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Abstract

Jaya algorithm (JAYA) is a recently developed metaheuristic algorithm for global optimization problems. JAYA has a very
simple structure and only needs the essential population size and terminal condition for solving optimization problems. How-
ever, JAYA is easy to get trapped in the local optimum for solving complex global optimization problems due to its single
learning strategy. Motivated by this disadvantage of JAYA, this paper presents an improved JAYA, named comprehensive
learning JAYA algorithm (CLJAYA), for solving engineering design optimization problems. The core idea of CLJAYA is the
designed comprehensive learning mechanism by making full use of population information. The designed comprehensive
learning mechanism consists of three different learning strategies to improve the global search ability of JAYA. To investi-
gate the performance of CLJAYA, CLJAYA is first evaluated by the well-known CEC 2013 and CEC 2014 test suites, which
include 50 multimodal test functions and eight unimodal test functions. Then CLJAYA is employed to solve five real-world
engineering optimization problems. Experimental results demonstrate that CLJAYA can achieve better solutions for most test
problems than JAYA and the other compared algorithms, which indicates the designed comprehensive learning mechanism
is very effective. In addition, the source code of the proposed CLJAYA can be loaded from https://www.mathworks.com/
matlabcentral/fileexchange/82134-the-source-code-for-cljaya.
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¢ The penalty factor of the penalty func-
tion of the jth inequality constraint

MEAN Mean absolute error

STD Standard variance

NNA Neural network algorithm

GWO Grey wolf optimizer

WOA Whale optimization algorithm

SCA Sine cosine algorithm

JAYA Jaya algorithm

TLBO Teaching—learning-based optimization

CLJAYA Comprehensive learning Jaya algorithm

Introduction

Engineering optimization is an attractive and challeng-
ing field of study. An engineering design problem usually
includes the following components: objective function,
design variables, feasible solutions and constrained condi-
tions. The feasible solutions are the set of all possible values
of the design variables. Solving an engineering optimization
problem is to find the best solution meeting the constrained
conditions from a large of feasible solutions by an optimi-
zation technique. Various numerical optimization methods
have been proposed to solve engineering optimization prob-
lems. Numerical methods usually require substantial gra-
dient information and are sensitive to the initial solutions
(Cheng and Prayogo 2014; Eskandar et al. 2012; Liu et al.
2019). In fact, most real-world engineering optimization
problems are very complex, whose objective functions usu-
ally have more than one local optimum. Gradient search in
these problems is difficult and unstable(Cheng and Prayogo
2014; Lee and Geem 2004). Thus these numerical meth-
ods may easily get trapped in the local optima for complex
engineering optimization problems(Eskandar et al. 2012).
Given the drawbacks of the numerical methods, it is nec-
essary for researchers to design simple and efficient opti-
mization methods for real-world engineering optimization
problems. Metaheuristic algorithms are developed under this
background.

Briefly, metaheuristic methods commonly operate by
combing some defined rules and randomness to simulate
natural phenomena (Lee and Geem 2005). From the inspi-
ration source, the reported metaheuristic algorithms can be
broadly classified into the following four categories:

e Evolutionary algorithms. The inspiration source of these
algorithms is biological evolution. Differential evolution
(Storn and Price 1997) and genetic algorithm (Holland
1975) are two typical members of such algorithms. Dif-
ferential evolution and genetic algorithm perform the
search tasks by simulating some processes of biological
evolution.
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e Swarm intelligence algorithms. These algorithms mimic
some behavior of animals and plants in nature, such as
foraging behavior in particle swarm optimization (Ken-
nedy and Eberhart 1995) and hunting mechanism of grey
wolves in grey wolf optimizer (Mirjalili et al. 2014).

e Physics-based algorithms. These algorithms are inspired
from some physical phenomenon in real life, such as the
law of gravity in gravitational search algorithm (Rashedi
et al. 2009) and the water cycle process and how riv-
ers and streams flow to the sea in water cycle algorithm
(Eskandar et al. 2012).

e Human-related algorithms. These algorithms are inspired
from human activity, such as the artificial nervous net-
works in neural network algorithm (Sadollah et al. 2018)
and the teaching activities in teaching—learning-based
optimization (Rao et al. 2011).

Although many metaheuristic algorithms have been suc-
cessfully applied to solve a lot of real-world engineering
optimization problems, there remains a need for developing
simple and efficient metaheuristic algorithms without any
effort for fine tuning initial parameters due to the following
two reasons:

e Most reported metaheuristic algorithms all need special
parameters. The parameters of metaheuristic algorithms
consist of common parameters and special parameters.
Every metaheuristic algorithm needs common param-
eters, such as population size and stopping criterion
(e.g. the maximum number of function evaluations, the
maximum number of iterations or the defined threshold
value). The parameters reflecting the characteristics of
algorithms can be called special parameters, such as dif-
ferential amplification factor and crossover probability
in differential evolution (Storn and Price 1997), discov-
ery probability in cuckoo search (Yang and Deb 2014),
and cognitive factor and social factor in particle swarm
optimization (Kennedy and Eberhart 1995). The major
drawbacks of metaheuristic algorithms with special
parameters can be summarized as follows: (1) it is very
hard task to set the optimal values of these parameters
for unknown optimization problems; (2) different opti-
mization problems usually need different optimal values
for these parameters to get the optimal solutions. Given
the two drawbacks, the applications of metaheuristic
algorithms with special parameters will be restricted. To
overcome the two drawbacks, developing metaheuristic
algorithms without special parameters is a very efficient
method.

e There is a very important theory in the optimization field,
which is called the No Free Lunch (NFL) theorem(Wolpert
and Macready 1997). According to NFL theorem, a
metaheuristic algorithm may obtain very promising results
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on a set of optimization problems while it may show poor
performance on another set of optimization problems. In
other words, no single metaheuristic algorithm is suitable
for solving all optimization problems. Thus, more studies
are very necessary for researcher to develop new optimi-
zation algorithms for solving different types of real-world
engineering optimization problems.

Motivated by the mentioned reasons, this work reports a
new metaheuristic method without special parameter, named
comprehensive learning Jaya algorithm (CLJAYA), for solv-
ing engineering design optimization problems. CLJAYA is an
improved version of Jaya algorithm (JAYA)(Rao 2016), which
is aiming at enhancing the global search ability of JAYA by the
designed comprehensive learning mechanism with three differ-
ent learning strategies. Learning strategy-I in CLJAYA inherits
the feature of JAYA. Learning strategy-II introduces the cur-
rent mean solution to increase the chance of JAYA to escape
from the local optima. Learning strategy-III is guided by the
current best solution to accelerate the convergence speed of
JAYA. Obviously, compared with JAYA, CLJAYA can use
population information more efficiently to generate the next
generation population. To sum up, the contributions of this
work are presented as follows:

¢ A novel optimization algorithm called CLJAYA algorithm
is proposed.

e A comprehensive learning mechanism consisting of three
different learning strategies is built.

e CLJAYA is evaluated by the well-known CEC 2013 and
CEC 2014 test suites.

e CLJAYA is employed to solve five real-world engineering
design optimization problems.

The rest of this paper is organized as follows: Sect. 2 pre-
sents the brief introduction of JAYA. CLJAYA is described in
Sect. 3. CLJAYA is checked by CEC 2013 and CEC 2014 test
suites in Sect. 4. CLJAYA is used for solving five real-world
engineering optimization problems in Sect. 5. Finally, conclu-
sions and further work are made in Sect. 6.

Jaya algorithm

JAYA has a very simple learning strategy to perform the search
process, which can be stated as follows. Let X is a popula-
tion consisting of N individuals, i.e. X= [xl,xz,x3, ,XN].
Assume there are D considered variables for the given prob-
lem, i.e. X;}={X;1.X;5,X;3.....%;p}, i=1,2,3,...,N. In
JAYA, the position of the ith individual can be updated by
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Vi; =X;; + k1 X (Xgpsr; — |Xi,j|)
— Ky X (Xworsty — |xiJ|),i: 1,2,3,...,N,
j=12,3,....D 1))

where k; and k, are two random numbers between 0
and 1 subject to uniform distribution, v; is the candidate
position of the ith individual, Xgger ; is the value of the jth
variable in the current best individual, and Xyoggr; is the
value of the jth variable in the current worst individual.
According to the authors of JAYA(Rao 2016), the second
and third terms on right-hand side of Eq. (1) indicate the
tendency of the solution x; to move closer to the best solu-
tion and avoid the worst solution, respectively. To find
the optimal solution with a fast speed, the final position
of the ith individual at this iteration is selected from the
candidate position v; and x;, which can be expressed as

{ Vi if (V) < f(x))
X;= @)

X;, otherwise

The proposed CLJAYA

This section presents the proposed CLJAYA in detail. The
framework of CLJAYA is shown in Fig. 1. As can be seen
from Fig. 1, updating population in CLJAYA is completed
by the designed comprehensive learning mechanism with
three different learning strategies. Thus, we first introduce
the motivation of the designed comprehensive learning
mechanism in “Motivation of CLJAYA” section. Then, the
comprehensive learning of CLJAYA is given in The imple-
mentation of CLJAYAThe implementation of CLJAYA”
section.

Motivation of CLJAYA

JAYA has two drawbacks that may result in its weak ability
of avoiding the local optimum, which can be summarized
as follows in detail:

e JAYA doesn’t make full use of population information.
As shown in Eq. (1), JAYA has only one learning strat-
egy, which employs the current best solution and the
current worst solution to guide the search direction of
the population. Thus once the current best individual
is trapped into a local optimum, the other individuals
will be attracted to approach this local optimum gradu-
ally based on Eq. (1). This case will cause the loss of
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(Comprehensive learning mechanismw

Learning strategy-I

Learning strategy-II1

Fig. 1 The framework of the proposed CLJAYA

population diversity. Therefore, it is very difficult for
the population to escape from the local optimum.

e The effectiveness of the search operator in JAYA may
be tempered in solving optimization problems with
search space with positive numbers. In Eq. (1), the
absolute value symbol is very critical in keeping pop-
ulation diversity. Generally, the values of the design
variables of the real-world engineering optimization
problems are more than 0, which means the absolute
value symbol is invalid for solving these problems.
That is, Eq. (1) can be rewritten as
Vi =X;; + k1 X (Xggst;

- xiJ-) — Ky X (XWORSTJ- - XiJ),i =1,2,3,...,N,

j=123,....D

3)
Note that there are the following two risks in Eq. (3):
(1) if the ith individual is equal to the current optimal
individual, the second term on right-hand side of Eq. (3)
is 0, which is of no help to search better solution; (2) if
the ith individual is equal to the current worst individual,
the third term on right-hand side of Eq. (3) is 0, which
also does nothing to find better solution. Obviously, when
the mentioned two cases happen, the search ability of

JAYA will be reduced.

The above mentioned two disadvantages of JAYA moti-
vate us to design an improved version of JAYA with better
global search ability.

