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Abstract
Predicting remaining useful life (RUL) is crucial for system maintenance. Condition monitoring makes not only degrada-
tion data available for RUL estimation but also categorized health status data for health state identification. However, RUL 
prediction has been treated as an independent process in most cases even though potential relevance exists with health status 
detection process. In this paper, we propose a convolution neural network based multi-task learning method to reflect the 
relatedness of RUL estimation with health status detection process. The proposed method applied to the C-MAPSS dataset 
for aero-engine unit prognostics supported superior performances to existing baseline models.
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Introduction

Engineering maintenance and prognostics are crucial in 
most industries. Traditionally, breakdown corrective mainte-
nance and scheduled preventive maintenance have been key 
strategies in maintenance processes (Azadeh et al. 2015). 
However, as physical systems have become more complex, 
existing methods no longer meet the industrial requirements 
for efficiency and reliability (Stringer et al. 2012). Thus, 
intelligent prognostic and health management (PHM) tech-
nologies have been developed to efficiently perform such 
diagnoses and management by monitoring sensor data (Vogl 
et al. 2019). The goal of intelligent PHM is to reduce mainte-
nance costs and improve reliability by monitoring the system 
state (Xia et al. 2018).

With sufficient condition monitoring (CM) data, the PHM 
process can be utilized to estimate the remaining useful life 
(RUL) (Babu et al. 2016), and with monitored degradation 
data, the future performance of the system can be predicted 
in terms of the RUL. Efficient and accurate prognostic tech-
nologies help to make maintenance decisions in advance 
to avoid failures; thus, RUL estimation based on given 

historical sensor measurements has become one of the most 
important PHM activities.

The sensor measurements can also be used to other PHM 
processes such as identifying health conditions, anomaly 
detection or system diagnosis (Lei et al. 2008; Niu and Yang 
2010). The integrated PHM system has been introduced to 
accomplish various PHM processes based on collected sen-
sor data (Khan and Yairi 2018). However, in most cases, 
each task has been regarded as an independent task. Indi-
vidual model is constructed for each task, thus the system 
complexity has become a potential risk to simultaneously 
consider other PHM process with RUL prediction (Khan and 
Yairi 2018). Moreover, there is a potential relation between 
other PHM processes and RUL prediction (Zaidan et al. 
2015). Therefore, performing RUL predictions simultane-
ously with other process can improve the performance of 
the PHM system while reducing its complexity.

In this paper, we suggest a data-driven approach to simul-
taneously accomplish health condition identification and 
RUL estimation of a complex system. The health condition 
identification is to measure the current system conditions. If 
the current state can be specified, operable and committable 
time could be measured, and it can be helpful to evaluate the 
remaining time of a system from the current state (Patton 
et al. 2013). Thus, a multi-task learning (MTL) framework 
is suggested to infer the RUL of a current system, reflecting 
its correspondence to present health conditions.
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MTL has been used to improve performance by utilizing 
the domain-specific information involved in the related tasks 
(Baxter 1997). The simultaneous learning of multiple related 
tasks has been shown, both theoretically and empirically, to 
improve performance as compared to the independent learn-
ing for each task (Girshick 2015). Traditional MTL based 
on a neural network structure is composed of two partial 
networks: a shared network and a task-specific network. A 
shared network uses the same hidden neurons over different 
tasks, while task-specific networks are made independent to 
separate the information of individual tasks. On connect-
ing these networks, shared representation is developed con-
currently across tasks. Thus, MTL can reduce the risk of 
overfitting and improve the single task performance of the 
original task.

In this study, one shared network and two task-specific 
networks are organized: the former to capture interdepend-
encies between RUL estimation and health condition iden-
tification, and the latter to perform each task. By capturing 
the interdependencies of related integrated health manage-
ment processes, the proposed MTL framework is expected to 
improve prognostic accuracy. In the proposed MTL model, 
convolution neural network (CNN) layers are employed as 
the basic structure of shared layers to extract global features 
from complex signals. Raw sensor data is input directly to 
the CNN-based MTL structure, and a multi-variate 1-D filter 
is utilized for feature extraction, reflecting the time varying 
relationship amongst multi-sensor data. The proposed frame-
work was applied to the C-MAPSS dataset, which has a RUL 
label, and the system’s degradation information per cycle 
was recorded (Saxena et al. 2008). Our MTL framework is 
expected to contribute to managing and maintaining system 
conditions by improving RUL prediction performance.

