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Abstract
With the advance in Industry 4.0, smart industrial monitoring has been proposed to timely discover faults and defects
in industrial processes. Steel is widely used in manufacturing equipment, and steel surface defect inspection is of great
significance to the normal operation of steel equipment in manufacturing workshops. In steel defect inspection systems,
industrial inspection robots generate images via scanning steel surface, and processors perform surface defect inspection
algorithms on images. We focus on applying advanced object detection techniques to surface defect inspection algorithm
for sheet steel. In the proposed steel surface defect inspection model, a deformable convolution enhanced backbone network
firstly extracts complex features frommulti-shape steel surface defects. Then the feature fusion network with balanced feature
pyramid generates high-qualitymulti-resolution featuremaps for the inspection ofmulti-size defects. Finally, detector network
achieves the localization and classification of steel surface defects. The proposed model is evaluated on a typical steel surface
defect dataset. Our model achieves 0.805mAP, 0.144 higher than baseline models, and our model shows high efficiency in
inference. Experiments are performed to reveal the effect of employed approaches, and results also show our model achieves
a balance between inspection performance and inference efficiency.

Keywords Defect inspection · Object detection · Smart industrial monitoring · Steel surface · Deep learning

Introduction

With the advance in Industrial Internet of Things and artifi-
cial intelligence, the fourth industrial revolution, i.e. Industry
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4.0, is rapidly developing (Cohen et al. 2019). As a typical
application of Industry 4.0, the smart industrial monitoring
system adopts ubiquitous sensors and processors to monitor
equipment and timely discover faults, where artificial intel-
ligence algorithms are employed to automatically inspect
defects (Pimenov et al. 2018). Towards smart industrial mon-
itoring, we propose a steel surface defect inspection model
based on advanced object detection approaches, and themain
application scenarios of our research focus on defect inspec-
tion of steel equipment when it has already been formed and
deployed in manufacturing workshops.

For most equipment in manufacturing workshops, steel
is used as a common and crucial material. And the good
condition of steel is of great significance to the normal
operation ofmanufacturing equipment.However, due to indi-
cators such as external force, equipment fatigue and low
quality of steel products, various defects such as crazing,
inclusion, patches and scratches may arise on the steel sur-
face. These steel surface defects affect the bearing capacity
and residual life of manufacturing equipment (Leinenbach
et al. 2012), especially for equipment with sheet steel. Some
defects may lead to structure rupture and abnormal stress
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state in steel equipment, and some defects may affect the
corrosion and wear resistance of steel equipment. Therefore,
the timely discovery of these defects can provide early warn-
ing to workers. Considering inspected defects and equipment
operation condition, workers can better control the equip-
ment to avoid serious production accidents such as structure
rupture. And the equipment with inspected defects can be
timely maintained before defects become more serious.
Specifically, we focus on surface defect inspection for sheet
steel.

Surface defect inspection for sheet steel is mainly per-
formed by manual inspection which is unreliable (Ghorai
et al. 2013). In order to avoid artificial problems and improve
efficiency, it is desirable to automatically inspect steel surface
defects. The application and promotion of industrial detec-
tion robot (Vithanage et al. 2019) bring convenience to the
defect detection of steel inworkshop environments. The auto-
matic inspection robot can scan the steel surface as it moves
over steel. The scanned images are fed into processors for
on-line steel surface inspection. The inspected defects are
reported for further equipment control and maintenance as
mentioned in the previous paragraph. Therefore, the steel
surface inspection algorithms are expected to achieve defect
localization and classification, and a balance between infer-
ence efficiency and inspection performance is also pursued
for high-quality defect inspection.

With the development of computing power and the grow-
ing of massive data, deep learning methods have been
widely employed in numerous industries (Badmos et al.
2020; Tabernik et al. 2020). Based on deep learning, object
detection techniques, which can realize the localization and
classification for specific objects, have developed into a topic
research field. Object detection techniques have been applied
in numerous industries (Hu et al. 2019; Li et al. 2019),
but they have not been fully used in steel surface defect
inspection. We focus on applying advanced object detec-
tion techniques to surface defect inspection for sheet steel.
Aiming at six kinds of steel surface defects, a deformable
convolution enhanced backbone network firstly extracts
complex features of multi-shape steel surface defects. Then
feature fusion network with balanced feature pyramid fur-
ther improves multi-resolution features for the detection of
multi-size defects. Finally the detector network achieves the
localization and classification of steel surface defects.

