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Abstract
This paper describes two algorithms for feature extraction from the Poincaré plot which is constructed with the vibration
signals measured in roller bearings and gearboxes. The extracted features are used for classifying 10 types of fault conditions
in a gearbox and 7 types of fault conditions a roller bearings. Both vibration signal datasets were acquired at different loads
and speeds. The feature extraction using Algorithm 1 performs the feature calculation from the Poincaré plot constructed with
the raw vibration signals. In contrast, the Algorithm 2 requires an additional stage where the vibration signal is pre-processed
for identifying the peaks of the signal. This peak sequence is equivalent to a non-uniform sub-sampling of the vibration
signal that retains relevant information useful for fault classification. The fault classification is attained by using a multi-class
Support Vector Machine. The proposed method is tested using the tenfold cross-validation. Results show that both algorithms
could attain classification accuracies as high as 99.3% for the gearbox dataset and 100% for the roller bearings. The results are
compared to other classification approaches performed on the same datasets by using other different features. The comparison
shows that the approach in this paper has a performance as good as obtained by using well-known statistical features.

Keywords Poincaré plot · Support vector machine · Gearbox fault diagnosis · Bearing fault diagnosis · Rotating machinery ·
Vibration signals
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ROC Receiver operator curve
KNN K nearest neighbors
RF Random forest
MDSVC Multi-modal deep support vector Classifi-

cation
GDBM Gaussian–Bernoulli deep Boltzmann

machine

Introduction

Rotating machinery requires the development of accurate
fault detection and diagnosis methods aiming at minimizing
costs and avoiding accidents in industry. Rotating machinery
includes several components susceptible of failure, how-
ever, bearings and gearboxes are the main location of faults
(Moumene and Ouelaa 2012). The faults generation process
is complex and related to the fabrication of each component
and the operating conditions. Early detection of faults has
motivated developing interesting research works to obtain
accurate methods for detecting and classifying faults in rota-
tory machinery (Cerrada et al. 2016b; Li et al. 2018; Luo
et al. 2020; Zhou et al. 2019). Gearboxes in rotatory machin-
ery enable transmission of mechanical motion. They usually
have complex configurations of gears usually connected by
shafts and bearings. In such an equipment, the detection and
classification of fault conditions can be performed through
acquisition and analysis of vibration signals (Li et al. 2015b;
Liu et al. 2016; Huang et al. 2018). A review of gearbox fault
diagnosis using several features extracted from the vibration
signal is presented in Sharma and Parey (2016). Vibration
signal analysis is also useful for detection of faults in roller
bearings (Li et al. 2015a). Roller bearings have several com-
ponents where faults could appear: the cage, the inner and
outer race, and the rolling elements. The faults in roller
bearings are due to several factors such as defects in their con-
struction, poor lubrication or overloading (Patil et al. 2008).
Roller bearings defects lead to faults that could be detected
by vibration signal analysis (Randall and Antoni 2011; Li
et al. 2016a, b).

Fault diagnosis consists in the identification of a machine
fault based on features usually extracted from measured sig-
nals (Wang et al. 2015). Although several signals can be
sensed and processed for extracting useful features for feed-
ing data-driven automatic classifiers, the vibration signal has
been commonly used in many Prognostics and Health Man-
agement (PHM) applications (Cheng et al. 2010).

Several applications based on vibration signal analy-
sis rely on the assumption that such signals are collected
from linear and time-invariant systemswhere time-frequency
methods (Sait and Sharaf-Eldeen 2011), as well as well-
known time-statistical analysis are feasible and valid. How-
ever, rotating machinery are actually non-linear systems

where harmonics and even chaotic motions can occur as
a response to harmonic excitation forces. Research works
have been previously reported for verifying the non-linear
nature of the vibration time series collected from gearboxes
(Wang et al. 2003; Bajric et al. 2011), and bearings (Cui and
Qian 2010; Liqin et al. 2008), as well as their self-similarity
properties (Loutridis 2008). The non-linear vibration of gear
systems is studied in Wang et al. (2003) by using a vibro-
impact model of a gear pair. One of the methodological tools
is non-linear systemswith time-variant coefficientsmodeling
mesh backlash and stiffness (Aherwar 2012). Both parame-
ters contributes with a strong non-linear term to the dynamics
equation showing the non-linear dynamic response. Other
factors contributing to non-linear vibration are transmission
errors and the friction between tooth mesh faces. Gearboxes
actually involve multi-nonlinear elements contributing to a
non-linear vibration. Kahraman andBlankenship (1997) sev-
eral experiments were performed on geared systems showing
a rich frequency spectrumof non-linear phenomena aswell as
chaotic motion. Such chaotic motion could lead to irregular
operations and fatigue failure in rotatingmachinery (Szumin-
ski and Kapitaniak 2012). The complex non-linear behavior
of bevel gears is investigated inMotahar et al. (2016) by using
models for three types of teeth modifications. The motion
equations of the models are non-linear and time-varying. In
these equations the backlash function and mesh stiffness are
also considered. A genetic algorithm is used for finding the
optimal profile modification and the dynamic behavior of
the system is analyzed using several methodological tools
including bifurcation diagrams as well as Poincaré maps
(Kahraman 1992).

Dealing with non-linear vibration signal analysis requires
application of appropriate tools such as non-linear dynamics
and chaos theory (Soleimani and Khadem 2015). Within this
set of tools, the correlation dimension (CD) has been used
in Janjarasjitt et al. (2008) for diagnosis and prognosis of
bearings in rotating machinery. The results showed that CD
for a roller element close to failure was statistically differ-
ent with respect to a new roller element. A modification of
the original Grassberger-Procaccia algorithm was proposed.
The algorithm was known as the partial correlation integral
aiming at estimating the CD. Authors also found that the CD
tended to increase as the life of the bearing was consumed.
Other tools for non-linear rotating systems analysis are use-
ful for detection and progression evaluation of faults (Sun
2012). In particular, the Largest Lyapunov Exponent (LLE)
was used for studying incipient faults in the bearings of an
induction motor, based on acquired data representing the sta-
tor currents. Authors performed the estimation of the LLE for
a fault as it evolved with increasing damage. An increased
change in LLE as the fault evolves to total damage of the
bearing was found. Measurement of complexity in vibra-
tion signals has also been used for bearings elements health
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evaluation (Yan and Gao 2004). Similarly, there are research
works concerning Lempel-Ziv Complexity (LZC). An appli-
cation of LZC on vibration signals of roller bearings was
aimed at condition monitoring of rotating machine systems.
Results showed the usefulness of complexity for machine
health condition evaluation. Kedadouche et al. (2015), the
comparison between LZC, Sample Entropy (SampEn) and
Approximate Entropy (ApEn) calculated from vibration sig-
nals was reported aiming at detecting faults in gears. After
comparison, combination of kurtosiswith LZCwas proposed
by the authors for detecting faults in the early stages.

Typical tools for analyzing non-linear and chaotic dynam-
ical systems are the phase space diagram and the Poincaré
section, also known as Poincaré map. The phase space dia-
gram is a tool for visualizing the behavior of a dynamical
system by representing the trajectories such as a 3-D tra-
jectory for a chaotic system (Jáuregui 2011). The Poincaré
section is obtained from the phase space diagramby sampling
points in the phase space at regular intervals. In the case of
a 3-D phase space, the Poincaré section is obtained as the
interception of a plane with the trajectories representing the
phase space. The Poincaré map has been used extensively for
visualizing non-linear, chaotic behavior of faults in gears and
bearing elements (Szuminski and Kapitaniak 2012; Jáuregui
2011; Kahraman 1992; Kahraman and Blankenship 1997;
Motahar et al. 2016; Rocha et al. 2010; Wang et al. 2003).
However, this tool has been mainly used for visualization of
the non-linear system behavior.

Vibration signal analysis using Poincaré maps has also
been reported. The relation between phase space and the
accurate calculation of Poincaré maps have been reported
in Tucker (2002). Mevel and Guyader (2008) a model and
an experiment were developed for investigating ball bear-
ings motion and their chaotic features. The Poincaré maps
were used by the authors for visualizing the phase space
and their chaotic trajectories. Machine tool components and
machining processes condition have beenmonitored by using
information from several internal sensors as reported in Repo
(2010). One of the tools used for performing the signal analy-
sis was the Poincaré map. However, only qualitative analysis
was stated in this research. Jáuregui (2011) a discussion about
the analysis of phase diagrams for predicting non-linearities
and transient responses in rotating machinery was presented.
The author suggested the use of such a plots for faults detec-
tion. Fault characterization based on features extracted from
Poincaré map was presented in Trendafilova and Manoach
(2012). The damage index quantified the degree of damage
based on length calculation of trajectories in the Poincaré
map.

