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Abstract
WAAM has been proven a promising alternative to fabricate medium and large scale metal parts with a high depositing rate 
and automation level. However, the production quality may deteriorate due to the poor deposited layer surface quality. In this 
paper, a laser sensor based surface roughness measuring method was developed for WAAM. To improve the surface integ-
rity of deposited layers by WAAM, different machine learning models, including ANFIS, ELM and SVR, were developed 
to predict the surface roughness. Furthermore, the ANFIS model was optimized by GA and PSO algorithms. Full factorial 
experiments were conducted to obtain the training data, and the K-fold Cross-validation strategy was applied to train and 
validate machine learning models. The comparison results indicate that GA–ANFIS has superiority in predicting surface 
roughness. The RMSE, R2 , MAE and MAPE for GA–ANFIS were 0.0694, 0.93516, 0.0574, 14.15% respectively. This study 
could also provide inspiration and guidance for surface roughness modelling in multipass arc welding and cladding.

Keywords Additive manufacturing · Surface roughness · Machine learning · ANFIS · GA · PSO

Abbreviations
WAAM  Wire arc additive manufacturing
ANFIS  Adaptive neuro-fuzzy inference system
GA  Genetic algorithm
PSO  Particle swarm optimization
ELM  Extreme learning machine
SVR  Support vector regression
WFS  Wire feed speed
RMSE  Root mean square error
MAE  Mean absolute error
MAPE  Mean absolute percentage error

Introduction

In recent years, Additive Manufacturing (AM) technology, 
also known as 3D printing, rapid prototyping or freeform 
fabrication, has gained wide attention due to its superiority 
in fabricating complex components. Additive manufacturing 
slices 3D objects into multiple layers of two-dimension in 
CAD, and then deposits feedstock layer by layer. Compared 
with traditional manufacturing methods, AM technology 
simplifies the manufacturing process when producing com-
plex components, saves the production time, and provides a 
solution for the variety of repairs and direct forming.

According to Frazier (2014), the metal AM technology 
can be mainly classified into three types: powder bed sys-
tems, powder feed systems, and wire-feed based systems. 
Among them, the wire-feed process has a higher deposi-
tion rate and material utilization (up to 100%) (Karmuhilan 
2018). The energy source for wire-feed AM usually includes 
laser, electron beam and welding arc. Compared with laser 
and electron beam based AM, wire arc additive manu-
facturing (WAAM) has the advantages in terms of lower 
equipment expenses and higher deposition efficiency (Xia 
et al. 2020). Usually, the deposition rate for AM using laser 
or electron beam is about 2–10 g/min, while the deposi-
tion rate for WAAM is about 50–130 g/min (Brandl et al. 
2011; Karunakaran et al. 2010; Frazier 2014). At the same 
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time, WAAM has a much higher energy efficiency (90%) 
than laser based AM (2–5%) (Ding et al. 2015b). Thereby, 
WAAM is able to fabricate larger-scale metal parts with less 
production time, while the production cost is lower than 
other metal additive manufacturing technologies.

As WAAM is a layer by layer deposition process, the sur-
face quality of each layer may have an impact on the quality 
of final components. The cross-section diagram of WAAM 
is shown in Fig. 1. It can be seen that during the WAAM pro-
cess, the deposited beads are overlapped to form one layer. 
Apparently, the surface flatness of one layer is dominated 
by the bead geometry and overlap distance, which may vary 
a lot when different process parameters and path planning 
strategies are used (Ding et al. 2015a). Due to the accumula-
tion of multiple layers, the accuracy of the final component 
can be deteriorated by the poor surface quality. Also poor 
surface quality may lead to a non-uniform deposition in the 
next layer. As a result, porosity, voids and delamination will 

be induced possibly, which may deteriorate the functional 
properties of components, such as the strength of industrial 
parts or fatigue life for aerospace components (Strano et al. 
2013). Additionally, the post-processing operations for poor 
surface quality may be labor-intensive and time-consuming, 
since it is often executed manually due to the complex shape 
of the deposited component. A large number of manual labor 
and feedstock will be wasted. As a result, the advantage of 
applying the WAAM process for industrial production may 
be compromised. Therefore, obtaining a good surface quality 
plays a vital role in WAAM production.