The rest of the paper is organized as follows. “Related
work” introduces traditional steel defect inspection methods
and advanced object detection methods. In “Methodology”
section, the proposedmodels are explained in detail aswell as
the training strategies. “Experimental results and discussion”
is devoted to show ablation experiments and analyze several
related problems. Summary of this paper and future work are
presented in “Conclusions and future work”.

Related work

In manufacturing workshops, the main causes of steel sur-
face defects include low quality of steel products, unexpected
external force, equipment fatigue, etc. Some defects arise in
the process of steel production (Yun et al. 2014; Nioi et al.
2019). In steel manufacturing industry, the processes such
as secondary refining, continuous casting, rolling, and cool-
ing may generate diversified defects (Zhang et al. 2020), and
such defects may affect the corrosion and wear resistance of
steel equipment (He et al. 2019). Some defects arise because
of unexpected external force in workshops (deVooys and van
der Weijde 2011), especially when external force is exces-
sive or incorrectly applied, and such defects may affect the
strength of steel equipment. Besides, some defects on steel
equipment arise during use because of fatigue (Zhang et al.
2020), which may affect the stress state in equipment struc-
ture. Therefore, the timely discovery of these defects is of
great significance to the normal operation of manufacturing
equipment. The surface defect inspection system for sheet
steel utilizes moving industrial inspection robots with cam-
eras to collect images of steel surface, and then the defect
inspection algorithm is employed to localize and classify
defects. Therefore, the defect inspection algorithm plays a
vital role in the system.

General steel surface defect inspection algorithms mainly
focus on two aspects: regional proposal and defect clas-
sification. Region proposal aims to find the regions that
are more likely to contain defects, while defect classifica-
tion is to extract features from the regions and distinguish
their categories. Traditional region proposal methods include
Ostu threshold segmentation, watershed algorithm (Zhang
et al. 2017), adaptive threshold segmentation (Liu et al.
2017), selective search algorithm (Uijlings et al. 2013), asso-
ciated region search (Khan 2018), and so on. However,
mentioned segmentation algorithms are suitable for deal-
ing with saliency defects, while search-based algorithms are
often slow and computationally expensive. Defect classifi-
cation is the core module of defect inspection algorithm. It
usually extracts features of defects, and then classify defects
by classical machine learning algorithms. Handcraft features
are often used such as Gabor filter feature (Yun et al. 2009),
Fourier transform feature (Paulraj et al. 2010), local binary
pattern feature (Song and Yan 2013), wavelet transform fea-
ture (Ghorai et al. 2013), and manually customized spatial
statistical feature (Chu et al. 2017). These feature extraction
schemes often have limited ability and need manual experi-
ence design. Classical machine learning algorithms applied
to steel surface defects classification include support vector
machine (SVM) (Ghorai et al. 2013), nearest neighbor clas-
sifier (Luo et al. 2019), decision tree algorithm (Sun et al.
2019), artificial neural network (Bustillo et al. 2018), etc.
These classification algorithms are usually used to deal with
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low-dimensional features, and are not suitable for complex
high-dimensional features of multi-shape defects.

With the rapid development of deep learning, object detec-
tion techniques have attracted extensive attention from both
academia and industry in recent years. Generally, deep con-
volution neural network (CNN) can automatically extract
complex high-dimensional features from images, and detec-
tor network structure can generate Region of Interests (RoIs)
and distinguish categories. Therefore, object detection has a
broad application prospect for the steel surface defect detec-
tion task. Girshick et al. (2014) first proposed a region-based
convolutional neural network (R-CNN) for object detection,
where selective search is used to generate RoIs, and SVM as
well as linear regression is employed for classification and
localization. Then inspired by the spatial pyramid pooling
network (He et al. 2014), Girshick (2015) proposed Fast R-
CNN, where the entire image is fed into CNN, and a ROI
pooling layer is designed to obtain the feature correspond-
ing to each RoI. Ren et al. (2015) proposed Faster R-CNN
which can generate RoIs by region proposal network (RPN)
instead of selective search. Many subsequent studies focus
on improving the performance of object detection. Lin et al.
(2017) introduced the feature pyramid network (FPN) into
Faster R-CNN to improve the detection accuracy of multi-
size object. He et al. (2017) replaced the RoI pooling layer
with RoI align layer to avoid the quantization error. Dai
et al. (2017) proposed the deformable convolution which
expands the receptive field of the convolution operator by
adding offset to the convolution sampling point. Pang et al.
(2019) proposed Libra R-CNNwhere balanced feature pyra-
mid is designed to address the imbalance of extracted feature.
Although object detection has become an attractive topic in
machine vision and artificial intelligence, but it has not been
fully applied in the detection of steel surface defects.