The implementation of CLJAYA
Given the disadvantages of the learning strategy in JAYA, a

comprehensive learning mechanism consisting of three dif-
ferent learning strategies is built to improve the global search
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ability of JAYA. The three different learning strategies can
be described as:

e Learning strategy-1. This learning strategy is based on

the current optimal individual and the current worst indi-
vidual, which inherits the feature of JAYA and can be
denoted as

Vi =X;; + @ X (Xggst; — |Xi,/|) — @ X (Xworst, — 'Xi,ji)
“
where ¢, and @, are two random numbers subject to
standard normal distribution. Here, it should be pointed
out that Eq. (4) uses two random number (i.e. ¢, and @,)
with standard normal distribution while Eq. (1) employs
two random numbers (i.e. x; and k) with uniform distri-
bution. Compared with random numbers with uniform
distribution, random numbers with standard normal dis-
tribution have the larger amplitude of variation, which
can extend the search space of the individual. Thus,
Eq. (4) has more chance to find better solutions than
Eq. (1).
Learning strategy-II. As an effective indicator of evalu-
ating population distribution, the mean position of the
current population has been employed by many optimiza-
tion algorithms (Cheng and Jin 2015; Rao et al. 2012) to
improve their search ability due to the following reason.
With the increasing of iteration times, most individuals
have gathered around the current optimal individual to
perform the local exploitation. The rest few individuals
(lagged individuals) are away from the current optimal
individual, which perform the task of global exploration.
In the search process, the mean position of the current
population is always moving. Thus once the population
is trapped into local optimum, the lagged individuals
guided by the mean position of the current population
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can have more chance to escape from the local optimum.
Given this, the learning strategy-II is designed based on
the current optimal individual and the mean position of
the current population, which can be defined as

Vij =X;j + @3 X (Xggsr,; — |Xi,;|) — s x (M- |Xi,j') )
where @; and @, are two random numbers subject to

standard normal distribution, and M is the mean position
of the current population that can be written as

N
1
M—Ngxi ©)

Note that @5 and ¢, in Eq. (5) play the same role with
@, and ¢, in Eq. (4).

e Learning strategy-III. To accelerate the convergence
speed, the current optimal individual is considered as a
leader in CLJAYA, which can be expressed as

Vij=Xjj + @5 X (Xpgpst; — X)) + 96 X (X, —Xp)  (7)

where @5 and @, are two random numbers between
0 and 1 subject to uniform distribution, and p and
q(p # g # i) are two random integers between 1 and N. In
addition, considering the case where X, is the current best
solution, the second term on right-hand side of Eq. (7) is
0. Thus a random perturbed term is added to Eq. (7) to
avoid this case.

Learning strategy-I, learning strategy-II, and learning
strategy-III have the same importance for CLJAYA and
they should be assigned the same selected probability. Given
this, the designed comprehensive learning mechanism can
be indicated as

X;; + @1 X (Xggsr; — |Xi,/'|) — @5 X (XworsT,; — |Xi,j|)v if O < poyieen < 1/3
i =) Xij T @3 X (Xpgst; — ’Xi,/") — @XM - ’Xi,/'l)s if1/3 < Pywiren < 2/3 ®)

X;; @5 X (Xgpst; — X; 1) + @6 X (X, = X)s 12/3 < poigen < 1

Fig.2 The flow chart of the
proposed CLJIAYA

where p,in 15 called switch probability and it is uni-
formly distributed on the interval from O to 1.

The built comprehensive learning mechanism as shown
in Eq. (8) is the core idea of CLJAYA. Note that there are no
any extra parameters in the built mechanism, which indicates

No

@ Springer
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Table 1 The definition of CEC 2013 test suite

No Type Name Dimension Limits Optimum
F1 Unimodal functions Sphere function 30 [—100,100] — 1400
F2 Rotated high conditional elliptic function 30 [—100,100] —1300
F3 Rotated bent cigar function 30 [—100,100] —1200
F4 Rotated discus function 30 [—100,100] —1100
F5 Different powers function 30 [—100,100] —1000
F6 Multimodal functions Rotated rosenbrock’s function 30 [—100,100] —-900
F7 Rotated schaffers F7 function 30 [—100,100] —800
F8 Rotated ackley’s function 30 [—100,100] —700
F9 Rotated weierstrass function 30 [—100,100] —600
F10 Rotated Griewank’s function 30 [—100,100] —500
F11 Rastrigin’s function 30 [—100,100] —400
F12 Rotated rastrigin’s function 30 [—100,100] —-300
F13 Non— continuous rotated rastrigin’s function 30 [—100,100] —200
F14 Schwefel’s function 30 [—100,100] —100
F15 Rotated schwefel’s function 30 [—100,100] 100
F16 Rotated katsuura function 30 [—100,100] 200
F17 LunacekBi_Rastrigin function 30 [—100,100] 300
F18 Expanded LunacekBi_Rastrigin function 30 [—100,100] 400
F19 Expanded griewank’s 4+ rosenbrock’s function 30 [—100,100] 500
F20 Expanded scafter’s F6 Function 30 [—100,100] 600
F21 Composition functions Composition function 1 (n=35, rotated) 30 [—100,100] 700
F22 Composition function 2 (n=35, rotated) 30 [—100,100] 800
F23 Composition function 3 (n=35, rotated) 30 [—100,100] 900
F24 Composition function 4 (n=>5, rotated) 30 [—100,100] 1000
F25 Composition function 5 (n=35, rotated) 30 [—100,100] 1100
F26 Composition function 6 (n=5, rotated) 30 [—100,100] 1200
F27 Composition function 7 (n=5, rotated) 30 [—100,100] 1300
F28 Composition function 8 (n=5, rotated) 30 [—100,100] 1400

the proposed CLJAYA still inherits the advantages of JAYA,
i.e. simple structure and only needs essential parameters. In
addition, like JAYA, the population X is initialized by

X ;=L+w-l)xy i=123,.. ,Nj=123,...D
®
where y is a random number between 0 and 1 subject to

the uniform distribution. Figure 2 shows the flow chart of
the proposed CLJAYA.

Applications of CLJAYA on numerical
optimization

In this section, the performance of CLJAYA on CEC 2013
and CEC 2014 test suites is checked by comparing with six
state-of-the-art metaheuristic algorithms.

As listed in Tables 1-2, the solved test suites have been
widely used to test the performance of many metaheuristic
algorithms (Li et al. 2015; K.S. and Murugan 2017; Tanweer
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et al. 2016; Xiang et al. 2019; Zhang et al. 2019). CEC 2013
test suite consists of five unimodal functions (F1-F5), 15
simple multimodal functions (F6-F20) and eight compo-
sition functions (F21-F28). CEC2014 test suite includes
three unimodal functions (F29-F31), 13 simple multimodal
functions (F32—-F44) and 14 hybrid functions (F45-F58).
Compared with unimodal functions, multimodal functions
with more than one local optimal solutions are more com-
plex. Note that composition functions in CEC 2013 test suite
and hybrid functions in CEC 2014 test suite are also multi-
modal functions. That is, 23 of 28 functions in CEC 2013
test suite and 27 of 30 functions in CEC 2014 test suite are
multimodal functions. Therefore, the two test suites are very
suitable for testing the performance of CLJAYA in solving
complex optimization problems. In addition, the detailed
information for the two test suites can be found in https://
www.ntu.edu.sg/home/EPNSugan/.

CLJAYA is compared with six state-of-the-art metaheuris-
tic algorithms to validate the competitive performance of
CLJAYA. The selected algorithms are closely associated with
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Table 2 The definition of CEC 2014 test suite
No Type Name Dimension Limits Optimum
F29 Unimodal functions Rotated high conditioned elliptic function 30 [—100,100] 100
F30 Rotated bent cigar function 30 [—100,100] 200
F31 Rotated discus function 30 [—100,100] 300
F32 Multimodal functions Shifted and rotated Rosenbrocks function 30 [—100,100] 400
F33 Shifted and rotated Ackleys function 30 [—100,100] 500
F34 Shifted and rotated Weierstrass function 30 [—100,100] 600
F35 Shifted and rotated Griewanks function 30 [—100,100] 700
F36 Shifted Rastrigins function 30 [—100,100] 800
F37 Six Hump Camel Back 30 [—100,100] 900
F38 Shifted and rotated Rastrigins function 30 [—100,100] 1000
F39 Shifted and rotated Schwefels function 30 [—100,100] 1100
F40 Shifted and rotated Katsuura function 30 [—100,100] 1200
F41 Shifted and rotated HappyCat function 30 [—100,100] 1300
F42 Shifted and rotated HGBat function 30 [—100,100] 1400
F43 Shifted and rotated Expanded Griewanks + Rosen- 30 [—100,100] 1500
brocks function
F44 Shifted and rotated Expanded Scaffers function 30 [—100,100] 1600
F45 Hybrid functions Hybrid function 1 (m=3) 30 [—100,100] 1700
F46 Hybrid function 2 (m=3) 30 [—100,100] 1800
F47 Hybrid function 3 (m=4) 30 [—100,100] 1900
F48 Hybrid function 4 (m=4) 30 [—100,100] 2000
F49 Hybrid function 5 (m=5) 30 [—100,100] 2100
F50 Hybrid function 6 (m=5) 30 [—100,100] 2200
F51 Composition functions Composition function 1 (m=5) 30 [—100,100] 2300
F52 Composition function 2 (m=3) 30 [—100,100] 2400
F53 Composition function 3 (m=3) 30 [—100,100] 2500
F54 Composition function 4 (m=35) 30 [-100,100] 2600
F55 Composition function 5 (m=35) 30 [—100,100] 2700
F56 Composition function 6 (m=35) 30 [—100,100] 2800
F57 Composition function 7 (m=3) 30 [—100,100] 2900
F58 Composition function 8 (m=3) 30 [—100,100] 3000

CLJAYA in terms of parameters, which include JAYA, teach-
ing—learning-based optimization (TLBO) (Rao et al. 2012),
neural network algorithm (NNA) (Sadollah et al. 2018), grey
wolf optimizer (GWO)(Mirjalili et al. 2014), whale optimiza-
tion algorithm (WOA) (Mirjalili and Lewis 2016) and sine
cosine algorithm (SCA) (Mirjalili 2016). JAYA is the basis
of our proposed CLJAYA. TLBO is a recently proposed
metaheuristic algorithm, which is inspired by the traditional
teaching method in the classroom. NNA is one of the latest
metaheuristic algorithms and its motivation is the artificial
neural networks and biological nervous systems. When solv-
ing optimization problems, JAYA, NNA and TLBO need the
same parameters (i.e. population size and terminal condi-
tion) with CLJAYA. GWO, WOA and SCA are inspired by
the hunting behavior of grey wolves, the social behavior of
humpback whales and the sine cosine theory, respectively.
Although the required parameters (i.e. population size and

terminal condition) of GWO, WOA and SCA are the same
with CLJAYA, there are control parameters related to the ter-
minal condition in the three algorithms. These control param-
eters can be found in the corresponding references.