Although there are already a lot of profound studies on 
WAAM, the research efforts mainly focus on microstruc-
ture evolution, mechanical properties and process optimiza-
tion. The research effort on the surface quality of WAAM 
is still rare. Poor surface finishing in WAAM processes is 
often affected by the welding parameters, path planning and 
the slicing procedure employed during the deposition pro-
cess. Therefore, the surface finish can be predicted based 
on process parameters and an advanced predictive model. 
Figure 2 illustrates the flow path of process planning for 
WAAM. It can be seen that a roughness model could help 
improve the whole WAAM process. Through the reverse 
roughness model, a set of optimized process parameters can 
be calculated, including overlap distance, welding speed and 
WFS. Furthermore, the tool path can be adjusted based on 
the obtained overlap distance. Also, the optimized process 
parameter can be utilized when generating robot code. If 
the predictive model can be built into automated machines, 

Fig. 1  Cross-section diagram of WAAM

Fig. 2  Flowchart diagram of 
WAAM
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it will lead to better quality products and increases in 
productivity.

In the conventional additive manufacturing field, many 
researchers have studied surface quality during the deposi-
tion process. Charles et al. (2019) investigated the effect 
of different process parameters on the surface roughness in 
SLM (selective laser melting). The effect of the interaction 
of various parameters and their individual effect on the sur-
face roughness were analysed respectively. To minimize the 
need for surface finishing, Strano et al. (2013) investigated 
the key factors that influence surface quality in SLM addi-
tive manufacturing, and a theoretical model was built for 
predicting surface quality of SLM parts. Raju et al. (2019) 
proposed to utilize a hybrid PSO–BFO evolutionary algo-
rithm to model the relationship between the surface rough-
ness and process parameters in fused deposition modelling 
(FDM). Aminzadeh and Kurfess (2019) developed an online 
surface quality inspection system for powder-bed additive 
manufacturing, and a Bayesian inference was utilized to 
classify the surface quality of the deposited layer that signi-
fies the defective and unacceptable build layers or regions. 
Wu et al. (2018) proposed a data fusion approach to predict 
the surface roughness in FDM processes. Different machine 
learning algorithms, including Random Forest, Support Vec-
tor Regression and Ridge Regression et al., were utilized to 
train the predictive model.

From above literature review, it can be seen that the 
research on surface quality has attracted extensive interest 
in the additive manufacturing field. As an emerging AM 
method, the studies on the surface quality of WAAM are 
still rare. To our best knowledge, only several research-
ers have tried to study the surface quality of WAAM. To 
ensure the surface quality of WAAM, Ding et al. (2015a) 
analysed the multi-bead overlapping process, and an over-
lapping model was proposed to optimize the surface fin-
ish. Xiong et al. (2018b) studied the surface flatness on the 
side face of a part deposited by the WAAM. The effect of 
interlayer temperature, wire feed speed (WFS) and weld-
ing speed on the surface roughness was investigated. To 
improve the surface evenness of deposited layer in WAAM, 
Hu et al. (2020) developed a cross-section profile overlap-
ping model with varying cross-section profile. Even though, 
there is still little research has been conducted to establish 
predictive models of surface roughness for WAAM. In the 
past, to obtain a better surface finish, the operator needs 
to use their own experience and try and error method to 
determine appropriate parameters. Due to the inadequate 
knowledge of the complex process, an improper decision 
may cause high manpower costs and low deposited quality. 
If the surface finish can be improved, the overall quality 
of deposited components can be promoted and the failure 
rate can be reduced. Besides, a good surface finish will help 
reduce the amount of material that needs to be removed in 

the subtractive process. Therefore, it is an important way 
to save manpower and energy, reduce consumption, and 
improve production efficiency.

In the modern manufacturing industry, analyzing large 
amount of data with machine learning algorithms and the 
integration of machine learning in computer-aided produc-
tion has become a tendency during recent years. Therefore, 
this study aims to develop machine learning approaches to 
predict the surface roughness of the WAAM. With this pre-
diction system, the quality and productivity of WAAM could 
be ensured. This study could also provide inspiration and 
guidance for surface roughness modelling in multi-pass arc 
welding and cladding.

ANFIS, SVR and ELM are three representative models 
in machine learning, which are based on different princi-
ples. ANFIS combines the linguistic concept of the fuzzy 
logic and the training power of the neural network to solve 
a regression problem. The main advantages of the ANFIS 
model are rapid learning and adaptability. SVR is a relatively 
novel machine learning algorithm. Through minimizing 
an upper bound of the cost function, good performance in 
regression can be achieved. It has been proven to have better 
performance than the old algorithms. ELM is an extremely 
fast training method for multi-layer perceptron type neural 
networks, and it’s considered as a state of the art method to 
train neural networks (Deng et al. 2015). The main advan-
tages of these models are: (i) They do not require mathemati-
cal relationships for a complicated process. (ii) They are 
easy to be implemented. (iii) Good fitting and generaliza-
tion capability. They have been widely applied as predictive 
algorithm in many areas, including economics (Hosseinioun 
2016; Shekarian and Gholizadeh 2013), energy (Salcedo-
Sanz et al. 2014), and industry (Xu et al. 2020; Sarkheyli 
et al. 2015). But in AM area, their prediction performance 
hasn’t been investigated. Therefore, this article will conduct 
a comparative study for these three algorithms in predicting 
surface roughness of WAAM.