There are only a few object detection approaches applied
in steel surface defect detection, and the existing models
have not reached a balance between inspection performance
and inference efficiency. He et al. (2020) opened a steel sur-
face defect detection dataset NEU-DET, and proposed a steel
surface defect inspection approach. This model fuses multi-
resolution features into a single-resolution feature map to
replace the traditional specific feature map. However, single-
resolution feature map may not accurately detect multi-size
defects, and the efficiency of this method can be improved
via more advanced approaches. Lv et al. (2020) proposed an
active learning approach for steel surface defect inspection,
and a YOLO-v2 based model is performed on the NEU-DET
dataset. This model is concise and efficient, but it shows poor
inspection performance.

As reviewed in previous paragraphs, the defect inspec-
tion algorithm plays a vital role in the steel surface defect
inspection system. And there are some shortcomings in
the traditional region proposal methods and defect classi-

fication methods. While object detection approaches based
on deep learning can provide solutions to this issue, but
have not been fully applied in steel surface defect detec-
tion. And existing models with object detection approaches
have not reached a balance between inspection performance
and inference efficiency. In this paper, we propose a steel
surface defect inspection network with advanced object
detection approaches. In our model, a deformable convolu-
tion enhanced backbone network is designed to extract the
complex features of multi-shape defects. A feature fusion
network with balanced feature pyramid is proposed to gen-
eratemulti-resolution features for the inspection ofmulti-size
defects. And detector network is employed for the local-
ization and classification of defects. The proposed model is
evaluated on the NEU-DET dataset, and experimental results
are fully analyzed.

Methodology

In this section, the structure and the training of defect inspec-
tion network (DIN) are fully illustrated.

Defect inspection network

The framework of the DIN is illustrated in Fig. 1. For a
padded image of steel surface, multi-resolution feature maps
are extracted by a CNN backbone. Because of the diversity
in shapes of steel surface defects, deformable convolution
operator is introduced to backbone network to make recep-
tive field of convolution more suitable to defect shapes.
Then the feature fusion network with balanced feature pyra-
mid fuses the multi-resolution feature maps to enhance
the semantic information of multi-resolution feature maps,
which would help the detection of multi-size defects. And
RPN is employed to generate RoIs which are more likely to
contain steel surface defects. Next, the features correspond-
ing to each RoI, which are extracted from appropriate feature
maps, aremapped to fixed size. At last, the Fast R-CNNmod-
ule is employed for defect classification and localization.

Deformable convolution enhanced backbone network
Feature extraction is the first step of the whole model, and
high-quality features extracted from image pixels are of great
importance to the subsequent modules. The backbone net-
work is used to extract complex high-dimension features of
steel surface defects. The mainstream backbone networks
include visual geometry group model (Simonyan and Zis-
serman 2015), GoogleNet (Szegedy et al. 2015) and residual
network (ResNet) (He et al. 2016). Since the ResNet model
has reached a good balance between the parameter scale and
the feature extraction performance (He et al. 2020, 2016),
it is selected to design the backbone convolutional network.
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Fig. 1 The architecture of steel surface defect detection network

Table 1 Backbone network architecture

Stage Output resolution / initial
resolution

Layer config

1 1/2 7×7, 64

3×3, pooling

2 1/4

⎡
⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤
⎦ × 3

3 1/8

⎡
⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤
⎦ × 4

4 1/16

⎡
⎣

1 × 1, 256
3 × 3, 256, dc
1 × 1, 1024

⎤
⎦ × 6

5 1/32

⎡
⎣

1 × 1, 512
3 × 3, 512, dc
1 × 1, 2048

⎤
⎦ × 3

Besides, since the defect shapes are diversified and irregular.
Defects’ shapes are different from the receptive field shape
of convolution structure which is regularly set as square.
Formable convolution (DC) can enhance the transformation
modeling of CNNs by augmenting the spatial sampling loca-
tions with offsets (Dai et al. 2017), which can better adapt to
the defect shapes. Therefore, the DC operator is introduced
to the ResNet in this study. The details of the DC enhanced
backbone network are described in detail below.