In order to make a fair comparison, population size and the
maximum number of function evaluations for CLJAYA and
the compared algorithms were set to 20 and 300,000, respec-
tively. In addition, every algorithm for every test function was
executed 50 independent runs and then the mean absolute
error (MEAN) and standard variance (STD) were recorded.
The results are presented in Tables 3 and 6. MEAN can be
defined by

Ry
MEAN = Ri Z lf(XBest,i) —f(X*)| (10)
N =1
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Table 3 The statistical results
obtained by CLJAYA and the
compared algorithms on CEC
2013 test suite

@ Springer

No Index NNA GWO WOA SCA JAYA TLBO CLJAYA
F1 MEAN 1.625E+01 2.011E4+03 4.051E—01 1.129E+04 5.039E+03 1.231E-06 6.513E—11
STD 5.617E+01 1.633E+03 1.776E—-01 1.847E+03 9.529E+02 7.900E-06 4.125E—10
F2 MEAN 1.099E4+07 2.656E+07 4.029E+07 1.575E4+08 8.241E+07 9.291E4+05 9.677E+05
STD 7.686E+06 1.460E+07 1.284E+07 4.835E+07 2.705E+07 5.126E4+05 5.424E+05
F3 MEAN 7.774E409 9.170E+09 1.160E+10 3.444E+10 2.025E+10 4.544E+08 1.843E+08
STD 5.878E+09 6.500E+09 7.181E+09 1.477E+10 8.947E+09 8.172E+08 3.641E+08
F4 MEAN 2576E+04 3.243E+04 8.954E+04 3.227E+04 3.072E+04 1.153E4+03 3.780E+03
STD 7.089E+03 6.793E+03 2.981E+04 4.564E+03 6.640E+03 8.339E+02 2.212E+03
F5 MEAN 1.197E+01 8.560E+02 8.459E+01 2.155E+03 1.429E+03 5.749E—-09 8.335E—11
STD 2.767E+01 6.282E+02 2.332E+01 6.344E+02 1.012E4+03 2.859E—-08 5.510E—10
F6 MEAN 7.837E+01 1.728E+02 1.121E+02 7.227E+02 2.956E+02 5.205E+01 4.027E+01
STD 3.103E+01 8.541E+01 3.585E+01 1.878E+02 8.218E+01 2.583E+01 2.682E+01
F7 MEAN 1424E+02 6.340E+01 4.855E+02 1.733E+02 1.258E+02 1.206E+02 8.359E+01
STD 3.434E+01 1.661E+01 8.787E+02 2.766E+01 2.617E4+01 3.997E+01 5.229E+01
F8 MEAN 2.095E+01 2.095E4+01 2.093E4+01 2.094E+01 2.094E+01 2.095E4+01 2.095E+01
STD 5.742E-02 5.188E—-02 5.416E—-02 4.813E-02 5.697E—02 5.741E—-02 5.844E—02
F9 MEAN 3.174E+01 1.840E4+01 3.671E4+01 3.923E+01 3.787E+01 3.109E+01 2.905E+01
STD 2.796E+00 3.699E+00 2.945E+00 1.173E+00 1.533E4+00 2.855E+00 4.501E+00
F10 MEAN 4.174E+01 4.035E4+02 6.632E4+01 1.450E+03 7.455E+02 7.442E-01 1.972E-01
STD 5.033E+01 1.741E4+02 2.969E+01 2.349E+02 1.623E+02 3.231E4+00 1.406E—01
F11 MEAN 1.300E+02 1.272E4+02 4.854E+02 3.603E+02 2.776E4+02 2.752E+02 9.948E+01
STD 3.665E4+01 4.367E+01 1.070E+02 3.029E+01 4.232E4+01 5.506E+01 3.278E+01
F12 MEAN 2305E+02 1.648E4+02 5.216E+02 3.816E+02 2.980E+02 2.277E+4+02 1.267E+02
STD 6.148E+01 6.188E+01 1.244E+02 3.844E+01 2.900E+01 4.900E+01 4.822E+01
F13 MEAN 3.079E+02 2.141E4+02 4.845E+02 3.748E+02 2.988E+02 3.019E+02 2.025E+02
STD 4.875E+01 4.480E+01 7.816E+01 3.067E4+01 2.192E+01 6.756E+01 3.664E+01
F14 MEAN 2.830E+03 3.103E+03 5.013E+03 7.088E+03 6.145E+03 3.130E+03 2.518E+03
STD 6.713E+02 8.829E+02 8.666E+02 3.258E+02 8.664E+02 7.660E+02 1.232E+03
F15 MEAN 4.662E+03 3.495E+03 5.635E+03 7.383E+03 7.251E+03 6.761E4+03 6.712E+03
STD 7427E+02 1.226E4+03 7.637E4+02 2.574E+02 3.001E4+02 7.688E+02 6.136E+02
F16 MEAN 1481E+00 2.445E+00 1.649E+00 2.475E+00 2.419E+00 2.426E+00 2.445E+00
STD 6.087E-01 2.933E—-01 4.574E—01 2.865E-01 3.219E-01 2.901E—-01 2.783E—01
F17 MEAN 2.158E+02 1.974E4+02 5.862E+02 4.902E+02 3.533E+02 2.791E+4+02 2.201E+02
STD 5.455E4+01 4.372E4+01 1.199E+02 3.876E+01 3.499E+01 6.453E4+01 4.216E+01
F18 MEAN 3.084E+02 2.781E4+02 5.856E+4+02 4.991E+02 3.535E+02 3.379E+02 2.576E+02
STD 7.507E+01 5.129E+01 1.323E4+02 4.742E+01 3.589E+01 5.394E+01 2.738E+01
F19 MEAN 1.976E+01 4.849E+02 5.135E4+01 2.349E+03 4.785E+02 2.102E402 2.755E+01
STD 9.640E+00 7.167E4+02 1.687E+01 1.422E+03 2.928E+02 2.120E4+02 2.400E+01
F20 MEAN 1.339E+01 1.305E4+01 1.486E+01 1.393E+01 1.356E4+01 1.267E4+01 1.261E+01
STD 7.805E-01 1.650E+00 2.237E-01 3.701E-01 4.071E—01 1.054E+00 6.616E—01
F21 MEAN 3.015E+02 1.173E4+03 3.698E+402 1.843E+03 8.958E+02 3.395E+02 3.295E+02
STD 1.014E+02 4.273E4+02 8.791E4+01 1.979E+02 2.403E+02 8.930E4+01 9.425E+01
F22 MEAN 3.078E+03 3.243E+03 6.136E+03 7.553E+03 6.472E+03 3.284E+03 3.380E+03
STD 7.038E4+02 7.826E4+02 1.091E+03 5.651E+02 8.937E+02 6.513E4+02 1.855E+03
F23 MEAN 5.418E+03 4.293E+03 6.641E+03 7.800E+03 7.553E+03 6.652E+03 6.738E+03
STD 8.620E4+02 1.476E+03 1.052E+03 3.673E4+02 2.652E4+02 1.060E+03 8.923E+402
F24 MEAN 20917E+402 2.547E+02 3.133E+02 3.162E4+02 3.017E+02 2.896E+02 2.887E+02
STD 1.032E+01 1.062E+01 2.021E+01 8.409E+00 5.611E+00 9.862E+00 1.561E+01
F25 MEAN 3.029E+02 2.770E+02 3.228E+02 3.273E4+02 3.065E+02 3.001E4+02 3.119E+02
STD 1.141E+01 1.038E+01 1.154E+01 4.568E+00 6.262E+00 9.619E+00 1.602E+01
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Table 3 (continued) No Index NNA GWO WOA ScA JAYA TLBO  CLIAYA
F26 MEAN 2.042E+02 3.314E+02 3.268E+02 2.115E4+02 3.201E+02 3.100E+02 3.308E+02
STD 2.534E+01 4.896E+01 9.545E+01 3.653E+00 9.241E+01 8.350E+01 7.139E+01
F27 MEAN 1.159E+03 8.406E+02 1.315E+03 1.367E+03 1.284E+03 1.089E+03 1.121E+03
STD 8.701E+01 7.335E4+01 8.760E+01 4.740E+01 4.903E+01 8.871E+01 1.562E+02
F28 MEAN 1.294E4+03 1.566E+03 4.451E+03 2.586E+03 1.997E+03 2.715E4+03 1.142E+03
STD 5.902E+02 4.771E4+02 9.831E+02 2.094E+02 2.462E+02 7.000E+02 7.888E+02
Table 4 The sorted results of CLJAYA and the compared algorithms on CEC 2013 test suite
Algorithm F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
NNA 4 3 3 3 3 3 5 5 4 3 3 4 5 2
GWO 5 4 4 6 5 5 1 7 1 5 2 2 2 3
WOA 3 5 5 7 4 4 7 1 5 4 7 7 7 5
SCA 7 7 7 5 7 7 6 3 7 7 6 6 6 7
JAYA 6 6 6 4 6 6 4 2 6 6 5 5 3 6
TLBO 2 1 2 1 2 2 3 4 3 2 4 3 4 4
CLJAYA 1 2 1 2 1 1 2 6 2 1 1 1 1 1
Algorithm F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28
NNA 2 2 1 2 3 1 4 1 1 2 4 3 1 4
GWO 3 1 5 1 2 6 3 6 2 1 1 1 7 1
WOA 5 3 2 7 7 3 7 4 5 3 6 6 5 6
SCA 7 7 7 6 6 7 6 7 7 7 7 7 2 7
JAYA 6 6 3 5 5 5 5 5 6 6 5 4 4 5
TLBO 4 5 4 4 4 4 2 3 3 4 3 2 3 2
CLJAYA 1 4 6 3 1 2 1 2 4 5 2 5 6 3
where Ry is the number of independent runs, Xp,; is
the obtained optimal solution at the ith run, and x* is the
real optimal solution. Besides, Wilcoxon signed-rank test ~
is employed to determine whether there are significance g
differences between the results obtained by CLJAYA and &
the compared algorithms on CEC 2013 and CEC 2014 test %
suites. More specifically, the mean results achieved from 50 é
independent runs for each algorithm are subjected to this
statistical test with a level of significance «=0.05. Tables 5

and 7 show the results produced by Wilcoxon signed-rank
test. In Tables 5 and 7, symbol ‘+ indicates that with 95%
certainty the null hypothesis is rejected (p value <0.05) and
CLJAYA outperforms the compared algorithm; symbol ‘-’
means that the null hypothesis is rejected and CLJAYA is
inferior to the compared algorithm; symbol ‘=" demon-
strates there is no statistical different between CLJAYA and
the compared algorithm (p value >0.05).

