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Abstract
Wafer bin maps (WBM) provides crucial information regarding process abnormalities and facilitate the diagnosis of low-yield
problems in semiconductor manufacturing. Most studies of WBM classification and analysis apply a statistical-based method
or machine learning method operating on raw wafer data and extracted features. With increasing WBM pattern diversity
and complexity, the useful features for effective WBM recognition are highly dependent on domain knowledge. This study
proposes an ensemble convolutional neural network (ECNN) framework for WBM pattern classification, in which a weighted
majority function is adopted to select higher weights for the base classifiers that have higher predictive performance. An
industrial WBM dataset (namely, WM-811K) from a wafer fabrication process was used to demonstrate the effectiveness of
the proposed ECNN framework. The proposed ECNN has superior performance in terms of precision, recall, F1 and other
conventional machine learning classifiers such as linear regression, random forest, gradient boosting machine, and artificial
neural network. The experimental results show that the proposed ECNN framework is able to identify common WBM defect
patterns effectively.

Keywords Wafer bin map · Deep learning · Convolutional neural network · Ensemble classification · Weighted majority ·
Semiconductor manufacturing

Introduction

With the rapid development of semiconductormanufacturing
technology, controlling the production process effectively is
critical for minimizing process variation to enhance yield
(Chien et al. 2013; Hsu 2014). Circuit probe (CP) testing is
used to evaluate each die on the wafer after the wafer fabrica-
tion processes.Wafer binmaps (WBMs) represent the results
of aCP test andprovide crucial information regardingprocess
abnormalities, facilitating the diagnosis of low-yield prob-
lems in semiconductor manufacturing (Hsu and Chien 2007;
Chien et al. 2013; Hsu 2015). A WBM is a two-dimensional
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defect pattern which is transformed into binary values and
used to select the testing bin code. The dies that pass the func-
tional test are denoted as 0 and the defective dies are denoted
as 1.Dependingon the various sources of variation, theWBM
consists of random, systematic, or mixed defects generated
during semiconductor fabrication (Hsu and Chien 2007; Hsu
et al. 2020). Random defect patterns are caused by random
particles or noises during the manufacturing process. Sys-
tematic defect patterns show spatial correlation acrosswafers
such as Center, Donut, Edge-Local, Edge-Ring, Local, Near-
full, Random, Scratch, andNone as shown in Fig. 1. Based on
the systematic patterns, domain engineers can rapidly deter-
mine the causes of defects (Hsu and Chien 2007). Mixed
failure patterns combine the random and systematic defects
on a wafer as shown in Fig. 1. The mixed pattern can be
identified if the extent of the random defects is slight.

One of the most effective ways to ensure that the causes
of process variation can be assigned is to analyze the spa-
tial defect patterns on the wafers. WBMs provide important
information for engineers to identify the potential root cause
of errors rapidly by recognizing patterns correctly. As the
driving force for semiconductor manufacturing technology,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-020-01687-7&domain=pdf
http://orcid.org/0000-0002-2939-4387


832 Journal of Intelligent Manufacturing (2022) 33:831–844

Fig. 1 Examples of wafer bin maps

correct classification of WBM patterns becomes more dif-
ficult, because patterns may vary in size, density, rotation
angle and noise level. Nowadays, most companies still rely
on engineers’ experiences of visual inspections and personal
judgment to classify the map patterns. This manual approach
is not only subjective, and inconsistent, but is also very time
consuming and inefficient.

According to the input to the classification model, the
method of WBM pattern classification can be separated into
three approaches: raw wafer data, extracted features, and
WBM image. Using rawwafer data, ART neural network has
been used to construct clusters of WBM and then domain
experts could recognize the type of these clusters quickly,
rather than identifying each WBM (Hsu and Chien 2007;
Chien et al. 2013; Liu and Chien 2013). In order to enhance
the signal and remove the noise (ESRN), morphology meth-
ods, statistical tests, and moment invariant techniques were
used to reduce noise and improve the clearness of the
pattern. Using ART-based neural networks for WBM clus-
tering is advantageous if the new WBM defect pattern is
unknown. Moreover, several shape-specific probability den-
sity functions (pdf), such as principal curve, bivariate normal
distribution, and spherical shell, have been proposed to detect
the regions of defect patterns (Hwang and Kuo 2007; Yuan
and Kuo 2008a, b; Yuan et al. 2011). Using these model-
based approaches is better for building a detection model
where multiple defect patterns occur on a wafer. Jeong et al.