This paper will be organized as follows: Sect. 2 introduces 
the methodology in this study, which present the detail of 
the experimental setup and experiment design. Additionally, 
the theory of the machine learning algorithms developed in 
this study is introduced. Section 3 assesses the predictive 
performance of models in this study. Section 4 concludes 
this paper.

Methodology

Experimental setup

The experimental system is presented in Fig. 3. It consists of a 
central computer, Fronius TPS 4000 CMT welder, ScanCon-
trol 2500 laser scanner, ABB robot and robot controller. The 
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surface profile of the deposited surface could be measured by 
the laser scanner. Based on the measured surface profile data, 
and the surface average roughness could be calculated.

1.2 mm diameter filler wire of Mild carbon steel ER70S-6 
was utilized as deposited feedstock. The experiments were 
performed on a Q235 substrate, with the dimensions of 
150 × 150 × 10 mm. The chemical compositions of the used 
wire and substrate are presented in Table 1. The shielding gas 
consists of 80% Ar and 20%  CO2, with a flow rate of 25 L/min. 
In this welding system, the welding current and welding volt-
age automatically change to match the pre-setting wire feed 
speed (WFS).

Measurement of surface roughness

Definition of surface roughness

Figure 4 presents the schematic diagram of surface rough-
ness measurement for WAAM. It can be seen that a fluc-
tuating surface can be obtained conspicuously due to the 

overlap of multiple welding bead. As shown in Fig. 4, an 
idea plane could be calculated by fitting the surface points 
based on the least square method. The equation of the fit-
ted plane is expressed as Xiong et al. (2018b):

where A, B, C and D represent the fitting coefficients of the 
fitted plane, respectively. The distance between the surface 
points and the fitted plane can be calculated as:

N presents the number of data point on the measured sur-
face. The surface roughness on the deposited surface is 
defined as:

(1)Ax + By + Cz + D = 0

(2)
�

di =

N�
i=1

��Axi + Byi + Czi + D��√
A2 + B2 + C2

(3)R =

∑
di

N

Fig. 3  Schematic diagram of the experimental setup

Table 1  ER70S and Q235 
Chemical compositions and 
ranges (wt.%)

Alloy C Mn Si Cu S P Fe

ER70S-6 0.08 1.53 0.88 0.18 0.01 0.09 Bal
Q235 ≤ 0.17 0.35–0.80 ≤ 0.35 – ≤ 0.40 ≤ 0.35 Bal
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Laser vision‑based measurement system

Conventionally, surface roughness is measured by a sty-
lus profilometer. However, this method is time-consuming 
and labor-intensive. Because WAAM is normally applied 
in depositing large-scale structures, which demands high-
speed measurement, the conventional roughness measure-
ment method maybe not suitable for WAAM. Laser vision-
based measurement has the advantages of non-contact, 
fast and reliable. Therefore, it’s highly recommended to 
be applied in the WAAM process. In this study, a laser 
vision-based measurement method was adopted from the 
studies of Xiong et al. (2018a, b).

In this study, a Micro-Epsilon 2500 laser scanner was 
utilized to obtain the coordinate data of the surface point 
of the part deposited during the WAAM process. As shown 
in Fig. 4, a laser strip is projected on the deposited sur-
face by the laser scanner, and the height information of 
the surface point can be measured. The laser scanner was 
mounted on the welding robot arm. After finishing deposit-
ing one layer during WAAM, the scanner will be moved by 
a robot to scan the surface profile of the whole layer. The 
parameters of the laser scanner is presented in Table 2. 
Figure 5 presents a reconstruction of 3D image using data 
obtained by the laser scanner. Through using Eq. (3), the 
mean value of surface roughness can be calculated.

Experiment design

Figure 6 presents the effects of overlap ratio, welding speed 
and WFS on surface roughness. It can be seen that the 
decrease of the roughness is associated with the increase 
of the overlap ratio in the range of [0.1, 0.35]. For welding 
speed and WFS, a nonlinear relationship was found. There-
fore, machine learning is a good option for modelling the 
surface roughness of WAAM.

