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Abstract
Powder Bed Fusion (PBF) has emerged as an important process in the additive manufacture of metals. However, PBF is
sensitive to process parameters and careful management is required to ensure the high quality of parts produced. In PBF, a
laser or electron beam is used to fuse powder to the part. It is recognised that the temperature of the melt pool is an important
signal representing the health of the process. In this paper, Machine Learning (ML) methods on time-series data are used to
monitor melt pool temperature to detect anomalies. In line with other ML research on time-series classification, Dynamic
Time Warping and k-Nearest Neighbour classifiers are used. The presented process is effective in detecting voids in PBF. A
strategy is then proposed to speed up classification time, an important consideration given the volume of data involved.

Keywords Process monitoring · Classification · Time-series

Introduction

This study is focused on metal powder printing, an addi-
tive manufacturing process that is having a high impact in
industries such as automotive, aerospace and biomedical. In
additive manufacturing, functioning parts can be produced
directly from a computer aided design model without the
need for moulding or prototyping. The PBF process is shown
in Fig. 1. The part is built as the laser traces out the part in
layers in the powder bed.

The overall process is complex and build quality is very
sensitive to process parameters (Aminzadeh and Kurfess
2019; Kwon et al. 2020). For this reason, there has been
considerable research on analytics methods for in-situ mon-
itoring to detect the onset of defects. Grasso and Colosimo
(2017) provide a comprehensive review of this research. It is
clear that the temperature of themelt pool is an important sig-
nal for monitoring build quality. In this paper we explore the
hypothesis that anomalies such as pores can be detected by
identifying characteristic signatures in melt pool time-series
data.
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While the ultimate objective is to detect pores arising from
incorrect process parameter, the data analysed here comes
from blocks containing voids by design. The size of these
voids is set to correspond to the size of pore defects arising
during normal PFBmachine part production. The fact that the
void locations are known by design provides a ground-truth
to assess the performance of the ML methods.

Our analysis uses data from theAconityMINI 3Dprinter.1

The temperature data comes from pyrometers that mon-
itor melt pool temperature. Two pyrometers supplied by
KLEIBER Infrared GmbH detect the heat emission light in
the range of 1500 to 1700nm via two detectors. The pyrom-
eters track the scan of the laser to provide a time-series (see
Fig. 2) sampled at 100Hz. Based on our core hypothesis that
the presence of pores will have characteristic signatures in
the pyrometer time-series data, the pore detection task is cast
as a time-series classification problem. The void shown in
Fig. 2a shows up as a dip in the time-series in Fig. 2b and c.
So the signatures are dips of varying size in the time-series.
Other types of defect could show up as spikes in the time-
series, e.g. when the void results from a rise in melt-pool
temperature due to laser beam power instability issues. The
same time-series classification strategy will apply.

Many ML methods are not applicable for time-series
classification because they require a feature vector repre-
sentation. However, variable length time-series data can by
handled by k-Nearest Neighbour (k-NN) classifiers if effec-

1 https://aconity3d.com/products/aconitymini/
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Fig. 1 The powder bed fusion process

tive distance measures can be identified. We evaluate three
candidate distancemeasures (see “Machine learning on time-
series data” section) and find that Dynamic Time Warping
(DTW) is effective for this PBF data. A standard print run
produces a vast volume of data and DTW is computationally
expensive so we evaluate a number of strategies to speed up
the classification process.

The PBF process and the data we use for our analysis is
described in more detail in the next section. In “Machine
learning on time-series data” section we review the relevant
MLmethods and in “Evaluation” sectionwe present our eval-
uation.

3D Printing using PBF

In PBF, parts are designed by using CAD software, the CAD
model is then saved in a file format which the metal 3D
printer will accept. The model is then sliced into two dimen-
sional layers which the fusion source (e.g. laser beam) traces
out during part production. The total number of layers is
equal to the maximum height of the part divided by the layer
thickness. The laser melts the metal powder particles at the
positions where the 2D plane intersects with the part, hence
the term selective laser melting (SLM) which is also used to
describe the process. Once the fusion of the layer is com-
pleted, the build plate moves down a distance equal to the
layer thickness and a new powder layer is spread onto the
previously sintered 2D layer (see Fig. 1). During the melt-
ing of the new layer, part of the previously solidified layer is
re-melted to enhance the chemical bonding in a process sim-
ilar to the micro-welding. The melting and deposition of the
metal powder layers continues through the full set of layers
in the slice file until the 3D part is completed.

