplots of different methods. One 
noteworthy finding is that although ST-OOO does not show a 
significant improvement in terms of average MS in Table 4, the 
interval plots of ST-OOO and other rules are basically disjoint 
in Fig. 6, this implies that ST-OOO performs better in terms of 
MS and TST statistically and it is more stable compared with 
FCFS. In contrast, despite FCFS obtains smaller average val-
ues of MOFT, the interval plots of ST-OOO and FCFS overlap 
in Fig. 6, which indicates that the difference between the two 
methods is not statistically significant.

Sensitivity analysis

This subsection carries out the sensitivity analysis to 
investigate the effects of the spatial and temporal scale 
Δ� and Δ� , and some useful managerial insights are given 
based on the results.

In the HFS case, the space scale Δ� of ST-Element is a 
single-stage. However, a stage may not necessarily be the 
most appropriate unit. One reason is that the number of 
machines per stage may be influential to the performance. 
Therefore, the number of machines is set as 3, 6, and 9 
per stage in the following experiment (see Table 5). It is 
worth noting that as the number of machines increases, 
the performance of ST-OOO deteriorates. When the 
production capacity is doubled and tripled, the MS and 
MOFT of LWKR and SPT rules are reduced to around 
1/2 and 1/3, while the MS and MOFT of ST-OOO are 
over 1/2 and 1/3, especially in MOFT. Besides, the TST 
of LWKR and SPT rules are basically unchanged, while 
the TST of ST-OOO shows an obvious increase. This 
implies that discretizing the space scope based on stage 
is more suitable for the situation where each stage has 

Table 4  Comparison with traditional strategies

ST-OOO LWKR SPT FCFS

1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3
48 Customer Orders
MS 6381 6398 6364 6755 6728 6740 6824 6806 6830 6980 6759 6642
TST 10823 10944 10989 14959 15021 15215 16331 16363 16543 16816 14972 13755
MOFT 4494 4223 3951 6014 5993 5995 6093 6059 6078 4007 3785 3653
60 Customer Orders
MS 7899 7948 7893 8368 8356 8339 8479 8474 8467 8735 8466 8239
TST 13623 13911 13740 19054 19232 19290 21002 21182 21260 22176 19820 17865
MOFT 5473 5194 4812 7435 7425 7397 7573 7571 7531 4975 4701 4476
72 Customer Orders
MS 9422 9456 9433 9943 9970 9979 10085 10120 10097 10466 10178 9866
TST 16583 16652 16708 23339 23331 23726 25699 25904 26055 27196 24807 22128
MOFT 6549 6230 5753 8815 8848 8844 9013 9024 8974 5937 5648 5325
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Fig. 6  Scattered boxplots of different methods
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fewer machines. Yet, it is not the most cost-effective Δ� 
in meshing, especially when the number of machines per 
stage is relatively large.

Another crucial factor in meshing is Δt . In the sub-
sequent experiments, Δt = 60, 90, 120, 150, 180, 210, 
240 min and 36, 48, 60, 72 orders are considered (see 
Table 6). Figure 7 gives the curves of the measures with 
different values of Δt . Generally, the tendencies of the 
measures are similar despite the number of orders. As 
the Δt extended, the MS and TST decrease first and then 
increase with minimum value reached at Δt = 120 min in 
most instances, while the MOFT generally shows a declin-
ing trend with fluctuations. Thus, it is preferable to set 
Δt = 120 min in meshing of the case to obtain overall well-
balanced performance when applying ST-OOO.

Managerial implications

Based on the numerical results given in the above case 
study, several managerial implications can be concluded 
for practitioners as follows.

Firstly, massive shop floor data are captured by smart 
sensors and devices in the modern manufacturing indus-
try. These data and information provide the manager with 
real-time visibility and traceability, the proposed method 
is proved effective to generate real-time APS decisions 
using visibility and traceability.

Secondly, in comparison with traditional planning and 
scheduling rules, ST-OOO can obtain overall balanced 
solutions regarding multiple measures, and its perfor-
mance is more stable and resilient in a dynamic environ-
ment. Key parameters can be adjusted to fit in with the 
actual shop floor situation.