The composition of this paper is as follows. Second sec-
tion reviews previous studies on health management. Third 
and fourth sections explain the data and methodology used 
in this study, and fifth shows the results of empirical analy-
sis. Finally, sixth section presents the conclusions as well as 
the contributions of the study.

Literature review

Data‑driven approaches for the estimation 
of remaining useful life

In recent years, data-driven approaches have been used 
to discover the relationship between monitored condition 
data and RUL (Lee et al. 2014). One of the advantages of 
data-driven approaches to the RUL estimation in CBM is 
that extensive prior knowledge of the physical system is 
not required. Moreover, they can reflect intrinsic correla-
tions and causalities of sensor measurements, thus proving 

their good prediction performance. Various approaches 
using data-driven algorithms aim to utilize these benefits. 
Riad et al. (2010) modeled a multi-layer perceptron (MLP) 
approach to estimate the RUL from an aircraft turbofan 
engine, demonstrating that the prediction performance of 
MLP is superior to that of a simple linear regression model. 
In another approach, Tian (2012) proposed an artificial neu-
ral network (ANN) based method to estimate the RUL of a 
physical instrument using monitored data.

Recently, deep neural network–based techniques, also 
known as deep learning approaches, have been applied 
to RUL estimation, as they are known for their ability to 
handle complex and high-dimensional systems (LeCun 
et al. 2015). Malhi et al. (2011) suggested an RNN-based 
approach for long-term prognostics of RUL. This model 
captured the long-term dependency of sequential vibration 
signals and could thus measure the RUL of rolling bearing 
products from real-time signals. To improve the drawbacks 
of traditional RNN such as gradient vanishing or explod-
ing, Yuan et al. (2016) proposed a long-short term memory 
(LSTM) based framework, showing that the performance 
of LSTM was superior to RNN in predicting the RUL of an 
aero-engine. Several other studies have suggested RNN and 
LSTM based approaches for RUL estimation because the 
recurrent network structure is more effective than time-series 
data (Malhotra et al. 2016; Lim et al. 2016; Gugulothu et al. 
2017; Guo et al. 2017; Yoon et al. 2017; Wu et al. 2018).

Because recurrent networks have complex computational 
burdens, CNNs, which are designed to extract features 
through weight sharing filters, were also utilized for RUL 
prediction. Babu et al. (2016) designed a two-dimensional 
(2D) CNN model to consider multivariate relationships of 
the sensor data; sequential monitoring data was used as the 
raw input data, and temporal patterns were also captured 
through the convolution layer. Li et al. (2018b) also designed 
a similar CNN approach, but by using a univariate 1-D CNN 
filter to reflect the sequential patterns of each sensor; the 
independent temporal features were extracted for each sen-
sor and then concatenated in the output layer to estimate 
the RUL. However, none of these approaches utilized MTL.

Multi‑task learning

MTL is an approach which simultaneously handles multiple 
tasks (Caruana 1997). One of the purposes of MTL is to 
improve single task generalization by reflecting the domain-
specific information in the related tasks, which are also 
called auxiliary tasks (Ando and Zhang 2005). An additional 
aim is to combine the common knowledge of all tasks and 
simultaneously enhance their performance (Pan and Yang 
2010). To achieve MTL objectives, it is necessary to learn 
related tasks; multiple tasks can be related in various ways, 
such as if the functions in each task work similarly in some 
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manner or share a common aim in corresponding domains 
(Argyriou et al. 2007).

Implicit data augmentation, attention focusing, eaves-
dropping, and representation bias are some of the properties 
that allow MTL to perform better than independent learning 
(Caruana 1997; Ruder 2017; Zhang and Yang 2017). Essen-
tially, deep learning utilizes a large network with numerous 
parameters, which requires a large amount of training data. 
One of the drawbacks of deep learning is that it is rendered 
ineffective by insufficient data samples (Marcus 2018). How-
ever, MTL utilizes the datasets from all tasks; it effectively 
increases the training sample size and extracts a more gen-
eral representation from multiple tasks with different noise 
patterns (Ruder 2017). Additionally, it mainly updates model 
parameters from focused features that are commonly impor-
tant to all the tasks, thus providing additional information 
on the relevance of features to other tasks. MTL also allows 
for most features to be effectively trained by different tasks 
(Caruana 1997); even if one task can only train certain fea-
tures, the other features can be learned through other tasks. 
Finally, the model is trained using general representations 
from all related tasks, so a trained model can accept new 
related tasks in the same domain (Ruder 2017). This helps 
to improve the model’s adaptability to new tasks.