In applications of time series analysis to biomedical sig-
nals, rather than using the Poincaré map the researchers have
used an approximation of this tool that is known as the
Poincaé plot.Denoting the time series as x(t) and a lag in time

as τ , this type of plot is a 2D graph where a lagged sample
x(t +τ) is plotted against the sample x(t). The Poincaré plot
has been also knownas scattergramor scatter plot. In biomed-
ical signal processing a relevant application of Poincaré plots
has been reported for electrocardiogram signal analysis. In
this type of application, the R–R inter-peak intervals between
consecutive heart beats are extracted from surface electrocar-
diogram signals. The extracted time series signal is known
as Heart Rate Variability (HRV) and the Poincaré plot is an
important tool that enables features extraction useful for car-
diac diseases diagnosis (Hoshi et al. 2013).

Data-driven fault classification methods are commonly
used for PHM. This type of methods includes two stages
where the first one is devoted to feature extraction from
the measured signals. The extracted features are used in the
second stage for fault detection and classification. Several
machine learning methods could be used for accomplish-
ing this task such as Random Forests (RF), Support Vector
Machines (SVM) (Yin and Hou 2016; Jedliński and Jonak
2015; Sánchez et al. 2017), and Artificial Neural Networks
(ANN) (Pacheco et al. 2016).

A machine learning model for binary classification is
SVM. This type of model is able to construct a hyperplane
separating two classes such that the distance to the closest
data point in each class is maximal (Luts et al. 2010). In
contrast to the binary version of SVM, there are also multi-
class versions of the SVMs where the decision function
separating all classes are calculated simultaneously (Wang
and Xue 2014). However, the preferred approach consists in
splitting the original multi-class classification into a set of
binary classification tasks. Their combination is performed
by using Error-Correcting Output Codes (ECOC) (Escalera
et al. 2010), to solve the multi-class classification task. In
the ECOC method three symbols {−1, 0,+1} are used for
coding the results of binary classifiers where the zero sym-
bol encodes a don’t care. In the coding step, a codeword is
assigned to each class. In the decoding stage, a test sample
is given and the most similar class codeword is found. The
ECOC framework includes several strategies such as one-
versus-all or one-versus-one that extend the possibilities for
solving the classification problem.

Medina et al. (2019) the Poincaré plot constructed with
vibration signals of gearboxes has been used for extracting
a set of features describing the symbolic dynamics of the
underlyingmechanical system. This set of features is an array
with twelve elements that is used for training a SVMmodel.
This method has been successfully applied for classification
of faults in a gearbox.

In this paper, we propose the use of Poincaré plots of the
vibration signal to extract a small set of features that are
the inputs to a machine learning algorithm aiming at fault
classification in gearboxes and bearings. The fault classifi-
cation will be attained using a SVM model that performs
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multi-class classification according to the ECOC approach
(Wang and Xue 2014; Escalera et al. 2010). Classification of
10 different classes corresponding to the healthy class and 9
faulty classes is performed from the gearbox vibration signal
dataset. On the other hand, an experiment for classification
of 7 different classes in the vibration signal bearing dataset
considering the healthy class and 6 faulty classes is also
reported. Only three features derived from the Poincaré map
are needed for classification. Two algorithms are proposed
that have the advantage of being simple, fast and accurate
for fault detection. Novelty of the proposed approach is
extracting quantitative features from the Poincaré plot for
attaining accurate fault classification rather than using this
plot as a simple graphical qualitative tool. In this applica-
tion, the delay τ used for constructing the Poincaré plot is
related to a simplified time-delay embedding that is applied to
chaotic time series modeling (Von Oertzen and Boker 2010).
The high classification accuracy with only three features and
low computational costs of the two algorithms suggest their
application to continuous condition monitoring of rotating
machinery (Bangalore and Tjernberg 2015; Goyal and Pabla
2016; Jedliński and Jonak 2015). Application in the context
of continuous monitoring could be performed in two stages.
The first stage would work using a SVM for online detec-
tion of the presence of faults in the gearbox (or bearings).
Such fault detection could trigger a second stage where the
multi-class SVM could identify the type of fault.

This paper is an extended version of the conference paper
reported in ETCM 2017 (Medina et al. 2017). The work pre-
sented in the conference reported a method for gearbox fault
detection (Algorithm 1) based on features extracted from
vibration signals that were used for fault classification using
a ECOC SVM. In addition to the work previously mentioned
in this paper the following contributions are reported:

– Proposal of a newmethod (Algorithm 2 in Fig. 4) for fea-
ture extraction based on the time series of the sequence of
peaks obtained from the raw vibration signal that is later
used for plotting the Poincaré map and the subsequent
feature extraction for classification.

– Additional tests and results were included for illustrating
the applicationof both algorithms.Results concerning the
classification of faults for roller bearings using a vibration
signal dataset were also included.

– Amore detailed description of algorithms, discussion and
comparison of results are included as well as guidelines
for selecting the optimal lag value (τ ) usingmutual infor-
mation and the average auto-correlation sequence.

The rest of paper is organized to include the following
parts: In “Methodology” section, the methodology for sig-
nal acquisition, feature extraction and fault classification is
presented. A detailed discussion of the results is described

Fig. 1 Test-bed used for signal acquisition

in “Results” section, conclusion as well as future research is
reported in “Conclusion” section.

Methodology

Measurement of vibration signals in a gearbox

The signal acquisition was performed on a test-bed located
in the vibration laboratory at the Salesian Polytechnic Uni-
versity in Cuenca-Ecuador. The acquisition system is shown
in Fig. 1.

An induction motor of 1.1 kW that operates at 1650 rpm
powered by a three-phase electric line of 220 Vac at 60 Hz
is used for generating the rotating motion. A gearbox is con-
nected to the motor using a shaft and the transmitted torque
is transferred to a pulley that is used for driving a magnetic
brake. Within the gearbox several gear faults can be con-
figured. A power inverter with variable-frequency drive was
used for generating 3 constants speeds of 480, 720 and 900
rpm and also 3 variable speeds in the ranges 720–1080 rpm,
300–720 rpm and 480–900 rpm. The load of themotor is con-
trolled by the magnetic brake and three different loads (L)
are configured by varying the voltage feed with respect to the
maximum value: L1 considering 10% of the maximum feed,
L2 with 50%, and L3 with 90%.

The signal acquisition was performed by using a National
Instruments (NI)A/D conversion card including anti-aliasing
filtering with a sample frequency of 50 kS/s. Each sample
was recorded with a resolution of 24-bits. Two accelerome-
ters IMI Sensor 603C01, 100mV/g,were used for sensing the
horizontal and vertical vibration motion. Each recorded sig-
nal had a length of 500,000 samples representing a duration
time of 10s.
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Table 1 Gear fault conditions

Label Pinion Gear

P1 Healthy Healthy

P2 Tooth chafing Healthy

P3 Tooth wear Healthy

P4 25% tooth breakage, Healthy

P5 50% tooth breakage Healthy

P6 100% tooth breakage Healthy

P7 Healthy 25% crack

P8 Healthy 100% crack

P9 Healthy 50% chafing

P10 25% tooth breakage 25%crack

Fig. 2 Bearings vibration signal acquisition test-bed

The configuration of the gearbox considered ten different
health conditions, including the healthy case (see Table 1).
Class P1 is the healthy (normal) condition, incipient faults
are P2 and P3.Moderate faults are denoted P4, P5, P7, P9.
Two severe faults are denoted P6 and P8, and finally amulti-
fault is denoted P10. The case of incipient and moderate
faults are important to be diagnosed in industrial applications
because their detection allow to prevent further damage and
accidents.

A total of 6motor speeds and5 repetitionswere considered
for each load {L1, L2, L3}. Thenumber of acquiredvibration
signals for each fault was 6 × 5 × 3 = 90 and considering
the 10 faults a total of 900 vibration signals were recorded.