(2008) proposed a spatial correlogram to represent the spa-
tial autocorrelation across thewafer, and then transformed the
raw wafer data into a one dimension series. Different types
ofWBMdefect pattern have particular trends in a spatial cor-
relogram and this dynamic time wrapping method is used to
calculate the similarity between two series. The main short-
comings of using raw wafer data are the heavy computation
cost for a large-scale WBM dataset, and low accuracy due to
the amount of noise on a wafer and the consequent need for
data pre-processing for signal enhancement and noise reduc-
tion (Hsu and Chien 2007).

In the second approach, feature generation from rawwafer
data has been used to build a classification model. In particu-
lar, density-based features (Fan et al. 2016), geometry-based
features (Wu et al. 2015), radon-based features (Piao et al.
2018), and rotation-invariant features (Wang and Chen 2019)
were used for feature extraction, and the features extracted
used as input for various classifiers such as SVM (Baly and
Hajj 2012;Wuet al. 2015) and decision tree (Piao et al. 2018).
For example, Wu et al. (2015) selected geometry-based and
radon-based features, and SVM classifier to identify WBM
defect patterns. A large-scale WBM dataset including eight
systematic defect patterns and one normal pattern, called
WM-811K, was used for performance evaluation. Yu and Lu
(2016) presented a joint local and non-local linear discrimi-
nant analysis (JLNDA) with four kinds of features to detect
the WBM failure patterns. Because no individual machine
learning classifier is best for all kinds of dataset, an ensem-
ble method which combines all individual classifiers, can be
used to improve the final prediction accuracy (Galar et al.
2011). The ensemble results are better than any individual
classifier (Saha and Ekbal 2013). Piao et al. (2018) pro-
posed a decision tree ensemble learning-based WBM defect
pattern recognition method based on radon transform-based
features. However, relying features that are generated in
advance is not enough to cover all kinds of WBM failure
patterns. Saqlain et al. (2019) extracted 66 features includ-
ing density-based, geometry-based, and radon-based features
from raw wafer images and applied a voting ensemble clas-
sifier incorporating logistic regression (LR), random forests
(RF), gradient boostingmachine (GBM), and artificial neural
network (ANN)with three kinds of features. Thesewere used
for WBM defect classification. It is essential to capture use-
ful features to improve the performance of machine learning
classifiers, but the effective features were extracted manually
and relied on specific domain judgements for various WBM
defect patterns (Yu 2019). This approach can be improved
by using feature learning from the WBM image directly, to
generate the effective features or kernels for different types
of WBM defect patterns without making significant modifi-
cation (Yu et al. 2019a).

Recently, convolutional neural network (CNN) has
become a standard image classification method (Krizhevsky

123



Journal of Intelligent Manufacturing (2022) 33:831–844 833

et al. 2012), which learns the critical features for image
classification from an image automatically, without manual
feature extraction in advance. Unlike manual feature extrac-
tion, CNN builds the classification model and extracts the
effective features at the same time. CNN models have been
applied to defect inspection in battery electrode (Badmos
et al. 2020), solar cell surface (Chen et al. 2020), laser man-
ufacturing (Gonzalez-Val et al. 2020), light-emitting diode
(Lin et al. 2019), and panel display (Liu et al. 2020). Addi-
tionally, CNN-based approaches are also receiving growing
attention for WBM defect pattern classification and out-
perform other machine learning-based methods with high
accuracy (Kyeong and Kim 2018; Nakazawa and Kulka-
rni 2018, 2019; Yu 2019; Yu et al. 2019a, b). For example,
Nakazawa and Kulkarni (2018) used CNN for WBM defect
pattern classification. Similarly, Kyeong and Kim (2018)
applied CNN to recognize failure patterns, where each type
of WBM pattern needed an individual CNN model. To build
a classifier with several defect patterns and a non-defect pat-
tern, Yu et al. (2019) used twoCNNmodels with 8-layers and
13-layers for WBM inspection and WBM pattern classifica-
tion. An enhanced stacked denoising autoencoder (ESDAE)
with manifold regularization was proposed for inspecting
defectiveWBMs andWBM pattern classification (Yu 2019).
The CNN-based approaches can capture effective features
without manual intervention and are easy to apply without
specific domain knowledge. However, the computation effort
is large andmanyWBM images are essential for CNN imple-
mentation. In addition, the class imbalance problem must
be taken into account, because defects, and WBM defect
patterns, are relatively rare in semiconductor fabrication. To
solve the class imbalance issue, the undersampling technique
for patterns with no defect is applied first to produce a binary
classification model to identify normal or abnormal patterns.
However, it is difficult to determine a suitable threshold for
selection of normal wafers with high accuracy.