Problem settings

C‑MAPSS data

The commercial modular aero-propulsion system simulation 
(C-MAPSS) dataset is derived from a turbofan engine simu-
lation program developed by NASA (Saxena et al. 2008). 
The simulation program monitored the degradation of mul-
tiple aero-engines and collected multi-variate time-series 
sensor measurements from 21 sensors. The initial wear state 
and manufacturing variation of engine units are unknown 
but assumed to be healthy. The C-MAPPS dataset consists 
of four sub-datasets depending on whether the experimen-
tal setting has single or different operational conditions for 
each cycle and what kind of faults (i.e. FAN degradation or 
HPC degradation) are considered in the engine. Thus, each 
sub-dataset has run-to-failure sensor records collected under 
different operating conditions and fault modes, respectively.

Each sub-dataset includes a training set and a test set. 
In the training set, system degradation is observed as time 
progresses, and the last recorded data of each engine unit is 
considered as the fault declaration and the termination of 
the experiment. Multiple sensor measurements of each cycle 
are used as inputs for training samples, and all of them are 
used to predict the RUL. Records in the test set are pruned 
to stop before failure, and the aim of the C-MAPSS dataset 
is to predict the true RUL of the last record in the test set. 

This implies that only one sensor measurement of the last 
record per engine unit is considered as the testing sample, 
and the actual RUL value of it is used for verification. The 
C-MAPPS dataset information is shown in Table 1.

Data preprocessing

Although multi-variate temporal data is included in the 
C-MAPSS dataset, some sensors have constant values which 
are not useful for the RUL estimation. Constant sensor val-
ues cannot be used significantly to predict the target RUL 
value. Therefore, these sensor values are eliminated, and 
only 14 out of 21 sensors are considered for the raw input 
data (sensor 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21).

For each of the sub-datasets in C-MAPSS, experimental 
scenarios can differ according to the operating conditions. 
FD001 and FD003 have single operating conditions, while 
FD002 and FD004 have six different operating conditions. 
Because of the conditional relationship between operating 
conditions and the monitored values, the actual meaning of 
sensor values can differ according to the operating condi-
tions (Rabiei and Modarres 2013). Thus, condition-wise 
normalization is performed on the sensor data of FD002 
and FD004 to adjust the scale of the sensor values in compli-
ance with the operating conditions. The normalization has 
an observable effect on the sensor values in the RUL estima-
tion. The normalization equation is as follows:

where x(o,d) denotes d-th sensor values of the o-th operat-
ing condition, and �(o,d) and �(o,d) represent the mean and 
standard deviations of the sensor values for each operating 
condition. On the other hand, FD001 and FD003 have only 
one operating condition; thus, their normalization is per-
formed by each sensor.

The normalized sensor values are used to estimate both 
the actual RUL value and the present health condition. 
Because the asset has a very healthy initial state, its RUL 
does not decrease at an early stage. Therefore, to obtain the 
RUL value in this study, a healthy state is maintained during 

(1)Norm
(
x(o,d)

)
=

x(o,d) − �(o,d)

�(o,d)

Table 1   Information of C-MAPPS dataset

Description FD001 FD002 FD003 FD004

Operating conditions 1 6 1 6
Fault modes 1 1 2 2
# of engine units for training 100 260 100 249
# of engine units for testing 100 259 100 248
# of training samples 20,631 53,759 24,720 61,249
# of testing samples 100 260 100 248
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the early stages by using a piece-wise linear degradation 
model that limits the maximum RUL value (Heimes 2008). 
Because the degradation is identified after the initial healthy 
period, this approach prevents overestimation of the RUL 
(Babu et al. 2016). We set the maximum RUL value to 125 
as provided in Malhotra et al. (2016) and Li et al. (2018b). 
Meanwhile, there is no information related to the present 
health condition in the C-MAPPS dataset. Thus, three health 
condition labels are assumed: the first 30% of the samples 
are healthy, the last 30% are unhealthy and the remaining 
40% are deteriorating (Yuan et al. 2016). In this manner, our 
dataset not only holds the true RUL value, but also the pre-
sent health condition in every cycle. All functions in the sug-
gested MTL are simultaneously learned from both targets.