To investigate the effectiveness of predictive models, full 
factorial experiments with three factors were carried out. 
The factors consist of welding speed, WFS and overlap ratio. 
As presented in Table 3, each factor has three levels in this 
experimental design. Table 4 shows the experiment data. In 

Fig. 4  Schematic diagram to 
quantify average surface rough-
ness

Table 2  Parameters of the laser scanner

Frequency (Hz) Scan speed 
(mm/s)

Reference resolu-
tion (µm)

Pixels/profile

25 2 12 640

Fig. 5  3D Rebuilding using scanning data



1472 Journal of Intelligent Manufacturing (2022) 33:1467–1482

1 3

experiments, each layer consists of four welding beads. The 
value of surface roughness is measured using the laser vision 
method, which is described in the last section.

Machine learning algorithms

ANFIS

Adaptive neuro-fuzzy inference system (ANFIS) is an adaptive 
fuzzy logic inference system, which integrates the advantages 
of both neural network and fuzzy logic. Through training a 
neural network using input and corresponding output data, the 
parameters for a fuzzy logic model can be determined. ANFIS 
is normally based on T-S (Takagi–Sugeno) fuzzy structure, 
which possesses the rules in the following form:

Ri ∶ IF x1 is Ai1 and x2 is Ai2 … and xn is Ain, then yi

= a0 + ai
1
x1 +⋯ + ai

n
xn

(a) (b)

(c)

Fig. 6  Effect of each variable on surface roughness. a Overlap ratio. b Welding speed. c WFS

Table 3  Experiment design

Factor Level 1 Level 2 Level 3

Welding speed (m/min) 7 5.5 4
WFS (m/min) 5 7 8.3
Overlap ratio 10% 20% 25%
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where x1 … xn are the input variables of ANFIS, Ai and Bi 
are the fuzzy sets, yi is the output of i th rule, a0 … an are the 
antecedent parameters, which are determined by the neural 
network.

Figure 7 demonstrates the reasoning mechanism of the 
T-S fuzzy inference in ANFIS with n inputs and three fuzzy 
partitions. In this figure, the circles represent fixed nodes, 
while the squares represent adaptive nodes. It can be seen 
that ANFIS adopts a feedforward propagation structure, 
which consists of five layers. The detailed explanation for 
the function of each layer is presented in Table 5.

In this study, the welding speed, WFS and overlap ratio 
were selected as the input of the ANFIS model, while the 
surface roughness was the output of the model.

Normally, the structural parameters of the ANFIS model 
mainly consist of the antecedent and consequent parameters 
(Hussein 2016). In the conventional ANFIS model, anteced-
ent and consequent parameters are determined in the training 
process using gradient-based methods. One shortage of the 

gradient-based algorithm is that it may fall into local optimal 
solutions.

PSO and GA

Some researchers (Moayedi et  al. 2019; Ghasemi et  al. 
2016; Alarifi et al. 2019) proposed to utilize metaheuris-
tic algorithms as the training methods to tune the structural 
parameters of ANFIS, such as Particle Swarm Optimiza-
tion (PSO) and Genetic Algorithm (GA). The main advan-
tage of PSO and GA is its parallel and random optimiza-
tion process, which contribute to a high degree of stability 
and generalization. This type of algorithm does not rely on 
the derivative property of objective function, and can gain 
the optimal solution through comparing the value of objec-
tive function at every iteration. A minimum value for the 
deviation between the model prediction and target could be 
obtained through the iterations of GA and PSO.

In a PSO, each particle represents a potential solution to 
the problem, and it randomly moves along the search space. 
A movement of a particle in search space is affected its own 
and its neighbours’ knowledge. The particles learn from each 
other within a group and move toward their best neighbours 
according to their knowledge. Each particle adjusts its posi-
tion and velocity in the search space according to the best 
position in which it has ever been (personal best) and the 
best position in the entire neighbourhood (global best). 
Supposing xk

i
=
(
xk
i1
, xk

i2
,… , xk

in

)
 and vk

i
=
(
vk
i1
, vk

i2
,… , vk

in

)
 

denote the position and the velocity of the ith particle at the 
kth iteration, respectively. The position and the velocity of 
the particles can be updated by the following formulations:

where pk
i
 is the personal best of ith particle at kth iteration, 

gk
i
 is the global best at kth iteration, and r1 , r2 are random 

values from 0 to 1. Additionally, the three parameters ω, 
c1 , c2 are the cognitive coefficient, social coefficient, and 
inertia weight, respectively. Each particle has a fitness value 
determined by the objective function, then its personal best 
and global best can be updated. When the best particle’s 
fitness value satisfies the stopping criterion, the iterations 
can be stopped. The scheme of PSO for training ANFIS is 
illustrated in Fig. 8a.