The backbone network architecture based on ResNet-50
with DC enhanced is shown in Table 1. Cropped images are
fed into the backbone network. And the last feature maps in
stage 2, 3, 4 and 5 regarded asC2,C3,C4,C5 are output to the
feature fusionnetwork. InTable 1, k×k, cmeans a k×k kernel
with c channels, while k×k, c, dcmeans a k×k deformable
convolutionkernelwith c channels. The repeating structure in
each stage in Table 1 is called deformable convolution block,
which is formally expressed in Eq. 1 and illustrated in Fig. 2.
In each deformable convolution block, 1 × 1 convolution

Fig. 2 Deformable convolution block

layers control the feature dimension in the start and the end
of blocks to reduce the size of convolution parameters. 3× 3
deformable convolution layer is the main convolution layer
in each block, which is marked in the green box in Fig. 2.
Moredetails about deformable convolution are supplemented
below.
⎡
⎣

1 × 1, c
3 × 3, c, dc
1 × 1, 4c

⎤
⎦ (1)

In the traditional convolution structure, the offset from
sampling location to center of the convolution kernel is fixed.
The set of fixed offsets is denoted as �, which defines the
size and dilation of square receptive field. For example, �

for a 3 × 3 kernel with dilation 1 is supplemented in Eq. 2.

� ={(−1,−1), (−1, 0), (−1, 1), (0,−1),

(0, 0), (0, 1), (1,−1), (1, 0), (1, 1)} (2)
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Fig. 3 Feature fusion network

However, the deformable convolution module augments
extra offsets to the basic sampling location, which can make
the receptive field more adaptive to defect shapes. For each
location p0 in output feature map y, deformable convolution
module is expressed in Eq. 3.

y(p0) =
∑
pn∈�

w(pn)x(p0 + pn + �pn) (3)

In Eq. 3, x represents the input feature map and w represents
the sampling weight parameter. pn indicates the fixed offset
from the basic sampling location to the center of the convolu-
tion kernel. �pn indicates the offset from the true sampling
location to the basic sampling location, which is computed
by an extra traditional convolution layer (shown in Fig. 2).
Since the computed offset �pn is typically fractional, the
sapling procedure x(p0 + pn + �pn) is completed by the
bilinear interpolation method.

Feature fusion network The size of steel surface defects is
diversified, so the single-resolution feature map output by
backbone network may show poor performance in detecting
multi-size defects. As indicated in Lin et al. (2017), low-
resolution feature maps are suitable to detect large object,
while high-resolution feature map is suitable to detect small
objects, so the application of multi-resolution feature maps
can help the inspection of multi-size defects. Based on fea-
ture pyramid network (Lin et al. 2017) and balanced feature
pyramid structure (Pang et al. 2019), feature fusion net-
work is designed to improve the semantic information of
multi-resolution feature maps. As shown in Fig. 3, the multi-
resolution feature maps output by backbone network are
fed into the lateral pathway for dimension reduction. Then
these maps are merged in a top-down pathway, where low-
resolution featuremaps are up-sampled and thenmergedwith
nearby high-resolution feature maps. Afterward, fused fea-
ture maps integrates and refines to obtain balanced feature
pyramid. The implementation details are discussed below.

As shown in Fig. 3, to fuse multi-resolution feature maps
C2, C3, C4, C5 which have different dimensions, the lateral
pathway reduces these dimensions to 256 via a 1×1 con-
volution layer. In the top-down pathway, the up-sampling
procedure adopts nearest neighbor upsampling for simplicity,
and corresponding featuremaps aremerges via element-wise
addition. Besides, fused maps after the top-down pathway
undergo a 3×3 convolution layer to reduce the aliasing effect
of upsampling, and the output fused maps are called P2, P3,
P4, P5. To integrate multi-resolution features and preserve
their semantic information, multi-resolution features P2, P3,
P4, P5 are firstly resized to an intermediate size (the same
size as P4) by interpolation and max-pooling respectively.
Then resized feature maps are averaged to obtain a balanced
feature map. Next, the balanced feature map is refined to be
more discriminative via a non-local module. In the end, the
refined feature map is rescaled to the initial resolutions and
further appended to P2, P3, P4, P5 via element-wise addition.
The obtained multi-resolution feature maps B2, B3, B4, B5

are the output of feature fusion network.