To bridge the gap between the existing studies, this
study proposes an ensemble CNN (ECNN) framework with
weighted majority for WBM defect pattern classification.
State-of-the-art CNN models, such as LeNet, AlexNet, and
GoogleNet, are used as base classifiers. To incorporate the
advantages of different base classifiers for identifyingWBM
defect patterns, a weighted majority is used, in which the
weights assigned to the base classifiers depend on its recog-
nition rate for each WBM defect pattern. The proposed
ensemble CNN framework is evaluated for its performance
on the WM-811K dataset (Wu et al. 2015). The performance
of ECNN was compared with several individual classifiers
with extracted features. The CNN-based model has better
classification accuracy than the existing methods.

The remainder of this paper is organized as follows. Next
section describes the details of the proposed ECNN frame-
work. Then, performance comparisons for various WBM

classification models are examined in relation to the WM-
811K dataset. Finally, this study concludes with a discussion
of our contributions and further research directions.

Proposed ECNN framework

The proposed ECNN framework with weighted majority
(ECNN) includes three individual CNN classifiers. WBMs
are typically accompanied by random noise. Most exist-
ing studies about WBM classification used the morphology
method to enhance the signal and remove the noise (ESRN).
However, this study develops an end-to-end model forWBM
classification without performing ESRN and the critical fea-
tures of WBM classification are extracted automatically.
Figure 2 illustrates the proposedECNN framework forWBM
pattern classification, in which the WBM dataset is split into
a training dataset, a validation dataset, and a testing dataset.
The training dataset is used to build the classification model
and the validation dataset is used to examine the model per-
formance and tuning of hyperparameter setting. The testing
dataset is used to evaluate the final classification results. A
weighted majority function for each base CNN model was
adopted, using weights for the CNN classifiers based on
their recognition performance of each WBM defect pattern
in the validation dataset. Before further CNN model train-
ing, each raw wafer data is transformed into a WBM image
with 300×300 pixels and theWBMs are subtracted by mean
image per channel.

Base classifier training and weighted majority are the two
main steps of the proposed ensemble model. In this study,
we examined the performance of potential classifiers and
selected state-of-the-art CNN models, LeNet (LeCun et al.
1998), AlexNet (Krizhevsky et al. 2012), and GoogleNet
(Inception-v1) (Szegedy et al. 2015), which have different
numbers of convolution and pooling layers. That means the
decision boundary of each base classifier should be as differ-
ent as possible. In order to extract the features from WBM
data rather than predefined features, the CNN-based classi-
fiers are LeNet (5 layers), AlexNet (8 layers), and GoogleNet
(22 layers).

CNN is a neural network that is effective for analyzing
image data. Convolution is used to extract the critical infor-
mation from the original image. Figure 3 illustrates the CNN
structure inWBMclassification, inwhich an input layer, con-
volution layers, pooling layers, fully connected layers and an
output layer are selected. The input layer is used to receive
two-dimensional WBM images as input. The convolutional
layer is used to compute a dot product of a small data region
and a filter. For example, the filter with 2×2 size is moved
across thewholeWBMand then the images after convolution
are called feature maps. Typically, convolution decreases the
size of feature map, but we can maintain the size by adding
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Fig. 2 Proposed ECNN
framework
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Fig. 3 Illustration of CNN
structure in WBM classification
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padding of zeros at the edge of the original image data of
WBM.Different kinds of filters can result in different feature
maps representing different features and the number of fil-
ters must be determined in advance. In order to keep positive
information in the feature map, a rectified linear unit (ReLU)
activation function is usually stacked with the convolutional
layer. The feature extraction consists of the convolutional
layer, followed by a pooling layer, which reduce the size
of the feature map by extracting a local feature such as local
maximum or local average. After the convolutional and pool-

ing layers, a fully connected (FC) layer is used for WBM
classification. The FC layer is a multilayer perception neural
network. Finally, the output layer generates the probability
value using the softmax function and determines the class of
WBM by the maximum probability value.

