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Abstract
As one of the manufacturing industries with high energy consumption and high pollution, sand casting is facing major chal-
lenges in green manufacturing. In order to balance production and green sustainable development, this paper puts forward
man–machine dual resource constraint mechanism. In addition, a multi-objective flexible job shop scheduling problemmodel
constrained by job transportation time and learning effect is constructed, and the goal is to minimize processing time energy
consumption and noise. Subsequently, a hybrid discrete multi-objective imperial competition algorithm (HDMICA) is devel-
oped to solve the model. The global search mechanism based on the HDMICA improves two aspects: a new initialization
method to improve the quality of the initial population, and the empire selection method based on Pareto non-dominated solu-
tion to balance the empire forces. Then, the improved simulated annealing algorithm is embedded in imperial competition
algorithm (ICA), which overcomes the premature convergence problem of ICA. Therefore, four neighborhood structures are
designed to help the algorithm jump out of the local optimal solution. Finally, an example is used to verify the feasibility
of the proposed algorithm. By comparing with the original ICA and other four algorithms, the effectiveness of the proposed
algorithm in the quality of the first frontier solution is verified.

Keywords Green sustainable development · Man–machine dual resource constraint mechanism · FJSP · Learning effect ·
HDMICA · Improved simulated annealing

Introduction

With the continuous advancement of science and technol-
ogy, manufacturing is no longer limited to machine. As big
data (Wang et al. 2016), mobile internet (Wan et al. 2016),
and intelligent decision (Gen and Lin 2014) continue to
integratemanufacturing and information technology, the “In-
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dustry 4.0” strategy came into being (Zhang et al. 2019).
In order to achieve the development from a large industrial
manufacturing country to a strong industrial manufacturing
country, the Chinese version of the “Industry 4.0”:”Made in
China 2025” was proposed (He and Pan 2015). In addition,
as the link between production and sustainable development
is getting closer, the goal of manufacturing is not only the
minimization of processing time, but also to influence the
environment and effectively use resources in the production
process have become the target factors that cannot be ignored.
Nowadays, the production and operation mode of enterprises
is changing to an information-based and intelligent mode,
and traditional enterprises are facing major challenges (Ji
2015). Network manufacturing system is the vision of future
manufacturing system, a concept that depicts advanced man-
ufacturing systems combined with technologies such as the
internet of things, cloud computing, sensor networks, and
machine learning (Wu et al. 2019). With the popularization
of artificial intelligence (AI), the production mode of man-
ufacturing industry has gradually shifted to automation and
intelligence. The intelligent optimization algorithm used to
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solve the job-shop scheduling problem (JSP) is an embod-
iment (Hajiaghaei-Keshteli and Fathollahi-Fard 2018). JSP
is a kind of basic scheduling problem, which can be defined
as job scheduling in a certain sequence (Wang et al. 2018),
where each job can be processed on a specific machine. The
flexible job-shop scheduling problem (FJSP) is an extension
of JSP.

Sand casting is one of the industries with high energy con-
sumption and high pollution (Hans and van de Velde 2011).
Due to the complexity of the production process, there is lit-
tle research in this area. Bewoor et al. (Bewoor et al. 2018)
modeled the casting shop scheduling problem as a flow shop
scheduling problem (FSP) with no waiting constraints. And
thehybrid immune algorithm (HIA) is used to solve themulti-
objective flexible job shop problem (Shivasankaran et al.
2015). There are highmaterial and power consumption, com-
plex process, and diverse equipment required in the casting
production process. High-temperature, high-dust and high-
noise production environment directly affects the health of
workshop workers. Therefore, controlling the dust and noise
in the foundry and saving energy consumption as much as
possible is one of the tasks of modern foundry production
(Coca et al. 2019).An energy consumptionmodel is proposed
to calculate the energy consumption, and an improvedgenetic
algorithm (GA) used non-dominated solution ranking to opti-
mize multi-objective problems (Wu and Sun 2018). Almost
all machinery andmanufacturing processes are accompanied
by the by-product of noise during production. And the most
harmful industrial noise can generally be divided into four
categories: Continuous mechanical noise, strong sound gen-
erated by high-speed repetitive motion, caused by flow noise
and noise produced by punching and impacting the job during
machining. The combustion process related to the furnace,
the impact noise related to the punching process,motors, gen-
erators and other electromechanical equipment are typical
examples of vibration sources that generate noise in indus-
trial environments (Olayinka and Abdullahi 2009). Aiming
at the topic of greenmanufacturing, a newmixed integer pro-
grammingmodel was proposed, taking carbon emissions and
industrial noise as improvement targets, and amulti-objective
GA based on simplex lattice design for optimization model
(Yin et al. 2017; Lu et al. 2018).

Although intelligent and automation have been popular-
ized in the manufacturing industry, not all industries in all
fields can be separated from the role of humans. For this
influencing factor of humans, a mixed integer programming
model for green production scheduling considering dual flex-
ibility is proposed (Gong et al. 2018; Wirojanagud et al.
2007). In the actual production process, the processing time
of the job will be affected by people. Aiming at the con-
straints of machines and workers, a hybrid particle swarm
optimization (HPSO) algorithm combining improved parti-
cle swarm optimization (PSO) and variable neighborhood

simulated annealing (SA) is used to solve the dual resource
constraint (Zhang 2014). For human factors, a GA combines
variable domain search and iterative local search to solve
the learning effect and the FJSP for set time (Azzouz et al.
2017). Considering the heterogeneity of employees and jobs,
awhale algorithmwith chaotic local search strategywas used
to solve the FJSP with AGV (Yunqin et al. 2019).

Imperial competition algorithm (ICA) is an intelligent
optimization algorithm (Atashpaz-Gargari and Lucas 2007),
which has effective global optimization capabilities and
certain neighborhood search capabilities. Therefore, this
algorithm has certain advantages over other algorithms such
as GA (Lei et al. 2018). A new multi-objective ICA based
on Pareto-dominated effective constraint processing strategy
is proposed to solve the multi-objective low-carbon parallel
machine scheduling problem (Cao and Lei 2019).

Based on the above background, this article makes the
following research in combination with the characteristics of
the foundry industry:

(1) Considering human and machine dual resource con-
straints, a multi-objective FJSP model with learning
effect based on similarity theory is established.

(2) According to the sequence of process, machine selec-
tion and worker selection, a new initialization method is
proposed to improve the quality of the initial solution.

(3) In the global search process of ICA, the collaborative
optimization of colonial countries and colonies is con-
sidered, and different intersection methods are designed
for process sequencing, machine selection and worker
selection respectively, which accelerates the conver-
gence speed of the algorithm.

(4) Combining the SA with ICA, and using the search abil-
ity of SA to perform partial search based on four search
mechanisms for some individuals in the solution space,
improving the local optimization ability of the algo-
rithm.

Problem statement andmathematical model

Problem statement

Sand casting is a metal forming method that uses sand as the
main molding material and various metal raw materials as
input finished or semi-finished jobs as output. The process
can be divided into three parts: modeling and core making,
smelting and pouring, sand treatment and quality inspection.
The research process description of this article is shown in
Fig. 1.

The classic FJSP can be described as: n jobs J � {J1,
J2,…, Jn} are processed on m machines M � {M1, M2,…,
Mm}, each job has ni processes Oi � {Oi1, Oi2,…, Oini},
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Fig. 1 Sand casting process flow chart

where there is no priority for the processing of each job, but
the processing sequence of each job process is determined,
and each operation has an optional processing machine set
CM.