Measurement of vibration signals in roller bearings

The rolling element bearing test configuration for vibration
signal acquisition was also constructed at the Salesian Poly-
technic University in Cuenca, Ecuador. The test-bed allows
configuring different health conditions of the bearings and
measuring vibration signals. The experimental test-bed con-
figuration is presented in Fig. 2.

Table 2 Fault conditions for the rollers bearings

Class Bearing 1 Bearing 2

P1 Healthy Healthy

P2 Inner race fault Healthy

P3 Outer race fault Healthy

P4 Ball fault Healthy

P5 Inner race fault Outer race fault

P6 Inner race fault Ball fault

P7 Outer race fault Ball fault

The test-bed included a 2.0 HP Siemens motor (3∼ Vac)
that was fed and controlled by using a Danfoss inverter with
1.5kW. The motor was connected to a steel shaft with a
diameter of 30mm using a coupling. Two bearings 1207
EKTN9/C3, SKF ( one at each end of the shaft) serve as
shaft supporting. A tachometer (VLS5/T/LSR optical sen-
sor, Compact) was used for monitoring the rotating speed
of the motor. Similarly, the vibration signals were mea-
sured from each of the bearings with an accelerometer (ICP
353C03, PCB) mounted on each bearing housing (SNL 507-
606, SKF). The load of the motor was implemented using
flywheels on the shaft.

A data acquisition card (cDAQ-9234, NI) was used for
measuring the vibration signals. The acquisition card was
attached to the chassis (NI 9188) which was connected to
a computer. The signal acquisition was performed by vary-
ing the motor speed considering three values: 480 rpm, 600
rpm and 900 rpm. Three different loads were considered by
using zero (load L1), one (load L2) or two flywheels (load
L3). Seven health bearing conditions in Table 2 were imple-
mented, and each experiment was repeated 5 times. In total
3× 3× 7× 5 = 315 signals were recorded using a sampling
frequency of 50 kHz, over 20 seconds.

The Poincaré method

The Poincaré method is a methodological tool that can be
used for analyzing the non-linear dynamics of systems that
have a chaotic behavior (Alligood et al. 1997). Such type
of dynamical systems can be represented by a set of first
order differential equations and the solution for this set of
equations describes an orbit or trajectory in the phase-space.
This is illustrated in Fig. 3 where the phase-space trajectories
for the 3D Lorenz attractor are shown intercepting a surface
corresponding to a plane. The interception of such trajecto-
ries with the plane corresponds to the Poincaré map (Cerrada
et al. 2020).

In practical applications, the differential equations mod-
elling the system are unknown, and the Poincaré map cannot
be obtained. In consequence, it is necessary to use approx-
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Fig. 3 Poincaré map for the 3D Lorenz attractor

imate solutions known as the Poincaré plot, from partial
knowledge about the system. This plot is obtained in a simple
manner by plotting the time series x(t) of some variable of
the system with respect to its lagged representation x(t + τ)

(Alligood et al. 1997; Wu et al. 1998; Brennan et al. 2001).
The most common situation in mechanical systems con-

sists in sensing variables such as the vibration, which is a
time series x(t), and the Poincaré plot is obtained by prop-
erly selecting the lag τ . Usually, this is selected by identifying
the value for which the auto-correlation of x(t +τ) is zero or
near zero. More details on the Poincaré method and Poincaré
plot is presented in Cerrada et al. (2020). From this graphi-
cal representation, it is possible to extract features useful for
fault classification as is described in the following sections.

Algorithms based on Poincaré plots

In this paper, two algorithms for fault classification using
vibration signal analysis are proposed. The steps involved in
each algorithm are shown in the diagrams presented in Fig. 4.
Concerning the Algorithm 1, the features are calculated from
the Poincaré plot as proposed in Medina et al. (2017). Such
features are fed to a SVM for the fault classification.

The Algorithm 2 is an original contribution reported in
this paper. The Algorithm 2 is inspired in the successful
application of peaks detection and Poincaré plots for car-
diac electrocardiographic signal analysis (Hoshi et al. 2013).
According to Algorithm 2, rather than working with the
raw time series, an additional step was considered. In this
step, the peaks in the vibration signal are detected and the
Poincaré plot is generated from the detected sequence of
peaks. The feature extraction and classification stages are
similar to Algorithm 1.

During the peak detection stage of Algorithm 2, the vibra-
tion signal is processed for searching the peaks separated by
at least lag samples without any restriction concerning the
sign of the peak. In consequence, the retained sequence of
peaks includes positive and negative peaks. The relevance of

Fig. 4 a Algorithm 1 for fault classification using features extracted
from the Poincaré plot, b Algorithm 2 includes an additional stage
corresponding to the peaks detection

this approach relies on the fact that the peaks of the vibra-
tions signal convey relevant information for fault detection as
reported in Igba et al. (2016), Doguer and Strackeljan (2009)
and Xia et al. (2012). The Algorithm 2 has the additional
advantage of working with a shorter signal including only
the peak, which provides a non-uniform sampled sequence
that could be useful for extraction of other features for fault
classification.

Feature extraction for algorithm 1

The shape of the Poincaré plot from the vibration signals of
the gearbox dataset shows that their shape varies according
to the type of fault. An illustration of this fact is shown in
Fig. 5 where the Poincaré plots for two different fault classes
are shown. Specifically, the plots corresponds to the healthy
(normal) class P1 and a class representing a combined fault
P10. The Poincaré plot is considering all samples of the
vibration signal. Construction of the Poincaré plot was per-
formed with τ1map = 10 (details about this selection will be
given in “Criteria for the lag selection in Poincaré plots” sec-
tion). There are apparent differences concerning the shapes
of the plots for both classes. The healthy (normal) class P1
has a shape that tends to be ellipsoidal. In contrast, the faulty
class P10 has a irregular shape with trajectories departing
from the centre of the shape.

The first extracted feature from Poincaré plot corresponds
to the standard deviation of points denoted SD1, measured
as the dispersion of points with respect to the line-of-identity
axis y = x . Denoting the sample of the vibration signal as
x(t) and the vector representing one vibration signal as xt ,
the calculation of the dispersion is based on fitting an ellipse
shape to the cloud of points in the Poincaré plot constructed
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Fig. 5 Poincaré plots for vibration signals extracted from the gearbox dataset. a Poincaré plot for healthy case P1, b Poincaré plot for faulty class
P10

Fig. 6 The convex hull of the set of points is the polygon shown at the
right enclosing all points

with a lag τ , and the equation is shown in Eq. (1).

SD12 = 1

2
var{xt − xt+τ } = 1

2
SDSD2 (1)

where the standard deviation SDSD is calculated by consid-
ering lagged differences.

The standard deviation or dispersion of points SD2 is the
second feature calculated with respect to the axis y = −x as
shown Eq. (2).

SD22 = 2var{xt }2 − 1

2
SDSD2 (2)

The area of the convex-hull is an additional feature that
can be extracted from the Poincaré plot (De Berg et al. 2008).
A set of bidimensional pointsX is considered as convexwhen
given any pair of points r , s ∈ X, the line segment joining
both points rs ⊂ X. The convex-hull for a finite set of points
X = {x1, x2, ..., xn} is defined as the smallest convex set
XC such that X ⊂ XC. An illustration of a convex hull is
shown in Fig. 6. The convex polygon enclosing all points is
the convex hull. The area of the convex hull of the Poincaré
plot is the feature for fault classification.

Examples of convex-hull calculated from Poincaré plots
of vibration signals are shown in Fig. 7. The Poincaré plots
of the healthy class P1 and the faulty class P10 are shown
with the convex hull represented as a red polygon. The shape
of both polygons are clearly different and the area is a feature
useful for fault classification.

Feature extraction for algorithm 2

Algorithm 2 differs from Algorithm 1 mainly in the pre-
processing stage which requires the additional step of the
peaks detection, as shown in Fig. 4. The algorithm 2 includes
the following stages:

1. The vibration signal is pre-processed by calculating its
absolute value ‖x(t)‖. Peaks separated by at least τpeak

samples are retained. The resultant time series is denoted
x p(t). This peak signal is an array with smaller size than
the original signal. An example of this pre-processing is
shown in Fig. 8 using a small fragment of the vibration
signal. The sequence of peaks are shown in red.

2. After obtaining the sequence of peaks, the next stage
is constructing the Poincaré plot using a lag parameter
τ2map = 1. Each point in the Poincaré plot represents the
location defined by two consecutive peaks from x p(t).
The Poincaré plot is composed by four clouds of points,
one cloud for each quadrant. The sign of the pair of con-
secutive peaks define the quadrant where each point is
located. This is illustrated in Fig. 9.