An important advantages of the AM manufacturing
method over conventional methods is the material saving.
In AM, only the exact amount of metal powder required in

[Raster scan of a block when the layer is printed.]

[Raw temperature series of a single raster scan
going through the void.]

[Filtered temperature series of a single raster scan
going through the void.]

a

b

c

Fig. 2 Representation of the data collected during additive-
manufacturing of a stainless steel block. The heatmaps show the voltage
signal from the pyrometer which is directly proportionate to the tem-
perature

the part volume will be used. The un-fused powder can be
recycled and used in the manufacture of other parts. Also,
parts made of several components can be designed and man-
ufactured in a single build process and thus overcome the
need for assembly which is required when using the conven-
tional methods (Fitzsimons et al. 2019). On the other hand,
due to the long build time, additive manufacturing is not typ-
ically economical when mass scale production is required
compared to other methods like die casting and metal injec-
tionmoulding. In addition AM requires a significant up-front
investment in machinery and some specialised powders are
expensive compared to conventional feedstock (Bose et al.
2018; Demir et al. 2017).
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Issues with PBF

Despite the progress in metal AM technology, the challenges
for achieving optimal process control are still considerable.
There are still difficulties in achieving process repeatability.
Difficulties can relate to porosity, grain and microstructure
defects, and with grain orientation and compositional control
(Bhavar et al. 2017; Gibson et al. 2014; Mani et al. 2017).
In PBF, thermal gradients are controlled via liquid, semi-
solid and gaseous convection, conduction through the part
and powder, and the input heat source fluence and scan strat-
egy.

Variations in part structure and properties are seen in parts
using the same make and model of metal AM machines
evenwhen the same processing parameters are applied.Other
factors that lead to reduced process repeatability include vari-
ability in themetal powder supply, the build chamber volume
and the arrangement of the partswithin the build chamber, the
inert gas flow design and flow rate, oxygen gas content and
the build chamber global temperature. Given these complex-
ities, in order to control the process, in-situ monitoring of the
build process is required. Data can be gathered and analysed
in real time in order to anticipate defects. The response may
be to generate an alarm or even alter process parameters to
avoid defects.

For our analysis we use a similarmethodology to that used
by Grasso et al. (2018). They used a thermal infrared camera
to capture images and measure data from the build process
of 5mm zinc cubes at a frequency of 50 Hz. The aim of their
study was to anticipate out-of-control conditions.

PBFmonitoring usingmachine learning

Grasso and Colosimo (2017) provide a review of commercial
tools for PBF process monitoring. State-of-the-art systems
provide for in-situ sensing and somepost-process data report-
ing. In principle, process parameter adjustments could be
made between layers if the data analytics could be completed
on time (Mani et al. 2017).

Figure 2 helps illustrate what this would entail in our
framework. The data to be analysed for each layer is the
pyrometer data for that layer (Fig. 2a). Our strategy is to
divide the layer data into individual scans and classify indi-
vidual scans as normal or anomalous. Theparts analysedhave
approximately 85 lines/scans in each layer. Really short scans
are excluded from consideration leaving on average 57 scans
to be analysed for each layer. Each of these scans is repre-
sented as a time-series and these time-series can be classified
as anomalous or normal using the ML methods described in
“Machine learning on time-series data” section.

Applying the algorithm speedup described in “k-NN
speedup” section , a time-series for a scan takes 0.8ms to clas-
sify. So checking a single layer takes approximately 45ms. It

Table 1 Summary of the data per group

Name Pore size (mm) #Pore #No pore

Plarge 0.4, 0.5, 0.6 1221 2366

Psmall 0.1, 0.05 249 632

Fig. 3 Picture of 5mm stainless steel (316L) cube variants produced
using the Aconity MINI 3D printer with pyrometer data for analysis

takes 10 to 20 seconds to print a layer so the ML assessment
is much faster than the printing process. This would allow
for an intermittent controller method of processing, whereby
after each layer is processed, the areas where void defects
were detected would then be retraced in order to remelt the
surface and close off the pore.