Table 5  Effect of the number of 
machines

Notes The values in this table are the ratios of measures with the current number of machines to those with 
three machines per stage

ST-OOO LWKR SPT FCFS

3 Machines per Stage
MS 1.0000 1.0000 1.0000 1.0000
TST 1.0000 1.0000 1.0000 1.0000
MOFT 1.0000 1.0000 1.0000 1.0000
6 Machines per Stage
MS 0.5130 0.4981 0.5028 0.5363
TST 1.2042 1.0071 1.0285 1.3199
MOFT 0.5726 0.5068 0.5034 0.5789
9 Machines per Stage
MS 0.3452 0.3342 0.3340 0.3574
TST 1.2710 1.0640 1.0493 1.3526
MOFT 0.3698 0.3359 0.3312 0.3925

Table 6  Effect of Δt

Notes The values in this table are the ratios of measures with current Δt to those with Δt = 60mins

Δt 60 90 120 150 180 210 240

48 Customer Orders
MS 1.0000 0.9765 0.9762 0.9875 0.9862 1.0006 1.0113
TST 1.0000 0.9072 0.8637 0.9163 0.9593 1.0112 1.0286
MOFT 1.0000 0.9819 0.9655 0.9837 0.9730 0.9790 0.9368
60 Customer Orders
MS 1.0000 0.9824 0.9718 0.9871 0.9960 1.0004 0.9979
TST 1.0000 0.9451 0.8747 0.8973 0.9625 0.9804 0.9932
MOFT 1.0000 0.9960 0.9835 0.9836 0.9807 0.9872 0.9610
72 Customer Orders
MS 1.0000 0.9885 0.9863 0.9986 1.0004 0.9992 1.0013
TST 1.0000 0.9289 0.8997 0.9090 0.9246 0.9370 0.9687
MOFT 1.0000 1.0101 1.0148 1.0107 1.0171 1.0170 0.9950
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Thirdly, the size of ST-Element should be carefully 
decided according to the actual conditions of the factory, 
the schedule will be too rigid to lose resilience when the size 
is too small, while it is lack of responsiveness to frequent 
disturbances and the similarity of clustered jobs is weakened 
if the size is too large.

Conclusions

This paper has investigated the emerging features of tradi-
tional optimization problems in cyber-physical factories. In 
such a highly visible, traceable, transparent, and intercon-
nected factory, RTVT means the data regarding the space, 
time, status, and state of the workshop are real-timely availa-
ble to managerial decision-makers. Thus, the novel ST-OOO 
that capitalizes on the RTVT of the CPF was proposed. By 
reducing the complexity and uncertainty in meshing, the 
complex APS problem can be discretized and tackled in a 

rolling spatial–temporal manner to obtain a global solution. 
The detailed steps of ST-OOO were presented with a HFS 
example. Finally, a prototype case was conducted to exam-
ine the superiority of ST-OOO, and sensitivity analysis was 
conducted to investigate the impacts of two crucial factors 
on the performance.

In the case study, the performance of ST-OOO was eval-
uated comprehensively. The results showed that ST-OOO 
had a well-balanced performance on selected measures, by 
contrast, other strategies might be better on one specific 
measure but compromise with the others. Moreover, the 
ST-OOO performed more stably in a dynamic environ-
ment, while other strategies were volatile when the ratio 
of dynamic orders changed. In the sensitivity analysis, 
the effect of the number of machines per stage was firstly 
investigated. The performance of ST-OOO deteriorated 
as the number of machines increased. This implied that 
simply discretizing the space scope of the HFS according 
to the stage was straightforward. However, the stage might 
not be the most cost-effective scale of space in meshing. 
Besides, the effect of temporal scale Δt was also exam-
ined. The results showed that as Δt grew, the MS and TST 
decreased first and then increased, the overall well solution 
was obtained when Δt = 120mins . These two findings sug-
gested that the most cost-effective scale of ST-Elements 
should be small enough with reduced complexity and 
uncertainty and yet large enough to give valid results.

The contributions of this paper are threefold: (1) It 
innovated a novel “divide and conquer” approach, ST-
OOO, which provided a brand-new perspective for solving 
production optimization problems using RTVT in cyber-
physical factories; (2) It applied the proposed ST-OOO 
in a HFS case with detailed steps and explanations for 
achieving RT-APS in a practical way; (3) It presented a 
case study and sensitivity analysis to verify the effective-
ness of ST-OOO and to investigate how spatial and tem-
poral factors affect its performance.

Some research perspectives can be derived from this 
paper. Firstly, a more comprehensive case study might be 
conducted in future work to consider various uncertain 
events, adopt more measures like schedule stability and 
robustness, and compare the ST-OOO with more advanced 
strategies. Secondly, the most cost-effective temporal scale 
was found in sensitivity analysis, yet the spatial scale was 
not. How to find the most cost-effective scale of ST-Ele-
ment is the question to be answered. Last but not least, 
the ST-OOO may be applied to other production scenarios 
such as job shop and even be applied to solve other real-
life complex optimization problems.
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