3. The Poincaré plot for x p(t) is analyzed for extracting the
features stated in Algorithm 1: the area of convex-hull,
SD1, and SD2.
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Fig. 7 Convex hull (in red) of Poincaré plots from a vibration signal of the gearbox dataset. a Convex hull for the healthy class P1, b Convex hull
for the faulty class P10 (Color figure online)

Fig. 8 Peaks sequence (in red) overlaid on a fragment of the original
vibration signal (in blue) (Color figure online)

The Poincaré plots for two signals from the gearbox
dataset are shown in Fig. 9. The Poincaré plot for the healthy
class P1 is shown in Fig. 9 while the plot for the severe fault
P6 is shown in Fig. 9b. The shape of both plots is different.
In the case of the severe fault the clouds of points have a star
shape. However, the clouds of the normal class is smaller and
round.

Criteria for the lag selection in Poincaré plots

The Poincaré plot represents the intersection between a plane
and the trajectories of the phase-space of a possible chaotic
dynamical system (Daw et al. 2003). Within this context, the
reconstruction of the phase-space dynamics is attained by
using time-delay embedding. This implies the construction of
the state vectorX(t) = [x(t), x(t +τ), ...., x(t +(D−1)τ )],

where x(t) is a time series signal. The phase-state dimension
is denoted as D (also known as fractal dimension) and the
time delay or lag is denoted as τ . The phase-space dynamics
is reconstructed by plotting each of the points X(t) in the
D dimensional space (D = 2 in our application). When
the measured signal is considered as an infinite amount of
noiseless data, an arbitrary selection of the lag τ is feasible
(Takens 1981), however, when the available data is finite
and noisy, the lag could be selected such that the samples in
X(t) are independent or uncorrelated. This is accomplished
by selecting the lag in two ways, from the available time
series: the value for which the plot Autocorrelation vs Lag
has zero crossing (normally the first zero crossing), or the
value for which the plot Mutual Information vs Lag has a
local minimum (Fraser and Swinney 1986).

In the approach of this paper, the goal of constructing
the Poincaré plot is the extraction of features that enable
the classification of the 10 different faulty conditions for the
gearbox dataset and seven faulty conditions for the roller
bearings dataset. This classification is feasible when the fea-
ture vectors forms proper cluster structures for each class
on the feature space. Based on this fact, the search for the
lag value to obtain Poincaré plots from uncorrelated sam-
ples could be a useful criterion for trying a solution to this
problem.

In this research, the gearbox dataset contains 900 vibra-
tion signals. A representation of the autocorrelation for this
dataset is obtained by averaging the autocorrelation of each
of the signals included in the dataset. The averaged autocor-
relation for this dataset is shown in Fig. 10. The candidate
values for the lag would be located in this plot around the
lagged samples with τ values around 10, 30 and 60. With
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Fig. 9 Poincaré plots for peaks signals x p(t) extracted from the vibration signal gearbox dataset a Poincaré plot for healthy class P1, b Poincaré
plot obtained for the faulty class P6 corresponding to a severe fault

Fig. 10 Averaged autocorrelation considering the 900 vibration signals
in the gearbox dataset

these lags, the correlation between samples of vibration sig-
nal should be low.

Alternatively, the mutual information for a pair of random
variables quantifies their mutual dependence. This represents
the amount of information that can be obtained about the
first variable based on the other one. Mutual information for
discrete random variables x(t) and x(t + τ) is defined as:

I (τ ) =
∑

i∈x(t)

∑

j∈x(t+τ)

pi, j (τ )log2
pi, j (τ )

pi p j
(3)

where pi, j (τ ) is the joint probability function for variables
x(t) and x(t + τ) and pi , p j are the marginal probability
distribution functions for both random variables respectively.

Fig. 11 Averaged mutual information considering the 900 vibration
signals in the gearbox dataset

The mutual information is calculated for each of the 900
vibration signals in the gearbox dataset and then averaged.
Results obtained by varying the lag τ between 1 and 300 is
shown in Fig. 11

Lower values of the mutual information plot are obtained
for lag values lower than 50 where several local minimums
are present. An empirical procedure is used for selecting the
lag for constructing the Poincaré plot. Several lag values
between 1 and 50 were tried. The selected lag values lead
to a local minimum of the mutual information plot and for
the lag intervals where the autocorrelation value is low. For
each of the selected values, the Poincaré based features were
extracted and the accuracy of classification using multi-class
SVM was calculated. The selected lag was the value pro-
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Fig. 12 a Averaged autocorrelation considering the 315 vibration signals in the bearings dataset, b averaged mutual information considering the
315 vibration signals in the bearings dataset

viding the maximum classification accuracy. Concerning the
Algorithm 1, the lag value was τ1map = 24.

In the Algorithm 2, the τpeak was selected by using the
same method as in Algorithm 1 based on the averaged inter-
correlation, and by considering also the averaged mutual
information. The selected values were τpeak = 30 for obtain-
ing the sequence of peaks, and τ2map = 1 for constructing
the Poincaré plot.

The same procedure was applied for selecting the lag for
the bearings dataset. Figure 12a shows the average auto-
correlation with the 315 vibration signals in the dataset.
The locations of the zero crossing for this function are on
{5, 10, 20, 25, 35, 43}. The average mutual information for
all vibration signals of the bearings dataset is shown in
Fig. 12b. The global minimum for the averaged mutual infor-
mation as a function of the lag is located at 30 with several
localminimums in the neighborhood approximately between
15 and 100. In this neighborhood, there are several zero cross-
ing for the autocorrelation function. The selected lag value
for Algorithm 1 was τ1map = 25 which is close to the lag
value for obtaining the global minimum of averaged mutual
information function.

The impact of lag selection on classification accuracy is
further explored in “Results” section.

Cluster structure from features generated by using
algorithm 1 for the gearbox dataset

The cluster structure was analyzed for the gearbox dataset
considering each load separately. The set of three features
was calculated for each signal under different load and fault
classes. After calculation, we perform a comparison between
the clusters of healthy class P1 and all the faulty conditions.

The small set of features provides complementary informa-
tion about the fault condition able to form cluster structures
in the feature space that could be separated from each other
through single hyper-planes.

Concerning the case of load L1, the cluster structure rep-
resenting an incipient fault P3 (see Table 1 including the list
of gearbox faults) is shown in Fig. 13a. In this Figure, the
green dots are used for representing the healthy class and red
dots for the faulty class. The healthy class could be separated
from the faulty class by using a single surface. The case of a
moderate fault P5 is shown in Fig. 13b. The clusters could
also be separated each others for this type of faults.

A case representing the severe fault P8 compared to the
healthy class is shown in Fig. 13c. The cluster for P8 could be
separated from the healthy cluster. Finally, class P10 corre-
sponding to a combined fault is shown in Fig. 13d compared
to healthy class P1. Separation of clusters for this type of
fault is feasible by using machine learning models.

Faulty classes also generates cluster structures that are
distinguished fromeach others.A simple example is the com-
parison between themulti-fault class P10 and the severe fault
P8. The cluster structure is shown in Fig. 14. The clusters
generated could be separated in the feature space and both
classes could be classified by using the appropriate classifi-
cation algorithm.

Cluster structure from features generated by using
algorithm 2 for the gearbox dataset

The analysis of the Algorithm 2 applied on signals from the
gearbox dataset was also performed by considering each load
separately and the same features considered by theAlgorithm
1.
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Fig. 13 Results of the Algorithm 1 using signals from the gearbox
dataset: cluster structure for load L1. The faulty class is represented
with red dots and the healthy class P1 is represented with green dots.
a The healthy class tends to a cluster structure that is separated from

the cluster defined by faulty class P3. b The faulty class P5 is also
separated from the healthy class. c Comparison between P1 and P8. d
Classes P1 and faulty class P10 are also clusters feasible for separation

Concerning the case of load L1, the cluster representing
an incipient fault P3 is shown in Fig. 15a. The points asso-
ciated to the faulty class are shown in red while the healthy
class is in green dots. Separation between both classes is
feasible by using a single surface. The case of a moderate
fault P5 is shown in Fig. 15b. The clusters could also be
clearly separated for this type of fault and their classification
is feasible.