Detector network Based on high-quality feature maps from
feature fusion network, detector network would ultimately
achieve the localization and classification of steel surface
defects. As shown in Fig. 1, the detector network firstly
employs RPN to select RoIs which are more likely to con-
tain steel surface defects. Next, the features corresponding to
each RoI, which are extracted from the appropriate feature
map, are mapped to a fixed-size feature by a RoI align mod-
ule. The subsequent part is a Fast R-CNNmodule, where the
mapped feature is fed into fully-connected layers for defect
classification and more precise localization.

RPN takes multi-resolution features B2, B3, B4, B5 as
input and outputs RoIs. For each feature map, RPN uses
a 3 × 3 spatial sliding window on the feature map to
obtain local feature. Then the feature is fed into two sib-
ling fully-connected layers including box-regression layer
andbox-classification layer.At each slidingwindow location,
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Table 2 Feature level assignment for RoIs

Feature maps Pre-set anchor area RoI area range

B2 322 0 < S < 462

B3 642 462 <= S < 922

B4 1282 922 <= S < 1842

B5 2562 S >= 1842

multiple region proposals called anchors are simultaneously
predicted. The Anchor with a certain size and aspect ratio is
at the center of each sliding window (Ren et al. 2015). The
sliding window and fully-connected layers are respectively
implemented with 3 × 3 and 1 × 1 convolution layers. It’s
worth noting that the classification layer in RPN only per-
forms defect/non-defect classification, and it cannot predict
the defect category. RoIs are selected from anchors accord-
ing to classification scores and the Intersection over Union
(IoU)with ground-truth boxes as in Faster R-CNN (Ren et al.
2015).

To fully use RoIs withmulti-resolution featuremaps, RoIs
in different sizes are assigned to appropriate pyramid levels,
which is summarized in Table 2. Then RoI align module (He
et al. 2017) is employed to map the features corresponding
to each RoI into a 7 × 7 feature. Afterward, this feature is
flattened and fed into two fully-connected layers with ReLU
following. At last, two sibling fully-connected layers includ-
ing regression layer and classification layer are employed for
further localization and final category classification. In the
outputs of detector network, the defect category is expressed
by confidence score, and the defect localization is expressed
by bounding-box coordinates. The procedures after RoI align
are also known as the Fast R-CNN module.

Training

Multi-task loss function RPN and Fast R-CNN modules in
DIN respectively produce RPN loss and Fast R-CNN loss in
training. And both modules produce classification loss and
regression loss. For box-classification task in the RPN mod-
ule, positive labels and negative labels are firstly assigned to
each anchor, then the log loss between the ground-truth label
and the predicted probability is calculated as RPN classifi-
cation loss. For box-classification task in the Fast R-CNN
module, ground-truth categories are firstly assigned to each
RoI, then the log loss between the ground-truth category and
the predicted confidence score is calculated as Fast R-CNN
classification loss. For box-regression task in both mod-
ules, 4 coordinates (box’s center coordinates and its width
and height) of box-regression results and ground-truth boxes
are firstly parameterized. Then the smooth L1 loss between

regression coordinates and ground-truth box coordinates is
calculated as regression loss (Girshick 2015).

Approximate joint training Since the RPN module and the
Fast R-CNN module share multi-resolution feature maps,
if these two modules are trained independently, parameters
in shared networks (backbone network and feature fusion
network) will be repeatedly modified. Approximate joint
training scheme is employed for this issue. In each train-
ing iteration, RoIs generated by RPN are treated as fixed
pre-trained RoIs when training the Fast R-CNN module in
the forward propagation. In the backward propagation, RPN
loss and Fast R-CNN loss are backward propagated as usual
before shared networks, and are combined to backward prop-
agated in shared networks. Although this training scheme is
approximate since it ignores the derivative with respect to
RoIs in Fast R-CNN, it is easy to implement and can pro-
duce good results (Ren et al. 2015).

Experimental results and discussion

In this section, employed dataset NEU-DET is firstly intro-
duced. Implementation details and evaluation metric are
supplemented. Experiments are performed to evaluate the
proposed DIN model, and the experimental results are ana-
lyzed and discussed in detail.