Dual resource constraint problem

On this basis, considering that in the actual machining pro-
cess, some parts of the processes are not completed by
pure machines, and some processes require human–machine
cooperation. Because each person has different working abil-
ities, the processing time for different people operating the
same machine is different for the same process. That is to
say, there is not only an optional processing machine set
CM for each processing operation, but also an optional artifi-
cial resource set CP. By selecting the appropriate processing
equipment for the process and rationally assigning workers
to the processing equipment, the job processing sequence is
appropriately optimized to achieve the target value optimiza-
tion. In general FJSP contains three sub-problems:

1. Process sequencing: Sort the processing sequence of each
process of each job.

2. Machine selection: Select onemachine in a set of optional
processing machines for each process.

3. Worker selection: For part of the process of the role of
people cannot be ignored, according to the professional
quality of each person operating different machine pro-
cessing efficiency is different, a process needs to choose
a worker resources for processing.

Job transportation time

The starting processing time of the operation theoretically
depends on the completion time of the preceding process and
the idle time of the processing machine. But since there is a
certain distance between two adjacent processes, the actual
processing time should consider the job transportation time
(JTT), according to which the directed acyclic graph (DAG)
of the transport time can be drawn. As shown in Fig. 2. The
node number in the DAG indicate the processing machine
number. The one-way arrow represents the transportation
between the two machines, and the weight on the arrow is
the transportation time (h). For example, the number 1 to 5
indicate that the transportation time for transporting the job
from the machine 1 to the machine 5 is 0.2(h).

Before the model is established, the following assump-
tions are made: (1) All machines are idle when starting
processing; (2) The processing sequence of the job process
cannot be changed; (3) Each operation can only be pro-
cessed continuously on one machine at any one time, and
each machine can only process at most one operation; (4)
All machines are switched on and off only once at the start
of processing and at the end of processing; (5) Single ship-
ment each time, there is no bulk transport this situation; (6)
The calculation of energy consumption only considers the
energy consumption of processing equipment, dust removal
equipment and transportation equipment during processing;
7) Only the noise generated by processing equipment and
dust removal equipment is calculated.
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Fig. 2 Directed acyclic graph of transit time

Mathematical model

Job feature similarity

Taking into account the production characteristics ofmultiple
varieties and small batches of the casting process, the number
of each type of job will not be very large. If only considering
the influence of the cumulative number of the same parts on
the processing time, the learning effect will not be obvious,
and the learning effect will have little effect. In order to solve
this problem, the theory of job feature similarity is proposed
that there is a similar relationship between the components
of two jobs (Boutsinas 2013). From the following aspects of
job feature similarity calculation:

1. Similarity of job types

The castings produced by the foundry in the actual pro-
duction process may not be exactly the same, but there are
types of division. For example, the wheel hub and steel rim
are divided into two categories. The type similarity can be
expressed by the following formula:

u1(a, b) �
{
1, a and b are of the same type
0, otherwise

(1)

2. Material type similarity

The phenomenon that the processing resources required
for jobs of the same type with different materials may be
different. The material of the job will seriously affect the
proficiency of worker in processing. Therefore, the material
similarity cannot be ignored when calculating the feature

similarity of the job product characteristics. The calculation
formula is as follows:

u2(a, b) �
{
1, a and b are the samematerial
0, otherwise

(2)

3. Geometrical similarity

The difficulty of the part geometry will affect the process-
ing time of the job surface. In order to calculate the similarity
of the job geometry and simplify the job, only the correlation
between the length, width and height of the job is considered
(θ i is the ratio of geometric attributes. For example, if the
geometric attribute is length, width, and height, then it is the
ratio of length, width, and height. At this case, i� 3).

u3(a, b) �
√√√√1

n
·

n∑
i�1

θi (3)

4. Feature similarity of job topology

If the job is detachable, no matter how complicated the
job can be disassembled into multiple basic shapes such as
cylinders, cuboids or prisms, the job can be regarded as con-
sisting of several simple basic shapes. Based on the spatial
position relationship of each plane of solid geometry, the
topological structure characteristics of the job that represent
the spatial positional relationship between the shape features
are defined. According to the relative degree of the shape
and position relationship, the topological relationship can be
divided into adjacency relationship and inclusion relation-
ship. The adjacency relationship refers to the phenomenon
of two characteristics coplanar in contact, and the space occu-
pied by the two is a superimposed relationship. While, the
inclusion relationship, as the name implies, is the spatial rela-
tionship of one feature inside another, and the relationship
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of the two pairs is the difference relationship. If the shape
feature numbers of a and b are Qf and Qr , respectively, the
corresponding shape feature number is m; the topological
relationship numbers of a and b are Pf and Pr , and the cor-
responding topological relationship number is n. Then the
similarity of the topological relationship between the jobs a
and b can be expressed by the following formula:

u4(a, b) � 1

M + N
·
⎛
⎝ m∑

i�1

αi · fi +
n∑
j�0

β j · f j

⎞
⎠ (4)

Among them, M� Qf +Pf − m, N� Qr+ Pr − n, f i and
f j respectively represent the similarity attribute value of the
shape feature type and the similarity attribute value of the
topological relationship, which are equally important, so f i
� f j� 1; αi and β j represent the similarity coefficients of
shape features and topological relations, respectively. If the
shape types are the same,αi� 1, otherwiseαi is the reciprocal
of the number of all shape types, and the value of β j is the
same as the value of αi.

For example, Fig. 3 is the topological relationship diagram
of the jobs a and b, and the similarity of the topological
relationship between a and b can be calculated:

u4(a, b) � (1 × 1 + 1 × 1) + (1 × 1)

(4 + 3 − 2) + (4 + 2 − 1)
� 0.30

5. Process type feature similarity

In the FJSP model, the processing process types of the job
are not necessarily identical according to the actual needs,
and the similarity of the process typeswill also have an impact
on the processing proficiency of the workers. On the basis of
the principle of Jaccard similarity coefficient (Yu 2016), the
characteristic similarity of process types can be determined
by the following formula (Oa,b) represents the number of
processes that both job a and b need to be processed. Oa

represents the number of processes that job a needs to be
processed but job b does not. While, Ob represents the num-
ber of processes that job b needs to be processed but job a
does not):

u5(a, b) � Oa,b

Oa,b + Oa + Ob
(5)

6. Similarity of processing time

The processing time for the same process of two jobs also
affects the proficiency of workers. The closer the processing

Table 1 Importance scale table

Factor ui ratio factor uj Scaling

Equally important Zij� 1

Slightly important Zij� 3

Obviously important Zij� 5

Strongly important Zij� 7

Extremely important Zij� 9

Tradeoff between adjacent scales Zij� 2, 4, 6, 8

Similar element comparison value Zij=Z
−1
ij

time is, the easier it is to learn. The similarity of processing
time can be expressed by the following formula (Yu 2016):

u6(a, b) �
O∑
i�1

wi · hi (a, b) (6)

wi � (T a
i + T b

i )

/
O∑
i�1

(T a
i + T b

i ) (7)

hi (a, b) � 1 −
∣∣T a

i − T b
i

∣∣
max(T a

i , T b
i )

(8)

where hi (a, b) is the processing time similarity function of
job a and job b on process i. T a

i and T b
i represent the pro-

cessing time of the ith process of job a and job b respectively,
and the total number of processes is O.

Feature weight coefficient

The weight distribution of the feature similarity of the job
directly affects the value of the objective function, and it is
difficult to evaluate the importance of each feature to the
problem model by unreasonable weighting. Therefore, it is
very important to choose the method of weighting scientif-
ically. There are two kinds of common weighting methods:
subjective weighting and objective weighting. Among them,
subjective weighting method is a method of weighting based
on the information of the decision-maker, including ana-
lytic hierarchy process (AHP), expert survey method, etc.
While, objective weighting method is a method of quanti-
tative weighting based on statistics or mathematics, mainly
including entropymethod, correlation coefficientmethod and
principal component method.