Methodology

Architecture

In this study, we propose a deep architecture to effectively 
predict the RUL by simultaneously learning two tasks: RUL 
estimation and health condition prediction. To simultane-
ously estimate the RUL value and present health condition, 
an MTL model is constructed. The proposed model cap-
tures the interdependencies of both tasks offering supportive 
knowledge to the RUL estimation task to obtain improved 
prognostic performance.

Because sequential sensor measurements have temporal 
patterns, they can exhibit powerful performance in deep 
architecture-based MTL on recurrent networks. However, 
recurrent network–based approaches require relatively high 
computational time because, unlike CNN, the recurrent 
structure does not allow for increased parallelization (Vas-
wani et al. 2017). While MTL has the drawback of high 
computational complexity because it requires huge networks 
to reflect the combined information from multiple tasks, 
CNN effectively reduces computational time by utilizing 
parallelization. Therefore, CNN architecture was applied 
as the basic deep-learning structure of our proposed MTL.

Instead of using a recurrent architecture, a multi-variate 
1D filter was applied to the CNN architecture to extract a 
better feature representation in terms of sequential multi-
sensor measurements. The 1D filter can capture the underly-
ing relationship between multiple sensors, and the temporal 
patterns of those sensors can be reflected by sliding the filter. 
The last feature map extracted by this filter was utilized as 
the input vector of separate networks for RUL estimation and 
health condition identification.

During the training process, the true RUL value and health 
condition were set as the learning objectives of our model, 
and all functions were updated by both complementary tar-
gets. In the testing process, the prediction values of both tasks 

were acquired, and the performance of our multi-task model 
was evaluated by comparing the RUL performance with other 
baselines. In the following sections, each process is described 
in detail.

Proposed multi‑task network structure

MTL has two layers: shared layers and task-specific output 
layers. Usually, the bottom layers of the network are for shar-
ing domain-specific information, whereas the top layers are 
for separating task-specific information. Shared layers share 
parameters of hidden layers, while task-specific output layers 
retain their own parameters. The former is to extract the gen-
eral features of corresponding domains, while the latter is to 
focus on performing individual tasks. In this study, the shared 
layers are composed of a fully convolutional CNN layer and 
two separated fully connected layers (FCLs) of CNN and are 
regarded as the task-specific output layers, as shown in Fig. 1.

All parameters in the multi-tasking network were jointly 
optimized to simultaneously improve task generalization and 
individual model performance. The convolution parameters, 
which are shared network parameters, were updated to reflect 
the common knowledge of CBM. Meanwhile, the FCL param-
eters, which are task-specific network parameters, learned 
independent information corresponding to the RUL estima-
tion and health condition identification, respectively. The loss 
function of each task affects both the individual task and the 
shared parameters.

The target RUL variable is an interval type, but the health 
condition is an ordinal type target with three levels, repre-
sented by 1 for healthy, 2 for deteriorating, and 3 for unhealthy 
(k = 1, 2, 3). To directly reflect this ordinal target into neural 
networks, we utilized 2 binary classifiers (Niu et al. 2016) 
with two dummy variables that represent the target vectors 
of healthy, deteriorating and unhealthy with {0,0}, {1,0} 
and {1,1}, respectively. The neural networks were trained to 
predict each binary target (Cheng et al. 2008). In the testing 
process, unseen samples could be ranked by scanning from 
the first to the second classifier. Each sample had two prob-
abilities; if they were higher than a certain threshold, they were 
set to 1, or else to 0. The threshold value was set to 0.5. The 
sample ranks were judged based on the number of 1 s in all 
classifiers. Estimating RUL and classifying health condition 
respectively yield regression loss and ordinal regression loss, 
as follows,

(2)
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(
Ĥr

i
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i
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where N represents the number of data samples, and Lreg is 
the root mean squared error (RMSE) loss between target 
RUL R and predicted RUL R̂ , while Lcls is the combined 
sigmoid loss information of two binary classifiers where Hr 
is the true health condition and Ĥr is the predicted health 
condition for each sample. For multi-tasking learning, the 
loss function of each task affected both corresponding task 
layer and shared layer. Thus, parameters of task-specific 
layer were updated to improve performance of each task, 
while parameters of shared layer were changed to extract 
good general feature of CBM. Our proposed entire model is 
learned by the weighted sum of these two losses. Total loss 
is equally affected by both losses at a ratio of 1:1.