Detecting pores

For our first analysis we consider the six 5mm cubes in the
Plarge dataset—see Table 1 and Fig. 3. These contain voids
of size 0.4, 0.5 and 0.6mm as can be seen in the figure.
The objective is to detect the voids in the pyrometer data—
sample pyrometer signals are shown in Fig. 2. The pyrometer
sampling frequency is 100 kHz. This produces a melt pool
temperaturemeasurement every 10μs; e.g. onemeasurement
in each one micron in the x and y directions based on a scan-
ning speed of 1000 mm/s. For the purpose of classification,
time-series samples are extracted as explained in “PBFmon-
itoring using machine learning” section. The Plarge dataset
contains 1221 samples with pores and 2366 samples without
pores.

The data is organised into two datasets as summarised in
Table 1. The Plarge dataset covers large pores (0.4–0.6mm).
For these cubes, the laser is set at 180W, the scanning speed
was 800mm/s and the layer thickness was 20μm. The The
Psmall dataset covers small pores (0.05–0.1mm) with the
same process parameters except the thickness is set at 40μm.

It is clear from the graph in Fig. 2 b that the pyrometer data
was quite noisy. For this reason we considered two versions
of the data, the raw data and filtered data passed through a
low-pass Butterworth filter (sample rate = 100Hz, cutoff =
10Hz and order = 4).

123



848 Journal of Intelligent Manufacturing (2022) 33:845–852

Machine learning on time-series data

Time-series data presents a significant challenge for ML
becausemost of the state-of-the-artMLmethods require data
in a feature vector format. This is true for both supervised
(Bagnall et al. 2017) and unsupervised (Aghabozorgi et al.
2015; Wu et al. 2005) ML research on time-series data. In
this research we have access to labeled data so we are frame
the task as a supervised ML problem.

Variable length time-series can be ‘normalized’ into a
feature vector but, as we will see in Fig. 8, results using
Euclidean distance on normalised time-series data are not
very good. However variants on nearest neighbour methods
(k-NN) and kernel methods are applicable if appropriate dis-
tance metrics or kernel functions can be identified (Bagnall
et al. 2017).

In this study we focus on k-NN and on effective distance
measures for time-series. Because these distance measures
are computationally expensive we also consider methods for
speeding up k-NN.

Distancemeasures for time-series

Our evaluation covers three distancemeasures that have been
developed for time-series data. These are Dynamic Time
Warping, Symbolic Aggregate approXimation and Sym-
bolic Fourier Approximation. These are each described here;
before that we discuss how Euclidean distance can be made
work for time-series data.

Making Euclidean distance work

Euclidean distance is probably the most popular distance
metric in ML however, as stated already, it is not directly
applicable with time-series data. It is not suitable because
it forces an alignment of the time-series points. It will not
even be applicable if the time-series are of different lengths.
Multiple techniques are present in the literature to handle this
variability in the series data, a few of which are as follows:

1. Padding Padding is the most popular choice in the liter-
ature, it involves extending short series with fixed value
entries. The padding is done either at the start (pre-
padding), or the end (post-padding) or at both ends. It
is normal to pad with zeros but the mean or the median
of the series can be used as well.

2. Truncation An alternative strategy is to truncate longer
series. Again, the truncation can be done from the start
(pre-truncation), the end (post-truncation), or both.

3. Interpolation This strategy indicates interpolating all the
series to the length of the longest series present in the
dataset. Interpolation is achieved by using curve-fitting
functions, such as splines or least-squares, to name a few.

Fig. 4 Dynamic TimeWarping; a Two similar time-series—Euclidean
distance is small. b Two similar time-series displaced in time—
Euclidean distance is large. c An example DTW mapping for the two
time-series in b

In this study, we employ a combination of Truncation
and Padding techniques to allow Euclidean distance to be
used. The canonical length is set to 259 and series are post-
truncated or post-padded with zeros as appropriate. Series of
length less than 100 are removed.

