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Abstract
Recent technological advancements in computing, sensing and communication have led to the development of cyber-physical 
manufacturing processes, where a computing subsystem monitors the manufacturing process performance in real-time by 
analyzing sensor data and implements the necessary control to improve the product quality. This paper develops a predictive 
control framework where control actions are implemented after predicting the state of the manufacturing process or product 
quality at a future time using process models. In a cyber-physical manufacturing process, the product quality predictions may 
be affected by uncertainty sources from the computing subsystem (resource and communication uncertainty), manufacturing 
process (input uncertainty, process variability and modeling errors), and sensors (measurement uncertainty). In addition, due 
to the continuous interactions between the computing subsystem and the manufacturing process, these uncertainty sources 
may aggregate and compound over time. In some cases, some process parameters needed for model predictions may not be 
precisely known and may need to be derived from real time sensor data. This paper develops a dynamic Bayesian network 
approach, which enables the aggregation of multiple uncertainty sources, parameter estimation and robust prediction for 
online control. As the number of process parameters increase, their estimation using sensor data in real-time can be com-
putationally expensive. To facilitate real-time analysis, variance-based global sensitivity analysis is used for dimension 
reduction. The proposed methodology of online monitoring and control under uncertainty, and dimension reduction, are 
illustrated for a cyber-physical turning process.
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Introduction

Cyber-physical manufacturing systems (CPMS) refer to 
the integration of manufacturing processes and computing 
subsystems to perform several types of data analytics such 
as process monitoring and control to achieve resilient per-
formance (Lee et al. 2016). A CPMS is a dynamic system, 
where the computing subsystem continuously monitors the 
manufacturing process and provides the appropriate actua-
tion to reduce the part quality losses and increase its perfor-
mance. Following our previous work (Nannapaneni et al. 
2017a), we consider a CPMS as being a composition of four 
subsystems—manufacturing process, sensors, computing, 
and actuation (control); these subsystems continuously influ-
ence each other in a coupled manner as shown in Fig. 1. The 
performance of each subsystem is affected by different types 
of uncertainty sources, which affect the overall CPMS per-
formance. The uncertainty sources affecting a manufactur-
ing process include the inherent process variability and the 
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mathematical models used to analyze the process. Sensors 
are often associated with noise and performance uncertainty. 
Similar to the manufacturing process, actuation systems, 
which are typically mechanical systems such as a hydraulic 
or pneumatic pump, are also associated with inherent vari-
ability and uncertainty in the mathematical models used to 
describe them.

The computing nodes perform analytics on the sensor 
data and provide necessary actuation. To perform analytics, 
a computing node should have required hardware resources 
such as battery power and memory (data storage). When 
networks of computing nodes are utilized, it is possible that 
the network bandwidth can become clogged due to high data 
traffic resulting in unsuccessful data transmission. Also, 
communication uncertainty may also exist between several 
computing nodes if the computing subsystem has multiple 
nodes, and between the computing nodes and the actuation 
system and the sensors. The additional uncertainty sources 
associated with the computing nodes in a CPMS are the 
availability of hardware resources, sensor-to-node communi-
cation, node-to-node communication, and node-to-actuation 
communication. Quantification and incorporation of vari-
ous uncertainty sources can enable a reliable design and an 
effective operation of CPMS.

Precision machining is a manufacturing strategy that is 
implemented to produce parts with high precision and low 
tolerances, and ultra-precision machining, an advancement 
to precision machining followed when even greater precision 
and lower tolerances are desired when compared to those in 
precision machining (Hatefi and Abou-El-Hossein 2020; Lee 
et al. 2006). In-process sensor-based monitoring and con-
trol strategies are often implemented in precision and ultra-
precision machining to ensure the produces parts are within 
the desired requirements. Deep drilling is one machining 
operation whose performance can be improved by imple-
menting monitoring and control strategies. Deep drilling is 
a drilling process where the depth of the hole is at least five 
times the drill diameter (Khan et al. 2017). Drills are sub-
jected to severe machining conditions in terms of high thrust 
force, poor heat evacuation and chip jamming. To improve 
the process performance, Kavaratzis and Maiden monitored 
the drilling thrust and torque, and controlled the machining 

parameters such as feed rate, spindle speed and tool posi-
tion to ensure safety of the tool and work piece under high 
penetration rates (Kavaratzis and Maiden 1990). Kim et al. 
used peck drilling and thrust force monitoring during deep-
micro-hole drilling of steel to improve the tool life by chang-
ing the one-step feed-length (OSPL) (Kim et al. 2009). In 
reality, there exists several uncertainty sources that impact 
the sensor data collection, process models used to calculate 
the control actions, and uncertainty in the implementation 
of control actions. A monitoring and control system should 
consider all these uncertainty sources and their interactions 
for reliable precision and ultra-precision machining.

We review below some uncertainty quantification (UQ) 
methods that were used in the manufacturing domain. Mehta 
et al. used Bayesian inference for calibration of the machin-
ing force model and estimation of cutting force with limited 
experimental tests (Mehta et al. 2017). Adnan et al. used 
fuzzy logic to predict the surface roughness and estima-
tion of cutting force in machining processes (Mohd Adnan 
et al. 2015). Bhinge et al. used a Gaussian process model to 
quantify the uncertainty in the energy prediction of milling 
process (Bhinge et al. 2017). Reza et al. used a fuzzy set 
approach to characterize the uncertainty in energy synthe-
sis and demonstrated the approach for a paved road system 
(Reza et al. 2013). Pehlken et al. estimated energy efficiency 
in the processing of raw materials under various uncertainty 
sources such as weather and soil conditions using Monte 
Carlo simulations (Pehlken et al. 2015). Bayesian network 
approaches were developed for parameter estimation and 
uncertainty quantification in energy prediction of manufac-
turing processes (Nannapaneni et al. 2016; Nannapaneni and 
Mahadevan 2016). Karandikar et al. used a Markov Chain 
Monte Carlo (MCMC) approach to estimate parameters 
of a turning model under uncertainty for tool life predic-
tion (Karandikar et al. 2014). Dynamic Bayesian network 
approaches were used for diagnosis, prognostics, and opti-
mization in maintenance strategies in (Tobon-Mejia et al. 
2012; Weber and Jouffe 2006). UQ methods for prediction, 
parameter estimation, diagnosis and prognosis have been 
developed for traditional manufacturing process; however, 
such methods for CPMS are unavailable.