Multi‑variate one‑dimensional filter

Although the CNN was originally designed for image pro-
cessing, it has become one of the most popular and success-
ful deep learning methodologies in many research fields. 
In RUL estimation, CNN has been used in various studies 
and shown excellent prediction results (Babu et al. 2016; Li 
et al. 2018b). The CNN identifies the intrinsic patterns of 
input data through localized filters and spatial pooling (Kriz-
hevsky et al. 2012). The convolution layer extracts abstract 
spatial features of the signals, while the pooling layer obtains 
significant values in local features.

As shown in Fig. 2, our raw data were pre-processed to a 
2D matrix containing D raw sensor signals with an Nw time 
sequence. D represents 21 sensor numbers, and Nw indicates 
the time window size for the number of sensor measure-
ment cycles to consider. Thus, the input data has two intrin-
sic properties: the potential relationship amongst multiple 

sensors and that in the time-series. Generally, CNNs extract 
the feature representation by sliding horizontally and verti-
cally across the input map with convolution filter, essentially 
reflecting local correlations among pixels, assuming they are 
related to their neighbors. However, because the physical 
position of the sensors was unknown, there was no informa-
tion about sensor correlations in our dataset. Thus, the size 
of one filter dimension was fixed to 21 sensor numbers. This 
captured the correlation between multiple sensors at once, 
leaving only the filter length Nl , that is, the number of cycles 
to be considered by the filter, to be decided. By vertically 
sliding the filter, the temporal properties of the incorporated 
multi-sensor values could be captured simultaneously.

Because this multi-variate one-dimensional filter can 
simultaneously reflect all the sensor values, the output value 
represents the combined values of multiple sensors. The con-
volution operation based on this filter is as follows:

where ∗ represents the convolution operator, l denotes the 
l-th convolution layer, Xl−1 and Zl represent the input and 
output of l th convolution layer. ELU is the activation func-
tion for non-linear transformation between layers, kl and bl 
represent the filter kernel and bias, respectively, in the l-th 
convolution layer. The concatenation of all the output fea-
ture vectors was conducted for the next convolution layer; 
at the end of the convolution layer, the separated FCL were 
employed for each task. However, both FCLs had the same 
input feature vector from a shared network. The feature 
maps from the filter kernels of the last convolution layer 

(3)
Zl =

[
Xl−1 ∗ kl

1
+ bl

1
,… ,Xl−1 ∗ kl

Nf
+ bl

Nf

]
, Xl = ELU

(
Zl
)

Fig. 1   Proposed multi-task network structure, where Nl is the number of convolution layers and Nf  is the number of kernel filter for each convo-
lution layer
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were flattened and concatenated as an input feature vector of 
each FCL. Following this, the dropout technique was utilized 
to address the overfitting problem, and the output neurons 
for ordinal classification and regression, respectively, were 
attached at the end of both FCLs for RUL estimation and 
health condition identification.

Evaluation metrics

In this study, a multitasking model for RUL prediction and 
health condition identification is proposed. The performance 
of the RUL prediction is basically measured by RMSE met-
ric. In addition, a scoring function was also used as another 
evaluation metric for RUL estimation. The following scoring 
function introduced in the PHM 2008 challenge has been 
used in many studies (Babu et al. 2016; Zhang et al. 2017; 
Li et al. 2018b):

Meanwhile, we evaluate the health condition identifica-
tion using zero–one error. Zero–one error is the evaluation 
metric measuring the percentage of wrong assignments of 
ordinal categories (Cheng et al. 2008). However, zero–one 
error does not take into account prediction performance 
of each class. Thus, the precision, recall and f1 value are 
additionally considered for evaluating performance of 

(4)Lscore =

⎧
⎪⎪⎨⎪⎪⎩

N∑
i=1

�
e
−
(R̂i−Ri)

13 − 1

�
for (R̂i − Ri) < 0

N∑
i=1

�
e

(R̂i−Ri)

10 − 1

�
for (R̂i − Ri) ≥ 0

health condition identification. The measures are defined 
as follows:

where i is one of the health condition classes.

Experimental results

Experiment setting

In this study, the proposed multi-task framework utilizes the 
CNN architecture. A pre-processed matrix format of sen-
sor measurements was used as the input data. The matrix 
was composed of sequential 21 sensor signals with Nw time 
window size; at each time step, the matrix was scanned by 
multi-variate one-dimensional filters of length Nl , and the 
filters extracted high-level feature vectors capturing the tem-
poral patterns of multi-signals.

Our CNN architecture consisted of four convolution lay-
ers and two FCLs. The number of kernel filters Nf  was dif-
ferent for each convolution layer, while the two FCLs that 
serve as output layers for RUL estimation and healthy state 
identification had the same number of neurons No . The drop-
out technique was imposed on each output layer to reduce 
the overfitting problem.