The proposed ensemble classifier with weighted major-
ity is unlike the bagging ensemble approach, which uses
an averaging model that combines the prediction from each
base classifier equally. The diversity of ensemble classifiers
ensures that each selected base classifier has a unique perfor-
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Fig. 4 Example of WBMs in WM-811K

mance when classifying theWBM defect patterns. However,
there may be base classifiers which could be useful for
classifying certainWBMdefect patterns and should be incor-
porated to extend the diversity and improve performance for
certainWBMdefect patterns. Similarly, some base classifiers
may have less power to identify some WBM defect patterns
and their influence should be reduced inWBMdefect pattern
classification. In order tomerge the various results of the three
base classifiers, a weighted majority function that enables
multiple classifiers to contribute toWBMdefect pattern clas-
sification in proportion to their estimated performance is used
as follows:

Ci � argmaxP(y|Xi ) (1)

and

P(y|Xi ) �
M∑

k�1

wk Pk(y|Xi ) (2)

whereXi denotes the ith inputWBM image, y is the vector of
classified label. For example, assuming there are five WBM
defect classes, the first class is denoted as (1, 0, 0, 0, 0). The
parameter M is the number of base classifiers that are con-
sidered in the ensemble model. The probability of Pk(y|Xi )
denotes the output value of kth base classifier which is cal-
culated from the softmax function in the output layer of kth
base classifier. The weight wk is a vector of weight for each

WBMdefect class which is determined according to the frac-
tion of the total amount of relevant WBMs that were actually
retrieved. The weights from the validation dataset for the
ensemble classifier during model training are more robust
and avoid overfitting.

Evaluation and discussion

Data description

The performance of proposed ensemble CNN was evaluated
using the WBM dataset, WM-811K (Wu et al. 2015), which
consists of 811,459 WBMs collected from a real-world fab-
rication. 172,950 of the WBMs (21.3%) have been labeled
by domain engineers. There are nine types of WBM used
in model evaluation including Center (4294), Donut (555),
Edge-Loc (5189), Edge-Ring (9680), Loc (3593), Near-full
(149), Random (866), Scratch (1193) and None (147,431) as
shown in Fig. 4. The pattern Center is a block of defect near
the central area of a wafer. The patternDonut is a hollow and
block defects located within the wafer. The patterns Edge-
Loc and Edge-Ring are systematic defects with cluster and
moon shape at the wafer edge. The pattern Loc is a cluster
defect within the wafer. The pattern Near-full means that the
defects cover most of the wafer. The pattern Random indi-
cates that a small number of defective areas are located on a
wafer randomly. The pattern Scratch is a defect in a straight
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Fig. 5 Count of WBMs for
experiments (Training: 64%,
Validation: 16%, Testing: 20%)

line or curve. The pattern None indicates that there is no
systematic pattern, and the resulting pattern was caused by
random particles falling on a wafer and results in randomly
distributed defects. The model performance was evaluated
by fivefold cross-validation, and then the 172,950 WBMs
was divided into training (64%), validation (16%), and test-
ing (20%) datasets for each type of defect pattern. Figure 5
shows the number of each failure pattern, with the exception
of the None pattern. The distribution of each type is imbal-
anced. In order to take into account the different die size,
each record of raw data of a WBM is transformed into an
image with 300×300 pixels.

Hyperparameter setting of CNNmodels

The performance of CNN model training is influenced by
the hyperparameter setting. The Adam optimizer was ini-
tially used with the following setting of hyper-parameters:
the epoch is 10, the batch size is 64, and the learning rate
is 0.0001. The convergence of loss and accuracy in the val-
idation dataset were used to evaluate whether the model is
adequate or not. Figure 6 shows the loss and accuracy in the
validation dataset for LeNet, AlexNet, and GoogLeNet. It
shows the good convergence of each CNN model. Both loss
and accuracy vary only slightly with the increase of training
epoch. Therefore, the epoch for further analysis is fixed as
10.

Hyperparameter setting andnetwork architectures are crit-
ical in neural network models. The network architectures are
selected from three base CNN models: LeNet, AlexNet, and
GoogLeNet. These CNN models are used as base classifiers
for the proposed ECNNmodel. The hyperparameter settings
such as batch size, learning rate, and optimizer are compared
in fivefold cross-validation. The initial setting of batch size
is 64, learning rate is 0.0001, and Adam optimizer is used for
weight optimization.