Process monitoring allows us to obtain the process 
performance in real time and enables us to change any 
process parameters to improve the part quality. Wu et al. 
used a fog computing framework for process monitoring 
and prognosis, and demonstrated the methods for moni-
toring vibrations of pumps in a power plant and energy 
consumption of CNC machines (Wu et al. 2017). Rao et al. 
used a combination of recurrent predictor neural network 
along with Bayesian parameter estimation using a particle 
filter for real-time identification of surface morphology 
variations in ultra-precision machining process (Rao et al. 
2014). Arul et al. developed an online process monitoring 

Fig. 1   Interactions between several subsystems in a cyber-physical 
manufacturing system
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mechanism based on acoustic emissions for quality con-
trol in the drilling of polymeric composites (Arul et al. 
2007). Wang and Yan developed a real-time monitoring 
framework in chemical processes by analyzing the pro-
cess data for abnormalities using a principal component 
analysis (PCA) model (Wang and Yan 2019). Rao et al. 
developed an online process control framework for addi-
tive manufacturing processes through statistical analysis 
and nonparametric Bayesian modeling approaches (Rao 
et al. 2015). Gonzaga et al. used an artificial neural net-
work-based soft sensor for online estimates of polyethyl-
ene terephthalate (PET) viscosity to control of industrial 
polymerization process (Gonzaga et al. 2009). Mosallam 
et al. developed a Bayesian data-driven approach for prog-
nostics and remaining useful life (RUL) prediction and 
demonstrated the approach for battery and turbofan degra-
dation (Mosallam et al. 2016). Given the growing interest 
in CPMS, methodologies for UQ and its incorporation in 
process monitoring and control are increasingly becoming 
necessary and this paper seeks to address this issue.

Fuzzy modeling approach is one of the commonly-used 
mathematical approach implemented in advanced machin-
ing to predict the process performance metrics given the 
uncertainty in input parameters. Syn et al. employed fuzzy 
expert system for the prediction of surface quality and the 
dross inclusion in a laser cutting process (Syn et al. 2011). 
Park et al. employed a fuzzy pattern recognition-based sys-
tem for monitoring weld quality in a laser welding process 
(Park et al. 2001). Maji et al. used adaptive network-based 
fuzzy inference system to model input–output relationships 
if an electrical discharge machining process (Maji and Prati-
har 2010). Vundavilli et al. used a fuzzy logic-based expert 
system for prediction of depth of cut in an abrasive water 
jet machining process (Vundavilli et al. 2012). Kovac et al. 
used a combination of fuzzy logic and regression analysis 
for modeling surface roughness in a face milling process 
(Kovac et al. 2013). In this paper, we employed the Bayes-
ian approach as it facilitates both performance prediction 
considering various uncertainty sources and inference for 
updating process parameters using real-time sensor data.

The interactions between subsystems in a CPMS (Fig. 1) 
occur in a time sequence with small (but finite) time lags 
between them. This paper analyzes the coupled interactions 
between individual subsystems in a sequential manner using 
a two-level dynamic Bayesian network (DBN) approach. 
When process parameters are unknown, real-time sensor 
data can be used to estimate them using Bayesian calibra-
tion, and are later used for process control. As the number 
of uncertain parameters increases, their estimation in real 
time can become computationally expensive. To reduce the 
computational complexity, we employ variance-based sensi-
tivity analysis to identify critical parameters and reduce the 
number of uncertain parameters.

Technological advancements in cloud computing and 
cloud services have led to a new manufacturing paradigm 
called cloud manufacturing, which is a new service-ori-
ented manufacturing paradigm that facilitates on-demand 
access for customers, ranging from individual users to 
large OEMs, to diversified and distributed manufacturing 
resources to enhance production efficiency, reduce product 
life-cycle costs, and allow for optimal resource loading in 
response to variable customer demands (Wu et al. 2013; Xu 
2012; Zhang et al. 2019). Cloud manufacturing may or may 
not necessarily provide direct interactions to the machine 
tools and physical devices. Cyber-physical manufactur-
ing systems enable direct interactions between computing, 
manufacturing, actuation, and sensor systems, and enable 
online control of the manufacturing processes using real-
time sensor data. Recently, Liu et al. proposed a paradigm 
combining the cloud manufacturing and cyber-physical sys-
tems called Cyber-Physical Manufacturing Cloud (CPMC) 
that combines the principles of cloud manufacturing and 
cyber-physical systems (Liu et al. 2017). The CPMC para-
digm is a service-oriented manufacturing paradigm where 
various manufacturing processes can be monitored and con-
trolled from the cloud. In this paper, we focus on developing 
online monitoring and control algorithms considering vari-
ous uncertainty sources that arise from the manufacturing, 
sensor, computing, and actuation systems. The proposed 
methodology is general, and can be applied with different 
computing environments (edge, mainframe or cloud).

The overall contributions made through this paper are: 
(1) Quantification of multiple uncertainty sources (includ-
ing the computing uncertainty) through a Bayesian proba-
bilistic framework; (2) Development of a multi-level DBN 
for uncertainty propagation; (3) Real-time control of CPMS 
using the DBN; (4) Dimension reduction to enable real-time 
analysis; and (5) Illustration of the proposed quality control 
framework for a cyber-physical turning process.