In this paper, AHP (Hosseini and Al 2019) is adopted
to aggregate and combine the workpiece features according
to their correlation influence and membership relationship
(Table 1) on different levels to form a multi-level analysis
structure model, which finally transforms the problem into
the importance of the lower level relative to the higher level.
The specific steps to determine theweight coefficient accord-
ing to the judgment matrix Z can be described as:
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Fig. 3 Job topology diagram

Step 1: Establish a judgment matrix Z based on the factor
level table (zij represents the importance of feature i relative
to feature j, with n features in total).

Z �

⎡
⎢⎢⎢⎣
z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zn1 zn2 · · · znn

⎤
⎥⎥⎥⎦ (9)

Step 2: Normalize each column of matrix Z by Eq. (10).

Zi j = Zi j/

n∑
k�1

Zkj (10)

Step 3: Add the standardized judgment matrix to each
row on the basis of Eq. (11) to obtain a column matrix D �(
d̄1, d̄2, . . . , d̄n

)
.

di �
n∑

k�1

Zik (11)

Step 4: The matrixD is normalized to obtain eigenvectors
d � (d1, d2, . . . , dn).

Step 5: Make consistency test according to Eq. (12) to the
rationality of weight distribution.

C I � λmax − n

n
(12)

Among them, λmax is the maximum eigenvalue of the
judgment matrix Z, which can be obtained from Eq. (13).
And n is the order of the judgment matrix Z.

λmax �
n∑

i�1

(Z · dT )i
n · di (13)

The smaller the consistency index CI is, the smaller the
judgment error is, indicating a better consistency. In order

to measure the size of CI, a random consistency indicator
RI is introduced. While, in consideration of the consistency
deviation caused by random reasons, when the judgment
matrix is satisfied with the consistency test, the CI and RI
are compared to obtain the test coefficient CR. And if CR
<0.1, the judgment matrix is considered to satisfy the con-
sistency check. The RI values are shown in Table 2.

CR � C I
/
RI (14)

FJSP model based on learning effect

The learning effect refers to that when workers process the
job, their proficiency gradually increases with the increase
of the number of processing, thus shortening the process-
ing time. In addition, due to the heterogeneity of people,
the learning effect of each person is different, which leads
to the differentiation of processing time. In view of this
phenomenon, it is necessary to consider the impact of the
learning effect on processing time. In this paper, The DeJong
Model based on the logarithm model is adopted to study the
problem (Zhao et al. 2017). And the model is as follows:

Pjr � Pj [M + (1 − M) · ra] (15)

Among them: Pj is the standard processing time, Pjr is
the actual processing time considering the learning effect, r
is the processing position, which is the number of jobs, a�
lgl/lg2<0 is the learning factor, l is the learning rate, and M
(0≤M ≤1) indicates the proportion of man–machine. All
operations are performed manually when M � 0, namely
Biskup Model (Biskup 1999). When M � 1, all operations
are performed by the machine, and the processing process
does not consider learning effects.

The learning effect of workers is affected by four fac-
tors: the initial ability of the worker, the learning ability of
the worker, the difficulty of the work, and the number of
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Table 2 Mean random
consistency index Matrix order (n) 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

repetitions of the work (Yunqin et al. 2019) Where, the ini-
tial ability and learning ability of employees are related to
the workers themselves, while the difficulty and the num-
ber of repetitions of job are related to the jobs themselves.
Pre-job training, work experience, etc. will affect the initial
capacity of employees. For the differences in the initial per-
sonal abilities of workers, the initial processing capacity P
of the workers is determined by the ratio of the processing
time to the standard processing time, and an initial process-
ing capacity matrix Pst is constructed (where Pij is the initial
processing capacity of worker i to process the job j, and there
are m workers processing n jobs):

pst �

⎡
⎢⎢⎢⎣
pst11 pst12 · · · pst1n
pst21 pst22 · · · pst2n
...

...
. . .

...
pstm1 pstm2 · · · pstmn

⎤
⎥⎥⎥⎦ (16)

In addition to the personal learning ability of workers
affected by the cumulative number of processed jobs, obser-
vation, understanding, memory and other factors of them-
selves will affect the learning ability of workers, expressed
by the learning rate l, and the smaller l means the stronger
the learning ability. The worker learning rate matrix L can
be expressed as (where lij is the learning rate of worker i
processing job j, and there arem workers processing n jobs):

L �

⎡
⎢⎢⎢⎣
l11 l12 · · · l1n
l21 l22 · · · l2n
...

...
. . .

...
lm1 lm2 · · · lmn

⎤
⎥⎥⎥⎦ (17)

The processing time of the job by the workers will not be
infinitely reduced or even reached zero. With the increase of
the processed job, the processing time tends to stabilize, and
the ability of worker reaches an upper limit. This upper limit
is related to the difficulty of the job and the workers them-
selves, and is expressed by the maximum capacity matrix
pend :

pend �

⎡
⎢⎢⎢⎣
pend11 pend12 · · · pend1n
pend21 pend22 · · · pend2n
...

...
. . .

...
pendm1 pendm2 · · · pendmn

⎤
⎥⎥⎥⎦ (18)

Therefore, The DeJong Model can be modified according
to the four major factors that affect the learning rate and the
similarity theory of the job:

Pi jr � Pi j · max

⎧⎨
⎩Pst

i j ·
⎛
⎝ j∑

r�1

S( j, r )

⎞
⎠

a

, Pend
i j

⎫⎬
⎭ (19)

Combined with the similarity of the job and learning
effect, the entire learning effect flowchart is shown in Fig. 4:

(1) Mathematical notation

n: Total number of jobs
m: Total number of processing machines
m’: Total number of workers
ni: Number of steps for job i
Ω: Total machine set
Ω ij: Optional processing resource set for the jth operation

of the job i
i, i’: Index of the job, i, i’� 1,2,…,n
j, j’: Process index, j, j’� 1,2,…,ni
h: Processing machine index, h� 1,2,…,m
h’: Worker index, h’� 1,2,…,m’
mij: Number of optional processing machines for the jth

operation of job i
Oij: The jth process of job i
b: Total number of dust removal equipment
y: Total number of transportation equipment
k: kth dust removal equipment, k� 1,2,…,m’
c: The c transport equipment, c� 1,2,…,y
Cijh: The theoretical processing time of the jth process of

job i on processing equipment h
TCijh: Actual processing time of the jth process of job i

on processing equipment h
Ci: Earliest completion time of job i
T ijk : Dust removal time of the jth process of job i on the

dust removal equipment k
Tij(j+1)h: Transport time of the process j to the process (j+

1) of job i
Powerh: Working power of processing equipment h
Power0k : Working power of dust removal equipment k
Pc: Transportation equipment c consumption of gasoline

per unit time when transporting job
Stij: Start time of the jth operation of job i
Etij: End time of the jth process of job i
Be: Standard coal conversion coefficient of electricity,

0.1229 kgce/(kW·h)
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Fig. 4 Learning effect model flow chart

Bq: Standard coal conversion coefficient of gasoline,
1.4714 kgce/kg

Vijh: The instantaneous A-weighted sound level of
machine h for the jth process of job i

N : A large enough positive number

(2) Decision variables

xi jh �
{
1, Process Oi j is processed on machine h
0, Otherwise

xhi ji ′ j ′ �
{
1, Processing Oi j is processed on machine h before Oi ′ j ′
0, Otherwise

xi j( j+1)c �
{
1, Process Oi j to process Oi( j+1) require transport machine c
0, Otherwise

yi jh �
{
1, Process Oi j requires dust removal equipment h
0, Otherwise

zi jh′ �
{
1, Process Oi j requires worker h

′
0, Otherwise

M �
{
1, Process Oi j has only machine resources
0, Otherwise

yi j �
{
1, ti < Sti( j+1) − Sti j
0, Otherwise

(3) Constraint

Sti j + xi jh · TCi jh ≤ Eti j (20)

Eti j + Ti j( j+1) ≤ Sti( j+1) (21)

Sti j + xi jh · TCi jh ≤ Sti ′ j ′ + N · (1 − xhi ji ′ j ′) (22)

Eti j + Ti j( j+1) ≤ Sti( j+1) + N · (1 − xhi ji ′ j ′) (23)

m∑
h

xi jh � 1 (24)

Eti j � Sti j + xi jh · TCi jh (25)

m∑
h

m′∑
h′

xi jh · xi jh′ ≤ 1 (26)

Equations (20) and (21) constraint the process route of
each job cannot be changed; Eqs. (22) and (23) indicate that
a machine can only process one process at a time; Eq. (24)
represents that each process can only be processed on one
machine; Eq. (25) ensures that no interruption is allowed
once each process is started; Eq. (26) denotes that a machine
can only be operated by one worker when processing a job.