(a) LeNet

(b) AlexNet

(c) GoogleNet
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Fig. 6 Illustration of validation performance in CNN model training

Batch size indicates the frequency of weight updates. To
compare the value of batch size, the learning rate is set as
0.0001 and the Adam optimizer is used. The recall value
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Fig. 7 Recall of different batch
sizes in three CNN models
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(c) GoogLeNet
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of different batch size in three CNN models are shown in
Fig. 7. The patterns Center, Donut, Edge-Ring, Near-full,
and None have higher recall value than patterns Edge-Loc,
Loc, and Scratch. Figure 7a shows that the patterns Edge-Loc
and Loc are identified less well by LeNet than other types of
defect. Figure 7b, c show that the pattern Scratch produces
worse performance in both AlexNet and GoogLeNet than
other types of defect.

Learning rate is evaluated, based on a batch size of 64 and
the Adam optimizer is used. Figure 8 shows the recall for
different learning rates the in three CNN models. Figure 8a
shows the similar performance of nine WBM defect patterns
using various learning rates in LeNet. There are large differ-
ence among various learning rates in AlexNet as shown in
Fig. 8b. In particular, the learning rate of 0.0001 has higher
recall than the others. Figure 8c also shows that the low learn-
ing rate works better for GoogleNet, except for the patterns
Random and Scratch.

The optimizer is used to update weights in CNN model
training. Five types of optimizers were used: mini-batch
gradient descent (SGD), adaptive gradient algorithm (Ada-
Grad) (Duchi et al. 2011), AdaDelta (Zeiler 2012), Root
Mean Square Propagation (RMSprop) (Tieleman and Hin-
ton 2012), and adaptivemoment estimation (Adam) (Kingma
and Ba 2014). They are compared in terms of recall in the
nine WBM defect patterns. The batch size was set to 64 and
the learning rate to 0.0001. Figure 9 shows the recall of dif-
ferent optimizers in the three CNN models. There are large
differences of recall for eachWBMdefect pattern. The choice
of optimizer has a large impact on CNN models. For these
three CNNmodels, AdaDelta optimizer has the worst perfor-
mance of those tested. For patternsCenter,Donut,Edge-Loc,
Edge-Ring, Loc, Random, and Scratch, Adam and RMSProp
perform better than SGD and AdaGrad.

To summarize the performance for various hyperparame-
ter settings, Table 1 shows the average recall for each WBM
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Fig. 8 Recall of different
learning rates in three CNN
models
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defect pattern by each of the three CNNmodels. The average
recall denotes the mean of recall for the nine WBM patterns.
The learning rate of 0.0001 is better than 0.0005 or 0.0010.
The learning made little difference to recall when using the
LeNet model. In terms of optimizer, Adam optimizer is the
best of those tested. To determine the batch size, the best
number is not the same for the three CNN models. A large
batch size means that weights are updated less often than for
small batch sizes. Table 2 shows the time for model training
decreases as batch size increases. Considering the trade-off
between model performance and speed of model training, a
batch size of 64 is used for the further ensemble CNNmodel.

After determining the hyperparameter settings of the base
classifiers, the classification performance of LeNet, AlexNet,
and GoogleNet is examined in a fivefold cross-validation.
Figure 10 shows the average recall and the standard devia-
tion for model training. The patterns Edge-Ring, Near-full,
andNone have high recall (over 90%). The results in patterns
Center, Donut, and Random, and Scratch have at least one

CNN model with high recall. The average recall of patterns
Edge-Loc and Loc are lower than 80%. Examining the stan-
dard deviation of each CNN for these nine WBM patterns,
LeNet, with few network layers, has the smallest deviation.