(5)

Precisioni =
True positivei

True positivei + False positivei

Recalli =
True positivei

True positivei + False neagtivei

F1 scorei =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli

Fig. 2   Structure of CNN layer with one-dimensional filter
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The activation function “exponential linear unit” (ELU) 
was used to perform non-linear transformation on the 
high-level latent vector. The results of the transformation 
were used as the inputs for the next layer. The ELU func-
tion is family of rectified linear units ( ReLU ) which speeds 
up learning and obtains a high performance result. ReLU 
has a linear shape in the positive arguments, alleviating 
the gradient vanishing problem (Nair and Hinton 2010). 
However, in the negative arguments, the gradient of the 
ReLU  function is zero. The weights cannot be updated 
once they have negative values. Meanwhile, the ELU func-
tion decreases the lower-bound threshold to − 1 (non-zero) 
and approximates to an exponential function (Clevert et al. 
2015). This allows the ELU function to have negative val-
ues, which drives sped-up learning.

To find the optimal solution, gradient-descent and back-
propagation were adopted in our framework to update all 
the parameters in the network. For stochastic learning, 
the Adam optimizer and mini-batch technique were used. 
The mini-batch size Nb was determined to be 256, and an 
optimization technique based on the loss function was per-
formed on each batch sample. The total number of training 
epochs Ne was 500, and early stopping was implemented 
for efficient learning. The learning rate was 0.001 for the 
first 250 epochs, after which it was 0.0001. All the hyper-
parameter values, set through trial and error, are presented 
in Table 2.

Baselines with hyper‑parameter setting

The proposed multi-tasking CNN model (MT-CNN) is 
able to provide an accurate RUL estimation. To demon-
strate the effectiveness of simultaneous learning, we first 
compared our MT-CNN to single-task CNN (ST-CNN), 
which is applied only for RUL estimation. Then, four 
regression-based architectures were used as baselines: 
deep neural network (DNN), support vector regression 
(SVR), extreme gradient boosting algorithm (XGBoost), 
recurrent neural network (RNN) and LSTM. Addition-
ally, eight different methods in the prognostic domain 
were compared with our model, such as the RNN-based 
approach (Malhotra et al. 2016; Lim et al. 2016; Yoon 
et al. 2017), CNN-based approach (Babu et al. 2016; Li 

et al. 2018a, b), and ensemble-based approach (Zhang 
et al. 2017).

DNN

The ANN is a basic neural network technique that reflects 
the nonlinear relationship between the variables (Rosenblatt 
1958). These complex nonlinear relationships can be consid-
ered by adding deeper layers. Five hidden layers were con-
structed in this study; 16, 32, 64, 128, and 256 are defined 
as the number of neurons in each hidden layer, respectively. 
To avoid the overfitting problem, a dropout technique was 
employed, with a dropout rate of 0.5.

XGBoost

The XGBoost is an ensemble tree learning algorithm with a 
parallel decision tree structure with different weights (Chen 
and Guestrin 2016). A classification and regression tree 
(CART) is used as a basic tree model in XGBoost, and the 
tree weights are updated by a gradient boosting algorithm. 
For the tree structure in this study, a maximum of 1000 
leaves and a maximum individual tree depth 100 were used. 
A learning rate of 0.06 and an iteration count of 300 were 
also applied to update the tree weights.

RNN

The RNN has a feedback connection from input to out-
put and can thus handle sequential information (Williams 
and Zipser 1989). Because the sensor value of C-MAPSS 
dataset has the sequence, RNN can have superiority to 
perform time-series RUL prediction task. In this study, an 
RNN model with 5 recurrent layers was organized to have a 
structural depth that was identical to our proposed multi-task 
model. An Adam optimizer, a learning rate of 0.01 and 500 
epochs were adopted to obtain optimal parameter values.

LSTM

Because RNN has a vanishing or increasing gradient ten-
dency during back propagation, it has difficulty of capturing 
long-term dependencies (Mikolov et al. 2010). In LSTM, 
a gate structure is employed, which helps to weaken gra-
dient vanishing or increasing tendencies (Hochreiter and 

Table 2   Description of 
hyperparameter values

Hyperparameter Value Hyperparameter Value

Number of kernel filter Nf 32/64/128/256 Filter length Nl 3
Time window size Nw 30 Number of neurons No 256
Activation function ELU Dropout rate 0.5
Mini-batch size Nb 256 Learning rate 0.001/0.0001



2176	 Journal of Intelligent Manufacturing (2021) 32:2169–2179

1 3

Schmidhuber 1997). Thus, LSTM is regarded as an alterna-
tive to an RNN. Here, an LSTM model was constructed with 
the same structure as an RNN to provide a fair comparison.