(4) Objective functions
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Table 3 Standard coal conversion coefficients for different energy

Types of energy Standard coal conversion coefficient Types of energy Standard coal conversion coefficient

Electricity 0.1229 kgce/(kW h) Natural gas 1.2143 kgce/m3

Raw coal 0.7143 kgce/kg Coke 0.9714 kgce/kg

Crude 1.4286 kgce/kg Liquefied petroleum gas 1.7143 kgce/kg

Gasoline 1.4714 kgce/kg Kerosene 1.4714 kece/kg

(1) Minimize the makespan

The minimum time required to complete all job processing.
This time includes not only the total processing time of each
process but also the JTT between two adjacent processes.

f1 � min(C + T ) (27)

C �
n∑

i�1

ni∑
j�1

m∑
h�1

xi jh · TCi jh (28)

T �
n∑
i

ni−1∑
j

y∑
c

xi j( j+1)c · Ti j( j+1)c (29)

(2) Energy consumption

The energy required to support the operation of the machine
during processing, including the energy consumed by pro-
cessing machines and the energy consumption of dust
removal equipment and transportation equipment. Different
production processes consume different types of energy. For
example, the smelting process mainly consumes coke, and
the molding consumes raw coal. For example, the smelting
process mainly consumes coke, the molding core consumes
raw coal, and the energy consumed when a job is trans-
ported by a forklift is gasoline. Due to the different types
of energy consumed at each stage, the concept of standard
coal conversion coefficient is introduced for the convenience
of calculation. According to the current national standards
of various energy conversion standard coal reference coef-
ficients, common coal conversion coefficients for different
energy standards are shown in Table 3:

f2 �
n∑

i�1

ni∑
j�1

m∑
h�1

(xi jh · Powerh + yi jh · Power0h) · TCi jh

· Be + T · Pc · Bq
(30)

(3) Minimize noise

Sound pressure and sound pressure level, sound intensity and
sound intensity level, sound power and sound power level can
all be used to describe the size of sound. Generally, sound
pressure level, or decibel (dB), is used to describe sound
size. Decibel represents the ratio of two physical quantities

and describes the size of the physical quantity as a numer-
ator relative to the reference value of the denominator. For
foundry, the main sources of noise are the noise generated by
the operation of the machine, the noise caused by the contact
between the job and the machine during the processing of
the job. For these structural noises (Tandon 2000), when the
machine is working with a certain power, the noise is radi-
ated in a stable wide band. According to the “Environmental
Noise Emission Standard for Industrial Boundaries of Indus-
trial Enterprises”, this article uses A-weighted sound level to
evaluate the radiation of processing noise. A-weighted sound
level is the noise level measured by a sound level meter or
equivalent measuring instrument through the A weighting
network. And the equivalent sound level can be expressed
as:

Leq � 10 · lg
(
1

T
·
∫ T

0
100.1·li dt

)
(31)

where li—the instantaneous A-weighted sound level at time
t; T—the measurement period.

For the convenience of calculation, when the machine is
processing with a certain power, the radiation sound level
of noise at each stage is considered to be definite, so the
equivalent sound level can be expressed as:

Leq � 10 · lg
⎛
⎜⎝
∑
i
100.1·li Ti
∑
i
Ti

⎞
⎟⎠ (32)

where li—Instantaneous A-weighted sound level for i para-
graphed time, Ti—i paragraphed time.

In the problem studied in this paper, considering the dif-
ferent instantaneous A sound level of the sound sources of
various machines, for different sound pressure levels corre-
sponding to different machines, the noise generated during
the entire processing can be calculated by the following for-
mula:

f3 � 10 · lg

⎛
⎜⎜⎜⎝

m∑
h�1

n∑
i�1

ni∑
j�1

100.1·Vi jh · Ci jh · xi jh
m∑

h�1

n∑
i�1

ni∑
j�1

Ci jh · xi jh

⎞
⎟⎟⎟⎠ (33)
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Algorithm design

Background

(1) ICA

ICA is a kind of intelligent optimization algorithm
inspired by empire competitive behavior. Each individual in
the population represents a country. ICA will select the best
individuals as colonial countries on the grounds of the size
relationship of the fitness value of each individual, and other
individuals will be assigned to colonial nations as colonies.
Colonial nations and colonies will be updated through assim-
ilation, revolution, and internal competition of the empire,
through empire assimilation, revolution, and internal com-
petition to update the colonial countries and colonies.

(2) Pareto non-dominated sort

Single objective optimization problem by directly com-
paring the target values can determine the solution to the pros
and cons. However, for multi-objective optimization prob-
lems, because there are more than one target value, when
the objective functions are in a state of conflict, there may
not be an optimal solution that achieves the maximum or
minimum of all objectives at the same time, and it is diffi-
cult to compare the advantages and disadvantages of the two
solutions. Non- dominated solution sorting as an important
sorting method, can sort solutions according to the quality of
the solution. Solutions with a higher Pareto Rank dominate
other solutions, and solutionswith aRank of 1 are called non-
dominated solutions. This paper uses the fast non-dominated
solution ranking method proposed in NSGA-II (Deb et al.
2000).

(3) Congestion distance calculation

The crowding distance indicates the denseness of the tar-
get space. The smaller the value is, the denser the target
space is and the easier it is to fall into the local optimal
solution; the larger the value is, the looser the target space,
and the richer the population diversity. Therefore, solutions
with larger crowding distances can be chosen when they are
at the same Rank. The crowding distance of particle i can be
calculated by the following formula:

di �
⎧⎨
⎩

∞, i � 1 or i � l
n∑

k�1

∣∣∣ f i+1k − f i−1
k

∣∣∣, otherwise
(34)

Among them, n represents the number of targets, and f i+1k

and f i−1
k represent the target values of adjacent particles of

particle i on target k, and l is the number of particles.

(4) SA

SA is an intelligent optimization algorithm that is widely
used in the field of combinatorial optimization (Xinchao
2011). The algorithm is derived from the principle of solid
annealing. The concept of slow cooling implemented in SA
can be understood as the slow reduction of the probability of
accepting a poor solution when exploring the solution space,
which is of great significance for increasing exploration to
avoid local optimization (Tang et al. 2019).