Performance evaluation with ensemble CNN

In this section, the accuracy of the proposed ensemble CNN
model using weighted majority, which incorporates the per-
formance of the various CNN classifiers for each WBM
defect pattern is evaluated. Table 3 presents an accruacy com-
parison among eight individual classifiers and three ensemble
classifiers. First, we examine the performance of the three
CNNs (LeNet, AlexNet, and GoogleNet) with the perfor-
mance of the other six individual classifiers, WMFPR (Wu
et al. 2014), LR, RF, GBM, ANN (Saqlain et al. 2019), and
CNNwith 3 stacked convolution-pooling structures (Kyeong
and Kim 2018). In total, 116 predefined features were used
as input feature for support vector machine (SVM) classi-
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Fig. 9 Recall of different
optimizers in three CNN models
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Fig. 10 CNN model
performance in fivefold
cross-validation
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fier in WMFPR, including 36 geometry-based features (with
and without noise reduction) and 80 Radon-based features
(with and without noise reduction). Four individual clas-
sifiers, LR, RF, GBM, and ANN, were selected, with 66
features including density-based (20), Radon-based (40), and
geometry-based (6) features and their input features. In addi-
tion to input and output layers, the CNN consists of three

convolutional and pooling layers, in which the ReLU acti-
vation function is added after each convolutional layer. The
CNNwith 3 stacked convolution-pooling layers (Kyeong and
Kim 2018) adopted a ReLU activation function after each
convolutional layer. This approach may reduce the diversity
of feature extraction because of repeated transformation by
the ReLU activation function. The input of LeNet, AlexNet,
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Table 1 Average recall of
various parameter settings Hyperparameter setting LeNet (%) AlexNet (%) GoogleNet (%)

Batch size 16 84.92 83.16 79.51

32 84.18 83.56 79.81

64 83.94 83.90 82.69

128 83.84 84.25 76.75

256 82.41 81.53 73.50

Learning rate 0.0010 83.21 66.45 79.89

0.0005 82.94 71.45 80.69

0.0001 83.40 83.44 82.26

Optimizer SGD 81.30 48.96 58.56

AdaGrad 76.70 62.01 63.83

AdaDelta 37.10 11.11 19.77

RMSProp 82.83 83.47 82.62

Adam 83.94 83.90 82.69

Table 2 Computation time
(second) of various batch size Batch size LeNet AlexNet Googlent

16 7920 5040 5460

32 4080 2524 2928

64 2235 1359 1704

128 1290 793 1080

256 799 529 812

and GoogleNet are rawWBM images rather than predefined
features. The accuracy is a weighted average based on the
accuracy for each type of WBM pattern and their percent-
age recall in the training sample. For example, the weight of
pattern None is 0.852 (147431/172950). The selected con-
ventional CNN models, namely LeNet (96.94%), AlexNet
(97.75%), andGoogleNet (97.35%) outperform theWMFPR
(94.63%), LR (95.06%), RF (94.42%), GBM (95.35%),
ANN (95.25%), and CNN (89.80%)models in terms of accu-
racy.

To further compare the performance of ensemble classi-
fier, two existing ensemble classifiers forWBMclassification
were selected for comparison. These were the majority-
voting ensemble (MVE) and the soft-voting ensemble (SVE).
Both MVE and SVE were weighted by the results from LR,
RF, GBM, and ANN. The proposed ECNN with weighted
majority has higher accuracy (98.57%) than MVE (95.74%)
and SVE (95.87%) which are ensembles of LR, RF, GBM,
and ANN. The three base CNN models are not only supe-
rior to WMFPR, LR, RF, GBM, ANN but also have higher
accuracy than MVE and SVE.

As the number of WBM in each class is unbalanced in
WM-811K, we also examine the classification performance
of various base classifiers for each WBM defect pattern
in terms of precision, recall, and F1. The selected LeNet,
AlexNet, and GoogleNet models outperform the LR, RF,
GBM, and ANN models and have higher precision and

Table 3 Accuracy comparison of different classifiers

Model Classifier type Accuracy (%)