Benchmark problem set I: CEC 2013 test suite

Table 3 presents the statistical results obtained by
CLJAYA and the compared algorithms on CEC 2013 test

NNA GWO WOA SCA JAYA TLBO CLJAYA

Fig.3 The average rank of the applied algorithm on CEC 2013 test
suite

suite. According to Table 3, CLJAYA can offer the best
solutions on nearly half of functions, i.e. F1, F3, F5, F6,
F10, F11, F12, F13, F14, F15, F19 and F21. GWO shows
a strong competitiveness, which can obtain the best solu-
tions on eight functions, i.e. F7, F9, F16, F18, F24, F25,
F26 and F28. Moreover, TLBO, NNA and WOA can find
the optimal solutions on two (i.e. F2 and F4), five (i.e.
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Table 5 The statistical results produced by Wilcoxon signed—rank test on CEC 2013 test suite

No CLJAYA vs.

NNA GWO WOA SCA JAYA TLBO

p value S p value S p value S p value S p value S p value S
F1 1.15E-09 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.15E-08 +
F2 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 725E-01 =
F3 9.07E-10 + 8.03E-10 + 8.03E-10 + 7.56E-10 + 7.56E-10 + 1.07E-02 +
F4 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 3.45E-08 -
F5 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 477E-08 +
F6 320E-07 + 7.56E-10 + 1.30E-09 + 7.56E-10 + 7.56E-10 + 1.69E-02 +
F7 4.56E-07 + 333E-02 - 7.56E-10 + 1.07E-08 + 9.18E-06 + 1.20E-04 +
F8 9.88E-01 = 7.61E-01 = 6.18E-02 = 6.06E-01 = 7.17E-01 = 592E-01 =
F9 240E-03 + 1.09E-09 — 147E-09 + 7.56E-10 + 7.56E-10 + 2.03E-02 +
F10 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 441E-02 +
F11 453E-05 + 6.44E-04 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 +
F12 6.38E-09 + 5.85E-03 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 1.20E-08 +
F13 1.76E-09 + 1.26E-01 = 7.56E-10 + 7.56E-10 + 8.53E-10 + 1.50E-08 +
Fl14 6.88E-02 = 1.07E-02 + 357E-09 + 7.56E-10 + 1.15E-09 + 4.61E-03 +
F15 1.15E-09 - 1.02E-09 - 6.99E-08 — 3.09E-08 + 7.16E-07 + 4.09E-01 =
F16 1.20E-08 — 8.81E-01 = 378E-09 - 5.02E-01 = 9.88E-01 = 8.06E-01 =
F17 6.75E-01 = 2.08E-02 - 8.03E-10 + 7.56E-10 + 8.03E—-10 + 3.85E-06 +
F18 249E-04 + 248E-02 + 7.56E-10 + 7.56E-10 + 9.07E-10 + 5.69E-09 +
F19 341E-02 - 479E-08 + 241E-06 + 7.56E-10 + 7.56E-10 + 1.09E-09 +
F20 298E-05 + 5.53E-02 = 7.56E-10 + 8.03E-10 + 2.66E-09 + 8.89E-01 =
F21 3.67E-01 = 8.53E-10 + 248E-03 + 7.56E-10 + 7.56E-10 + 1.36E-01 =
F22 8.51E-01 = 9.81E-01 = 5.95E-08 + 1.15E-09 + 1.34E-08 + 8.80E-01 =
F23 3.92E-07 - 293E-08 — 4.54E-01 = 5.37E-09 + 234E-08 + 9.65E-01 =
F24 2.57E-01 = 7.56E—-10 - 248E-08 + 1.13E-08 + 2.21E-05 + 5.53E-01 =
F25 329E-03 - 9.07E-10 - 3.80E-04 + 6.17E-07 + 3.02E-02 - 231E-05 -
F26 6.63E-08 — 3.84E-02 - 631E-02 = 345E-08 - 245E-01 = 559E-01 =
F27 2.15E-01 = 451E-09 - 2.12E-07 + 147E-09 + 2.60E-07 + 229E-01 =
F28 4.84E-01 = 6.44E-04 + 7.56E-10 + 1.09E-09 + 4.54E-08 + 1.13E-08 +
+/=/- 14/8/6 14/5/9 23/3/2 25/2/1 24/3/1 15/1172

F17, F20, F22, F23 and F27) and one (i.e. F8) functions,
respectively.

Besides, SCA and JAYA cannot achieve the optimal
solutions on any functions. Based on MEAN from Table 3,
Table 4 displays the sorted results obtained by all applied
algorithms on CEC2013 test suite according to “tied
rank”(Rakhshani and Rahati 2017). Moreover, according to
Table 4, Fig. 3 shows the average rank of the applied algo-
rithms. Based on Fig. 3, the applied algorithms can be sorted
from best to worst in the following order: CLJAYA, NNA,
TLBO, GWO, JAYA, WOA and SCA.

Table 5 displays the Wilcoxon signed-rank test results on
CEC 2013 test suite. From Table 5, CLJAYA have a signifi-
cant advantage over WOA, SCA and JAYA, which can offer
better solutions than WOA, SCA and NNA on 23, 25 and 24
functions, respectively. Moreover, NNA, GWO and TLBO

@ Springer

is superior to CLJAYA on six (i.e. F15, F16, F19, F23, F25
and F26), nine (i.e. F7, F9, F15, F17, F23, F24, F25, F26,
F27 and F28) and two (F4 and F25) functions, respectively.
But CLJAYA outperforms NNA, GWO and TLBO on 14
(i.e. F1, F2, F3, F4, F5, F6, F7, F9, F10, F11, F12, F13, F18
and F20), 14 (i.e. F1, F2, F3, F4, F5, F6, F10, F11, F12, F14,
F18, F19, F21 and F28) and 15 (i.e. F1, F3, F5, F6, F7, F9,
F10, F11, F12, F13, F14, F17, F18, F19 and F28) functions,
respectively.

To observe the impact of the designed comprehensive
learning mechanism on convergence performance of JAYA,
Fig. 4 shows several convergence curves obtained by JAYA
and CLJAYA on CEC 2013 test suite. The selected func-
tions are F1, F2, F9, F10, F11, F12, F13, F14, F15, F17,
F18, F20, F21, F22, F23, F24, F27 and F28. Obviously, 16
of 18 selected functions are complex multimodal functions.
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Table 6 The statistical results
obtained by CLJAYA and the
compared algorithms on CEC
2014 test suite

@ Springer

No

Index

NNA

GWO

WOA

SCA

JAYA

TLBO

CLJAYA

F29

F30

F31

F32

F33

F34

F35

F36

F37

F38

F39

F40

F41

F42

F43

F44

F45

F46

F47

F48

F49

F50

F51

F52

F53

MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD
MEAN
STD

1.407E+07
1.133E+07
1.184E+07
3.485E+07
1.103E+04
6.694E+03
1.320E+02
3.876E+01
2.024E+01
2.949E-01
2.657E+01
3.495E+00
7.708E-01
7.307E-01
9.006E+01
2.475E+01
1.665E+02
3.392E+01
2.215E+03
6.426E+02
3.951E+03
5.572E+02
8.586E—-01
3.983E-01
5.958E-01
1.058E—-01
5.135E-01
2.576E-01
3.809E+01
1.749E+01
1.229E+01
5.326E-01
8.637E+05
1.044E+06
6.273E+03
6.013E+03
2.875E+01
2.643E+401
1.263E+04
7.646E+03
2.352E4+05
3.168E+05
5.632E+02
1.758E+02
3.165E+02
1.399E+00
2.184E+02
1.772E+01
2.174E+02
6.904E+00

7.827E+07
6.139E+07
3.081E+09
2.060E+09
3.182E+04
9.547E+03
3.017E+02
1.496E+02
2.094E+01
5.272E-02
1.538E+01
3.496E+00
3.153E+01
2.117E+01
8.761E+01
1.861E+01
1.107E+02
2.700E+01
2.329E+03
4.521E+02
2.798E+03
5.803E+02
1.641E+00
1.105E+00
5.645E-01
5.943E-01
7.332E+00
9.834E+00
2.390E+02
5.470E+02
1.093E+01
5.968E—-01
2.972E+06
2.951E+06
7.145E+06
1.766E+07
5.128E+01
2.615E+01
1.764E+04
1.016E+04
1.040E+06
1.686E+06
4.178E+02
1.688E+02
3.387E+02
1.607E+401
2.000E+02
4.752E—-04
2.097E+02
5.377E+00

3.084E+07
1.476E+07
9.280E+06
1.458E+07
3.521E+04
1.911E+04
1.950E+02
5.121E+01
2.039E+01
1.861E—-01
3.533E+01
3.444E+00
1.030E+00
7.538E—02
1.817E+02
3.725E+01
2.485E+02
5.405E+01
4.033E+03
8.641E+02
4.903E+03
9.304E+02
1.653E+00
4.948E—01
5.132E-01
1.108E—-01
2.699E-01
8.128E—-02
7.675E+01
2.366E+01
1.245E+01
7.807E-01
4.456E+06
2.912E+06
4.357E+03
4.301E+03
4.419E+01
3.676E+01
2.732E+04
2.124E+04
1.532E+06
1.559E+06
8.143E+02
2.381E+02
3.274E+02
2.719E+01
2.047E+02
3.328E4+00
2.146E+02
1.737E+01

2.481E+08
7.456E+07
1.694E+10
3.430E+09
3.675E+04
6.105E+03
1.072E+03
3.165E+02
2.094E+01
4.736E—-02
3.416E+01
2.531E+00
1.349E+02
2.386E+01
2.424E+02
1.686E+01
2.715E+02
1.747E+01
5.897E+03
5.014E+02
6.972E+03
2.982E+02
2.483E+00
2.595E-01
2.904E+00
3.748E-01
4.368E+01
7.526E+00
3.071E+03
4.596E+03
1.280E+01
2.508E-01
5.823E+06
2.335E+06
1.472E+08
7.978E+07
8.368E+01
2.115E+01
1.446E+04
5.389E+03
1.265E+06
5.585E+05
7.416E+02
1.556E+02
3.618E+02
1.001E+01
2.001E+02
5.495E-02
2.271E+02
8.987E+00

5.340E+07
2.222E+07
6.358E+09
2.075E+09
3.781E+04
1.130E+04
4.270E+02
2.242E+02
2.091E+01
5.495E-02
2.977E+01
5.109E+00
1.526E+01
4.930E+00
1.914E+02
2.671E+01
2.481E+02
2.144E+01
4.796E+03
1.202E+03
6.968E+03
2.882E+02
2.403E+00
2.631E-01
1.531E4+00
6.095E-01
9.732E+00
4.692E+00
6.438E+01
1.495E+02
1.291E+01
1.776E-01
3.453E+06
1.780E+06
2.612E+07
4.428E+07
3.690E+01
2.929E+01
2.770E+03
1.589E+03
8.264E4+05
8.614E4+05
5.650E+02
1.626E+02
3.357E+02
6.206E+00
2.562E+02
1.513E+01
2.182E+02
5.081E+00