Coding and initialization based onmultiple rules

In order to effectively utilize the intelligent optimization
algorithm, the problem to be solved needs to be converted
into a data type that can be recognized by the computer. For
the FJSP model, this paper adopts the MSOS integer cod-
ing method, which designs three-stage coding rules for the
three problems of process sequencing, machine selection,
and worker selection involved in the model. For the individ-
ual S � [SP | SM | SN], the SP segment indicates the process
sequencing segment, SM indicates themachine selection seg-
ment, and SN indicates the worker selection segment. For
example, individual S� [2,1,1,3,2,1,3,2,3| 1,3,1,1,2,1,2,2,3 |
0,0,1,0,3,2,1,2,1]. The encoding scheme for this solution is
shown in Fig. 5. Process sequencing part SP � [1, 1, 1, 2, 2,
2, 3, 3, 3], the element value in SP represents the job num-
ber, and the number of occurrences of eachnumber represents
the number of processes. For instance, the second occurrence
of the fifth number 2 indicates the second process of job 2
(O22). Machine selection part SM � [1,3,1,1,2,1,2,2,3], the
element value in SM represents the index of the machine
selected in the set of alternative machines of the correspond-
ing operation, such as, the fifth number 2 represents the
second machine in the set of machines for which the cor-
responding process is optional. Worker selection part SN�
[0,0,1,0,3,2,1,2,1], the element value in SP represents the
index of the worker selected in the set of alternative workers
of the corresponding operation. The position marked with
zero indicates that the corresponding process requires no
workers for pure machine processing, and the non-zero posi-
tion is the processing worker serial number, for example, the
fifth number 3 indicates the corresponding the third worker
in the set of optional processing workers.

Since the initial population is the premise of algorithm
optimization, its quality will directly affect the performance
of the algorithm. Although the initial population generated
by the random coding mechanism is high in diversity, the
population quality is poor, so that it is more difficult to
find iteratively in the process of iterative optimization. Many
researches on this issue focus on simple heuristic rules, active
scheduling, or a combination of heuristic rules and active
scheduling. This paper combines active scheduling with
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Fig. 5 The encoding scheme

heuristic rules, and adopts the shortest processing time (SPT)
rule to optimize the minimum completion time during pop-
ulation initialization. In order to achieve the comprehensive
optimization of other goals, the random initializationmethod
is retained, which not only preserves population diversity but
also improves population quality. The population was initial-
ized with a 1:1 ratio. Figure 6 shows the specific process of
population initialization. The specific steps are as follows:

Step 1: Set S� {}, U as the collection of the first phase.
Step 2: The minimum value of the earliest possible com-

pletion time in U is recorded as Ts, and a machine M with
the earliest idle time of Ts is selected.

Step 3: FromU, select the process that can be processed on
M and the idle time of the job is not greater than Ts. If there
aremultiple processes, generate a random numberR between
(0,1). If R<0.5, select SPT rule, otherwise, randomly initial-
ize.

Step 4: Put the selected operation into the scheduled pro-
cess set S, and update the schedulable process set U. If there
are unscheduled operation in U, go to Step2, otherwise, end.

Where, S is the set of scheduled processes, U is the set
of schedulable operations; Ts represents the earliest start-up
time of the process in the set U. When U is empty, it means
that all processes have been scheduled and completed, and the

S={ }, 
U={O11,O12,O13}

The minimum release time Ts = min {Tsi} 
in U, select the machine M with the release 

time of at least Ts

From U, select the process processed on 
M and Tsi <Ts. If there are multiple 

processes, R=Rand ()

R<0.5?

Put the selected operation 
in S and update U at the 

same time

No

Yes

Select SPT rule

Random 
initialization rule

S={O21,O11,...|1,2,...|0,0...}
U={O11,O12,O13,...}

Jobset={1,2,3}

U={O12,O22,O13,...}, M,
{O12, O22}

U={ }?

No

Yes

1 2 3 4 5 6Length

SP

SM

SN

2 1 1 2 3 3

1 2 2 1 1 2

0 0 1 2 0 1

Set S to be the empty set, and U to be 
the first process set of each Job

End

Fig. 6 Flow chart of population initialization
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sequence of processes in S is the final obtained chromosome
gene.

Initialize empire

As the first stage of hybrid discrete multi-objective Imperial
competition algorithm (HDMICA), initializing the empire is
the most critical step. A reasonable division of the country
will affect the optimization performance of the entire popu-
lation. For themulti-objective optimizationmodel, this paper
uses a Pareto non-dominated sorting algorithm to find a non-
dominated solution set of number η in a population P of size
N. If η is less than the numberNemp of colonial countries, the
population P is updated, and the resulting high-quality indi-
viduals Pt are put into P as external populations until η is not
less than Nemp. The former Nemp non-dominated solutions
are set as colonial countries, and Rank of the remaining indi-
viduals are sorted in ascending order and assigned to colonial
countries in a certain proportion as colonies. In this way, the
overall value of each empire tends to be consistent, so that
later empire competition will fully play its role.

Step 1: Sort the population P Pareto non-dominated solu-
tions to obtain a non-dominated solution set π of size η.

Step 2: Determine the size relationship between η and
Nemp. If η <Nemp, then perform a local search on π to gen-
erate an external population Pt, put Pt into the population P,
and execute Step1; otherwise, execute Step 3;

Step 3: Select Nemp non-dominated solutions in π as
the colonial countries, and calculate the number of colonies
allocated to each empire, Coli � [

(N − Nemp)
/
Nemp

]
+

α, α ∈ {−1, 1}, i � 1, 2, . . . , Nemp − 1 ,α is
a random number that takes an integer between {−
1,1}, and the number of colonies in the last empire is

ColNemp� (N−Nemp)−∑Nemp−1
i�1 Coli .

Step 4: The Rank of the remaining N-Nemp individuals in
P are sorted in ascending order, and each empire is assigned
in order.

Global search

Assimilation and revolution

The so-called assimilation, as its name suggests, makes two
or more individuals tend to be similar. The assimilation pro-
cess here is to bring the colony closer to the colonial country,
which is usually achieved by crossover of the colony and
the colonial country (Karimi et al. 2017). However, colonial
countries, as elite individuals, will have a greater probability
of producing excellent individuals through mutual learning.
In response to this problem, this article gives a new way of
assimilation. For the three sub-problems of the scheduling
workshop, three crossover methods are proposed. The first
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4 3
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3 4

1 2 23 1 4 4 3
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Fig. 7 IPOX diagram

crossover adopts IPOX improved POX crossover in KacemI
to act on the process segment, which can be described as:
The job set Jobset � {J1, J2, J3,…, Jn} is divided into two
parts, Jobset1 and Jobset2, then the jobs belonging to Jobset1
in the parent P1 chromosome are copied to the child C, and
while the ones belonging to Jobset2 in the parent P2 chro-
mosome are kept in the same order and added to theC vacant
position in order. The specific crossover operation is shown
in Fig. 7.

The second type of crossover acting on the machine seg-
ment, usingRPX cross, can be described as: generate a vector
whose elements are composed of random numbers between
(0,1), the size of the vector is determined by the length of the
machine segment, and the elements in the vector are corre-
spond to themachine code one by one. First, copy the process
section and worker section from the parent P1 to the child
C. Then, the machine code greater than pf in parent P1 is
copied to child C, and the index of the remaining machine
code is recorded. Finally, the machine code corresponding
to the index in parent P2 and the process segment is found
and copied to the vacant position in C. The pf varies with the
number of iterations, and is calculated using the following
formula:

p f � p fmax − p fmax − p fmin
I t

× Max I t (35)

pf max and pf min are the maximum and minimum values of
the self-adaptation degree, the total number of iterations is
MaxIt. It is the current algebra (The parameter of measuring
the number of iterations in the algorithm iteration process).
And the Fig. 8 is a crossover diagram when pf � 0.5.