Comparison between the healthy class and the severe fault
denoted P8 is shown in Fig. 15c. The points representing
P8 tend to form a cluster that could be separated from the
healthy class by using a machine learning algorithm. Finally,
a combined fault corresponding to class P10 is compared to
normal class P1 and it is shown in Fig. 15d. The cluster for
this type of fault could also be separated from the healthy
class P1 by using machine learning techniques.

Comparison between faulty classes also generates cluster
structures enabling separation between them. An example of
this fact is attained by comparing themulti-fault denoted P10
with the severe fault denoted P8. The comparison between
the cluster generated by fault P10 with respect to fault P8
is shown in Fig. 16. In this case, the clusters could be sepa-
rated and both faulty classes could be detected by using the
appropriate classification algorithm.

Cluster structure from features generated by using
algorithm 1 for the bearing dataset

The gear fault patterns in this experiment occupied larger
areas of damage producing greater changes in the vibra-
tion signals. In contrast, during incipient bearing fault the
damaged surface is smaller and the vibration signal changes
are weak (Hiroaki and Nader 2012). In this experiment, the
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Fig. 14 Comparison between the cluster structures for classes P10
(blue) and P8 (red) for load L1, by using the Algorithm 1 with signals
extracted from the gearbox dataset. Each faulty class forms a cluster in
the feature space amenable for classification (Color figure online)

three features were extracted considering the vibration sig-
nals measured by the accelerometer 1 for load L2 and a
comparisonbetweenhealthy class P1 andother faulty classes
is shown in Fig. 17 (see Table 2 for a description about the
simulated faults). The healthy class P1 is shown in green,
while the faulty classes are shown in red. Comparison of
cluster structures generated by classes P1 and P2 are shown
in Fig. 17a. The cluster structures of class P1 and P3 are
shown in Fig. 17b. The classes P1 and P5 are shown in
Fig. 17c. Similarly, the comparison between classes P1 and
P7 is shown in Fig. 17d. In all cases, the healthy class can
be separated from the faulty class by using a single surface.
In each of the plots in Fig. 17 the dots corresponding to each
of the classes tend to create three small clusters that corre-
sponds to changes in speed. The separation between the three
clusters for the faulty class is larger and their location is also
clearly separated from the clusters associated to the healthy
class.

Cluster structure from features generated by using
algorithm 2 for the bearing dataset

In a second experiment, theAlgorithm 2was used for extract-
ing three features from the vibration signal measured by the
accelerometer 1 for load L2. The healthy class P1 is com-
pared to the other faulty classes as shown in Fig. 18. Like the
comparison obtained for the bearing dataset using the algo-
rithm 1, the healthy class is represented in green dots while
the faulty classes are represented in red dots. In Fig. 18a, the
cluster for the healthy class P1 and faulty class P2 are com-
pared. Figure 18b shows the comparison of healthy class to
faulty class P3. The healthy class is compared to faulty class
P5 in Fig. 18c. Similarly, the cluster structures of P1 and P7

are presented in Fig. 18d. In all the cases, separation between
the healthy class and the faulty class is feasible by using the
appropriate machine learning technique. In this comparison,
the load is L2, however three different speed values are con-
sidered. The changes in speed are represented by using this
set of features as three small clusters that are clearly visible in
Fig. 18b. However, each of the sub-clusters representing the
healthy class is clearly separated from the corresponding sub-
cluster for the faulty class. The comparison between classes
P2, P5 and P7 shows that the sub-clusters for the healthy
class are grouped in a compact cluster while the points for the
faulty classes tend to create several sub-clusters. In all cases,
however, there is a clear separation between the healthy and
faulty classes.

Fault classification

Several alternatives for multi-class classification are avail-
able (Aly 2005). However, SVM is a highly robust and
successful classification algorithm (Burges 1998). The basic
SVM performs binary classification and extensions intended
for multi-class classification are also available (Aly 2005;
Escalera et al. 2010; Goyal et al. 2020;Wang and Gan 2017).

In this experiment of gearbox fault classification, ten
classes are considered while for the roller bearings dataset
seven classes are represented. In consequence, a multi-class
classification techniquewas applied usingMatlabmulti-class
ECOC Support Vector Machines (Escalera et al. 2010). The
multi-class SVM was trained using a Radial Basis Func-
tion (RBF). Even when the linear kernel could be useful for
performing binary classification, in this case we have a prob-
lem of multi-class classification where the separation surface
could become very complex requiring a more flexible ker-
nel. The best results were obtained by using the RBF kernel
compared to the linear and the polynomial kernel (Ali and
Smith-Miles 2006).

Evaluation of classification accuracy is necessary to assess
the classifier performance. This evaluation is performed by
subdividing the available data into two subsets: one for train-
ing and the other for testing the trained model (Blum et al.
1999). Three alternatives are usually considered (Kohavi
1995): hold-out, the k-fold cross-validation method and the
Leave-one-out technique. The preferred method is k-fold
cross-validation as it provides lower variance. Selection of
k is in general dependent on the data, however, k = 10 is
commonly used (Anguita et al. 2012).

The k-fold cross-validation is applied by subdividing ran-
domly the input data into k sub-samples that are mutually
exclusive and have approximately the same size. The proce-
dure consists in training the model with k − 1 sub-samples
and then testing it by using the sub-sample excluded during
the training phase. Repetition is performed k times using as
testing data one of sub-samples and training with the rest.
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Fig. 15 Results of the Algorithm 2 using signals from the gearbox
dataset: cluster structure for load L1. a Comparison between healthy
class P1 and faulty class P3. b Comparison between classes P1 and

P5. c Comparison between classes P1 and P8. d Comparison between
P1 and P10 (Color figure online)

Fig. 16 Comparison between the clusters of classes P10 (blue) and P8
(red) for load L1 with signals extracted from the gearbox dataset, by
using the Algorithm 2. Each faulty class forms a cluster in the feature
space amenable for classification

Evaluation of the classification results relies on sev-
eral metrics (Hossin and Sulaiman 2015). Such metrics are
defined on the elements of the confusion matrix (Sokolova
and Lapalme 2009). The accuracy as well as the area under
the Receiver Operator Curve (ROC) are important metrics
for assessing the classifier performance.

Fault classification of gearbox

Each of algorithms proposed were validated on four classifi-
cation experiments. The first experiment was performed by
considering the total number of 900 signals in the dataset. The
set of signals was partitioned at random into 10 equal sized
sub-sets (10-fold) with 90 signals. A single sub-set is used
for testing the trained model. The model is trained by using
the other 9 sub-sets of data. This process is repeated 10 times,
each time considering a different sub-set of data for testing
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Fig. 17 Results by using the Algorithm 1 applied on vibration signals
measured with accelerometer 1 in the bearing dataset. The acquisition
was performed by considering load L2. The cluster structure for points
of the healthy class P1 is compared to other faulty classes. Green dots
are used for points of the healthy class and red dots for the faulty classes.

a Comparison between healthy class and the faulty class P2. b Clus-
ter structures for the healthy class and faulty class P3. c Clusters for
healthy class and the faulty class P5. d Representation of the healthy
class and the faulty class P7. All faulty classes tends to form clusters
in the feature space that are amenable for classification

and the rest of data for training. This cross-validation pro-
vides 10 trainedmodels. The accuracy of the cross-validation
process is the averaged accuracy obtained by the 10 models.
The 10-fold cross-validation was also used for three exper-
iments at constant loads L1, L2 and L3 respectively. The
multi-class SVM was trained using a Radial Basis Function
(RBF) with σ = 0.10 in all experiments of gearbox faults
classification.

Fault classification of roller bearings

In this case, four classification experiments were consid-
ered for validating each of the proposed algorithms. The
multi-class classification of the set of seven bearings health
conditions was performed by the ECOC Support Vector

Machines algorithm. The roller bearings dataset was com-
posed by 45 signals for each of the 7 bearings health
conditions for a total of 315 recorded signals. The SVM
model was validated using tenfold cross-validation with a
Radial Basis Function (RBF) with σ = 0.07.

Similarly to the gearbox dataset, for the bearings dataset
the 10-fold cross-validation was also performed during three
faults classification experiments performed at constant loads
L1, L2 and L3. The Radial Basis Function (RBF) with σ =
0.18 was used in the experiments at constant load.