Dynamic time warping

The problem with using Euclidean distance on time-series
data is illustrated in Fig. 4. Euclidean distance is effective if
two time-series are very well aligned (see Fig. 4a). How-
ever, if the two time-series has even a small misalignment, it
can result in a sizeable Euclidean distance (Fig. 4b). DTW
attempts to address this misalignment by providing us with
flexibility of mapping the data-points in a non-linear fashion
(Fig. 4c) (Mahato et al. 2020).

The DTW computes the distance between two time-series
q and x as follows:

DTW (q, x) = min
π

√ ∑
(i, j)∈π

d(qi , x j )2 (1)

where π = [π1, . . . , πl , . . . , πL ] is the optimum path
(mapping) having the following properties:

– t1 = |q|, t2 = |x|
– π1 = (1, 1), πL = (t1, t2)
– πl+1 − πl ∈ {(1, 0), (0, 1), (1, 1)}

DTWconstructs a cost matrix where it populates each cell
(i, j) with the distance between qi and x j . The algorithm
then finds the shortest path through the grid. The cumula-
tive distance along this path is the overall distance between
the two time-series. The magnitude of the deviation from the
actual diagonal of the matrix reflects the warping. The com-
putational complexity of the DTW algorithm is O(t1, t2) as
it involves a search through the matrix. This complexity is
effectively O(t2) in the average length of the time-series—
so DTW is computationally expensive. The performance of
DTW is enhanced by employing the Sakoe and Chiba (1978)
global constraint in the model. This reduces the time and
memory complexity of the algorithm.
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Fig. 5 Symbolic Aggregate Approximation; The raw time-series in a
will be represented by the sequence edeecbbbaa in c

Symbolic aggregate approximation

There has been considerable research in the past decade
on developing symbolic representations for time-series data.
The main motivation is to use the potential of already estab-
lished text processing algorithms to solve time-series tasks.
A summary of such methods is provided by Lin et al. (2003).

Symbolic Aggregate Approximation (SAX) is one such
algorithm which works by converting a time-series into a
sequence of symbols. It also tries to obtain dimensionality
and numerosity reduction (i.e. more compact representation)
of the original time-series. Such transformations present a
distance measure which is lower bounding on corresponding
measures on the original series (Lin et al. 2003).

SAX employs the Piecewise Aggregate Approximation
(PAA) discretisation technique for dimensionality reduction.
Due to the difficulty in comparing two time-series of different
scales, SAX normalises the original series so that the mean is
zero and the standard deviation is one, before passing to PAA
for transformation (Lin et al. 2003;Keogh andKasetty 2002).
SAX passes the PAA transformed series through another dis-
cretisation procedure that converts them into symbols.

Following the transformation of all the time-series data in
our dataset into their symbolic representation, we can readily
compute the distance between two time-series by using any
string metric. One such popular string metric is Levenshtein
distance (Yujian and Bo 2007).

More details of the algorithm are provided in the papers
by Lin et al. (2003) and Mahato et al. (2020).

Symbolic Fourier approximation

SymbolicFourierApproximation (SFA) (Schäfer andHögqvist
2012 is an example of another algorithm like SAX, built on
the idea of dimensionality reduction by symbolic transfor-
mation. SAX seeks to retain the data in the time-domain,
whereas SFA converts the data to bring it in the frequency
domain. As in the frequency domain, each dimension then
has relative knowledge of the complete series.

SFA, unlike SAX, employs Discrete Fourier Transfor-
mation (DFT) as its dimensionality reduction technique to

Fig. 6 Symbolic Fourier Approximation; The raw time-series will be
represented by the sequence debac Mahato et al. (2019)

focalise the data in the frequency domain. The SFA algo-
rithm applies DFT approximation as part of preprocessing
by replacing the original time-series into a series of DFT
coefficients. SFA then employsMultiple Coefficient Binning
(MCB) process to compute multiple discretisations of the
coefficients series (see Fig. 6).

More details of the algorithm are provided in the papers
by Mahato et al. (2020) and Schäfer and Högqvist (2012).

k-NN speedup

The big issue with these methods is that they are computa-
tionally expensive and this coupled with the large datasets
that arise in AM results in classification times that may be
prohibitive. For instance DTW has time-complexity O(t2)
where t is the average time-series length. So k-NN classifi-
cation is O(nt2) where n is the size of the training set.