The third crossover method adopts a two-point crossover
method to act on theworker selection segment: First, copyP1
and P2 to C1 and C2, respectively. Then, a job is randomly
selected, and the machine number and worker number cor-
responding to the job are interchanged in the two children.
As shown in Fig. 9.
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Empire competition

Colonial and colonial countries, colonial countries and colo-
nial countries have undergone tremendous changes through
assimilation and revolutionary empires. The weaker empire
will lose its weakest colony. Other empires compete and
occupy the colony with a certain probability, and usually the
empire with a larger power has a higher probability of occu-
pying the colony, until the weaker empire colony becomes
zero and the colonial country is occupied as a colony, then
the entire empire dies. For carrying out empire competition,
an empire cost calculation method is defined. The cost ci of
country i can be expressed by the inverse of the weighted
sum of each target value:

ci � 1

/
n∑
j�1

(w j · f j ) (36)

wherewj is the weight of the target j calculated by the princi-
pal component analysis (PCA) (Liu et al. 2019), and f j is the
target value of the target j. The total power of the empire can

be expressed by the weighted sum of the cost of the colonial
country and the average cost of the colony. This article takes
ξ � 0.2:

TCk � ck + ξ · mean{c(colonies of empire k)} (37)

Local searchmechanism based on SA

In the hybrid optimization algorithm designed in this paper,
SA is used for local search. Each time the algorithm moves,
a new neighborhood solution is generated around the current
solution. The effective neighborhood structure can greatly
improve the local optimization ability, so four kinds of neigh-
borhood structures are designed in this paper. As shown in
Fig. 10.

NS1: Generate two positions randomly and reverse the
operation between the two positions.

NS2:Critical path based switching operations. The critical
path refers to the longest route from the first operation to the
end of the last operation, which determines the completion
time of the schedule. This paper adopts the N5 neighborhood
structure proposed by Nowicki and Smutnicki (1996) to ran-
domly select a critical path, and swaps the first two (and the
last two) operations in each key block to achieve.

NS3: Process Insertion Operation: Randomly select two
processes a and b from the process segment, then insert pro-
cess b before process a.

NS4: Resource reallocation: Randomly select an element
in the resource allocation segment, and then reselect the
resource from the candidate resource set to replace the cur-
rent resource.

The improved HDMICA algorithm process is as follows:
Step 1: Generate population P based on rule-based popu-

lation initialization;
Step 2: The non-dominated solution set π of size η is

obtained by non-dominated sorting. If η <Nemp, execute Step
3; otherwise, execute Step 4;

Step 3: Perform a global search on π to obtain the external
population Pt, and merge Pt and P into P;
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Fig. 9 Two-point crossover diagram
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Step 4: Initialize the empire based on Pareto according to
the number Nemp of empires;

Step 5: Assimilation and revolution of colonial countries
and colonies, colonial countries and colonial countries;

Step 6: Randomly select some individuals Pcal from pop-
ulation P for SA local search;

Step 7: Update the power of the empire. The weaker coun-
tries are gradually annexed by other powerful countries. If
only one country remains or the maximum number of itera-
tions is reached, go to Step 5; otherwise, the algorithm ends.

The overall flowchart of the algorithm is shown in Fig. 11.

Case study

Case description

Existing production data of a foundry, an order of 16 jobs,
each job has 8 or 9 procedures, requires processing on 26
machines. Each process has a set of processing machines.
According to actual needs, some processes require workers
to participate in processing, and some processes require dust
removal equipment. The specific data is shown in Table 4,
where People indicates workers, Power1 indicates the power
of the processing machine, and Power0 indicates the power
of the dust removal equipment. Noise is the A sound level
produced during processing. Table 5 shows various process-
ing parameters. The second column in Table 5 shows the

material (1, 2, 3) and size (length, width and height) of the
job. L is the learning rate of employees, Pst is the initial pro-
cessing capacity of workers, Pend is the maximum capacity
of employees, and T is the theoretical processing time.

Based on the field investigation of the foundry enterprise,
according to the AHP, the weight coefficients between the
six features can be obtained. The discriminant matrix Z con-
structed is shown in the following formula.

Z �

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3 5 4 5 2
1
3 1 3 2 1

4
1
3

1
5

1
3 1 1

2
1
3

1
5

1
4

1
2 2 1 1

5
1
4

1
5 4 3 5 1 1

3
1
2 3 5 4 3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Evaluation criteria

This paper proposes three metrics to evaluate the quality
and diversity of non-dominated solutions (Behnamian and
Ghomi 2011). The specific methods are as follows:

(1) Mean ideal distance (MID). Shows the distance between
the non-dominated solution and the ideal point (0, 0,
0). The smaller the value, the closer the non-dominated
solution is to the ideal value, the better the result.
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Table 4 Processing resources for each process

Operations

Modeling Melting Pouring
cooling

Shakeout Shot blasting Soldering Polishing Finishing Paint

People – – – – – P1~P3 P4~P6 P7~P9 –

Machine M1~M3 M4~M7 M8~M9 M10~M12 M13~M15 M16~M18 M19~M21 M22~M24 M25~M26

Power 1 (kW) 2, 2.1, 1.9 3, 3.5, 3.5, 3.3 1.3, 1.5 1.3, 1.4, 1.5 2, 1.8, 1.2 2, 2.2, 1.9 1, 1.2, 1 2, 2.3, 1.8 2.1, 2

Power 0 (kW) – – – 2, 2.5, 3 1, 0.9, 0.8 – 0.9, 0.8, 0.9 – –

Noise (dB) 84, 83, 85 83, 82, 84, 80 – 88, 85, 80 82, 80, 79 83, 80, 82 80, 79, 81 70, 78, 75 75, 70

MI D � 1

n
·

n∑
i�1

ci (38)

where ci �
√

f 21i + f 22i + f 23i is the square root of the
sum of the squared target values, and n is the number of
non-dominated solutions.

(2) Spread of non-dominated solution (SNS). As a measure
of the diversity of non-dominated solutions, the larger
the SNS, the richer the diversity of the non-dominated
solutions, and the better the quality of the solution can
be expressed as:
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Table 5 Practical production data of jobs