The rest of the paper is organized as follows. “Back-
ground” section provides a brief background to dynamic 
Bayesian networks and sensitivity analysis, which are later 
used in the proposed methodology described in “Online 
monitoring and control under uncertainty” section. “Illus-
trative example: turning process” section illustrates the 
proposed control framework and dimension reduction for 
a cyber-physical turning process, followed by concluding 
remarks in “Conclusion” section.

Background

Dynamic Bayesian networks

A dynamic Bayesian network is a probabilistic framework 
used to model time-dependent systems (Murphy 2002). In 
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this framework, the continuous time is discretized into dis-
crete time steps, and dependence between variables is mod-
eled within a single time step and across time steps. The 
DBNs are typically considered with a Markov assumption, 
i.e., the variables in any time step are dependent only on the 
variables within the current time step and the previous time 
step Fig. 2 shows an illustrative DBN.

A DBN model follows a state-space modeling framework, 
where the behavior of the system at any time is represented 
using a set of variables called state variables. When the state 
variables are unobservable, they are estimated indirectly by 
observing another set of variables called the observation 
variables. The dependence between various variables can 
be given as

where Pt and Pt+1 represent the state variables in two time 
steps. Qt represents the observation variable at the current 
time step t . The estimation of Pt+1 from Pt is through Eq. (1). 
vt+1 refer to system inputs at time t + 1 . Equation (2) repre-
sents the relationship connecting observation variables Qt to 
the state variables Pt . G and H represent the models, either 
physics-based or data-driven, connecting the state variables 
at consecutive time steps, and connecting the state and 
observation variables at any given time step respectively. �P 
and �Q represent the noise (error) terms associated with the 
prediction of Pt+1 and Qt.

A DBN is typically constructed in two steps; the static 
BN is constructed in the first step and the transitional BN 
is learnt in the second step (Murphy 2002). The static 
BN is constructed using physics-based models, domain 
expert knowledge, data, or hybrid approaches, i.e., using 

(1)Pt+1
= G

(
Pt
, vt+1

)
+ �P

(2)Qt
= H(Pt

) + �Q

a combination of physics, expert knowledge, and data. In a 
hybrid approach, segments of the static BN, i.e., a partial BN 
can be obtained using physics models and domain knowl-
edge, while the remaining dependencies are learnt using 
data (Nannapaneni et al. 2017b). Similar to the static BN, 
the learning of the transitional BN can be carried out using 
available physics models, expert knowledge, data, or either 
combination. In data-driven analysis, learning becomes a 
variable selection analysis, i.e., the variables at time step 
t  that affect the variables at time t + 1 are identified using 
several variable and feature selection techniques (Saeys et al. 
2007).

Several exact and approximate inference techniques are 
available to estimate the state variables in real-time depend-
ing the complexity of the relationships between state and 
observation variables. In this paper, we use particle filter-
ing methods for inference as they can be used in the pres-
ence of complex non-linear relationships between variables. 
Some commonly used particle filtering algorithms include 
Sequential Importance Sampling (SIS), Sequential Impor-
tance Resampling (SIR) and Rao-Blackwellized Particle 
Filter (Arulampalam et al. 2002). In this paper, we use the 
SIR algorithm (Wang et al. 2019); the steps of the algorithm 
are given below.

1.	 Generate N samples of the state variables at the current 
time step, Pt

k
 , k = 1, 2…N.

2.	 Compute the likelihood of each of the N  particles by 
propagating them through the static BN and by using 
the observation data.

3.	 Compute weights for each particle as being proportional 
to their likelihood measures.

4.	 Resample the generated N values of the state variables 
according to their weights and obtain N values, which 
are used to obtain their posterior distributions.

5.	 These posterior samples are then used to obtain the prior 
distributions of the state variables in the next time step 
by propagating them through the transitional BN.

After a background to DBN, we now review variance-
based sensitivity analysis, which can be used to perform 
dimension reduction in the presence of a high-dimensional 
state space in a DBN to enable real-time analysis for process 
control.

Variance‑based sensitivity analysis

Consider a model G with n input variables X1,X2,… ,Xn 
given by

(3)Y = G
(
X1,X2,X3,…Xn

)

Fig. 2   DBN between two time steps



1293Journal of Intelligent Manufacturing (2021) 32:1289–1304	

1 3

Two types of indices are computed for each variable in 
variance-based sensitivity analysis—main effect (or first-
order effect), and total effect. The first-order effect index 
( SI

i
 ) quantifies the individual contribution from a variable 

Xi , without considering its interaction with other variables, 
to the uncertainty in the output whereas the total effect index 
quantifies the contribution from Xi including its interac-
tions with all the other variables X∼ i . The first-order effect 
is given as

where EX∼ i

(
Y|Xi

)
 represents the expected value of output Y  

when Xi is fixed at a specific value, and VarXi
 computes the 

variance of this expected value when the uncertainty in Xi 
is included. The total effects index is given as

where VarXi

(
Y|X∼ i

)
 represents the variance of Y  when all 

variables other than Xi are fixed at specific values, and EX∼ i
 

calculates the expected value of this variance considering 
the randomness in X∼ i . Some techniques to compute these 
sensitivity indices are the Sobol’s scheme (Sobol′ 2001), 
Fourier amplitude sensitivity test (FAST) (Saltelli et al. 
1999), improved FAST (Tarantola et al. 2006), importance 
sampling and kernel regression (Sparkman et al. 2016), and 
the stratified sample-based approach for sensitivity analysis 
(Li and Mahadevan 2016). Here, we use the stratified sam-
ple-based approach for its computational efficiency. Next, 
we use the concepts of DBN and sensitivity analysis for 
UQ, dimension reduction, and process control in a CPMS.

Online monitoring and control 
under uncertainty

In this section, we detail the construction of a two-level 
DBN for modeling a CPMS and then use it for process moni-
toring and control under uncertainty.