5.054E+05
6.540E+05
2.938E-01
1.841E+00
2.042E+01
1.020E+02
8.209E+01
3.829E+01
2.094E+01
5.743E-02
2.246E+01
2.595E+00
3.546E—-01
7.606E-01
1.002E+02
2.018E+01
1.066E+02
1.976E+01
2.507E+03
6.533E+02
3.618E+03
1.359E+03
2.489E+00
3.046E—-01
4.760E-01
1.206E—-01
3.057E-01
1.341E-01
9.204E+01
7.172E+01
1.115E+01
7.098E—01
8.890E+04
1.958E+05
2.188E+03
2.879E+03
1.827E+01
1.886E+01
2.859E+02
1.154E+02
4.956E+04
4.488E+04
3.786E+02
1.575E+02
3.152E+02
7.282E-03
2.000E+02
5.021E-04
2.003E+02
2.450E+00

3.656E+05
3.009E+05
4.930E-02
1.126E—-01
7.429E+01
1.566E+02
6.130E+01
3.321E+01
2.090E+01
8.812E—-02
1.528E+01
4.933E+00
5.327E-02
8.880E—-02
5.512E+01
1.528E+01
7.000E+01
2.714E+01
1.866E+03
5.125E+02
4.634E+03
1.211E+03
2.323E+00
4.952E-01
4.464E—-01
1.144E-01
3.077E-01
1.270E-01
2.289E+01
1.698E+01
1.164E+01
4.678E—01
1.123E+05
1.051E+05
6.159E+03
7.443E+03
1.136E+01
1.394E+01
4.027E+02
2.305E+02
5.508E+04
6.857E+04
3.942E+02
1.645E+02
3.153E4+02
2.531E-01
2.227E+02
1.611E+01
2.052E+02
4.435E+00
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Table 6 (continued) No Index NNA GWO WOA SCA JAYA TLBO CLIAYA
F54 MEAN 1.007E+02 1.673E+02 1.045E+02 1.023E+02 1.192E+02 1.523E+02 1.045E+02

STD  1.257E—01 5486E+01 1.970E+01 6.144E—01 6.358E+01 5.019E+01 1.969E+01

F55 MEAN 7.490E+02 6.910E+02 1.097E+03 7.688E+02 1.039E+03 7.675E+02 8.500E-+02

STD  3.035E402 1.126E+02 3.403E+02 3.338E+02 1.562E+02 2.773E+02 2.824FE+02

F56 MEAN 1339E+03 1.252E+03 2.271E+03 2.087E+03 1.278E+03 1.510E+03 1.976E+03

STD  4.077E+02 2.938E+02 6.140E+02 3.351E+02 2.261E+02 4.017E+02 4.843E+02

F57 MEAN 5454E+05 1.593E+06 7.169E+06 1.155E+07 4.717E+06 6.177E+06 4.467E+07

STD  2.159E+06 3318E+06 4.363E+06 6.117E+06 4.914E+06 7.151E+06 4.523E+07

F58 MEAN 1.520E+04 5.475E+04 8.093E+04 2.559E+05 1.461E+04 5.233E+03 1.416E+05

STD  8452E+03 5.309E+04 7.031E+04 1.086E+05 1.530E+04 3.550E+03 3.145E+05

Table 7 The sorted results of CLJAYA and the compared algorithms on CEC 2014 test suite

Algorithm F29 F30 F31 F32 F33 F34 F35

F36 F37 F38 F39 F40 F41 F42 F43

NNA 3
GWO 6
WOA 4
SCA 7
JAYA 5
TLBO 2
CLJAYA 1

—_— N N N W WA
N = N0 AW
—_— N AN N kW
WA NN =
—_— W NN A
—_— NN NN RN W

— A OV N L NW
— 0 L9 W A
el - AN LY VS I )
AN NN N =W
N Y T S T S
— N AN N W R W
W N NN = R
_— WD NN

Algorithm F44 F45 F46 F47 F48 F49 F50

F51 F52 F53 F54 F55 F56 F57 F58

NNA 4 3 4 3 4 3 4 3 5 5 1 2 3 1 3
GWO 1 4 5 6 6 5 3 6 1 3 7 1 1 2 4
WOA 5 6 2 5 7 7 7 4 4 4 3 7 7 5 5
SCA 6 7 7 7 5 6 6 7 3 7 2 4 6 6 7
JAYA 7 5 6 4 3 4 5 5 7 6 5 6 2 3 2
TLBO 2 1 1 2 1 1 1 1 2 1 6 3 4 4 1
CLJAYA 3 2 3 1 2 2 2 2 6 2 4 5 5 7 6
7 ) mechanism can enhance the ability of JAYA to escape from

The average rank

NNA GWO WOA SCA

JAYA TLBO CLJAYA

Fig.5 The average rank obtained by JAYA and CLJAYA on CEC
2014 test suite

As shown in Fig. 4, CLJAYA can find better solutions
with faster speed compared with JAYA on these functions,
which demonstrates the designed comprehensive learning

the local optimum.
Benchmark problem set Il: CEC 2014 test suite

The statistical results achieved by CLJAYA and the com-
pared algorithms on CEC 2014 test suite are shown in
Table 6. From Table 6, CLJAYA can obtain the best solu-
tions on 11 functions, i.e. F29, F30, F32, F34, F35, F36,
F37, F38, F41, F43, and F47. TLBO also shows excellent
global search ability, which can offer the best solutions on
nine functions, i.e. F31, F45, F46, F48, F49, F50, F51, F53
and F58. NNA, GWO, WOA, and SCA can get the best solu-
tions on four (i.e. F33, F40, F54 and F57), five (i.e. F34, F44,
F52, F55 and F56), and one (i.e. F42), respectively. SCA
and JAYA can’t obtain the best solutions on any functions.
According to MEAN from Table 6, Table 7 shows the sorted
results of “tied rank™ obtained by all applied algorithms on
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Table 8 The statistical results produced by Wilcoxon signed-rank test on CEC 2014 test suite

No CLJAYA vs.

NNA GWO WOA SCA JAYA TLBO

p value S p value S p value S p value S p value S p value S
F29 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 725E-01 =
F30 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 325E-02 -
F31 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 3.53E-05 -
F32 9.07E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 6.67E-04 +
F33 1.98E-09 — 7.72E-05 + 7.56E-10 — 7.39E-03 + 5.15E-01 = 8.77E-03 +
F34 9.07E-10 + 8.28E-01 = 7.56E-10 + 8.03E—-10 + 7.56E-10 + 1.59E-08 +
F35 6.38E-09 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 1.57E-04 +
F36 5.69E-09 + 5.69E-09 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 9.07E-10 +
F37 1.02E-09 + 1.63E-07 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 1.55E-07 +
F38 2.08E-02 + 8.03E-05 + 7.56E-10 + 7.56E-10 + 1.30E-09 + 4.86E-06 +
F39 2.11E-03 - 451E-09 - 327E-01 = 9.63E-10 + 7.56E-10 + 4.66E-04 —
F40 1.02E-09 — 147E-03 - 9.17E-07 - 1.26E-01 = 7.25E-01 = 9.02E-02 =
F41 235E-07 + 5772E-01 = 6.97E-03 + 7.56E-10 + 7.56E-10 + 2.11E-01 =
F42 4.00E-05 + 1.25E-05 + T49E-02 = 7.56E-10 + 7.56E-10 + 791E-01 =
F43 1.63E-05 + 1.81E-06 + 8.03E—-10 + 7.56E-10 + 1.49E-06 + 430E-08 +
F44 1.36E-06 + 223E-07 - 1.90E-06 + 7.56E-10 + 7.56E-10 + 2.79E-04 —
F45 1.01E-08 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 1.69E-02 —
F46 5.92E-01 = 1.77TE-04 + 5.53E-01 = 7.56E-10 + 7.56E-10 + 1.42E-03 -
F47 9.64E-08 + 8.50E-09 + 7.58E-09 + 7.56E-10 + 9.53E-09 + 1.70E-05 +
F48 8.03E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 7.56E-10 + 4.66E-04 —
F49 241E-05 + 1.09E-09 + 8.03E-10 + 7.56E-10 + 7.56E-10 + 791E-01 =
F50 1.25E-05 + 420E-01 = 1.86E-09 + 1.23E-09 + 8.78E-06 + 8.80E-01 =
F51 1.56E-09 + 7.56E-10 + 2.01E-07 + 7.56E-10 + 7.56E-10 + 8.73E-06 +
F52 241E-01 = 7.56E-10 — 791E-07 - 7.56E-10 — 2.82E-09 + 7.56E-10 —
F53 9.63E-10 + 240E-04 + 1.13E-02 + 9.07E-10 + 8.53E-10 + 2.65E-08 —
F54 8.82E-04 + 434E-07 + 4.04E-01 = 2.01E-07 + 1.32E-07 + 1.99E-06 +
F55 9.59E-02 = 147E-03 - 1.70E-04 + 1.75E-01 = 1.57E-04 + 222E-01 =
F56 1.29E-06 — 1.20E-08 — 232E-03 + 2.77E-01 = 6.02E-09 - 7.33E-06 -
F57 251E-09 - 337E-09 - 1.27E-08 — 6.81E-07 - 6.76E-09 — 6.76E-09 —
F58 1.44E-01 = 342E-01 = 6.59E-02 = 3.75E-04 + 1.75E-01 = 4.00E-05 -
+/=/- 21/4/5 19/4/7 21/5/4 25/3/2 25/3/2 11/7/12

CEC2014. Moreover, according to Table 7, Fig. 5 gives the
average rank of the applied algorithms. As can be seen from
Fig. 5, the applied algorithms can be sorted from best to
worst in the following order: TLBO, CLJIAYA, NNA, GWO,
WOA, JAYA and SCA. Although TLBO is the best of the
applied algorithms, CLJAYA and TLBO are very close in
terms of the average rank, which means CLJAYA and TLBO
have the similar performance on CEC 2014 test suite.

The results produced by Wilcoxon signed-rank test
for CLJAYA and the compared algorithms on CEC 2014
test suite are displayed in Table 8. According to Table 8§,
CLJAYA is far superior to NNA, WOA, SCA and JAYA,
which can find better solutions than NNA, WOA, SCA
and JAYA on 21, 21, 25 and 25 functions, respectively.

@ Springer

Moreover, GWO and TLBO can offer better solutions than
CLJAYA on seven (i.e. F39, F40, F44, F52, F55, F56 and
F57) and 12 (i.e. F30, F31, F39, F44, F45, F46, F48, F52,
F53, F56, F57 and F58) functions, respectively. Note that
CLJAYA can beat GWO and TLBO on 19 (i.e. F29, F30,
F31, F32, F33, F35, F36, F37, F38, F42, F43, F45, F46,
F47, F48, F49, F51, F53 and F54) and 11 (i.e. F32, F33,
F34, F35, F36, F37, F38, F43, F47, F51 and F54) functions,
respectively.