WMFPR (SVM) Individual 94.63

LR Individual 95.06

RF Individual 94.42

GBM Individual 95.35

ANN Individual 95.25

CNN Individual 89.80

LeNet Individual 96.94

AlexNet Individual 97.75

GoogleNet Individual 97.35

MVE Ensemble 95.74

SVE Ensemble 95.87

ECNN Ensemble 98.57

recall as shown in Figs. 11 and 12. The performance for
patterns Loc and Scratch are better in terms of precision
than other WBM patterns. Comparing these base classifiers,
LR is the worst, and LR could be replaced by any of the
other base classifiers in ensemble classification. The pro-
posed ECNN not only has 0.82% improvement in terms of
accuracy as shown inTable 3, but also is superior to individual
LeNet, AlexNet, and GoogleNet for variousWBM pattern in
terms of precision and recall. Figure 13 shows the F1 value,
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Fig. 11 Performance
comparison of precision for LR,
RF, GBM, ANN, LeNet,
AlexNet, GoogleNet
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Fig. 12 Performance
comparison of recall for LR, RF,
GBM, ANN, LeNet, AlexNet,
GoogleNet
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Fig. 13 Performance
comparison of F1 for LR, RF,
GBM, ANN, LeNet, AlexNet,
GoogleNet
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which is an overall measure, in which the selected LeNet,
AlexNet, and GoogleNet models have better performance
than the LR, RF, GBM, and ANNmodels in patterns Center,
Donut, Edge-Loc, Edige-Ring, Loc, Scratch, and None. RF
and GBM models are slightly better than LeNet, AlexNet,
and GoogleNet. According to the results of analysis, there is
no one base classifier that completely outperforms other clas-
sifiers on all WBM patterns. Improvement can be achieved
by the proposed weighted majority function which considers
the contribution to classification performance of each base
classifier in different WBM patterns.

The performance of the ECNN is also compared with
the performance of two ensemble models, namely MVE and
SVE. Table 4 presents a performance measure of precision,
recall, F1 of these ensemble classifiers for the nine WBM

defect classes. The best results for eachWBMdefect type are
shown in bold. The proposed ECNN is superior to bothMVE
and SVE in classifying all WBM defect types including pat-
terns Center, Donut, Edge-Loc, Edge-Ring, Loc, Near-full,
Random, Scratch, None with F1 value of 94.47%, 91.38%,
89.24%, 98.60%, 84.14%, 98.31%, 94.71%, 98.14%, and
99.37%, respectively. The proposed ECNN has also highest
value in terms of precision except for pattern Donut and the
highest value in terms of recall except for pattern Near-full.
The reason the ECNN performs well is that the weights are
assigned to the base CNN models which have high recall in
validation dataset. This can decrease the impact of misclas-
sification by majority voting. The classification performance
of MVE and SVE are poor for patterns Loc and Scratch,
where they have low recall values as a result of the even
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Table 4 Performance comparison of different ensemble classification
models

Method Defect type Precision (%) Recall (%) F1 (%)

MVE Center 89.79 87.20 88.47

Donut 87.37 78.30 82.59

Edge-Loc 78.75 79.72 79.23

Edge-Ring 97.56 94.29 95.90

Loc 85.65 51.73 64.50

Near-full 96.55 100.00 98.25

Random 96.15 84.27 89.82

Scratch 79.41 33.47 47.09

None 97.95 99.68 98.81

SVE Center 92.54 87.31 89.85

Donut 91.49 81.13 86.00

Edge-Loc 81.80 78.02 79.86

Edge-Ring 97.94 94.71 96.30

Loc 83.91 55.78 67.01

Near-full 93.33 100.00 96.55

Random 95.78 89.33 92.44

Scratch 81.36 39.67 53.33

None 97.93 99.72 98.82

ECNN Center 98.85 90.45 94.47

Donut 87.60 95.50 91.38

Edge-Loc 94.31 84.68 89.24

Edge-Ring 99.22 97.99 98.60

Loc 93.53 76.46 84.14

Near-full 100.00 96.67 98.31

Random 96.41 93.06 94.71

Scratch 96.73 99.58 98.14

None 98.83 99.91 99.37

distribution of noise in theWBM (Saqlain et al. 2019). How-
ever, the recall for pattern Loc by ECNN is 76.46%, which is
47.8% and 37.1% and better than that of MVE (51.73%) and
SVE (55.78%), respectively. The recall for pattern Scratch
by ECNN is 99.58%, which is 197.5% and 151% better than
that of MVE (33.47%) and SVE (39.67%), respectively. The
diversity of base classifiers is important for ensemble mod-
els if they are to capture good classification performance. For
example, the classification performances for pattern Scratch
by AlexNet and GoogleNet are both poor. According to the
weighted majority function, the main weight to classify pat-
tern Scratch depends on LeNet.