(4)SI
i
=

VarXi

(
EX∼ i

(
Y|Xi

))

Var(Y)

(5)ST
i
= 1 −

EX∼ i

(
VarXi

(
Y|X∼ i

))

Var(Y)

Multi‑level DBN

As discussed in “Introduction” section, the coupled interac-
tions between various subsystems in a CPMS occur with a 
time lag. We define a time step (denoted as t  ) as the time 
taken for one analysis of various CPMS subsystems (manu-
facturing process, sensing, computing, and actuation) as 
shown in Fig. 3. We discuss below the construction of the 
multi-level DBN in a CPMS.

Since manufacturing processes and actuation systems are 
physical systems, their associated BNs can be constructed 
from available physics models, expert knowledge, data or 
their combination. There has been extensive literature on the 
construction of BNs for physical systems (Nannapaneni and 
Mahadevan 2016; Scutari 2010). However, the BN corre-
sponding to a computing subsystem is not straightforward, as 
it does not have an associated physics-based model. Moreo-
ver, the dependence between various computing nodes and 
associated uncertainty in the computing subsystem depend 
on the number of computing nodes and the type of interac-
tions between them. Therefore, this paper particularly deals 
with the uncertainty sources related to the computing sub-
system, and their aggregation with the uncertainty sources 
from the manufacturing process, actuation subsystem, and 
the sensors.

The interactions (communication) can be between com-
puting nodes, sensors and computing nodes, and comput-
ing nodes and the actuation system. There are two types 
of interactions—(1) one-way or asynchronous interaction, 
and (2) request–reply or request–response or synchronous 
interaction (Dubey et al. 2011). A brief introduction to these 
interactions is given below. Assume a one-way interaction 
from C1 to C2 , where C1 and C2 can represent computing 
nodes, sensors or the actuation subsystem. The data trans-
mission does not occur in a single instance but occurs over a 
time interval during which the data is transmitted in several 
data packets in a sequential manner. Since data transmission 
is a dynamic process, we model it using another DBN. Let 
us define a time step n in the lower level DBN as the time 
required for the transmission of one data packet. Let En

12
 

represent the event of transmitting one data packet. En
12

 is a 
binary outcome event where 0/1 represent successful/unsuc-
cessful transmission.

Fig. 3   One time step in the dynamic Bayesian network analysis of a CPMS
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A Markov assumption is made for the outcome of the 
transmission event at time n + 1 , i.e., the outcome of En+1

12
 is 

dependent on the outcome of En
12

 . A practical rationale for 
this assumption is that if a data packet transmission is suc-
cessful at time step n , then it is likely to be successful at time 
n + 1 . On the contrary, if the transmission is unsuccessful at 
time step n , which could be due to high data traffic, then a 
successful transmission is unlikely at time n + 1 . The DBN 
for the asynchronous interaction is shown in Fig. 4.

Let p data packets are transmitted from nodes C1 to C2 , 
and if r packets get successfully transmitted, then all the 
data can be reconstructed at C2 . Since we assumed that one 
data packet is transmitted per time step n in the lower-level 
DBN, the value of n goes from n = 1 to n = p , i.e., there 
are p time steps. The joint probability of all the events cor-
responding to the transmission of p data packets is equal to 
P
(
E1

12
,E2

12
…E

p

12

)
 . This joint probability can be decomposed 

into a product of marginal and conditional probabilities as

Using the Markov assumption, Eq. (6) can be simplified as

Let R1 represent the probability of a successful data packet 
transfer at n = 1 . The conditional dependence for data trans-
mission is given in Table 1, where Rij is the probability of 
data transmission event in the current time step j conditioned 
on the data transmission event in the previous time step i 
( i, j = 0, 1 ). These probabilities can be estimated through an 
aggregation of historical data, and simulations regarding the 
communication network.

A request-reply interaction is associated with a sequence 
of request and reply messages, i.e., C2 requests for informa-
tion and C1 replies, as shown in Fig. 5. Here, we define a 

(6)

P

(
E
1

12
,E

2

12
…E

p

12

)
= P

(
E
1

12

)
× P

(
E
2

12
|E1

12

)

×⋯P(E
p

12
|E1

12
,E

2

12
…E

p−1

12
)

(7)
P
(
E1

12
,E2

12
…E

p

12

)
= P

(
E1

12

)
× P

(
E2

12
|E1

12

)
×⋯P(E

p

12
|Ep−1

12
)

time step as the time required for one request and one reply 
message transmission. Let En

12
 and En

21
 represent the reply 

and request events accordingly at a lower level time step n . 
As the request and reply messages occur in a sequential man-
ner, the success of a message (reply/request) is dependent on 
the previous message (reply/request). The lower-level DBN 
for the 2-node synchronous interaction is given in Fig. 6, 
where if En

21
 is successful, En+1

21
 is dependent on En

12
 and if En

21
 

is not successful (failed request message and this implies no 
reply message), then En+1

21
 is assumed to be dependent on En

21
 . 

As opposed to the one-way interaction system, we assume 
we require r successful request-reply pairs in the request-
reply interaction system since a reply does not occur unless 
there is a request and reply does not always occur for every 
request. The joint probability of p request-reply interactions, 
assuming that one occurs at each lower-level time step can 
be computed using Eqs. (6) and (7).

Let R2 represent the probability of a successful request 
message at lower-level time step n = 1 . Let R12 represent the 
probability of successful reply message when the request 
message is successful. Therefore, R2 × R12 refers to the 
reliability of a request-reply pair at n = 1 . For illustration, 
we assume the same conditional relationships between two 
requests across two successive time steps as provided in 
Table 1. Given the dependence relationships across time 
steps, the probability of r successful pairs out of p can be 
computed. The same procedure can be extended to the inter-
actions of the computing nodes with the sensors and actua-
tion system. For illustration, this paper considered a Markov 
model to estimate the success/failure of a data packet trans-
mission. In future, we shall consider other sophisticated 
performance models of network communication based on 
queuing theory and Poisson distribution (Ray et al. 2005).