Comparison with baselines

The comparison results with other baselines are shown in 
Table 3. Our proposed method MT-CNN and ST-CNN dem-
onstrated promising performance in both RMSE and scoring 
evaluations, and MT-CNN showed the best performance on 
all the subsets. This result indicates that simultaneous learn-
ing of related tasks is a more effective method than indi-
vidual learning. In particular, our model is more effective in 
handling complex problems (i.e., FD002 and FD004) than 
simple ones (i.e., FD001 and FD003). Because the multi-
tasking architecture requires sufficient network capabilities 
to reflect all the information from various tasks, our model 
achieved significant improvement in a more elaborate exper-
imental environment.

The RNN-based models show the next best performance 
in capturing temporal patterns in sequential sensor values. 
LSTM produces a better result than RNN because of its 
modified internal structure. However, we used the basic 
structure of the recurrent layer, and variations of them have 
been further optimized in several studies (Malhotra et al. 
2016; Lim et al. 2016; Yoon et al. 2017). The XGBoost is 
not designed to consider temporal patterns, and it thus dem-
onstrates the least efficient performance despite its reputa-
tion of powerful performance.

For the health condition identification, the zero–one error 
and precision, recall and f1 score are applied to measure the 
performance of another task. In this study, we have three 
categories for health condition. If we select one of them 
randomly, the performance of random selection might be 
0.33. As shown in Table 4, our proposed model shows twice 
as much zero–one error performance as random selection. 
From the zero–one error, it is confirmed that our proposed 
model has the reasonable performance of auxiliary task.

Additionally, in the terms of the precision and recall 
results, our proposed model has the low precision and high 
recall, high precision and low recall, and high precision and 
high recall at the healthy, deteriorating and unhealthy state, 

respectively. The results of healthy and deteriorating state 
indicate that our model predict more healthy state and less 
deteriorating state than actual number of them. Since the 
sensor measurements of the end periods have a characteristic 
pattern rather than start periods, there are only few charac-
teristic sensor patterns that distinguish between both states. 
This is because there are only few characteristic sensor pat-
terns that distinguish between both states. However, from 
the results of high precision and recall of unhealthy state, 
our proposed model specializes in capturing characteristic 
patterns of the unhealthy state. Diagnosing near-failure con-
dition is also helpful in estimating RUL which predicts when 
failures occur. Thus, our health condition identification task 
will eventually help to improve the performance of RUL 
prediction.

Comparison with related works

The comparison results with previous studies that evaluated 
their framework on the C-MAPSS dataset are presented. 
Table 5 summaries the experiment result of latest research 
on the four sub-datasets of C-MAPSS (Malhotra et al. 2016; 
Lim et al. 2016; Yoon et al. 2017; Babu et al. 2016; Li et al. 
2018a, b; Zhang et al. 2017). They applied various neural 

Table 3   Comparison 
performance with other 
baselines

Model FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

ANN 19.62 640 23.55 3461 19.66 699 24.35 4134
XGBoost 30.78 12,085 35.39 62,241 28.63 9899 32.00 40,965
RNN 13.36 412 23.82 3663 14.11 440 24.06 3971
LSTM 13.12 331 23.53 3417 13.68 411 24.05 3951
ST-CNN 12.72 279 21.24 2247 12.51 386 21.86 2388
MT-CNN 12.48 224 19.77 2023 12.11 334 19.98 2097

Table 4   Performance of health condition identification

Metric FD001 FD002 FD003 FD004

Zero–one error 0.71 0.72 0.73 0.69
Healthy state
 Precision 0.16 0.3 0.13 0.25
 Recall 0.8 0.84 0.75 0.7
 F1 score 0.26 0.44 0.23 0.37

Deteriorating state
 Precision 0.9 0.94 0.96 0.87
 Recall 0.5 0.42 0.49 0.45
 F1 score 0.64 0.58 0.65 0.6

Unhealthy state
 Precision 0.71 0.92 0.87 0.84
 Recall 1 0.99 1 0.88
 F1 score 0.83 0.96 0.93 0.86
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network architectures including recurrent, convolution and 
ensemble networks.