In addition, Fig. 6 shows several convergence curves
obtained by JAYA and CLJAYA on CEC2014 test suite to
test the effectiveness of the designed comprehensive learn-
ing mechanism. The selected functions consist of two uni-
modal functions (i.e. F29 and F30) and sixteen multimodal
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functions (i.e. F32, F33, F34, F35, F36, F37, F38, F39,
F40, F41, F42, F44, F47, F52, F53 and F55). From Fig. 6,
CLJAYA is superior to JAYA on these functions in terms
of solution quality and convergence speed. That is, the
designed comprehensive learning mechanism is very effec-
tive for enhancing the ability of JAYA escaping from the
local optimum.

Discussion for the effectiveness of the improved
strategies

In this section, we discuss the effectiveness of the improved
strategies based on the experimental results obtained by
CLJAYA on CEC 2013 and CEC 2014 test suites.

In order to improve the global search ability of JAYA for
complex optimization problems, three learning strategies are
designed in CLJAYA. Learning strategy-I is similar with
JAYA. In learning strategy-II, mean position is introduced to
enhance the chance of CLJAYA to escape from local optima.
Learning-strategy-III is to accelerate the convergence speed
of CLJAYA, which is guided by the current best solution.
In order to study the performance of CLJAYA for complex
optimization problems, CEC 2013 and CEC 2014 test suites
are employed. Note that the two test suites include 50 mul-
timodal functions and eight unimodal functions, which are
very suitable for checking the performance of CLJAYA in
solving complex optimization problems.

According to MEAN shown in Tables 3 and 6, JAYA
only outperforms CLJAYA on F8, F16, F25, F26, F56, F57
and F58. CLJAYA can beat JAYA on the rest 51 test func-
tions. In addition, Figs. 3 and 4 present the convergence
curves obtained by JAYA and CLJAYA for more than 60%
of test functions. Based on Fig. 3 and 4, CLJAYA shows
better convergence performance than JAYA on these test
functions in terms of convergence speed and solution quality.
Besides, according to Fig. 3 and 4, JAYA tends to premature
convergence while CLJAYA shows strong ability of escap-
ing from the local optima for solving complex optimization
problems. Obviously, benefiting from the designed learning
strategies, CLJAYA is significant superior to JAYA for the
used two test suites in terms of overall optimization perfor-
mance. More specifically, the designed learning strategies
can make full use of population information including the
current best solution, the current worst solution, the current
mean solution and some current random solutions, which is
very helpful for keeping population diversity and enhancing
the global search ability of CLJAYA.

Based on the above discussion, the improved strategies
introduced to JAYA are very successful and achieve the
expected effect.

@ Springer

Applications of CLJAYA on constrained
engineering optimization

In this section, CLJAYA is employed to solve five practical
engineering design optimization problems. Section 4 has
demonstrated the effectiveness of the improved strategies.
That is, the improved strategies can significantly enhance
the global search ability of JAYA for solving complex opti-
mization problems, which lays a good foundation for using
CLJAYA to solve practical complex engineering optimiza-
tion problems. This section is divided into two parts. Sec-
tion 5.1 shows the mathematical model of constrained engi-
neering problems and the used mechanism addressing the
constrained conditions. Section 5.2 presents the experimen-
tal results obtained by CLJAYA for five practical constrained
engineering optimization problems.

The mathematical model of constrained
engineering problems

Although there are many different types of engineering
optimization problems in the real world, their mathematical
models all can be formulated as follows:

. T
minf(x), X = (xl,xz, R
st. h(x)=0,1=1,2,...,m,

' 11
6(x) <0, k=1,2,...n, (n

[ <x;Zu,i=1,2,...,D.

where the objective function is defined by f(x) and
X = (x,x, ... ,xD)T is a one-dimensional vector of D vari-
ables./; and u; are the lower and upper limits of the ith varia-
ble, respectively.h,(x) and g,(x) are the 7th equality constraint
and kth inequality constraint, respectively.m and n are the
number of equality constraints and inequality constraints,
respectively. Moreover, although Eq. (11) describes the
minimization problem, the maximization problem can be
transformed into minimization one as —f(x). A major barrier
in solving a constrained engineering optimization problem is
how to handle equality constraints and inequality constraints
of the given problem. We transform the constraint optimiza-
tion problem into an unconstrained optimization problem
by the penalty function approach as done in (Gandomi et al.
2011; Gandomi et al. 2013a, b), which can be expressed as

P(x,1;,&) = f(X) + H(X) + G,(x) (12)
where
p
H,(x)=)" nh2(x) (13)
i=1
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q
G(x) = Y &g () (14)
j=1

where #,(1 < ;) and &;(0 < &) are penalty factors, and P
is the total penalty function. H;(x) and Gj(x) are the penalty
functions of the ith equality constraint and the jth inequality
constraint, respectively. The penalty factors (1, and §;) should
be large enough based on the specific optimization problem
(Gandomii et al. 2011), which are set to 10e20 in our experi-
ments. As can be seen from Eqs. (12—14), if the ith equality
constraint is met,H;(X) is equal to 0 and has no contribution
to P; if the ith equality constraint is violated,H,(x) will sig-
nificantly increase and has a significant impact on P. This
phenomenon can also happen in G;(x).

Experiential results on constrained engineering
problems

In this section, CLJAYA is used to solve five constrained
engineering optimization problems, i.e. welded beam design
problem, tension/compression spring design problem, speed
reducer design problem, three-bar truss design problem and
car impact design problem. In order to show the superior-
ity of CLJAYA for these problems, the obtained results by

Table9 The results obtained by CLJAYA and the compared algo-
rithms for welded beam design problem

Algorithm Worst Mean Best STD NFEs
CAEP 3.179709 1.971809 1.724852 4.43E-01 50,020
CPSO 1.782143 1.748831 1.728024 1.29E-02 240,000
HPSO 1.814295 1.749040 1.724852 4.01E-02 81,000
SC 6.399678 3.002588 2.385434 9.60E—01 33,095
DE 1.824105 1.768158 1.733461 2.21E—-02 204,800
PSO-DE 1.724852 1.724852 1.724852 6.70E—16 66,600
MGA 1.995000 1.919000 1.824500 5.37E—02 NA
WCA 1.744697 1.726427 1.724856 4.29E—03 46,450
QS 1.724852 1.724852 1.724852 NA 20,000
NDE 1.724852 1.724852 1.724852 3.73E-12 8,000
TLNNA 1.724952 1.724866 1.724852 2.09E-05 9,000
DPSO 2.167180 2.067561 2.063119 2.06E-02 40,000
MHS-PCLS  1.724852 1.724852 1.724852 8.11E—11 10,000
eDE-HP 1.724852 1.724852 1.724852 1.40E—12 20,000
hHHO-SCA  3.146846 2.093154 1.779032 3.32E-01 NA
IAFOA 1.724856 1.724856 1.724856 8.99E—07 40,000
MRFO 1.724865 1.724855 1.724852 3.83E—06 30,000
EO 1.736725 1.726482 1.724853 3.36E—03 15,000
UFA 1.724852 1.724852 1.724852 7.96E—-11 2,000

I-ABC greedy 1.724910 1.724865 1.724852 1.92E-05 14,500
JAYA 1.726289 1.725087 1.724857 3.27E-04 5,000
CLJAYA 1.726242 1.724945 1.724852 2.81E-04 5,000

CLJAYA are compared with those of JAYA and recently
reported results. In addition, population size of JAYA and
CLJAYA was set to 20 for all test cases. In addition, for
every test case, JAYA and CLJAYA were executed 50 inde-
pendent runs and then the worst value, the mean value, the
best value and the standard variance were obtained as shown
in Tables 9, 10, 11, 12 and 13. In the five tables, “Worst”,
“Mean”, “Best”, “STD”, “NFEs” and “NA” stand for the
worst value, the mean value, the best value, the standard
variance, the number of function evaluations and not avail-
able, respectively.

Case 1: Welded beam design problem

This is a classical engineering design optimization problem,
which was proposed by Coello (Coello 2000a, b). Solving
this problem is to design a welded beam with the minimum
cost. The formula of this problem can be found in Appendix
A.1. The optimization constraints of this problem are shear
stress (7), bucking load (P,), bending stress in the beam (6)
and deflection rate (6). The design variables of this problem
consist of the height of the bar #(x,), the thickness of the
weld h(x,), the length of the bar /(x;) and the thickness of
the bar b(x,).

Table 9 shows the results for the welded beam design
problem obtained by CAEP (Coello and Becerra 2004),
CPSO (Krohling and Coelho 2006), HPSO (Amirjanov
2006), SC (Ray and Liew 2003), DE (Lampinen 2002),
PSO-DE (Liu et al. 2010), MGA (Coello 2000a, b), WCA
(Eskandar et al. 2012), QS (Zhang et al. 2018), NDE
(Mohamed 2018), TLNNA(Zhang et al. 2020), DPSO
(Liu et al. 2019), MHS-PCLS (Yi et al. 2019), eDE-HP
(Yi et al. 2020), hHHO-SCA (Kamboj et al. 2020), IAFOA
(Wu et al. 2018), MRFO (Zhao et al. 2020), EO (Faramarzi
et al. 2020), I-ABC greedy (Sharma and Abraham 2020),
UFA (Brajevi¢ and Ignjatovi¢ 2019), JAYA and CLJAYA.
In Table 9, if one algorithm can get the smallest Best, which
means this algorithm can obtain a better solution to design
the welded beam than the compared algorithms. According
to Table 9, CAEP, HPSO, PSO-DE, QS, NDE, TLNNA,
MHS-PCLS, ¢DE-HP, MRFO, UFA, I-ABC greedy and
CLJAYA can find the best solution, i.e.1.724852. Note
that CLJAYA only consumes 5,000 function evaluations.
However, the number of function evaluations consumed by
CAEP, HPSO, PSO-DE, QS, NDE, TLNNA, MHS-PCLS,
eDE-HP, MRFO and [-ABC greedy is 50,020, 81,000,
66,600, 20,000, 8,000, 9,000, 10,000, 20,000, 30,000, and
14,500 respectively. Obviously, CLJAYA has a significant
advantage over CAEP, HPSO, PSO-DE, QS, NDE, TLNNA,
MHS-PCLS, ¢eDE-HP, MRFO and I-ABC greedy in terms of
computational efficient. In addition, UFA only needs 2,000
function evaluations, which is more efficient than CLJAYA.
Besides, CLJAYA is superior to JAYA on Best, Worst, Mean
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Table 10 The results obtained

Algorithm Worst Mean Best STD NFEs

by CLJAYA and the compared

algorithms for tension/ GA2 0.012822 0.012769 0.012704 3.94E-05 900,000

;’;‘1‘}1’;?5‘0“ spring design GA3 0.012973 0.012742 0.012681 5.90E—05 80,000
CPSO 0.012924 0.012730 0.012674 5.20E—04 240,000
HPSO 0.012719 0.012707 0.012665 1.58E—05 81,000
PSO 0.071802 0.019555 0.012857 1.17E-02 2,000
CAEP 0.015116 0.013568 0.012721 8.42E—04 50,020
DE 0.012790 0.012703 0.012670 2.70E—05 204,800
DEDS 0.012738 0.012669 0.012665 1.30E—05 24,000
HEAA 0.012665 0.012665 0.012665 1.40E—09 24,000
PSO-DE 0.012665 0.012665 0.012665 1.20E—08 24,950
PVS 0.012710 0.012670 0.012665 NA 8,000
QS 0.012828 0.012691 0.012665 NA 8,000
NDE(Mohamed 2018) 0.012687 0.012669 0.012665 5.38E—06 24,000
TLNNA 0.012836 0.012689 0.012665 3.24E-05 18,000
DPSO 0.017982 0.013032 0.012665 1.26E-03 30,000
MHS-PCLS 0.012665 0.012665 0.012665 3.61E—11 10,000
¢DE-HP 0.012665 0.012665 0.012665 7.80E—10 20,000
hHHO-SCA 0.017774 0.014326 0.012823 1.55E-03 NA
IAFOA 0.012688 0.012673 0.012665 3.02E-06 40,000
MRFO 0.013181 0.012701 0.012676 2.14E-04 50,000
EO 0.013997 0.013017 0.012665 3.91E-04 15,000
DSLC-FOA 0.012692 0.012683 0.012676 6.50E—04 25,000
UFA 0.012665 0.012665 0.012665 3.60E—11 2,000
I-ABC greedy 0.018124 0.013731 0.012665 1.12E—-06 2,000
JAYA 0.012994 0.012742 0.012677 7.39E-05 6,000
CLIAYA 0.012757 0.012685 0.012665 2.32E-05 6,000

and STD, which means CLJAYA is more suitable for solv-
ing the welded beam design problem compared with JAYA.