Genetic algorithms employ Darwin’s evolution theory 
to find the optimal solution. In GA, there is a string called 
chromosomes, which contain the parameters of the search 
space. Every chromosome represents a solution to the 
problem. All the chromosomes form a set called the popu-
lation. At the beginning of the evolution process of GA, 
the initial population elements are typically selected ran-
domly. The algorithm utilizes three operators to implement 

(4)
vk+1
i

= � ⋅ vk
id
+ c1r1

(
pk
i
− xk

i

)
+ c2r2

(
gk
i
− xk

i

)

xk+1
i

=
(
xk
i
+ vk+1

i

)

Table 4  Experimental data of full factorial design

No. Weld-
ing speed 
(mm/s)

Wire feed 
speed (m/
min)

Overlap ratio Measured 
roughness 
(mm)

1 7 8.3 0.25 0.312
2 7 8.3 0.2 0.406
3 7 8.3 0.1 0.611
4 7 7 0.25 0.185
5 7 7 0.2 0.259
6 7 7 0.1 0.504
7 7 5 0.25 0.201
8 7 5 0.2 0.240
9 7 5 0.1 0.318
10 5.5 8.3 0.25 0.311
11 5.5 8.3 0.2 0.603
12 5.5 8.3 0.1 0.719
13 5.5 7 0.25 0.291
14 5.5 7 0.2 0.419
15 5.5 7 0.1 0.612
16 5.5 5 0.25 0.213
17 5.5 5 0.2 0.250
18 5.5 5 0.1 0.416
19 4 8.3 0.25 0.360
20 4 8.3 0.2 0.662
21 4 8.3 0.1 0.852
22 4 7 0.25 0.312
23 4 7 0.2 0.640
24 4 7 0.1 0.834
25 4 5 0.25 0.271
26 4 5 0.2 0.382
27 4 5 0.1 0.601
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evolution: selection, crossover and mutation. In the phase 
of selection, through computing the fitness function of the 
chromosomes, the best chromosomes of the society can be 
identified. And then the best chromosomes are selected as 
parents to generate the next generation. Through crossover 
operator, new child chromosomes can be produced by two 
parent chromosomes. The crossover operator is actually 
a method that determines the structure and ratio of the 
child’s chromosome. The crossover operator can be imple-
mented with various methods, including Ranking Selec-
tion, N-Point, Cycle, Order, Uniform, Tournament, and 

partially mapped (Saeidian et al. 2016). Mutation operator 
is applied to search new space in the available dimension. 
The result could exclude the local optimum for the best 
solution. This could be achieved through only changing 
some of the genes inside the chromosomes randomly. The 
scheme of GA for training ANFIS is illustrated in Fig. 8b.

In PSO–ANFIS and GA–ANFIS, the PSO and GA algo-
rithms are utilized to tune the antecedent and consequent 
parameters for the ANFIS model. Antecedent and con-
sequent parameters are the main parameters for ANFIS, 
which have been introduced above.

Fig. 7  Structure of the ANFIS model

Table 5  Detail of ANFIS algorithm

Type Function Output

Layer 1 Adaptive This layer generates fuzzy membership value for inputs, which can be expressed as �Ai and 
�Bi . When Generalized bell membership function is used, then:

�Ai(x) =
1

1+

[(
x−ci

ai

)2
]
biwhere ai , bi and ci are the parameters of membership function, known as consequent param-

eters, which adapt during the training process.

�Ai(x)

Layer 2 Fixed The weights for the output of each rule are calculated in this layer as: �i

Layer 3 Fixed In this layer, normalized firing strengths are calculated as:
Layer 4 Adaptive ‘Defuzzification’ layer, the second adaptive node, computes output for each rule:

�iyi = �i(a0 + ai
1
x
1
+⋯ + ai

n
xn)

where a
0
… an are tuned during the training process to obtain the best match

�iyi

Layer 5 Fixed The output of ANFIS can be expressed as the summation of each rule’s output: y
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In PSO–ANFIS, the fitness function is defined as the 
RMSE of ANFIS prediction, as shown in Eq. (5). In this 
fitness function, ANFIS() represents the function of ANFIS 
output. The detail of computing ANFIS output has been 
introduced above. To minimize the cost function, a set of 
correction factors were introduced to optimize the anteced-
ent and consequent parameters. In Eq. (5), x is the vector of 
correction factors, p0 represents the vector of initial anteced-
ent and consequent parameters of ANFIS. When employing 
PSO to solve this optimization problem, the correction factor 
vector x was consider as a variable. In another word, through 
the iteration of PSO, an optimized x can be obtained to mini-
mize the cost function. When implementing the optimization 
of PSO, the positions of particles represents the solution of 
correction factors. The initial values in the positions vec-
tor are equal to 1. In each iteration, particles’ position and 
velocity are updated according to Eq. (4), and then the new 
value of fitness function can be calculated. Through compar-
ing the new value of fitness function with personal best  Pbest, 
and global best  gbest, Pbest and  gbest can be updated. Iteration 

(5)E(x) =

⎛⎜⎜⎜⎝

�∑n

1

�
t − ANFIS

�
x⋅ ∗ p0

��2
n

⎞⎟⎟⎟⎠

stops when the maximum number of iterations is satisfied. 
The values of  gbest are the optimized correction factors for 
antecedent parameters and consequent parameters.