Dataset

Steel surface defect dataset is of great importance for the data-
driven inspection model. Using high-quality and large-scale
defect datasets can improve the generalization performance
of the model. NEU-DET dataset is a defect detection dataset
opened by He et al. (2020). Six types of defects including
crazing, inclusions, patches, pitted surface, rolled-in scale
and scratches are gathered. For each type of defects, 300
images with defects were collected. These defects are repre-
sentative on the surface ofmanufacturing equipment. Among
them, some defects such as crazingmay lead to structure rup-
ture, some defects such as inclusions may affect the stress
state in structure of steel equipment and even develop into
more serious defects, and some defects such as patches and
pitted surface may affect the corrosion and wear resistance
of steel equipment. Therefore, the timely defect inspection
is pursed as discussed in Introduction. It’s worth noting that
there may be several defects in one image, which meets the
application needs in industry. Several typical images with
defects are shown in Fig. 4.

In order to inspect defects with various ratios and diver-
sified sizes, it is of necessity to analyze the ratio distribution
and size distribution of all the defects. As shown in Fig. 5,
the ratios of the long side to the short side of most defects are
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Fig. 4 Image examples of steel surface defects. Red boxes are the groundtruth boxes with a defect class label and position coordinates. Each defect
image belongs to the following class: a Crazing. b Inclusions. c Patches. d Pitted surface. e Rolled-in scale. f Scratches

Fig. 5 The distribution of the ratio of the long side to the short side of
all the defects

around 1, 3 and 5, and the proportion of extreme ratio is very
low. As shown in Fig. 6, the ratios of the defect area to the
image area show that the steel surface defects have diversi-
fied sizes and most defects are small-size defects. These dual
diversities in defect shapes and defect sizes also correspond
to the necessity of deformable convolution and feature fusion
network in DIN as explained in Section “Defect inspection
network”. And these two distribution features of defects are
used to set anchor parameters in DIN.

Fig. 6 The distribution of the ratio of the defect area to the image area

Implementation details

The backbone network is initialized with an ImageNet-pre-
trained model, and other networks are initialized randomly.
End-to-end training is performed for 15epochswith an initial
learning rate of 0.01, and decrease it by 0.1 after 9epochs.
Stochastic gradient descent is employed as an optimizer with
a momentum of 0.9 and a weight decay of 0.0001. We take
four images per mini-batch iteration, and the mini-batch size
is 256 RPN training and 512 for Fast R-CNN training. Con-
sidering the distribution of defect size and shape analyzed in
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Table 3 Inspection results on
NEU-DET

Models mAP Crazing Inclusions Patches Pitted surface Rolled-in scale Scratches

Faster R-CNN 0.661 0.314 0.724 0.777 0.715 0.589 0.844

Faster R-CNN with FPN 0.781 0.536 0.840 0.956 0.884 0.625 0.845

Faster R-CNN with BFP 0.791 0.578 0.849 0.935 0.890 0.640 0.852

DIN (our model) 0.805 0.614 0.856 0.930 0.903 0.646 0.883

Section “Defect inspection network”, anchors have area of
322, 642, 1282, 2562 pixels on B2, B3, B4, B5 respectively,
and anchors have multiple aspect ratios 1:5, 1:2, 1:1, 2:1,
5:1 at each level. The input images are padded to 224× 224
pixels for DIN. The NEU-DET dataset is split into training
set and test set with 1440 and 360 images respectively. The
experiments below are implemented on anNVIDIAGeForce
RTX 2080 Ti (11GB) GPU and an Intel 3.20GHz i7-6700
CPU.

Metrics

The metric of inspection performance is firstly introduced.
The criterion of defect A is defined below: (1) the IoU
between predicted bounding box the ground-truth defect A
is more than 0.5; (2) the confidence score for category A is
higher than threshold thcon f . Parameter thcon f is the thresh-
old of confidence score to determine the category in bounding
box. The precision and recall of defect A are defined in Eqs. 4
and 5, where T PA, FPA and FNA represent the number of
true positive, false positive, and false negative of defect A,
respectively.

PrecisionA = T PA

T PA + FPA
(4)

RecallA = T PA

T PA + FNA
(5)

If we increase the parameter thcon f in defect criterion, which
means that the defect criterion is more strict, the precision
will increase while the recall will decrease. Therefore, influ-
enced by parameter thcon f , precision is negatively correlated
with recall. Referring to the evaluation metric for COCO
object detection task (Everingham et al. 2010), average pre-
cision (AP) is defined as the area under the precision-recall
curve (PR curve), which can comprehensively reflect inspec-
tion effect including both precision and recall. AP of 6 types
of defects are averaged as mean average precision (mAP).
Besides, the metric of inspection efficiency is defined by
frame per second (FPS), which means the number of images
that the model can infer in a second.