Case 2: Tension/compression spring design problem

The tension/compression spring design problem is intro-
duced in (Arora 1989). The goal of this problem is to mini-
mize the weight of a tension/compression spring. This prob-
lem includes three design variables, i.e. the wire diameter p
(x,), the mean coil diameter D (x,) and the number of active
coils d(x5). Moreover, four constraints need to be considered.
The formula of this problem can be found in Appendix A.2.

Table 10 presents the results for the tension/com-
pression spring design problem obtained by GA2 (Coe-
1lo 2000a, b), GA3 (Coello and Mezura Montes 2002),
CPSO (Krohling and Coelho 2006), HPSO (Liu et al.
2010), PSO (Liu et al. 2010), CAEP (Coello and Becerra
2004), DE (Lampinen 2002), DEDS (Zhang et al. 2008),
HEAA (Wang et al. 2009), PSO-DE (Liu et al. 2010),
PVS(Savsani and Savsani 2016), QS (Zhang et al. 2018),
NDE (Mohamed 2018), TLNNA (Zhang et al. 2020),
DPSO (Liu et al. 2019), MHS-PCLS (Yi et al. 2019),

@ Springer

eDE-HP (Yi et al. 2020), hHHO-SCA (Kamboj et al.
2020), IAFOA (Wu et al. 2018), MRFO (Zhao et al. 2020),
EO(Faramarzi et al. 2020), DSLC-FOA (Du et al. 2018),
JAYA, UFA, I-ABC greedy and CLJAYA. In Table 10, if
one algorithm can achieve the smallest Best, which means
this algorithm can offer a better solution to design the ten-
sion/compression spring than the compared algorithms.
From Table 10, DEDS, HEAA, PSO-DE, PVS, QS, NDE,
TLNNA, DPSO, MHS-PCLS, eDE-HP, IAFOA, EO, UFA,
I-ABC greedy and CLJAYA achieve the optimal objective
function value, i.e. 0.012665. The consumed number of
function evaluations for DEDS, HEAA, PSO-DE, PVS,
QS, NDE, TLNNA, DPSO, MHS-PCLS, eDE-HP, IAFOA,
EO and CLJAYA are 24,000, 24,000, 24,950, 8,000, 8,000,
24,000, 18,000, 30,000, 10,000, 20,000, 40,000, 15,000
and 6,000, respectively. Obviously, CLJAYA can find
the optimal solution with a faster speed compared with
DEDS, HEAA, PSO-DE, PVS, QS, NDE, TLNNA, DPSO,
MHS-PCLS, ¢DE-HP, IAFOA and EO. Note that, UFA
and I-ABC greedy can consume fewer function evaluations
than CLJAYA. In addition, JAYA is inferior to CLJAYA
on all considered four indicators.
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Table 11 The results obtained Algorithm Worst Mean Best STD NFEs

by CLJAYA and the compared

algorithms for speed reducer SC 3009.964736 3001.758264 2994.744241 4.0E+1 54,456

design problem PSO-DE 2996.348204 2996.348174 2996.348167 6.4E—-06 54,350
DELC 2994.471066 2994.471066 2994.471066 1.9E-12 30,000
DEDS 2994.471066 2994.471066 2994.471066 3.6E—12 30,000
HEAA 2994.752311 2994.613368 2994.499107 7.0E—02 40,000
FFA 2996.669 2996.51 2996.37 NA 50,000
MBA 2999.65 2996.769 2994.4824 NA 6,300
CSA 3009 3007.1997 3000.98 NA 5,000
PVS 2994.477593 2994.472059 2994.471066 NA 30,000
WCA 2994.505578 2994.474392 2994.471066 7.4E-03 15,150
QS 2994.471066 2994.471066 2994.471066 NA 25,000
NDE 2994.470166 2994.471066 2994.471066 4.17B-12 18,000
TLNNA 2994.474519 2994.471175 2994.471066 54E—04 10,500
DPSO 2996.243229 2996.243047 2996.243040 3.4E-05 70,000
MHS-PCLS 2994.471106 2994.471077 2994.471068 7.14E-06 10,000
¢DE-HP 2994.471066 2994.471066 2994.471066 6.30E—09 20,000
hHHO-SCA 5053.181732 3696.691485 3029.873076 6.59E +02 NA
IAFOA 2996.348356 2996.348069 2996.347898 3.52E-05 40,000
MRFO 2994.524770 2994.492846 2994.479994 1.46B—02 20,000
UFA 2994.471066 2994.471066 2994.471066 1.53E-08 3,000
I-ABC greedy 2994.902 2994.6631 2994.471032 1.87B-12 6,500
JAYA 3033.747875 2996.091421 2994.471066 7.31E-03 7,000
CLIAYA 2994.473148 2994.471151 2994.471066 3.79E—07 7,000

Table. 12 The results obtained Algorithm Worst Mean Best STD NFEs

by CLJAYA and the compared

algorithms for pressure vessel e 263.969756 263.903356 263.895846 1.3B-02 17,610

design problem PSO-DE 263.895843 263.895843 263.895843 4.50E—10 17,600
DSS-MDE 263.895849 263.895843 263.895843 9.72E-07 15,000
MBA 263.915983 263.897996 263.895852 3.93E-03 13,280
DEDS 263.895849 263.895843 263.895843 9.70E—07 15,000
HEAA 263.896099 263.895865 263.895843 4.90E-05 15,000
WCA 263.896201 263.895903 263.895843 8.71E-05 5,250
MFO NA NA 263.895980 NA NA
MVO NA NA 263.895850 NA NA
GOA NA NA 263.895881 NA 13,000
SFO NA NA 263.895921 NA NA
PRO NA NA 263.895844 NA NA
hHHO-SCA  264.954366 264.168367 263.895867 3.24E-01 NA
JAYA 263.904386 263.89922 263.89625 2.54E—05 5,000
CLIAYA 263.895844 263.895843 263.895843 3.36E—10 5,000

Case 3: Speed reducer design problem

As a common engineering design problem, the goal of
this problem is to minimize the weight of speed reducer
subject to constraints on bending stress of the gear teeth,
surface stress, transverse deflections of the shafts, and
stresses in the shafts(Brajevi¢ and Ignjatovi¢ 2019). This

problem has seven design variables: the face width b(x,),
module of teeth m(x,), number of teeth in the pinion z(x;),
length of the first shaft between bearings [, (x,), length of
the second shaft between bearings /,(x5), and the diameter
of first d,(x4) and second shafts /,(x;). Moreover, 11 con-
straints are included in the problem. Note that, it should be
pointed out that this problem has two versions. The only
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Table 13 The best solutions obtained by CLJAYA and the compared algorithms for car side impact problem

Variable PSO DE GA FA CS TLBO TLCS MHS-PCLS JAYA CLJAYA
X 0.50000 0.50000 0.50005  0.50000 0.50000 0.50000 0.50000 0.50004 0.50000 0.50000
Xy 1.11670 1.11670 1.28017  1.36000 1.11643 1.11350 1.11630 1.11640 1.11508 1.11634
X3 0.50000 0.50000 0.50001  0.50000 0.50000 0.50000 0.50000 0.50003 0.50000 0.50000
Xy 1.30208 1.30208 1.03302  1.20200 1.30208 1.30700 1.30230 1.30230 1.30505 1.30224
X5 0.50000 0.50000 0.50001  0.50000 0.50000 0.50000 0.50000 0.50000 0.50021 0.50000
X 1.50000 1.50000 0.50000  1.12000 1.50000 1.50000 1.50000 1.50000 1.50000 1.49999
Xq 0.50000 0.50000 0.50000  0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
Xg 0.34500 0.34500 0.34994  0.34500 0.34500 0.34500 0.34500 0.34499 0.34500 0.34999
Xg 0.19200 0.19200 0.19200  0.19200 0.19200 0.19200 0.19200 0.19215 0.19204 0.19252
X0 —19.54935 —19.54935 10.3119  8.87307 8.87307 —20.0655 —19.5721 —19.5690 —19.7021 —19.5659
X1 —0.00431  —0.00431  0.00167 —18.99808 —18.99808 0.11390 0.0157 0.19207 0.89881 —0.00789
weight 22.84474 22.84298 22.85653 22.84298 22.84294 22.8436 22.8430 22.84361 22.8463 22.84298
NFES 20,000 20,000 20,000 20,000 20,000 20,000 8,000 20,000 20,000 20,000

difference between the two versions is that the limits of
the variable xs(Brajevi¢ and Ignjatovi¢ 2019; Savsani and
Savsani 2016). The variable x; lies between 7.3 and 8.3 for
the first version while it ranges between 7.8 and 8.3. This
experiment is to solve the first version. The formula of this
problem can be found in Appendix A.3.