It should be noted that we have two types of discretiza-
tion of the continuous time in the two-level DBN. The 

Fig. 4   DBN for a 2-node asynchronous communication

Table 1   Conditional probabilities of data transfer between two lower-
level time steps

Successful at time 
step n + 1

Unsuccessful 
at time step 
n + 1

Successful at time step n R
00

R
01

Unsuccessful at time step n R
10

R
11

Fig. 5   Request and reply messages in a 2-node synchronous commu-
nication

Fig. 6   DBN for a 2-node synchronous communication
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higher-level discretization, which corresponds to the time 
step at which sensor data are available is denoted using t 
and the lower-level discretization, which discretizes the 
time between two higher-level time steps t  and t + 1 is 
denoted using n . The lower-level time step corresponds to 
the time step at which data packets are transmitted between 
computing nodes, and with the sensors and the actuation 
subsystem. The reliability of communication between the 
computing nodes, and between the sensors and actuation 
subsystem are not impacted by the higher-level time step t , 
and only dependent on the lower-level time step n as detailed 
in Eqs. (6–9).

To perform the required analysis, the computing nodes 
should have the necessary hardware resources such as 
power and computing memory. In some cases, power may 
be available to computing nodes through battery power; this 
is typically observed in mobile computing nodes, which are 
computing nodes that can be transported while they are in 
operation (Hoang et al. 2012). If there are N  computing 
nodes and Ei,t, i = 1, 2, 3…N  represent the events corre-
sponding to their resource availability at any time step t  . 
The joint probability of resource availability is given as

Under the assumption that each node has its own hardware 
resources, the resource availability of one node is independ-
ent to that of another node. Thus, Eq. (8) can be simplified as

(8)

P

(
E
1,t
,E

2,t
…E

N,t

)
= P

(
E
1,t

)
× P

(
E
2,t
|E

1,t

)

×⋯P(E
N,t
|E

1,t
,E

2,t
…E

N−1,t)

(9)P
(
E1,t,E2,t …EN,t

)
= P

(
E1,t

)
× P

(
E2,t

)
×⋯P

(
EN,t

)

Let Sr,i,t refer to the probability of resource availability of 
node i at time step t  . The probability that all the events, 
Ei,t, i = 1, 2, 3…N , are successful is equal to ΠN

i
Sr,i,t . The 

resulting overall two-level DBN for a CPMS is shown in 
Fig. 7, and the description of variables is given in Table 2. 
The two-level DBN begins with the variables Pt and Qt 
associated with the manufacturing process. We then have 
the sensor subsystem that collects real-time data on Qt , 
denoted as Qt

s
 , which is transmitted to the computing sub-

system. The sensor data is used to estimate the posterior 
distributions of the state variables, and calculate the control 
action in the next time step. In some cases, the process per-
formance depends on the environmental inputs ( EIt ) such 
as temperature or humidity. The data on the environmental 
inputs ( EIt

s
 ) are also transmitted to the computing subsys-

tem. As discussed earlier in this section, the performance 
of the computing subsystem depends in the availability of 
computing resources; this is denoted as RAt in Fig. 7. The 

Fig. 7   A two-level DBN of 
a conceptual cyber-physical 
manufacturing system

Table 2   Variables in the two-level DBN model

Parameter Description

P
t
,P

t+1 State variable at time t = t, t + 1

Q
t
,Q

t+1 Observation variables at time t = t, t + 1

Q
t

s
,Q

t+1
s

Sensor measurements of observation vari-
ables at time t = t, t = t + 1

EI
t+1
s

Sensor measurements of environmental 
inputs at time t = t + 1

RA
t+1 Resource availability at time t = t + 1

SO
t+1 Computing system output at time t = t + 1

CA
t+1 Control action at time t = t + 1
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output of the computing subsystem is denoted as SOt ; this 
is transmitted to the actuation subsystem, which implements 
the control action. It should be noted that the implemented 
control action may not be the same as the software output 
due to the communication uncertainty between the comput-
ing and actuation subsystems.

The type of interactions within the computing subsys-
tem and with the sensors and actuation subsystem depend 
on the computing architecture available in the CPMS. For 
illustration, we represented the communication between 
the computing subsystem and the sensors, and with the 
actuation subsystem using an asynchronous interaction, 
and the communication within the computing subsystem 
using a synchronous interaction.

The steps for the construction of the multi-level DBN 
are summarized below.

(1)	 Obtain the conditional probability relationships 
between the manufacturing process variables ( Pt and 
Qt ) using physics-based or data-driven models.

(2)	 Model the conditional probability relationships between 
the observation variables ( Qt ) and the sensor measure-
ments ( Qt

s
 ), and between the environmental inputs 

( EIt ) and their sensor measurements ( EIt
s
 ) using sen-

sor uncertainty.
(3)	 Identify the required resources for the computing nodes 

and estimate the probability of their availability of each 
computing node at each time step t.

(4)	 Identify the type of interaction (asynchronous or syn-
chronous) between the sensors and computing nodes, 
between the computing nodes, and between the com-
puting nodes and the actuation subsystem; this depends 
on the computing architecture in the CPMS.

(5)	 Identify the number of lower-level time steps in the 
communication between computing nodes, and with 
sensors and actuation subsystem.

(6)	 Depending on the types of interaction, construct the 
lower-level DBN as shown in Figs. 4 and 6.

(7)	 Obtain the conditional probability relationships of the 
state variables at time t + 1 dependent on the state vari-
ables at time t  and the implemented control action at 
time t.

After discussing the construction of the multi-level 
DBN, we now discuss it application for online process 
monitoring and control in a CPMS.