Main results

The results of DIN are shown in Table 3. The baseline model
(Faster R-CNN) and models with specific components are

also constructed and trained for comparison and analysis.Our
model achieves 0.805mAP, 0.144 higher than the baseline
model. Besides, our model shows high efficiency in infer-
ence. On a single GPU, our model can infer 43.5 images per
second.

A comparison among several model results is analyzed
below. Since themulti-resolution fused featuremaps can bet-
ter represent the features of multi-size steel surface defects,
feature pyramid network (FPN) effectively improves mAP
from 0.661 to 0.781. And the improvements of AP in
patches, crazing and inclusions are significant. Based on
FPN, balanced feature pyramid (BFP) can further enhance
the multi-resolution fused features via refining balanced
semantic feature. Compared with Faster R-CNN with FPN,
the implementationofBFP further improvesmAPfrom0.781
to 0.791. The deformable convolution (DC) can attach extra
offsets to the traditional spatial sampling locations,which can
make convolution more adaptive to defect shapes. The addi-
tion of deformable convolution into the backbone network
improves mAP from 0.791 to 0.805. By comparing results
of four models, AP of crazing, inclusions, pitted surface and
rolled-in scale are continuously improved by adding mech-
anisms including FPN, BFP and DC. These comparative
experiments fully show the superior inspection performance
of our model. Comparing with other researches, for the same
defects, APs in our model are significantly higher than APs
reported in Lv et al. (2020). And our model shows higher
efficiency in inference. Our model can infer 43.5 images per
second on a single GPU, much higher than 20 reported in He
et al. (2020).

PRcurves can also show the inspection performance of our
model. For example, the PR curves of inclusions and patches
output by our model are shown in Fig. 7, although the neg-

Fig. 7 PR curves. AP is defined as the area under the PR curve. a
Inclusions. b Patches
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Table 4 Results of different sizes of balanced feature map

Size of balanced feature map mAP Crazing Inclusions Patches Pitted surface Rolled-in scale Scratches

56 × 56 (the same as P2) 0.791 0.556 0.851 0.928 0.898 0.661 0.853

28 × 28 (the same as P3) 0.795 0.594 0.854 0.927 0.897 0.640 0.862

14 × 14 (the same as P4) 0.805 0.614 0.856 0.930 0.903 0.646 0.883

7 × 7 (the same as P5) 0.787 0.569 0.855 0.941 0.863 0.646 0.847

Table 5 Results of different DC-added ResNet stages

ResNet stages with DC added mAP Crazing Inclusions Patches Pitted surface Rolled-in scale Scratches

Stage 1 Stage 2 Stage 3 Stage 4

F T T T 0.804 0.610 0.857 0.926 0.904 0.643 0.886

F F T T 0.805 0.614 0.856 0.930 0.903 0.646 0.883

F F F T 0.797 0.589 0.847 0.932 0.895 0.644 0.875

F T T T 0.791 0.578 0.849 0.935 0.890 0.640 0.852

ative correlation between precision and recall is distinctive,
there are some points that can accomplish both high preci-
sion and satisfying recall. More model details are analyzed
in the discussion below.

Discussion

What is the optimal size of balanced feature map? BFP
appends refined balanced feature map to traditional FPN to
enhance the semantic information of multi-resolution feature
maps. In Section “Defect inspection network”, we resized
multi-resolution features to the size of P4, and merge them
into a balanced feature map. So, what is the optimal size
of balanced feature map? The size of balanced feature map
is adjusted, and experimental results are shown in Table 4.
These contrastive results indicate that the intermediate-scale
balanced featuremap (the same size as P4) can better improve
the semantic information via merging it to multi-resolution
feature maps.

How many DC layers are added to backbone network at
least? DC is added to ResNet-based backbone network to
make convolution more adaptive to multiple defect shapes.
However, DC introduces more convolution layers to calcu-
late the offsets of spatial sampling locations. Therefore, DC
layers are expected to be as few as possible without affecting
the inspection performance. The traditional DC for general
object detection task is added to the last stages of backbone
network, and we follow this rule in our research. The stages
to which DC layers are added are adjusted, and experimental
results are shown in Table 5. The contrastive results show
that the last 2 stages with DC layers added are sufficient for
good effect.