Job Process

O1 O2 O3 O4 O5 O6 O7 O8 O9

J1 1 L – – – – – 0.75 0.8 0.9 –

350 Pst – – – – – [0.7, 0.9, 0.8] [0.7, 0.7, 0.8] [0.8, 0.9, 0.7] –

350 Pend – – – – – [0.7, 0.8, 0.6] [0.8, 0.8, 0.6] [0.7, 0.8, 0.7] –

150 T [5, 6, 5] [8, 10, 11, 9] [13, 15] [5, 5, 4] [6, 8, 7] [6, 6, 5] [6, 6, 7] [5, 5, 6] [3, 5]

J2 1 L – – – – – 0.75 0.8 0.9 –

550 Pst – – – – – [0.7, 0.9, 0.7] [0.8, 0.7, 0.7] [0.9, 0.8, 0.9] –

550 Pend – – – – – [0.6, 0.8, 0.7] [0.7, 0.6, 0.7] [0.8, 0.6, 0.8] –

200 T [5, 6, 4] [10, 9, 12, 8] [13, 14] [4, 5, 4] [9, 8, 7] [7, 6, 5] [9, 6, 5] [7, 6, 4] [4, 5]

J3 1 L – – – – – 0.75 0.8 0.9 –

300 Pst – – – – – [0.8, 0.9, 0.8] [0.7, 0.7, 0.8] [0.9, 0.9, 0.7] –

300 Pend – – – – – [0.6, 0.8, 0.7] [0.6, 0.7, 0.8] [0.8, 0.7, 0.6] –

100 T [6, 6, 5] [12, 9, 8, 11] [14, 15] [3, 5, 3] [6, 7, 8] [6, 4, 5] [8, 7, 6] [5, 7, 6] [5, 5]

J4 1 L – – – – – 0.75 0.8 0.9 –

600 Pst – – – – – [0.9, 0.8, 0.8] [0.7, 0.8, 0.9] [0.7, 0.9, 0.7] –

600 Pend – – – – – [0.8, 0.7, 0.6] [0.6, 0.8, 0.7] [0.6, 0.8, 0.7] –

250 T [4, 5, 6] [8, 11, 9, 10] [13, 13] [2, 3, 4] [6, 6, 7] [4, 7, 5] [7, 6, 7] [6, 5, 7] [3, 4]

J5 2 L – – – – – 0.75 0.8 0.9 –

350 Pst – – – – – [0.9, 0.7, 0.7] [0.8, 0.9, 0.8] [0.7, 0.8, 0.9] –

350 Pend – – – – – [0.8, 0.6, 0.6] [0.8, 0.7, 0.7] [0.6, 0.7, 0.8] –

150 T [6, 5, 5] [9, 9, 13, 10] [14, 15] [5, 4, 3] [7, 6, 5] [5, 4, 5] [5, 6, 7] [9, 6, 7] [4, 3]

J6 2 L – – – – – 0.75 0.8 0.9 –

550 Pst – – – – – [0.9, 0.7, 0.7] [0.7, 0.8, 0.8] [0.9, 0.8, 0.7] –

550 Pend – – – – – [0.8, 0.6, 0.7] [0.6, 0.7, 0.8] [0.8, 0.7, 0.6] –

200 T [6, 4, 5] [8, 9, 10, 11] [15, 13] [3, 4, 3] [6, 6, 5] [6, 4, 5] [8, 6, 7] [5, 6, 7] [5, 3]

J7 2 L – – – – – 0.75 0.8 0.9 –

300 Pst – – – – – [0.7, 0.7, 0.8] [0.9, 0.8, 0.9] [0.8, 0.9, 0.7] –

300 Pend – – – – – [0.6, 0.7, 0.7] [0.8, 0.6, 0.8] [0.7, 0.8, 0.6] –

100 T [4, 5, 4] [13, 11, 9, 9] [14, 15] [5, 4, 5] [6, 7, 5] [5, 6, 7] [5, 7, 6] [8, 7, 6] [4, 5]

J8 2 L – – – – – 0.75 0.8 0.9 –

600 Pst – – – – – [0.9, 0.8, 0.7] [0.8, 0.7, 0.8] [0.9, 0.9, 0.7] –

600 Pend – – – – – [0.8, 0.6, 0.7] [0.7, 0.6, 0.7] [0.8, 0.8, 0.6] –

250 T [6, 5, 5] [12, 9, 9, 10] [14, 13] [2, 4, 3] [5, 6, 5] [4, 4, 5] [6, 6, 7] [5, 6, 7] [4, 3]

J9 3 L – – – – – 0.75 0.8 0.9 –

350 Pst – – – – – [0.8, 0.7, 0.8] [0.9, 0.8, 0.7] [0.9, 0.7, 0.9] –

350 Pend – – – – – [0.7, 0.6, 0.7] [0.8, 0.6, 0.7] [0.8, 0.6, 0.8] –

150 T [5, 4, 6] [9, 11, 8, 10] [12, 14] [4, 3, 2] [8, 9, 7] [5, 4, 7] [7, 7, 6] [8, 9, 7] []

J10 3 L – – – – – 0.75 0.8 0.9 –

550 Pst – – – – – [0.7, 0.7, 0.9] [0.8, 0.9, 0.7] [0.9, 0.8, 0.9] –

550 Pend – – – – – [0.6, 0.7, 0.8] [0.7, 0.8, 0.6] [0.8, 0.6, 0.7] –

200 T [6, 4, 5] [9, 12, 13, 9] [13, 12] [4, 5, 2] [6, 7, 5] [4, 4, 7] [5, 6, 7] [5, 7, 6] []

J11 3 L – – – – – 0.75 0.8 0.9 –

300 Pst – – – – – [0.8, 0.9, 0.7] [0.9, 0.8, 0.9] [0.7, 0.8, 0.9] –

300 Pend – – – – – [0.7, 0.8, 0.7] [0.8, 0.7, 0.6] [0.6, 0.7, 0.8] –

100 T [5, 4, 4] [9, 12, 10, 9] [15, 14] [2, 3, 2] [8, 9, 7] [5, 4, 6] [5, 7, 6] [8, 9, 6] []

J12 3 L – – – – – 0.75 0.8 0.9 –
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Table 5 continued

Job Process

O1 O2 O3 O4 O5 O6 O7 O8 O9

600 Pst – – – – – [0.9, 0.8, 0.8] [0.7, 0.8, 0.9] [0.7, 0.9, 0.7] –

600 Pend – – – – – [0.8, 0.7, 0.6] [0.6, 0.8, 0.7] [0.6, 0.8, 0.7] –

250 T [6, 4, 5] [8, 11, 9, 13] [15, 13] [4, 3, 2] [6, 7, 8] [5, 6, 7] [9, 7, 6] [9, 7, 5] []

J13 4 L – – – – – 0.75 0.8 0.9 –

350 Pst – – – – – [0.7, 0.9, 0.7] [0.8, 0.7, 0.7] [0.9, 0.8, 0.9] –

350 Pend – – – – – [0.6, 0.8, 0.7] [0.7, 0.6, 0.7] [0.8, 0.6, 0.8] –

150 T [5, 4, 4] [9, 10, 12, 8] [13, 14] [4, 4, 3] [9, 8, 7] [4, 4, 5] [8, 6, 9] [6, 8, 9] []

J14 4 L – – – – – 0.75 0.8 0.9 –

550 Pst – – – – – [0.7, 0.7, 0.8] [0.9, 0.8, 0.9] [0.8, 0.9, 0.7] –

550 Pend – – – – – [0.6, 0.7, 0.7] [0.8, 0.6, 0.8] [0.7, 0.8, 0.6] –

200 T [6, 4, 6] [8, 11, 8, 13] [13, 12] [4, 5, 3] [6, 8, 7] [4, 6, 6] [7, 8, 9] [7, 7, 8] []

J15 4 L – – – – – 0.75 0.8 0.9 –

300 Pst – – – – – [0.8, 0.9, 0.8] [0.7, 0.7, 0.8] [0.9, 0.9, 0.7] –

300 Pend – – – – – [0.6, 0.8, 0.7] [0.6, 0.7, 0.8] [0.8, 0.7, 0.6] –

100 T [5, 5, 6] [11, 9, 8, 10] [12, 14] [2, 4, 3] [7, 8, 9] [6, 6, 5] [8, 5, 9] [6, 8, 9] []

J16 4 L – – – – – 0.75 0.8 0.9 –

600 Pst – – – – – [0.9, 0.7, 0.7] [0.7, 0.8, 0.8] [0.9, 0.8, 0.7] –

600 Pend – – – – – [0.8, 0.6, 0.7] [0.6, 0.7, 0.8] [0.8, 0.7, 0.6] –

250 T [4, 6, 6] [9, 12, 9, 10] [13, 14] [4, 4, 3] [7, 8, 7] [4, 6, 5] [8, 9, 7] [8, 9, 7] []

Table 6 Parameters setting of
algorithms HDMICA NSGAII DPSO MODVOA PESA2

Population size 100 100 100 100 100

Maximum iteration 150 150 150 150 150

Archive size – 100 100 100 100

Crossover rate 0.8 0.8 – 0.8 –

Mutation rate 0.3 0.3 – 0.3 –

RPX parameters: pf max 0.9 0.9 0.9 0.9 0.9

RPX parameters: pf min 0.2 0.2 0.2 0.2 0.2

Assimilatory coefficient: beta 1.5 – – – –

Revolution rate 0.05 – – – –

Success rate of revolution: mu 0.1 – – – –

Average colonial cost factor: zeta 0.2 – – – –

Neighborhood selection proportion: p1 0.3 – – – –

Neighborhood selection proportion: p2 0.5 – – – –

Neighborhood selection proportion: p3 0.7 – – – –

Initial temperature: T0 3 – – – –

End temperature: Tend 0.1 – – – –

Temperature drop rate: Kb 0.9 – – – –

Markov length: Km 10 – – – –

123



1742 Journal of Intelligent Manufacturing (2022) 33:1725–1746

Fig. 12 Pareto fronts obtained by different algorithms under different angles, a Value by different algorithms with three criteria, b value with
makspan and energy consumption, c value with noise and energy consumption, d value with makspan and noise