Process monitoring and control in a CPMS

The monitoring and control follows a ‘measure-update-
optimize’ procedure. The sensor data regarding several vari-
ables such as Qt in Fig. 7 are obtained and communicated to 

the computing subsystem. The computing subsystem then 
updates the uncertain model variables Pt through Bayes-
ian calibration. The updated distributions are used to esti-
mate the control action that minimizes the quality losses 
and applied through the actuation system in the next time 
step. All the above analyses are performed by the computing 
subsystem, and the result is communicated to the actuation 
subsystem.

The computational effort of Bayesian calibration is 
dependent on the number of uncertain parameters. As the 
number of parameters increases, the number of particles 
required in the SIR algorithm (used for Bayesian calibra-
tion and discussed in “Dynamic Bayesian networks” sec-
tion) increases. Since process monitoring and control need 
to be performed in real time, high computing time is not 
affordable. In such cases, we use the variance-based sensi-
tivity analysis for dimension reduction, i.e., obtain a subset 
of uncertain parameters that have a major influence on the 
observation variable. At the start of the process monitoring, 
we have the prior distributions of the all uncertain param-
eters. These distributions are later updated to obtain the 
posterior distributions using the sensor data. For dimension 
reduction, we perform sensitivity analysis using the prior 
distributions, and if the sensitivity of a parameter is less than 
a pre-defined threshold, then that parameter is assumed to 
be deterministic at its nominal value, such as the mean or 
mode. The remaining parameters after dimension reduction 
analysis are updated using the sensor data. The steps in the 
process monitoring and control are summarized below.

(1)	 Perform variance-based sensitivity analysis for dimen-
sion reduction of state variables ( Pt ) using their prior 
distributions.

(2)	 Given the computing and communication architecture 
(asynchronous and/or synchronous), compute the reli-
ability (success probability) values of (i) data transmis-
sion between the sensors and computing nodes, (ii) data 
transmission between the computing nodes to carry out 
required analysis, and (iii) data transmission between 
the computing nodes and the actuation subsystem.

(3)	 Compute the probability of all the computing nodes to 
have the necessary resources using Eq. (9).

(4)	 Obtain a binomial random sample (using success prob-
ability from step 2(i)) to simulate the data transmission 
between the sensors and the computing nodes.

(5)	 If the data transmission in step 4 is successful, then 
obtain two binomial random samples using the suc-
cess probabilities from steps 2(ii) and 4, to simulate 
the data transmission between the computing nodes, 
and resource availability.

(6)	 If the data transmission and resource availability in 
step 5 are successful, then the posterior distributions 
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of the state variables and the required control action 
for the next time step are computed and stored in the 
computing subsystem. The posterior distributions are 
computed using the SIR algorithm in “Dynamic Bayes-
ian networks” section. The control action is calculated 
to minimize a loss function defined over the system 
quantity of interest (QoI)

(7)	 Obtain a binomial random sample (using the success 
probability from step 2(iii)) to simulate the data trans-
mission between the computing nodes and the actuation 
subsystem.

(8)	 If the data transmission is successful, then the com-
puted control action is implemented on the manufactur-
ing process else the control action implemented in the 
previous time step is implemented in the current time 
step.

(9)	 Steps 3–8 are repeated until a part is manufactured

We demonstrate below the construction of the multi-level 
DBN and online process monitoring and control for a cyber-
physical turning process.

Illustrative example: turning process

In this section, we provide a brief introduction to a turn-
ing process, discuss a cyber-physical version of the turn-
ing process, and use it to demonstrate the proposed process 
monitoring and control framework.

Turning process

Turning is a machining operation, where the material of a 
rotating cylindrical part is removed when it moves linearly 
against a cutting tool, and along the axis of rotation. Let Do 
and Df  represent the initial and final (target) diameters of 
the cylindrical part. Given Do and Df  , the depth of the cut 
( d ) is calculated as

The inputs to the turning operation are feed rate ( f  ) and 
cutting speed ( v ). Feed rate is the speed at which the cut-
ting tool is fed on to the part, and cutting speed is the rela-
tive speed measured along the axis between the part and 
the cutting tool. Over time, the tip of the cutting tool wears 
out, which is known as flank wear ( w ), and this affects the 
dimensional accuracy of the part.

The dimensional accuracy is affected by several parameters 
in a turning process: cutting speed, feed rate, depth of cut, 
coolant, coating type, chip breaker geometry, nose radius, and 
shape of insert (Yih-Fong 2006). Of these, cutting speed, feed 

(10)d =
Do − Df

2

rate, and depth of cut are process parameters while the remain-
ing are equipment parameters. A coolant is typically used in 
a machining process to decrease the cutting temperature, 
decrease the amount of power consumed in a cutting process, 
and increase tool life (Yildiz and Nalbant 2008). Tools are 
often coated to improve their hardness, protect against abra-
sion, and to provide lubrication between them and the parts. 
There are primarily two categories of coating available: physi-
cal vapor deposition (PVD) and chemical vapor deposition 
(CVD). Each coating type provides different benefits to the 
tool such as hardness, abrasion protection and lubrication (Nal-
bant et al. 2009). Chip breakers are often used for chip control 
method in machining processes (Lotfi et al. 2015). Nose radius 
is the radius of the tip of the cutting tool that comes in contact 
with a part and inserts are replaceable components that are 
attached to the cutting tool. For the sake of illustration, this 
paper considers only the process parameters (cutting speed, 
feed rate, and depth of cut) when estimating tool wear.