Evaluation of classifier performance

The standard method for evaluating the classifier perfor-
mance consists in calculating the confusion matrix obtained
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Fig. 18 Results by using the Algorithm 2 applied on vibration signals
measured with accelerometer 1 in the bearing dataset. The load of the
mechanical system is L2 and the featureswere extracted using theAlgo-
rithm 2. The comparison is performed between the healthy class and
the faulty classes. In all cases both clusters of points could be separated

using a single surface. a Comparison between healthy class and the
faulty class P2. b Clusters for healthy class and the faulty class P3.
c Cluster for the normal class and the faulty class P5. d Comparison
between cluster structures for class P1 and the faulty class P7

from the classifier using data from the test set (Sokolova
and Lapalme 2009; Tharwat 2018). Using the information
included in the confusion matrix enables calculation of per-
formance metrics for the classifier as well as the Receiver
Operator Curve (ROC) (Landgrebe and Duin 2008). In the
case of a multi-class classifier considering K classes Ck

with k ∈ {1, 2, ..., K }, the confusion matrix has dimension
K × K where each of the columns represents the target class
denoted Ck and each of the rows represents the estimated
class obtained as the output of the classifier. This output class
is denoted Ĉk . Examples of the confusion matrix are shown
in Fig. 21. The numbers along the main diagonal represents
the number of examples correctly classified for each of the
classes. These values are known as true positives for each of
the classes and they are denoted as T Pk . Concerning themis-

classified samples, the false negatives for class k are denoted
F Nk and it represents the samples thatwere not recognized as
belonging to the class k. This quantity is obtained by adding
along each column the cells that are different from the diag-
onal cell. Similarly, the false positives for class k are denoted
as F Pk and it represents the samples that were incorrectly
assigned to class k. Their calculation is performed by adding
along the rows, the cells that are different from the diago-
nal cell. The true negatives for class k are denoted T Nk and
it represents the samples with target labels different from k
that were correctly classified as belonging to an output class
different from k. Their calculation is attained by performing
the addition of cells in a sub-matrix excluding the row and
column k. Some of the performance metrics are presented in
Table 3.
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Table 3 Performance metrics for a multi-class classifier

Metrics Formula

Accuracy ACCk = T Pk+T Nk
T Pk+T Nk+F Pk+F Nk

Error rate E R Rk = F Pk+F Nk
T Pk+T Nk+F Pk+F Nk

Sensitivity SNk = T Pk
T Pk+F Nk

Specificity S Pk = T Nk
T Nk+F Pk

False negative rate F N Rk = F Nk
F Nk+T Pk

False positive rate F P Rk = F Pk
F Pk+T Nk

Precision Pk = T Pk
T Pk+F Pk

F1-score F1 − S = 2P∗SN
P+SN

Results

Fault classification results for the algorithm 1

Gearbox fault classification

The results concerning all vibration signals in the gearbox
dataset attained a classification accuracy of 91.8 %. In this
experiment, the lag value was set as τ1map = 24. The
Receiver Operator Curve (ROC) for results obtained during
the classification is shown in Fig. 19a. The highest accuracy
of classification is attained by classes P1, P2, P3 and P5
which are healthy and incipient faults. The accuracy of faults
P6, P9 and P4 is in the middle and finally, the lower accu-
racy is attained by faults P7, P8 and P10.

Results for the experiments concerning the gearbox fault
classification at constant load attained classification accu-
racies up to 95.7% (load L1), 96.0% (load L2) and 99.3%
(load L3). In each experiment, the lag value was also set as
τ1map = 24. The accuracy obtained at load L3 is the highest
with respect to the other loads. The confusionmatrix obtained
at load L3 using the Algorithm 1 is shown in Fig. 21a. The
lower right cell presents the average accuracy corresponding
to 99.3% and the average error of 0.7%. The bottom row of
the confusionmatrix reports the specificity and false negative
rate for each of the classeswhile the rightmost column reports
the sensitivity and false positive rate. The cells of the matrix
includes the number of examples obtained as result of the
cross-validation process. These values are used for calculat-
ing several performance metrics as explained in “Evaluation
of classifier performance” section.

Results concerning the performance metrics obtained
from the confusion matrix obtained in the experiment at load
L3 are presented in Table 4. The second column represents
the false negative rate. Classes P8 and P10 have a FNR of
3.3%, the rest of classes have a value of 0.0%. The third
column shows the FPR with values of 3.2% for classes P4
and P5, while the rest of classes have a value of 0.0%. The

sensitivity is presented in the fourth column with values of
96.8% for classes P4 and P5, while the rest of classes have
a value of 100%. The specificity for classes P8 and P10 is
99.6% while the rest of classes have a value of 100%.

The resultant ROC for load L3 is shown in Fig. 20a. The
performance of the classifier shows two groups: classes P8
and P10 have the lowest performance of 96.8% while the
rest of classes attain a value of 100%.

Bearings fault classification

The first classification experiment on bearings faults consid-
ered all the 315 signals in the dataset. The Algorithm 1 was
used with the lag parameter set as lag1map = 25. The Radial
Basis Function (RBF) parameter was set as σ = 0.07 for
training the multi-class SVM. The total classification accu-
racy was 91.4%. Results concerning the ROC are shown in
Fig. 19c.

The second fault bearing classification experiment was
performed at constant load by using features from the Algo-
rithm 1. The lag parameter was set as τ1map = 25. A Radial
Basis Function (RBF) with σ = 0.18 was used for training
themulti-class SVM. The total accuracy obtained was 93.3%
( load L1), 98.1% (load L2) and 98.1% (load L3). Results in
terms of the confusion matrix are shown in Fig. 22a for load
L2. The classes P1 and P7 attained the higher FNR value
of 6.7% and the lowest specificity of 93.3%. The specificity
for the rest of classes is 100%. Classes P4 and P6 attained
the higher FPR value of 6.3% and the lowest sensitivity with
a value of 93.8%. The the rest of classes attained a sensitiv-
ity of 100%. Results concerning ROC are shown in Fig. 20c
considering the load L2. Classes P4 and P6 attained the
lower performance of 93.3% while rest of classes attained a
performance of 100%.

Fault classification results for the algorithm 2

Gearbox fault classification

The classification accuracy is 91.8% for the first experiment
considering all signals in the gearbox dataset. The param-
eter corresponding to the lag value is set as τpeak = 10.
This value is different from the optimal value used for the
case of constant load (this selection will be further discussed
in “Accuracy as function of the lag” section). The Receiver
Operator Curve for this experiment shows that classification
accuracies higher than 95% are attained by classes P1, P3,
P4, P5 as shown in Fig. 19b. The lowest accuracy of classi-
fication is attained by classes P6, P7, P8, P9 and P10 with
classification accuracies between 80% and 90%.

The classification of gearbox faults for three experiments
performed at constant load, provided classification accura-
cies of 99.3% ( L3), 94.3% ( L2) and 92.3% (L1). The lag
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Fig. 19 Receiver Operator Characteristic (ROC) by using SVM classi-
fier. a ROC for the first experiment of faults classification using features
fromAlgorithm 1. All signals in the gearbox dataset were considered. b
ROC for the experiment using features extracted from the Algorithm 2.
All signals in the gearbox dataset were considered. c Results concern-

ing the ROC by using all signals in the bearings dataset. The features
extracted from theAlgorithm 1were used for training and validating the
SVM. dROC from the SVMmodel trained and validated using features
extracted from Algorithm 2 using all signals in the bearing dataset

value was set to τpeak = 30. The results of the confusion
matrix for load L3 are shown in Fig. 21b. In Table 5, the
metrics calculated from the confusion matrix are presented.
The second column represents the false negative rate with
higher values attained by P3 and P8 with values of 3.3%.
The false positive rate is shown in third column with higher
values attained by class P6 with a value of 6.3%. The sen-
sitivity is shown in the third column with a lower value of
94.8% attained by class P6. The rest of classes have the high-

est value of 100%.The specificity is shown in the fifth column
with a lowest value for classes P3 and P8 with 99.6%. The
rest of classes attain a value of 100%.