Our proposed multitasking model demonstrates out-
standing performance compared to other related works. 
The CNN-based approach with univariate one-dimensional 

filter produces very promising results, but unlike our model, 
it only considers RUL information in the learning process. 
With the exception of this model, most time-dependent 
models have better results than others because of their 
advantage of capturing the temporal pattern of sequential 
sensor measurements. However, recurrent network-based 
approaches require relatively high computational time to be 
trained (Vaswani et al. 2017). Since RNN is needed to be 
processed sequentially, parallel processing of GPU cannot be 
adopted to the computation (Bradbury et al. 2016). Hence, in 
integrated health management systems, our proposed mul-
titasking architecture has great potential in terms of both 
performance and efficiency in making RUL estimations.

Prediction power of unit‑level

The purpose of our study is to increase prognostic perfor-
mance for each engine unit. Even if the RMSE is very small 
for the total RUL, the difference between the predicted and 
actual RUL values could be large for some units. To dem-
onstrate the forecasting power for the engine unit level, the 
prediction results of testing engine units in the FD002 subset 

Table 5   Compared result with related works

Related work RMSE

FD001 FD002 FD003 FD004

CNN with full-dimensional filter 18.45 30.29 19.82 29.16
Random Forest 17.91 29.59 20.27 31.12
Time window based NN 15.16 N/A N/A N/A
Multi-objective DBN ensemble 15.04 25.05 12.51 28.66
LSTM with semi-supervised 

learning
13.96 N/A N/A N/A

Light GBM 13.45 N/A N/A N/A
LSTM encoder–decoder 12.81 N/A N/A N/A
CNN with univariate 1-d filter 12.61 22.36 12.64 23.31
Proposed ST-CNN 12.72 21.24 12.51 21.86
Proposed MT-CNN 12.58 19.77 12.11 19.98

Fig. 3   Unit-level results of RUL predictions for testing units
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are presented in Fig. 3. Among the units, four testing units 
with the longest cycles are selected.

It can be observed that the predicted values in every cycle 
are close to actual RUL values. Specifically, the difference 
between actual and predicted values tends to be small when 
the cycles are close to the last record. This shows that the 
sensor measurements of the end periods have characteristic 
pattern. In particular, as proven in performance of health 
condition identification, our model has good ability to differ-
entiate the last period from normal ones. A good evaluation 
in the last period can effectively save maintenance costs and 
enhance system reliability. This is the reason for the superior 
performance of our MTL framework as compared to inde-
pendent learning, which distinguishes unique properties in 
healthy and unhealthy conditions. Our MTL framework can 
effectively reflect the characteristics of unhealthy conditions 
through healthy condition identification tasks.

Conclusion

In most industries, achieving good prognostic performance 
has great benefits in making maintenance decisions. In this 
paper, a CNN-based MTL framework was proposed to accu-
rately estimate RUL by simultaneous learning during health 
state identification. The health state labeling process was 
carried out before our MTL process. Health information 
was combined to establish an MTL model for RUL estima-
tion, where interdependencies of both tasks were considered 
via a network for RUL estimation by using general feature 
extracted in the shared network.

The proposed method was evaluated with the C-MAPSS 
dataset, and the prediction results on each sub-dataset was 
obtained and compared with those from methods in related 
literatures. Because the health state identification network 
could capture distinct characters of sensor measurements 
very close to health and failure, our model showed outstand-
ing performance among various single task models. Our 
CNN architecture–based model achieved good prediction 
accuracy, and it has the additional advantage of improved 
computational complexity as compared to the recurrent 
neural architecture. Thus, the proposed framework shows 
promise for effective maintenance decision-making.

Specifically, various supportive techniques were 
employed in each part of our framework for effective and 
accurate prediction. Sensor selection and condition-wise 
normalization were applied to refine data. Multi-tasking 
learning architecture was exploited to capture salient pat-
terns of both tasks from a complex system. Here, a multi-
variate one-dimensional filter was established to consider 
temporal properties among various sensor measurements. 
A dropout technique and ELU function were used to avoid 

the overfitting problem and promote effective learning, 
respectively.

In future work, the proposed method will be extended to 
solve multi-objective problems in integrated health manage-
ment systems. In addition, a state-of-the-art shallow network 
can be employed to reduce the number of parameters and 
accelerate computational speed. We anticipate further stud-
ies addressing such limitations in the future.

Funding  This work was supported by the National Research Founda-
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