To compensate for the tool wear and achieve the target 
diameter, the position of the cutting tool needs to be adjusted; 
this is referred to as tool wear compensation ( � ). As the flank 
wear increases with time, the tool wear compensation needs to 
be increased accordingly. When k finished parts are produced 
by a turning process and �i, i = 1, 2,… k represent the tool 
wear compensation in each of those operations, the revised 
depth of cut after considering tool wear is given as

where di refers to the depth of the cut of the ith part. The tool 
wear cannot be precisely estimated using physics models; 
however, empirical models are commonly adopted (Abdel-
maguid and El-hossainy 2012). The tool wear is given as

where kw, �w, �w , and �w are the model parameters estimated 
using experimental data. t  and wi refer to the cutting time 
spent on part i and the tool wear on the ith part after spend-
ing time t . tw,i refers to the time that needs to be spent on the 
ith part to achieve the same tool wear that is achieved after 
processing (i − 1) parts. If Wi−1 refers to the tool wear after 
processing (i − 1) parts, then tw,i is obtained as

If Di = Do − di and L represent the diameter of the cylindri-
cal part after the turning operation, and length of the part 
respectively, then the cutting time for the ith part is calcu-
lated as

(11)di =
Do − Df

2
+ �i

(12)wi = kwv
�w f �wd

�w
i
(tw,i + t)�w

(13)tw,i =

(
1

kw
v−�w f −�wd

−�w
i

Wi−1

) 1

w
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Using Eqs. 12–14, the total wear after processing i parts is 
given as

The continuous wear in the cutting tool causes a drift in the 
final diameter of a part, which can be estimated as

where � is the clearance angle associated with the cutting 
tool. Δi is the drift in the ith part. The clearance angle is 
the angle made by the cutting tool with the axis of rotation 
of the cylindrical part (Baradie 1996). The drift calculated 
using Eq. (16) represents the additional variation in the ith 
part’s diameter when compared to the (i − 1)th part. To 
achieve the target diameter, a tool wear compensation ( �i ) is 
implemented in response to the drift ( Δi ). The final diameter 
after considering tool wear compensation and drift can be 
computed as

The quality loss due to the deviation from the target diam-
eter ( |||Df − Di

||| ) can be quantified as

where QW represents the quality loss and Ti represents the 
cumulative machining time over i parts.

Cyber‑physical turning process

In a traditional turning process, the diameter of a part is 
measured after it is produced in an offline manner, and any 
tool wear compensation is implemented to the next part. 
This implementation works for parts of shorter lengths, 
where the variation in diameters at the head and tail ends 
is not significant, and in longer parts where the acceptable 
quality tolerance is greater than the deviations due to tool 
wear. Such offline techniques may not be suitable for ultra-
high precision parts where the acceptable tolerances are less 
than the deviations due to tool wear. In a cyber-physical 
turning process, the part’s diameter is measured while it is 
being manufactured; these measurements are used to appro-
priate tool wear compensation in real time.

Several uncertainty sources are present in the above 
cyber-physical turning process. A source of input uncer-
tainty is the actual clearance angle of the cutting tool, 
which can be different from the intended angle due to the 

(14)tc,i =
Π
(
Do − di

)
L

vf

(15)Wi = kwv
�w f �wd

�w
i
(tw,i + tc,i)

�w

(16)Δi = 2 ×
(
wi −Wi−1

)
tan(�) for 0 ≤ t ≤ tc,i

(17)Di = Df − 2 × �i + Δi

(18)QW =
Ti

∫
Ti−1

(
2 × �i − Δi

)2
dt

placement of cutting tool. There exists uncertainty in the 
diameter measurements obtained the scanning laser beam 
method. The control action (input) on the turning process is 
the actual tool wear compensation, which can be different 
from the calculated tool wear compensation due to inherent 
process variability. The uncertainty in the process perfor-
mance prediction is caused by the uncertainty in the model 
parameters of the tool wear empirical models. Additional 
uncertainty sources due to the presence of computing sub-
system include the communication uncertainty and uncer-
tainty in resource availability.

Monitoring and control in a cyber‑physical turning 
process

Table 3 provides the desired part specifications and qual-
ity bounds. The process parameters such as feed rate and 
cutting speed are assumed at 60 m/min and 0.065 mm/rev 
respectively. The initial tool wear compensation is assumed 
to be 0.009 mm. The values of the model parameters in the 
tool wear empirical model are obtained from (Abdelmaguid 
and El-hossainy 2012), and provided in Table 4. The clear-
ance angle was assumed at 15°. The uncertainty in the actual 
tool wear compensation, variability in the sensor measure-
ments, and the variability in the clearance angle are modeled 
using Gaussian distributions with zero means and standard 
deviations of 0.0005 mm, 0.0025 mm, and 0.5° respectively. 
Gaussian distributions are used to represent uncertainties in 
the paper for illustration purposes only, and can be replaced 
with the actual probability distributions, if available.

We assume asynchronous communication interaction 
between the sensors and the computing node, and between 

Table 3   Part specifications from the cyber-physical turning process

Parameter Value (mm)

Initial diameter ( D
o
) 100

Final diameter ( D
f
) 98

Length of part ( L) 100
Lower bound of target diameter ( D

f ,L
) 97.98

Upper bound of target diameter ( D
f ,U

) 98.02

Table 4   Probability distributions of the parameters in the tool wear 
empirical model

Parameter Value

k
w N

(
8.2961 × 10

−5
, 8.2961 × 10

−7
)

�
w

N(2.747, 0.02747)

�
w

N(1.473, 0.01473)

�
w

N(1.261, 0.01261)

�
w

N(0.43, 0.0043)
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the computing node and actuation subsystem. For illustra-
tion, we assume that the sensor data is sent in three data 
packets and two packets are required for successful data 
transmission. For successful communication between the 
computing and actuation subsystems, we assume that one 
of the two data packets is required. The reliability of the 
first packet is assumed to be 0.95, while the reliability of 
the following data packets is obtained using the condi-
tional probability table in Table 5. The reliability values 
are obtained from (Dulman et al. 2003). The probability 
that the necessary computing resources are available is 
assumed as 0.95.