Similarly, In GA–ANFIS, the GA algorithm was applied 
to solve the same optimization problems. Equation (1) is 
still the fitness function, and the chromosomes represent 
the solution of the correction factors. The initial values of 
the genes in chromosomes are all set to be 1. Through the 
operation of selection, cross over and mutation, the fitness 
function are re-evaluated until the termination condition is 
met. As a result, the best solution for correction factors can 
be obtained.

Both PSO–ANFIS and GA–ANFIS were implemented in 
MATLAB environment. The programming detail of imple-
menting PSO and GA could refer to the correlative materials 
(Yarpiz).

Results and discussion

In this section, the predictive performance of developed 
algorithms (ANFIS, ELM and SVR) in predicting surface 
roughness of WAAM is presented. The experimental data 
obtained in the last section is utilized for model training and 
validating using the K-fold Cross-validation method. In this 

Fig. 8  Scheme of PSO and GA algorithm. a PSO, b GA
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study, the value of K was selected as 5. To choose the most 
suitable predictive model for WAAW surface roughness, the 
prediction results of all developed models are compared and 
assessed.

During the training process of complex problems, the 
predictive model may trap in local optimum. Hence, in this 
study, GA and PSO were utilized to update the parameters 
of ANFIS adaptively. In the PSO–ANFIS model, the param-
eters for PSO mainly include the population size, number of 
iterations, the acceleration constants C1 and C2 , and the iner-
tia weight. In the GA–ANFIS model, the main parameters 
consists of population size, crossover rate, mutation percent-
age and rate. These parameters need to be optimized through 
a trial and error process. Among those parameters, popula-
tion size plays the most important role in the application. 
Therefore, the performance of PSO–ANFIS and GA–ANFIS 
with various values of population size are tested (as shown 
in Table 7). It can be seen that for PSO–ANFIS, when the 
population size increases from 10 to 40, the value of RMSE 
increases, and the value of R2 decreases. When the popula-
tion size is selected as 50, an optimum can be obtained. 
When the population size increases from 50 to 80, the value 
of RMSE increases again. For GA–ANFIS, the value of 
RMSE increases when the population size increases from 10 
to 40, and decreases when the population size increases from 
40 to 80. In this study, the population sizes for PSO and GA 
were selected as 50 and 80 respectively. Additionally, other 
parameters were also determined by trial and error. Table 6 

presents the parameters of PSO–ANFIS and GA–ANFIS 
applied in this study (Table 7).

K-fold cross-validation method was utilized to validate 
the performance of ANFIS, PSO–ANFIS and GA–ANFIS 
models. K-fold cross-validation is a resampling procedure 
utilized to evaluate the model’s accuracy on limited datasets. 
In this method, the original data is divided into K subsets 
randomly. Among those subsets, one group was used as the 
validation data, and the other K-1 groups were utilized for 
training. This procedure needs to be repeated for K times, 
and each group needs to be as validation group for once. In 
this study, the value of K is set to be 5 to avoid overfitting.

The performance of PSO–ANFIS, GA–ANFIS and 
ANFIS, are shown in Figs. 9, 10 and 11, respectively. It’s 
observed that through introducing PSO and GA algorithms 
to optimize the structural parameters, better predictive 
performance can be obtained. Among them, GA–ANFIS 
achieved the highest predictive accuracy. The RMSE for 
GA–ANIFS, PSO–ANFIS and ANFIS were 0.075727, 
0.069424 and 0.086368, respectively.

In order to compare with ANFIS algorithms, predictive 
models were also established based on ELM and SVR algo-
rithm. The main parameters for ELM are the type of activa-
tion function and the number of hidden nodes. To obtain 
an ideal predictive performance, the learning performance 
was analysed when the type of activation function and the 
number of hidden nodes vary. As shown in Fig. 12, the per-
formance was evaluated when the initial number of hidden 
neurons is 10, and increased by 10. The types of activa-
tion functions tested include Sigmoidal, Sin, Radial basis, 
Hardlim and Triangular basis. It can be seen that when the 
activation function was selected as sig and sin, the value of 
RMSE for ELM fluctuate significantly. When hardlim acti-
vation function was applied, the changing trend of RMSE 
is relatively stable. Considering the model accuracy and 
computation, optimized model parameters for ELM can be 
obtained when the activation type is sin and the number of 
hidden nodes is 10.