Numerous computational tricks exist to speed up nearest
neighbour retrieval but these typically depend on one of two
things:

– The data has a vector (feature) space representation. Kd-
Trees can reduce k-NN retrieval time to O(log(n) for
vector space data in some circumstances. Random pro-
jection trees can be used to implement approximate k-NN
(Bernhardsson 2016) with significant speed-up but will
only work for vector space data.

– The distance measure is a metric. For instance, the use of
Ball Trees will speed up k-NN retrieval but the distance
measure must be a metric.

Unfortunately neither of these apply for our time-series dis-
tance measures because they are not proper metrics and as
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explained in “Making Euclidean distance work” section a
time-series is not a vector space representation. Although
by normalising time-series to the same length and using
Euclidean distance,we are effectively treating the time points
as features in a vector space. In our evaluation (“Evaluation”
section) we test a two-stage strategy where we use approxi-
mate Euclidean distance retrieval to return a large set (400)
of candidate neighbours and then use DTW to select nearest
neighbours among these.

The other strategy for speeding up k-NN is to reduce n by
removing redundant training data. In our evaluation we con-
sider two instance selection strategies, Condensed Nearest
Neighbour (CNN) and Conservative Redundancy Removal
(CRR) (Cunningham and Delany 2020).

Approximate nearest neighbour

Similarity-Based retrieval is of fundamental importance in
many internet applications. Because of the size of the
data resources involved the linear time requirement of
exact retrieval is not realistic so approximate methods have
received a lot of attention. However, it is in the nature of typ-
ical internet applications that approximate retrieval is often
adequate. A number of innovative solutions for approximate
nearest neighbour (ANN) retrieval have emerged and some
companies have made these generally available (Aumüller
et al. 2017).

Researchers at Facebook have released FAISS (Facebook
AI Similarity Search) a library for fast ANN into the public
domain (Johnson et al. 2017). It uses product quantization
(PQ) codes to produce an efficient two-level indexing struc-
ture to facilitate fast approximate retrieval. Spotify have
shared an ANN implementation called Annoy that uses
Multiple Random Projection Trees (MRPT)(Bernhardsson
2016). While tree structures such as Kd-Trees can be used to
speed up exact NN retrieval the improvementmay be negligi-
ble for high dimension data (Cunningham and Delany 2020).
This is because the benefits of the tree as an indexing struc-
ture are lost due to extensive backtracking. The solution with
MRPT is not to perform any backtracking but build multiple
trees.

The search for the nearest neighbour is done by locating
the query to leaf nodes in all the trees. The neighbourhood
is the union of the training points at these leaf nodes. In the
example in Fig. 7 this neighbourhood is {B,C}∪{A,C, D}.
Annoy then sorts these candidate points by their distances
against query point, and returns top k neighbours.

Evaluation

The objective of our evaluation is to identify the best overall
ML strategy for identifying pores of the type described in

Fig. 7 Two random projection trees in a 2D space. The query Q gets
indexed to different regions in the different projections, with B,C on the
left and with A,D,C on the right

Fig. 8 The performance of models through cross-validation over the
filtered temperature-series data

“Detecting pores” section. we consider the following ques-
tions:

– What is the best distance measure for this data?
– Is it worth cleaning (filtering) the signal?
– What algorithm speedup strategies are effective without
loss of accuracy?

– What is the impact of pore size on classification accuracy.

These questions are addressed in turn in the following sec-
tions. Unless otherwise indicated the evaluation is performed
using 10-fold cross-validation on the Plarge dataset described
in “Detecting pores” section.

Alternative distancemeasures

First we assess the effectiveness of the three distance mea-
sures described in “Machine learning on time-series data”
section. We also consider Euclidean distance as a baseline.
In this evaluation the data has been smoothed using a But-
terworth filter as described in “Detecting pores” section. The
results of a 10-fold cross-validation on the Plarge data are
shown in Fig. 8.
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Fig. 9 The impact of raw and filtered temperature-series data on per-
formance of k-NN-DTW model on the Plarge dataset (3587 samples)
as measured using 10-fold cross-validation

DTW performs best here with the highest average accu-
racy and least variance across the folds. SAX and SFA fare
badly performing worse that the Euclidean distance baseline.