Table 7 Comparison of non-dominated solutions of various algorithms


min 
max 
avg 
std 
min 
max 
avg 
std 
min 
max 
avg 
std

HDMICA 146.20 160.10 150.32 1.77 225.54 232.65 227.97 0.7600 79.26 79.87 79.52 0.0009

ICA 152.40 176.05 156.96 0.0058 228.95 235.80 233.40 0.0003 79.33 79.94 79.47 0.0002

DPSO 174.40 223.35 200.00 1.7376 243.09 253.41 248.07 0.4755 80.23 80.80 80.47 0.0017

MODVOA 156.30 248.54 197.90 0.2522 236.03 254.40 243.95 0.1201 79.82 80.66 80.23 0.0007

NSGAII 148.05 171.1 156.95 0.1940 229.10 238.50 233.78 0.5699 79.39 79.91 79.56 0.0004

PESA2 156.20 240.07 186.32 11.0626 243.92 264.75 253.77 0.2331 80.13 80.68 80.45 0.0001

SN S �
√√√√ 1

n − 1
·

n∑
i�1

(MI D − ci )2 (39)

(3) The rate of achievement to three objectives simultane-
ously (RAS).

RAS � 1

n
·

n∑
i�1

(
f1i − fi

fi
+

f2i − fi
fi

+
f3i − fi

fi
)

(40)

where f i�min{f 1i, f 2i, f 3i}. The smaller the RAS solu-
tion, the better the quality.

Results analysis

In order to show the performance of the proposed algo-
rithm, compared with the well-known algorithms: NSGAII,
DPSO, MODVOA, and PESA2. To ensure the validity of
the comparison of the results of all algorithms, the operating
environment of all experiments is 2.7GHzCPU, 8Gmemory,
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Fig. 13 Gantt chart of the first non-dominated solution obtained by HDMICA

64-bit win7 system computer, and the programming envi-
ronment is Matlab 2016. Moreover, all algorithms choose
the same initialization method, that is, the rule-based initial-
ization method and random initialization method with a 1:1
ratio. In addition, the crossover and mutation methods in all
algorithms are the same. The process segment selects IPOX
crossover, the machine segment adopts RPX crossover, and
the worker selection segment using two-point crossover. The
specific parameter settings are shown in Table 6.

To form a population of size 100. The number of inde-
pendent runs is 150. The comparison of the Pareto first

frontal solutions of each algorithm is shown in Fig. 12, where
ICA represents the original algorithm. Above all, from the
Pareto non-dominated solutions three-dimensional distribu-
tion maps Fig. 12a of different algorithms, it can be clearly
seen that the solution set generated by HDMICA is dis-
tributed in the corner with the smallest three target values,
followed by the distribution of the original ICA solution.
While, the target values of other algorithms deviate more
from the optimal solution. Then, from the two-dimensional
distribution diagrams of Fig. 12b, c, it can be seen that the
original ICA is superior to other algorithms, but there is
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(a) HDMICA (b) ICA

(c) DPSO (d) MODVOA

(e) NSGAII (f) PESA2
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Fig. 14 The parallel coordinates plot for different algorithms

not much difference with the results produced by NSGAII.
Finally, Fig. 12d clearly shows theoptimization effect of ICA.
However, it can be seen that the improved HDMICA obvi-
ously optimizes the results produced by the original ICA. In
short, HDMICA is superior to the other five algorithms.

Figure 13 is a Gantt chart of a solution with the maximum
crowding distance selected from the non-dominated solution
set of HAMICA. The abscissa is the processing time (h) and
the ordinate is the resource number. Each color of the rectan-
gle represents a job, and the number represents the process of
the job. For example, 1503 can be described as the third pro-

cess of job J15. Figure 13a is a Gantt chart of a job processed
on a processing machine. Actually, Processes 6 to 8 require
human participation. Figure 13b is a Gantt chart of the job
processed by the worker. The makspan is 158.1500(h), the
energy consumption is 226.5029(kgce), and the noise gener-
ated is 80.0702(dB).

Table 7 is the target value of the non-dominated solution
set obtained by each algorithm, where 
min, 
max, 
avg,
and 
std represent the maximum, minimum, average, and
variance of each target value, and the data in bold in the table
indicate the current optimal value. It can be seen that the
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Table 8 The value of all metrics
obtained by different algorithms HDMICA ICA DPSO MODVOA NSGAII PESA2

MID 284.4928 296.1851 328.4773 332.3760 295.9683 322.5845

SNS 2.2184 2.2748 2.8111 2.1778 2.2978 2.8083

RAS 2.7454 2.9776 3.5522 3.6451 2.9657 3.4201

HDMICA target value is better than other algorithms, but the
variance of the target value does not show a clear advantage,
indicating that the diversity of non-dominated solutions is
general.

So as to compare the quality of the non-dominated solution
sets of the six algorithms intuitively, the parallel coordinates
plot (Li et al. 2017) is adopted. Since the range of values of
the three objective functions differs greatly, in this paper, the
target value is normalized to make the results more intuitive.
Normalized value (NV ) can be formulated as follows:

NV � Sc − Sb
Sw − Sb

(41)

where Sc is the current value of the non-dominated solution
set, Sb is the optimal value, and Sw is the worst value. It
should be noted that the smaller value for NV is preferred.

Figure 14 is a parallel coordinate diagram of the six algo-
rithms. The horizontal coordinate of the graph represents the
three goals of the problem, and the vertical coordinate repre-
sents the normal standardized target values of the three goals.
It can be seen that HDMICA is superior to other algorithms
to some extent. Furthermore, the fluctuation range of the tar-
get value of HDMICA is more concentrated, which indicates
that the quality and stability of the non-dominated solution
obtained by HDMGWO precede the other five algorithms.

From Table 8, It can be seen that HDMICA is signifi-
cantly better than other algorithms in terms ofMID andRAS.
Pareto non-dominated solutions are closer to the global opti-
mal solution, but the SNS values of all algorithms are not
much different. HDMICA has not significantly improved the
non-dominated solutions diversity.

Conclusions and prospects

This article takes an actual foundry as an example. Consid-
ering the constraints of man–machine and dual resources,
a mathematical model (minimum processing time, energy
consumption, and noise) of a three-dimensional target is
established under the constraints of the learning effect of
workers and the transport time of the job. A hybrid discrete
multi-objective imperial competition algorithm is proposed
to solve the model. In order to optimize the quality of the
solution and preserve the diversity of the population, the
population initialization method that combines the shortest
processing time rule and random initialization; When select-

ing a colonial country, if the number of non-dominating
solutions is less than the number of target empires, a
neighborhood search is performed on the non-dominating
solutions until the number of non-dominating solutions is
greater than the number of empires. Finally, the results
obtained by HDMICA are compared with the original ICA,
DPSO, MODVOA, NSGAII and PESA2 to verify the effec-
tiveness of the proposed algorithm.

For green sustainable manufacturing, this article mainly
researches energy consumption and noise. In fact, green
includes many aspects. As casting is a high energy consump-
tion and high pollution industry, a large amount of waste
gas and residue will be generated during the production pro-
cess, which provides a direction for the next step of research.
This paper does not consider the processing time limit of
workers, so a balance based on wages can be found between
the overtime of workers and increasing the number of work-
ers; distributed scheduling and reverse scheduling are also
mainstream scheduling methods, and they can be used as
the main research direction in the future. In addition, dis-
tributed scheduling and inverse scheduling are also the main
schedulingmethods, which can be taken as themain research
direction in the future.
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