Achieved a balance between inspection performance and
inference efficiency? Steel surface defect inspection mod-
els should achieve not only good inspection performance, but
also high inference efficiency.Both factors are of great impor-
tance to the industrial implementation of our model. RPN
simultaneously predicts many region proposals, however,
only a few region proposals with higher confidence score
are selected as RoIs which are further input to Fast R-CNN.
Therefore, the RoI number is a critical hyper-parameter
which influences inspection performance and inference effi-
ciency. If more RoIs are output to Fast R-CNN, Fast R-CNN
may discover the defects which are not well detected in RPN,
but inference efficiency is weakened since Fast R-CNN is
applied to more RoIs. As shown in Table 6, with the decrease
of RoI number, our model shows robust inspection perfor-
mance and higher inference efficiency. mAP and FPS are
respectively employed to evaluate inspection performance
and inference efficiency. Even RoI number decreases from
500 to 50, mAP still reaches 94.8% of best performance,
while the inference efficiency increased by 17%. And the
increase of RoI number from 500 to 1000 does not effectively
improvemAP, but suppresses inference efficiency.Therefore,
RoI number is set as 500 for the balance between inspection
performance and inference efficiency.

Why are some defects not accurately detected? Although
our model generally achieves promising results, there exist
some defects not accurately inspected.We attempt to explore
the reasons for unsatisfying inspection results. (1) The dif-
ference between confusing defects and background is not
distinct. For example, our model cannot recognize the upper
crazing defect in Fig. 8a, and it recognizes the bottom box
as a rolled-in scale defect in Fig. 8b. Such defects are so dif-
ficult that even humans cannot accurately distinguish them
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Table 6 Results of different RoI numbers

RoI number FPS mAP Crazing Inclusions Patches Pitted surface Rolled-in scale Scratches

50 50.9 0.763 0.555 0.820 0.900 0.887 0.561 0.833

100 50.0 0.776 0.585 0.833 0.903 0.878 0.594 0.840

300 47.8 0.797 0.609 0.854 0.924 0.893 0.640 0.866

500 43.5 0.805 0.614 0.856 0.930 0.903 0.646 0.883

1000 39.9 0.806 0.615 0.859 0.929 0.903 0.648 0.881

Fig. 8 Failure analysis. Red boxes are ground-truth boxed while green
boxes are detected defects. a Confusing defect (crazing). b Confusing
defect (rolled-in scale). c Unclear boundary. d Incomplete label

from background. (2) The boundaries between some adja-
cent defects are not distinct. As shown in Fig. 8c, our model
might not be able to precisely find unclear boundaries, and
may inspect such adjacent defects as a single defect, so the
smaller one of adjacent defects cannot be correctly defined
according to the general defect criterion. (3) Some distinctive
defects can be precisely inspected but theymay be unlabeled.
As shown in Fig. 8d, the right side of the image clearly con-
tains pitted surface which our model detects, while it is not
labeled in the original dataset.

Conclusion and future work

Steel surface defect detection is of great significance to
the normal operation of steel equipment in manufacturing
workshops. Towards smart industrial monitoring, we apply
advanced object detection techniques to steel surface defect

inspection. The proposed model achieves 0.805mAP, 0.144
higher than baseline model, and our model shows high effi-
ciency in inference (43.5 FPS on a singleGPU). Comparative
experiments are performed to show the effect of employed
approaches. The main contributions of our work are summa-
rized as follows: (1)A steel surface defect inspection network
(DIN) based on advanced object detection approaches is pro-
posed. And the proposed model achieves a balance between
inference efficiency and inspection performance. (2) The
diversity in defect shapes brings challenges to the extrac-
tion of defect features. Therefore, a deformable convolution
enhanced backbone network is designed to improve the
quality of extracted features, where deformable convolution
can make convolution more adaptive to defect shapes. (3)
The diversity in defect sizes also poses challenges to the
inspection of multi-size defects. Therefore, a feature fusion
network with balanced feature pyramid is proposed to gener-
ate high-qualitymulti-resolution featuremaps to help inspect
multi-size defects.

Possible future work is also summarized below. (1) Data
augmentation techniques are expected to be employed to
make up the deficiency of high-quality defect images. (2)
How to control and maintain equipment considering both
inspected defects and equipment condition is an interesting
issue to be further discussed. (3) We expect to evaluate our
model in the actual industrial environment.
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