To investigate the misclassifications of WBM pattern in
testing dataset, several WBMs were selected for illustration
as shown inFig. 14.Domain experts inwafer fabricationwere
consulted, and they stated that amajor difficulty arosewhen a
patternwas located close to the boundary between twoWBM
defect patterns. For example, the ECNN predicts the class of
#01, #02, and #03 WBMs in Fig. 14 are Center because

amounts of defect occurring in the central area of the wafer.
Similarly, WBMs #04-#09, #11-#13, #15-#16, #18-#19, and
#22 in Fig. 14 are ambiguous in terms of their defect classes.
For example,WBMs # 16 and # 22 are labelledNone because
of a slight random noise on the wafer. The ECNN identifies
these two WBMs as patterns Loc and Edge-Loc because of
the bulk defect on the wafer, and the domain experts accept
these results as reasonable. Moreover, the #14, #15, and #
17 WBMs in Fig. 14 seem consist of two defect types. For
example, #17 WBM has both the patterns Center and Edge-
Loc together. Someof the original labels of theWBMs should
be corrected, such as #10, #20-#24 WBMs in Fig. 14. For
example, WBM #10 is a pattern Scratch rather than a pattern
Loc andWBM#23 is a patternEdge-Loc rather than a pattern
Loc.

Conclusion

The study proposes an ECNN framework for WBM defect
classification based on a weighted majority for three base
CNNmodels. The ECNN is a practical and effective method
for WBM defect pattern classification. It provides an end-
to-end model to extract the effective features from WBM
images automatically, without predefined features or a man-
ually set threshold, and as such it represents a practical and
theoretical improvement on other models reported in the lit-
erature. In particular, a weighted majority function for each
baseCNNmodelwas designed on the basis of the recognition
performance for each WBM defect pattern. The experimen-
tal results based on an industrial WBM case (WM-811K
dataset) demonstrates that the proposed ECNN is not only
effective in recognizingWBMdefect patternswith high accu-
racy (98.57%), but that is is also robust in the face of class
imbalance. The proposed ECNN also has superior perfor-
mance in terms of precision, recall, F1 when compared with
other conventional machine learning classifiers such as LR,
RF, GBM, ANN and ensemble classifiers such as MVE and
SVE. As the diversity of WBM failure patterns is increasing
in real settings, the merits of the ECNN over other methods
is even more important.

Future research in the area of WBM classification should
investigate the trade-off between model performance and
the cost of labeling different patterns. Data-driven models
are sensitive to the label of the WBM image. According
to the empirical results from the WM-811K dataset, label
uncertainty decreases the WBM classification accuracy. The
correctness of the annotated label is essential for high accu-
racy when using CNN-based models (Jin et al. 2020; Park
et al. 2020; Shim et al. 2020). In order to enhance the per-
formance of the ECNN classification model, the annotation
should be as correct and consistent as possible for patterns
Edge-Loc andLoc. In addition toWBMpattern classification,
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#01

Actual: Near-full

Predicted: Center

#02

Actual: Loc
Predicted: Center

#03

Actual: Random
Predicted: Center

#04

Actual: Edge-Loc

Predicted: Edge-Ring

#05

Actual: Random
Predicted: Edge-Ring

#06

Actual: None

Predicted: Edge-Ring

#07

Actual: Center
Predicted: Donut

#08

Actual: Center
Predicted: Donut

#09

Actual: Edge-Loc

Predicted: Random

#10

Actual: Loc
Predicted: Scratch

#11

Actual: Edge-Ring
Predicted: None

#12

Actual: Edge-Ring
Predicted: None

#13

Actual: Donut

Predicted: Loc

#14

Actual: Edge-Loc

Predicted: Loc

#15

Actual: Center

Predicted: Loc

#16

Actual: None

Predicted: Loc

#17

Actual: Center

Predicted: Edge-Loc

#18

Actual: Donut

Predicted: Edge-Loc

#19

Actual: Edge-Ring
Predicted: Edge-Loc

#20

Actual: Edge-Ring
Predicted: Edge-Loc

#21

Actual: Random
Predicted: Edge-Loc

#22

Actual: None
Predicted: Edge-Loc

#23

Actual: Loc
Predicted: Edge-Loc

#24

Actual: Loc
Predicted: Edge-Loc

Fig. 14 WBMs classification results with actual and predicted labels

the causes of differentWBMpatterns should be analyzed and
built into a correlated model for quickly removing abnor-
mality and failure. Future research could further examine the
robustness of the proposed ECNN in various classification
systems, such as fault detection and classification in equip-
ment monitoring.
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