In this paper, RBF (radial basis function) was utilized as 
the kernel function of SVR. As described in the last section, 
the tuneable parameters Ɛ and C for the kernel function need 
to be adjusted by users to achieve better performance for 
SVR model. A smoother decision surface can be obtained if 
constant parameter C has a lower value, while a high value 
of C enables the SVR to choose more samples as support 
vector. The grid search method is an efficient and practical 
way to determine the values for parameters of Ɛ and C for 
SVR models. Through searching in serials of values of Ɛ and 
C, a set of values for parameters Ɛ and C can be obtained, 
which could contribute to better accuracy for regression. 
In this paper, the search library for kernel parameter Ɛ was 
selected as [0.0001, 0.001, 0.01, 0.1, 1, 10, 20], and the 
search library for regularization parameter C was [0.1, 1, 

Table 6  Model parameters of PSO–ANFIS and GA–ANFIS

PSO GA

Population size 50 Population size 80
Iterations 500 Iterations 400
Cognitive acceleration C1 1 Crossover rate 0.4
Social acceleration C2 2 Mutation rate 0.15
Initial inertia weight W1 1 Mutation Percentage 0.7
Damping weight  Wdamping 0.99 Selection Pressure 8

Table 7  Model performance with different number of population size

Population 
size

PSO–ANFIS results GA–ANFIS results

RMSE R
2 RMSE R

2

10 0.079727 0.92251 0.069516 0.93623
20 0.086024 0.92892 0.076625 0.92077
30 0.086557 0.92523 0.076610 0.91898
40 0.086014 0.92085 0.079326 0.91771
50 0.075727 0.9225 0.073361 0.92986
60 0.086352 0.91576 0.707996 0.94313
70 0.096733 0.89842 0.076241 0.92175
80 0.10066 0.89604 0.069424 0.93516
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10, 15, 20, 30, 50, 55, 60, 65, 70]. The heat map of the 
grid search results for SVR is presented in Fig. 13. It can 
be observed that the smaller training error can be obtained 
when Epsilon ranges from 0.0001 to 0.01 and C ranges from 
50 to 70, and the best result is obtained while Ɛ = 0.01 and 
C = 60. The least root mean square error (RMSE) is equal 
to 0.1005.

To perform a further comparison of the results, linear 
regressions between model prediction and corresponding 

measured data can be implemented through using the 
‘Postreg’ function in MATLAB Toolbox. Figure  14 
graphically illustrates a correlation between the meas-
ured roughness and the roughness predicted by ANFIS 
based models, ELM and SVR respectively. As the pictures 
show, the points are scattered around the fit line (repre-
sents measured roughness), which indicates a great cor-
relation between the model output values and the actual 
values. The value of R2 reflects the correlation between 

Fig. 9  Prediction of PSO–ANFIS

Fig. 10  Prediction of GA–ANFIS
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the model prediction and the corresponding target. The 
value of R2 ranges from 0 to 1, and if R2 equal to 1, it 
means perfect correlation. The results show that the cor-
relation coefficient R2 of the GA–ANFIS performs better 
than the values of PSO–ANFIS, ANFIS, ELM and SVR. 
As revealed by Fig. 14, when the predictive models are 
trained and tested by K-fold Cross-validation, the values 
of R2 are 0.93516, 0.92753, 0.91369, 0.88691 and 0.862 
for developed models respectively. From the results of fig-
ures, it can be inferred that among developed models, the 

proposed GA–ANFIS shows a higher prediction perfor-
mance in estimating WAAM surface roughness.

Table 8 furtherly compares the prediction performance 
of different machine learning models for WAAM surface 
roughness. The criterions for the accuracy of those models 
include RMSE, R2 , MAE, MAPE, Maximum Deviation 
and Minimum Deviation. Apparently, the result of Table 8 
indicates that the prediction performance of ANFIS based 
models is better than ELM and SVR model. Further-
more, the prediction accuracy of ANFIS was improved 

Fig. 11  Prediction of ANFIS

Fig. 12  Testing error of ELM



1479Journal of Intelligent Manufacturing (2022) 33:1467–1482 

1 3

significantly after optimized by GA and PSO, where the 
RMSE reduced by 13.46% and 5.6% respectively. It can be 
also found that the lowest RMSE, MAE, and MAPE, and 
maximum deviation were obtained from the GA–ANFIS 
model. A part of assessment statistical parameters are 
computed as follows:

where xexp is the experimentally measured value, xpre is the 
model’s predictive values and n is the number of experimen-
tal data. When MAE, MAPE is near to 0 and R2 is closed to 
1, high predictive accuracy can be obtained.