Results concerning theROC for the SVMclassifier trained
with features extracted by using the Algorithm 2 from vibra-
tion signals of the gearbox at load L3 are shown in Fig. 20b.
The lowest performance of the classifier corresponds to
classes P3 an P8 with an accuracy of 99.6%. The accuracy
for the rest of classes is 100%.
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Table 4 Performance metrics obtained with Algorithm 1 for load L3
in the gearbox dataset

Class FNR FPR Sensitivity Specificity

P1 0.000 0.000 1.000 1.000

P2 0.000 0.000 1.000 1.000

P3 0.000 0.000 1.000 1.000

P4 0.000 0.032 0.968 1.000

P5 0.000 0.032 0.968 1.000

P6 0.000 0.000 1.000 1.000

P7 0.000 0.000 1.000 1.000

P8 0.033 0.000 1.000 0.996

P9 0.000 0.000 1.000 1.000

P10 0.033 0.000 1.000 0.996

Bearing fault classification

The first classification experiment of roller bearing faults
considered all 315 signals in the dataset. The Algorithm 2
was usedwith the lag parameter set as τ1map = 25. TheSVM
classification model was trained using a Radial Basis Func-
tion (RBF) with σ = 0.09. The total classification accuracy
was 89.8%. The lowest classification accuracy is attained by
P7 while the highest accuracy is obtained by classes P6 and
P5. Results expressed in terms ofROCare shown in Fig. 19d.

Three additional bearing fault classification experiments
were performed at constant load with features by using the
Algorithm 2. The lag parameter was set as τ1map = 25. A
Radial Basis Function (RBF) with σ = 0.15 was used for
training SVMmodel. A total accuracy of 87.6%was obtained
with L1, the accuracy for load L2 was 100.0% while for L3
the accuracy was 94.3%. Results concerning the confusion
matrix using signals at load L2 are shown in Fig. 22b. The
values of specificity are 100% for all classes while the FNR is
0.0%. Similarly, the sensitivity is 100% and the FPR is 0.0%
for all classes. The ROC for this experiment considering load
L2 is shown in Fig. 20d. In this experiment, the Algorithm 2
enables a perfect classification with only three features.

Accuracy as function of the lag

The effect of the lag selection on the accuracy of the gearbox
faults classification was investigated. The accuracy is esti-
mated and plotted as a function of the lag for the Algorithm
1. The analysis concerning τ1map was performed consid-
ering all vibration signals as well as for loads L1, L2 and
L3. Results are shown in Fig. 23a. The highest accuracy
is attained for load L3. There is a global maximum at
τ1map = 24 with an accuracy of 99.3% and two local max-
imums at τ1map = 45 and τ1map = 62 with accuracies of
98%. The maximum accuracy attained for load L2 is 97.3%

at τ1map = 40 and for load L1 the maximum accuracy is
96.3% at τ1map = 45. The accuracy of classification consid-
ering all vibration signals is lower with a maximum of 91.8%
at τ1map = 24. In general, the higher accuracy for this algo-
rithm is obtained considering values for the lag between 20
and 40 samples.

The lag selection analysis was also performed for Algo-
rithm 2 (τ2peak) considering all gearbox vibration signals as
well as for loads L1, L2 and L3. Results are shown in Fig.
23b. The highest accuracy is attained for load L3. There is a
global maximum at τ2peak = 30 with an accuracy of 99.3%
and two local maximums at τ2peak = 10 with an accuracy of
98 % and τ2peak = 65 with an accuracy of 98.7%. The max-
imum accuracy attained for load L2 is 97 % at τ2peak = 35
and at τ2peak = 65. The load L1 attained a maximum accu-
racy of 95.0% at τ2map = 15. The accuracy of classification
considering all vibration signals is lower with a maximum of
91.8% at τ2peak = 10. In general the higher accuracy for this
algorithm is obtained considering values for the lag between
5 and 35 samples.

An experiment concerning the effect of the lag selection
on the accuracy of the bearing fault classification was also
performed. The variation of the accuracy of classification for
the Algorithm 1 as a function of the lag (τ1map) was studied
for the bearing dataset considering all signals as well as for
loads L1, L2 and L3. Results of this experiment are shown in
Fig. 23c. Higher accuracies are obtained for loads L2 and L3
with values of 99% and 98.1% respectively. The classifica-
tion accuracy is lower considering all vibration signals in the
roller bearings dataset. However, the accuracy is higher than
90%. The larger classification accuracies are obtained for lag
values between 15 and 80 samples. The variation of the accu-
racy on bearing faults classification was also investigated for
the Algorithm 2. When the features for fault classification
are extracted by using the Algorithm 2, the resultant accu-
racy is shown in Fig. 23d. The highest accuracy of 100%
is attained by the Algorithm 2 considering load L2 when
τ2peak = 25. The maximum accuracy considering the load
L3 is 97.14% when τ2peak = 35. Algorithm 2 attains an
accuracy of classification of 90.5% considering the load L1
when τ2peak = 35. The maximum accuracy with all sig-
nals in the bearing dataset is 89.5% when τ2peak = 35. In
general, the best classification results with Algorithm 2 are
considering a lag value between 15 and 40 samples when
dealing with faults in the bearing dataset.

Algorithms performance comparison

A comparison in terms of the confusion matrix is shown in
Figs. 21 and 22. Figure 21 reports the confusion matrices
obtained by using the Algorithm 1 and Algorithm 2 for the
gearbox dataset at load L3. Both confusion matrices were
obtained during the cross-validation process and reports the
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Fig. 20 Results concerning the ROC for the SVM model using vibra-
tion signals acquired at a constant load. a ROC for the model trained
with features extracted by using the Algorithm 1. The vibration signals
correspond to the gearbox dataset at load L3. The average accuracy is
99.3%. bROC for themodel trainedwith features extracted by using the
Algorithm 2. The vibration signals correspond to the gearbox dataset at

load L3. The average accuracy is 99.3%. c ROC by using signals in the
roller bearings dataset at load L2 and features extracted by using the
Algorithm 1. The average accuracy is 98.1%. d ROC by using signals
in the bearings dataset at load L2, and features extracted by using the
Algorithm 2. The average accuracy is 100%

average accuracy as well as other metrics calculated includ-
ing FNR, FPR, sensitivity and specificity. These results were
discussed in “Results” section. In terms of the average accu-
racy the results are similar for both algorithms corresponding
to 99.3%. Figure 22 shows the confusionmatrices comparing
Algorithm 1 and Algorithm 2 for the bearing dataset at load
L2. The average accuracy attained by algorithm 1 is 98.1%
while the Algorithm 2 has an average accuracy of 100%.

Results concerning the classification accuracy for gearbox
faults is presented in Table 6, when the classification is per-
formed based on all vibration signals. The results are almost
similar for both algorithms as the result provided by Algo-
rithm 1 is 91.33% while the result provided by Algorithm 2
is 91.78%. Other results presented are the average error of
8.67%, the average specificity of 99.04%, the average preci-
sion of 91.96%. The F1-score is 93.10% while the average
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Fig. 21 a Results for gearbox faults classification using features extracted by using the Algorithm 1 at load L3. The accuracy is 99.3%. b Results
for gearbox faults classification at load L3 by using features from the Algorithm 2. The classification accuracy is 99.3%

Table 5 Performance metrics obtained with Algorithm 2 with signals
at load L3 in the gearbox dataset

Class FNR FPR Sensitivity Specificity

P1 0.000 0.000 1.000 1.000

P2 0.000 0.000 1.000 1.000

P3 0.033 0.000 1.000 0.996

P4 0.000 0.000 1.000 1.000

P5 0.000 0.000 1.000 1.000

P6 0.000 0.063 0.948 1.000

P7 0.000 0.000 1.000 1.000

P8 0.033 0.000 1.000 0.996

P9 0.000 0.000 1.000 1.000

P10 0.000 0.000 1.000 1.000

FPR is only 0.96%. The best results of the Algorithm 1 are
attained at load L3 corresponding to an accuracy of 99.33%,
the average error of 0.67%, an average specificity of 99.93%
and an average FPR of 0.07%. The results obtained using
the Algorithm 2 for the case concerning the fault classifica-
tion using all the signals is an average accuracy of 91.78%,
which is very close to the results provided by Algorithm 1.
The maximum average accuracy for the Algorithm 2 is sim-
ilar to the accuracy obtained by Algorithm 1, however there
are differences concerning the accuracy of classification for
each of the classes as shown in Fig. 21. Accuracy for the
Algorithm 1 at loads L1 and L2 are 95.67% and 96.00%
respectively while the accuracy with Algorithm 2 for these
loads are 92.33% and 94.33% respectively.