The impact of cleaning the signal

Accepting that DTW is the best distance measure, we move
on to consider other aspects. The raw pyrometer data is quite
noisy so we have passed it through a Butterworth filter for
our initial analysis. It is possible that the classificactionwould
work equally well on the raw data so we test this hypothesis.
The results are shown in Fig. 9. k-NN-DTW performs well
on the raw data but given that the variance of the accuracy
on the filtered signal is better we will stick with the filtered
data. The filtered signals have the added advantage that they
are easier to interpret visually, see Fig. 2.

Algorithm speedup

While we have good classification accuracy at 92% using k-
NN-DTW, the k-NN retrieval is slow – the cross-validation
tests shown in Fig. 9 take about 40 minutes to run. These
results are based on 10-fold cross validation on the Plarge
dataset (3587 samples). So we test the performance of the
speedup strategies described in “k-NN speedup” section.
Speedup is achieved either by accepting approximate k-NN
retrieval or by editing down the training dataset. The approx-
imate k-NN retrieval is achieved by using Annoy to retrieve a
large candidate set of 400 and then selecting the k neighbours
from that set using DTW. By contrast, the case editing strate-
gies (CNN-DTWandCRR-DTW) reduce processing time by
removing ‘redundant’ samples from the training data.

The results are shown in Fig. 10. The most promising
strategy proves to be Annoy-DTW. Accuracy is within 1%
of full DTW but processing time is reduced to 18%. Of the
instance selection techniques, CRR is themost successful but
the impact of accuracy is greater than with Annoy-DTW and
the speedup is not as significant.

Fig. 10 The impact of speedup strategies as measured by hold-out test-
ing on the Plarge dataset

Fig. 11 Evaluation results (both accuracy and time) of Annoy-DTW
model over different Euclidean neighbour sizes over Plarge group of
blocks. The time shown is the percentage of the total time of k-DTW
model over the dataset

Clearly, the larger the candidate set returned by the Annoy
stage the closer theAnnoyDTWperformancewill be to exact
k-NN-DTW. The downside is that the retrieval time will be
impacted. This is shown in Fig. 11. We get dramatic speedup
for candidate sets of size 20 or 30 but the accuracy is poor.
The sweet spot seems to be with candidate sets of size 300 or
400. There is almost no loss of accuracy with retrieval times
reduced below 20%.

The impact of pore size

In the final stage in our evaluation we look at the impact of
pore size. The second dataset covers voids of width 0.1mm
and 0.05mm. This is a smaller dataset with 249 pore sam-
ples and 632 non-pore. Given the smaller size of the feature
it might be expected that the accuracy might not be as
good as with the larger pores. However the accuracy of the
Annoy DTW method is 94% measured using 10-fold cross-
validation. We can conclude that the method will deal with
voids of size 0.05mm without loss of accuracy.

Conclusions

The objective of this research is to asses the use ofML for in-
situ monitoring of 3D printing using PBF. The signal being
monitored is the temperature of the melt pool and the moni-
toring is done using a k-NN classifier on the time-series data.
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The core hypothesis is that anomalies such as pores can be
detected by identifying characteristic signatures in melt pool
time-series data. The main findings are as follows:

– These ML methods are effective for detecting these type
of pores. Classification accuracies of 92% to 94% are
achievable.

– The temperature data coming from the pyrometers is
quite noisy so we assessed the impact of cleaning the
data using a Butterworth filter. Cleaning the data in this
way has little impact on classification accuracy.

– Of the threemetrics evaluated DTW seems to be themost
effective for detecting anomalies of this type.

– Given the computational complexity of k-NN-DTW and
the need to perform classification in real-time, we have
evaluated a number of speedup strategies. We find that a
two-stage strategy that uses ANN to retrieve a candidate
set and then exact NN search on this set is effective.

The next stage in this research is to evaluate thesemethods on
data from a wider variety of AM builds and from anomalies
arising from perturbations in the production process rather
that designed artefacts.
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