The results in this section demonstrate that ANFIS 
based model, especially GA–ANFIS are efficient in pre-
dicting WAAM surface roughness. The models developed 
in this study have some advantages and disadvantages, 
which are concluded briefly in Table 9.

(6)RMSE =

√
1

n

∑
(xexp − xpre)2

(7)R2 = 1 −

∑n

i=1
[xpre − xexp]∑n

i=1
[xpre − xm]

, xm =

∑n

i=1
xsim

n

(8)MAE =
1

n

∑|xexp − xpre|

(9)MAPE =
1

n

∑ |xexp − xpre|
xexp

× 100%

The different performance between the machine learning 
models is due to their different theoretical backgrounds and 
principles. According to previous studies, the model’s per-
formance varies when applying in different scenarios. For 
example, Tabari et al. (2012) compared the predictive per-
formance of SVR and ANFIS in predicting the evapotranspi-
ration, and found that SVR could obtain a more accurate pre-
diction. However, in research by Najafi et al. (2016), ANFIS 
was found to have better performance than SVR in predict-
ing exhaust emissions. ANFIS adopts the adaptability and 
learning ability from neural networks and fuzzy logic, and 
has the ability to measure uncertainty. This makes ANFIS a 
powerful tool in simulating complex processes. In this study, 
the experiment data is limited, and noise may be produced in 
those data. Therefore, PSO–ANFIS and GA–ANFIS models 
has better predictive performance in predicting the surface 
roughness of WAAM.

Conclusion

This paper aims to investigate the capabilities of machine 
learning algorithms for predicting surface roughness of the 
deposited layer by WAMM. The intent of this study was 
also to develop suitable machine learning methods for solv-
ing similar problems in the actual industrial environments. 
Different machine learning models, including ANFIS, ELM 
and SVR, were developed to predict the surface roughness 

Fig. 13  Grid research result of 
SVR
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Fig. 14  Regression plot for different models prediction a GA, b PSO, c ANIFS, d ELM, e SVR

Table 8  Performance 
comparison between the 
developed models

Model RMSE R
2 MAE MAPE (%) MaxDev MinDev

GA–ANFIS 0.0694 0.93516 0.0574 14.15 0.1516 0.0033
PSO–ANFIS 0.0757 0.9225 0.0629 15.65 0.1758 0.0006
ANFIS 0.0802 0.9189 0.0688 16.93 0.1751 0.0118
ELM 0.0985 0.88691 0.0761 21.33 0.2093 0.0005
SVR 0.1005 0.862 0.0719 17.21 0.2261 0.0001

Table 9  Main advantages and disadvantages of developed models

Models Advantages Disadvantages

PSO/GA–ANFIS High accuracy Unavailable development Kit
No local optimum Large computation burden
Ability to capture the nonlinear structure

ELM Fast convergence time Low accuracy when training data is not enough
Fewer adjustable parameters

SVR Fast convergence time Large computation burden for large datasets
Applicable limited training data Can’t handle problems with multiple outputs
No local optima
Good generalization performance
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in WAAM. The input of model consists of welding speed, 
WFS and overlap ratio.

The surface roughness was calculated based on the sur-
face profile data collected by a laser scanner. The training 
data set was developed through experiments based on L27 
Taguchi array. In order to make the best use of training data, 
K-fold Cross-validation was employed to evaluate the pre-
diction performance of the machine learning models. To 
improve ANFIS performance, GA and PSO are applied to 
optimize the parameters of the ANFIS.

The experimental results reveal that the developed 
machine learning models are capable of predicting the sur-
face roughness of WAAM deposited layers with acceptable 
error rates. Among developed models, GA–ANFIS achieved 
the highest prediction performance. The prediction results 
of GA–ANFIS are better than other developed models in 
terms of RMSE, R2 , MAE, MAPE and MaxDev, which are 
obtained as 0.0694, 0.93516, 0.0574, 14.15% and 0.1516 for 
GA–ANFIS, respectively.

In the future, the experimental data will be extended to 
improve the modelling process. Furthermore, we are plan-
ning to develop an adaptive WAAM system, which is able to 
adjust the process parameters, and collect or measure multi-
ple manufacturing information automatically. The machine 
learning system will be optimized to predict various manu-
facturing quality.
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