The fault classification results for bearing are shown in
Table 7. The accuracy attained by Algorithm 1 (91.43%)
is slightly higher with respect to the accuracy of 89.84%
provided by the Algorithm 2. Results for the bearing dataset
at a constant load are highest for load L2 and Algorithm 2,
which attains an accuracy of 100%while the highest accuracy
for the Algorithm 1 is 98.1%.

Results concerning the accuracy of the Poincaré based
classification methods applied to the gearbox dataset are
close to results attained by other methods using the same
dataset. However, the proposed approach performs the clas-
sification by extracting only three features.

One of themethods that uses the same gearbox dataset was
reported in Sánchez et al. (2018). In this research, features
in the time domain are used for classification. According to
the ranking of features, at least four features are required for
overcoming 91% of accuracy for both K Nearest Neighbors
(KNN) and Random Forests (RF) classifiers, while in this
work, with only three features the accuracy is higher than
91%. Other method using the same gearbox dataset has been
reported inCerrada et al. (2016a). In that research the classifi-
cation was performed based on a subset 12% of 811 features.
Several machine learning techniques were compared and a
classification accuracy of 98%was attained by usingRandom
Forest classifiers. The gearbox dataset was also analyzed in
Li et al. (2015b). In that research, the machine learning tech-
nique was Multimodal Deep Support Vector Classification
(MDSVC) and the trained model provided a classification
accuracy of 97.08%. Additional research was reported in
Pacheco et al. (2016) where a set of multimodal homolo-
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Fig. 22 a Results of the confusion matrix by using Algorithm 1 for
load L2. In this experiment the features are extracted from the bear-
ing dataset. The total accuracy is 98.1% b Results concerning the fault

classification with features by using the Algorithm 2 at load L2. The
features were extracted from vibration signals from the bearing dataset.
The total accuracy is 100.0%

Table 6 Gearbox classification
accuracy for the proposed
algorithms (in percent)

Algorithm Load Accuracy Error Specificity Precision F1-Score FPR

Algorithm 1 All 91.33 8.67 99.04 91.96 93.10 0.96

L1 95.67 4.33 99.52 95.92 95.64 0.48

L2 96.00 4.00 99.56 96.64 96.13 0.44

L3 99.33 0.67 99.93 99.35 99.33 0.07

Algorithm 2 All 91.78 8.22 99.09 92.70 91.90 0.91

L1 92.33 7.67 99.15 92.62 92.15 0.85

L2 94.33 5.67 99.37 94.59 94.35 0.63

L3 99.33 0.67 99.93 99.38 99.33 0.07

Table 7 Roller bearings
classification accuracy for the
proposed algorithms (in percent)

Algorithm Load Accuracy Error Specificity Precision F1-Score FPR

Algorithm 1 All 91.43 8.57 98.57 91.83 91.36 1.43

L1 93.33 6.67 98.89 94.15 93.10 1.11

L2 98.10 1.90 99.68 98.21 98.09 0.32

L3 98.10 1.90 99.68 98.21 98.09 0.32

Algorithm 2 All 89.84 10.16 98.31 90.43 89.85 1.69

L1 87.62 12.38 97.94 88.05 87.34 2.06

L2 100.00 0.00 100.00 100.00 100.00 0.00

L3 94.29 5.71 99.05 94.81 91.39 0.95
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Fig. 23 a Accuracy of classification by using features extracted from
Algorithm 1 as a function of the lag for the gearbox dataset considering
all signals as well as loads L1, L2 and L3. b Variation of the accuracy
as a function of the lag between peaks for the Algorithm 2 considering

the vibration signal in the gearbox dataset. c Variation of the accuracy
of classification for the Algorithm 1 as a function of the lag considering
vibration signals in the bearing dataset. d Variation of the accuracy on
bearing faults classification using the Algorithm 2

gous features were used. In that research, the set of features
extracted from the vibration signals included time, frequency
and time-frequency features. A set of 330 features were
selected froma total 817 features and several algorithmswere
compared considering genetic algorithms, entropy based
algorithms, linear discriminant, principal components, ran-
dom forests and non-negative matrix factorization. The best
results were obtained by using Random Forest algorithms.
The method using symbolic dynamics reported in Medina
et al. (2019) performed the faults classification using the
same gearbox dataset with a set of features corresponding
to an array with twelve elements. The highest accuracy was
99.78% by considering all signals in the dataset at constant
load to obtain accuracies up to 100.0%. This method also
extracts the features from the Poincaré plot and the main
difference concerning the results is related to the case con-
sidering all signals in the dataset. The accuracy attained with
the method proposed in this paper is lower, however, only
three features are considered and the accuracy is higher than
91%.

Concerning the bearings fault classification reported in Li
et al. (2016b), the authors report a method for fault classifica-
tion by using a Gaussian-Bernoulli deep Boltzmannmachine
(GDBM). Such a method is able to learn from statistical
features extracted from vibration signals in time-domain,
frequency-domain and time-frequency domain. The reported
average accuracy for the bearing dataset is 79.98% with a
maximum value of 91.75%. This accuracy is close to the
value obtained by the algorithms reported in this document
considering all signals and using only three features. In con-
trast, we have shown that using signals acquired at load L3
the average accuracy can be as high as 100% by considering
only three features.

Conclusions

In this paper, we proposed a new feature extraction approach
using Poincaré plots from vibration signals. The proposed
method is useful for gearbox and roller bearing fault classi-
fication. The cluster structure generated in the feature space

123



Journal of Intelligent Manufacturing (2022) 33:1031–1055 1053

was analyzed showing that such structure is amenable for
classification tasks. Two algorithms were presented for fea-
ture extraction. Both extraction methods rely on using only
three features for performing the fault classification. The fea-
tures extracted describe the shape of the Poincaré plot. Two
of the features are the classical SD1 and SD2 dispersion
measures and the third feature is the area of the convex hull
shape of the Poincaré plot.

The proposed algorithms attained a highest accuracy of
99.3 % when the fault classification is performed by using
the gearbox dataset. Similarly, for the roller bearing dataset
the highest classification accuracy is 100%. In the previous
cases, the vibration signals are considered at a constant load.

The case concerning the feature extraction using all vibra-
tion signals in the datasets provided the following results:
the accuracy of Algorithm 1 is higher than 91.3% for both
gearbox and roller bearing fault classification. In this case,
the Algorithm 2 has an accuracy of 91.8% for classifica-
tion of gearbox faults and 89.8% for classification of roller
bearing faults. The accuracy of both algorithms is higher
than 90 % for lag values selected according to the procedure
explained in “Criteria for the lag selection in Poincaré plots”
section. The Algorithm 2 has a higher computational cost
than the Algorithm 1. Such computational cost is necessary
for extracting the signal peaks from the input vibration sig-
nal. The peaks extraction stage is equivalent to perform a
non-uniform subsampling of the input signal. This interme-
diate result represented by a new time series, retains relevant
information concerning the faults. In consequence, further
research is needed aimed at proposing other feature extrac-
tion methods. In that sense, Algorithm 2 open new research
avenues that could be explored for gearbox and roller bearing
fault classification.

Both algorithms provide features that enables excellent
classification accuracy by using multi-class support vector
machines. The accuracy of classification is dependent on the
load. Concerning the gearbox fault classification experiment,
the highest classification accuracy is attained with the high-
est load corresponding to L3 when the Algorithm 1 is used.
The highest accuracy for the roller bearing fault classifica-
tion experiment is attained using the load L2. The accuracy
of fault classification considering all the vibration signals
is lower, however, both algorithms attain an accuracy higher
than 89.84%with only three features for fault classification in
gearboxes or roller bearings. It is expected that combination
with other features could allow increasing the classification
accuracy considering all vibration signals independent from
the load.

Comparison with respect to other more complex classifi-
cationmethods tested with the same databases shows that the
algorithms proposed in this paper attain better classification
results considering only three features.

The feature extraction method that we are proposing is
simple and accurate. Their application could be extended
for extracting features from other types of signals recorded
from roller bearings and gearboxes as well as other types of
machines such as reciprocating compressors.

The Poincaré plot is susceptible of providing other fea-
tures that could be useful for rotating machinery fault
classification. The future research is aimed at studying the
extraction of other features and their possible incorporation
within the fault classification procedures.

Fault severity classification in gearboxes (Sun et al.
2016) is also important for assessing their structural health.
Application of the proposed algorithms for fault severity clas-
sificationwithin a data fusion framework is part of the current
research work performed at our laboratory.
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