Table 11 displays the results obtained by SC (Ray and
Liew 2003), PSO-DE (Liu et al. 2010), DELC (Wang et al.
2009), DEDS (Zhang et al. 2008), HEAA(Wang et al. 2009),
FFA (Baykasoglu and Ozsoydan 2015), MBA (Sadollah
et al. 2013), CSA (Askarzadeh 2016), PVS(Savsani and
Savsani 2016), WCA (Eskandar et al. 2012), QS (Zhang
et al. 2018), NDE (Mohamed 2018), TLNNA (Zhang et al.
2020), DPSO (Liu et al. 2019), MHS-PCLS (Yi et al. 2019),
eDE-HP (Yi et al. 2020), hHHO-SCA (Kamboj et al. 2020),
IAFOA(Wu et al. 2018), MRFO (Zhao et al. 2020), UFA,
I-ABC greedy, JAYA and CLJAYA. In Table 11, one algo-
rithm with the smallest Best can give a better solution to
design the speed reducer than the compared algorithms.
As presented in Table 11 I-ABC greedy is the best, which
can find the optimal solution, i.e. 2994.471032. In addition,
DELC, DEDS, WCA, QS, PVS, NDE, TLNNA, ¢DE-HP,
UFA, JAYA and CLJAYA can find the same optimal solu-
tion, i.e. 2994.471066. Note that CLJAYA is superior to
JAYA on the rest indicators including Worst, Mean and
STD, which indicates CLJAYA has a better comprehensive
performance than JAYA for speed reducer design problem.

Case 4: Three-bar truss design problem
The goal of this problem is to minimize the volume of a sta-
tistically loaded three-bar truss subject to stress constraints

on each of the truss members by adjusting cross sectional
areas (x;,x,). Moreover, three constraints also need to be
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taken into account. The formula of this problem can be
found in Appendix A.4.

Table 12 displays the results for the three-bar truss design
problem obtained by SC (Ray and Liew 2003), PSO-DE (Liu
et al. 2010), DSS-MDE (Zhang et al. 2008), MBA(Sadollah
et al. 2013), DEDS (Zhang et al. 2008), HEAA (Wang et al.
2009), WCA (Eskandar et al. 2012), MFO (Mirjalili 2015),
MVO(Mirjalili et al. 2016), GOA (Saremi et al. 2017), SFO
(Shadravan et al. 2019), PRO (Samareh Moosavi and Bard-
siri 2019), hHHO-SCA (Kamboj et al. 2020), JAYA and
CLJAYA. In Table 12, one algorithm with the smallest Best
can find a better solution to design the three-bar truss than
the compared algorithms. As can be seen from Table 12,
PSO-DE, DSS-MDE, DEDS, HWAA, WCA, CLJAYA can
offer the optimal solution. By observing Table 12, PSO-
DE, DSS-MDE, DEDS and HEAA consume more than
10,000 function evaluations while CLJAYA only consumes
5,000 function evaluations. Moreover, WCA shows strong
competitiveness with 5,250 function evaluations. Note that
CLJAYA is slight superior to WCA in terms of convergence
speed. Besides, CLJAYA outperforms JAYA on Worst,
Mean, Best and STD.

Case 5: Car impact design problem

The design problem of car side impact is stated by Gu et al.
(Gu et al. 2001). On the foundation of European Enhanced
Vehicle-Safety Committee procedures, a car is exposed to a
side-impact (Gandomi et al. 2011). The goal of this case is
to minimize the weight related to nine influence parameters
including thickness of B-Pillar inner, B-Pillar reinforcement,
floor side inner, cross members, door beam, door beltline
reinforcement and roof rail (xl —x7), materials of B-Pillar
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inner and floor side inner (xg—x, ) and barrier height and hit-
ting position (xw—x“ ) Moreover, ten inequality constraints
associated with the car side impact design problem need to
be considered. The formula of this problem can be found in
Appendix A.5.

Table 13 gives the best solutions obtained by PSO (Gan-
domi et al. 2013a, b), DE (Gandomi et al. 2013a, b), GA
(Gandomi et al. 2013a, b), FA (Gandomi et al. 2011), CS
(Gandomi et al. 2013a, b), TLBO (Huang et al. 2015), TLCS
(Huang et al. 2015), MHS-PCLS (J. Yi et al. 2019), JAYA
and CLJAYA. In Table 13, the algorithm with the small-
est weight can find the better solution to the car impact
design problem compared with the other algorithms. From
Table 13, CS achieves the optimal solution. Note that DE,
FA and CLJAYA can offer very competitive solutions.

Conclusions and further work

This paper presents an improved Jaya algorithm called com-
prehensive learning Jaya algorithm (CLJAYA) for solving
engineering optimization problems. The proposed CLJAYA
has a very simple structure and only depends on the essen-
tial population size and terminal condition for solving opti-
mization problems. In CLJAYA, the designed comprehensive
learning mechanism with three different learning strategies
is introduced to enhance its ability of escaping from the
local optimum. In order to investigate the effectiveness of
the improved strategies, CLJAYA is used to solve CEC 2013
test suite, CEC 2014 test suite and five challenging engineer-
ing optimization problems. In addition, CEC 2013 and CEC
2014 test suits have 58 test functions. Note that 50 of 58 test

Minimize f(x) = 1.10471x%x, + 0.04811x;x, (14 + x,)
Subject to:

81X =7(x) =7, <0

(X)) =0(x) =0 <0

g =x—x, <0

84(x) = 0.10471x% + 0.0481 1x3x4(14 + xz) -5<0
85(x)=0.125-x, <0

86X) =0(x) =0 <0

g(x)=P-P.(x) <0

01<x;,52i=14

01<x;<10i=23

where,

T(x) = \/(T’)2 +21”1”’;C—]2e + (@=L =My =p

\/Exlxz’ 7
J= 2(\/§x1x2 (

x2 Xy+x 6PI 4P[?

2 1743

=24 (1= o(x — o(x =
12 < 2 > ’ ( ) x4x§’ ( ) Exéx_f

functions are multimodal functions. Besides, the used five
engineering optimization problems need to meet the given
complex constraints. Thus, these test cases are very suitable
for examining the performance of CLJAYA for complex opti-
mization problems. The experimental results prove the supe-
riority of CLJAYA in solving complex optimization problems
by comparing with JAYA and some state-of-the-art algorithms
in terms of solution quality and computational efficiency. In
other words, the designed strategies for improving JAYA are
very effective.

Further work will focus on the following two aspects. On
the one hand, CLJAYA is a metaheuristic algorithm with-
out special parameters and has a great potential to be widely
used. Thus, we intend to use CLJAYA to solve more practi-
cal engineering optimization problems, such as flexible job-
shop scheduling problem and vehicle routing problem with
time windows. On another hand, we discuss the advantages
of metaheuristic algorithms without special parameters in this
work. However, most of the reported metaheuristic algorithms
have special parameters. Note that developing metaheuristic
algorithms without special parameters has not been regarded
highly by researchers. Thus, we will develop more metaheuris-
tic algorithms without special parameters to solve different
types of optimization problems in the future research.
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Appendix A

A.1 welded beam design problem

Lr2)R=q/(2) +(222)
2 P T 2 2 >

2.6
401361/ 24

PL.(X)=L—236 l—ﬁ £

2LV 4G

P = 60001b, L = 14in, E = 30 x 10°psi, G = 12 x 10°psi, 7,,,, = 13,600psi, o,,, = 30,000psi, 5,,, = 0.25in
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A.2 Tension/compression spring design problem

Minimize f(x) = (x3 + 2)x2x%

Subject to:
X
g =1- 71,785 <0
— Ay2 XX 1
&) =45, — 17 566(x,x0—x?) + 5108x -1<0
140.45
g0 =1- le <0
2
8a(x) =x, + ——1 <0
where,

0.05 <x; £2,0.25<x,<1.30, 2.00 <x; <15.00

A.3 Speed reducer design problem

Minimize f(x) = 0.7854x1x§(3.3333x§ + 14.9334x,
—43.0934) — 1.508x, (x2 + x2) + 7.4777(x; + 53 )+
0.7854 (x4x§ + xsxg)

Subject to
gix) = o 1<0

_ 3975
g2(x) - xlxixs 1 S 0

_ 1.93x2
g3(x) - xzxg)% -1 S 0

_ 1493x:2 _
g4(x) = P 1<0

12
((7)4254> +16. 9><10f’>
85(x) = 1105 -1=0
1/2
((”;5) +157. 5><106)
86(x) = T -1<0
7
g7 (x) = % -1<0
gs() =2 -1<0
l
go(x) = 2x5
go() = ﬂ 1<0
21 (x) = L1619 _1<0
X5

where,

26<x,<36,07<x,<08,17<x; <28, 73<x,
<83,73<x3<83,29<x,<39,50<x, <55

@ Springer

A.4 Three-bar truss design problem

Minimize f(x) = (2v/2x, +x,) X |

Subject to:
\/Ex]+x2

—1 2 P-6<0

&)= \/_x2+2x1x2 °=
Xz

-2 p_5<0

gZ(X) \/EXZITZXIXZ o=
=—L1 p-os<

g3(x) \/Ex%+2x]x2 °= 0
where,

0<x <1, i=12
I =100cm, P = 2kN /cm?,6 = 2kN /cm?
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A.5 Car impact design problem

Minimize f(x) = 1.98 + 4.90x; + 6.67x, + 6.98x; + 4.01x, + 1.78x5 + 2.73x;

Subject to

g1(x) = 1.16 — 0.3717x,x, — 0.00931x,x,( — 0.484x3x9 + 0.01343x¢x;, < 1IKN
8,(x) = 0.261 — 0.0159x,x, — 0.0188x;xg — 0.0191x,x; + 0.0144x3x5 + 0.0008757x5x,, + 0.08045x4x9 + 0.00139xgx,

+0.00001575x,4x,; < 0.32 m/s

83(x) = 0.214 4 0.00817x5 — 0.131x; x5 — 0.0704x,x9 + 0.03099x,x4 — 0.018x,x; + 0.0208x3x5 + 0.121x3x9 — 0.00364x5x4
+ 0.0007715x5x,5 — 0.0005354x¢x,5 + 0.00121x4x;; < 0.32 m/s

4(x) = 0.74 = 0.61x, — 0.163x3x + 0.001232x3x,5 — 0.166x7xg + 0.227x5 < 0.32 m/s

85(x) = 28.98 + 3.818x3 — 4.2x,x, + 0.0207x5x,y + 6.63x¢x9 — 7.7x;x5 + 0.32x9x,7 < 32 mm

86(X) = 33.86 + 2.95x; + 0.1792x,y — 5.057x,x, — 11.0x,x5 — 0.0215x5x,( — 9.98x;x5 + 22.0xgx¢ < 32 mm

87(x) = 46.36 — 9.9x, — 12.9x,x3 — 5.057x,x, + 0.1107x3x;y < 32 mm

gg(x) = 4.72 — 0.5x; — 0.19x,x3 — 0.0122x,x, + 0.009325x,x + 0.000191x7, < 4KN

89(x) = 10.58 — 0.674x,x, — 1.95x,x5 + 0.02054x3x,, — 0.0198x,x,, + 0.028x¢x;(, < 9.9 mm/ms

g10(X) = 16.45 — 0.489x3x7 — 0.843x5x5 + 0.0432x0x,5 — 0.0556x0x, — 0.000786x7, < 15.7 mm/ms

where 0.5 <x; <15,i=1,2,3,4,5,6,7;0.192 <x; £0.345, i =8,9; —30<x; <30, i=10,11.
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