We assume that the diameter measurements are obtained 
at 0.25 s intervals. The tool wear compensation of calcu-
lated using the diameter measurements and by minimizing 
the loss function in Eq. (19). Due to the uncertainty in the 
model parameters, clearance angle, tool wear compensa-
tion, and sensor measurements, the loss and the constraint 
functions become stochastic. The optimization formulation 
for the tool wear compensation is written as

such that

where the objective function refers to the minimization of 
the expected value of the loss function, provided in Eq. (18), 
which relates to the discrepancy between the predicted and 
target diameter values, as shown in Eq. (17).

The measured diameter values (sensor data) are used to 
calibrate the tool wear model parameters ( kw, �w, �w, �w, and 
�w ), clearance angle ( � ) and tool wear compensation ( � ). 
Sensitivity analysis is used to reduce the number of param-
eters using the stratified sample-based algorithm (Li and 
Mahadevan 2016). The sensitivity indices of parameters 
are given in Table 6, from which �w and �w are considered 
for calibration and the other parameters ( kw, �w, �w, � and � ) 
are assumed deterministic at their mean values. However, it 
should be realized that the true and unknown values of these 
parameters (denoted using a superscript ‘ T  ’ in Table 7) may 
be different than the values at which they are fixed.

MinE

[
Ti

∫
Ti−1

(
�i −

Δi

2

)2

dt

]

(19)Pr
(
D > Df ,L ∩ D < Df ,U

)
≥ 0.95

The DBN model is shown in Fig. 8, where superscript k 
refers to the time step. Parameters �w and �w are determin-
istic and do not vary with time. Therefore, �k

w
= �k+1

w
 and 

�k
w
= �k+1

w
 . dk , wk , Δk refer to the depth of cut, tool wear and 

drift at the kth time step. Dk and Dk
S
 are the predicted out-

put diameter and its sensor measurement respectively. Rk
1
 

is the probability of the availability of required computing 
resources at kth time step. The SIR algorithm (“Dynamic 
Bayesian networks” section) with 1000 samples was used 
for parameter estimation using the sensor data. The prior 
and posterior distributions of �w and �w , along with their 
true values, for a sample part are given in Fig. 9.

In Fig. 10, we compare the diameter profiles in two 
scenarios: with and without the real-time control. In the 
absence of real-time control, the tool wear compensation 
does the change as the part is being produced; however, in 
real-time control, the tool wear compensation changes at 
each time step with the diameter measurements.

Figure 11 shows the change in the tool wear compen-
sation with each time step. The computed and the actual 
values of the tool wear compensation are shown in Fig. 11. 
The difference between the two plots is due to the presence 
of uncertainty in implementing the tool wear compensa-
tion. The calculation of tool wear compensation requires 
real-time analysis using the computing resources. When 
the computing resources are unavailable, then the tool 
wear compensation implemented in the previous time step 
is continued in the current time step. This is shown in the 
region marked by the red circle in Fig. 11. Figure 12 shows 
the availability of computing resources with time.

Table 5   Conditional probabilities of data transfer in cyber-physical 
turning process

Successful at time 
step n + 1

Unsuccessful 
at time step 
n + 1

Successful at time step n 0.95 0.05
Unsuccessful at time step n 0.9 0.1

Table 6   Sensitivity indices of 
parameters in the tool wear 
empirical model

Parameter Sensitivity index

k
w

0.0075
�
w

0.8585
�
w

0.1201
�
w

0.0045
�
w

0.0076
� 0.0072
� 0.0022

Table 7   Underlying true values 
of parameters in the tool wear 
empirical model

Parameter True value

k
T

w

8.2676 × 10−5

�T

w

2.7195
�T
w

1.4899
�T
w

1.2627
�T

w

0.4247
�T 15.0427
�T (initial) 0.0093
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In Fig. 12, ‘0’ and ‘1’ represent success and failure of an 
analysis, which can be parameter estimation or tool wear 
compensation estimation. Parameter estimation requires suc-
cessful communication between the sensors and computing 
subsystem, and availability of computing resources. How-
ever, implementation of tool wear compensation requires 
successful communication between the computing and 
actuation systems in addition to successful calibration. In 
Fig. 12, the implementation of tool wear compensation was 
unsuccessful at one instant, whereas calibration was suc-
cessful at all time steps. The unsuccessful implementation 
of tool wear compensation can be attributed to the loss of 
communication between the computing and actuation sys-
tems. To quantify the effect of various uncertainty sources in 

the turning process, the computing subsystem, the actuation 
subsystem and the sensors, several parts are produced and 
variations in the diameter profiles can be obtained (Fig. 13).1

In this paper, we have illustrated the proposed methods 
for a closed system; however, the proposed methods can be 
extended to open integration of manufacturing and comput-
ing systems. For an open integration and interoperability, the 
computing system requires a predictive model associated with 
the manufacturing process that is being monitored, and real-
time process sensor data. With the availability of Predictive 

Fig. 8   DBN model for the 
cyber-physical turning process

Fig. 9   Prior and posterior distributions of calibration parameters, �
w
 and �

w

1  All the codes used in this example can be found at https​://githu​
b.com/Saide​ep259​/JIM20​.

https://github.com/Saideep259/JIM20
https://github.com/Saideep259/JIM20
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Model Markup Language (PMML) technical standard (Gross-
man et al. 1999) and MTConnect (Vijayaraghavan et al. 2008), 
there exists standardized approaches for the representation of 
predictive models (Nannapaneni et al. 2018; Park et al. 2017) 
and transmission of real-time sensor data from the production 
floor equipment to the computing systems (Lynn et al. 2018). 
The sensor data will be used to update the process parameters, 
and the predictive model will be used to calculate the optimal 
control action. Therefore, the proposed methodology can be 
implemented with either closed or open system.

Conclusion

This paper proposed a two-level dynamic Bayesian net-
work (DBN) framework for online monitoring and con-
trol of a cyber-physical manufacturing system (CPMS) 

under uncertainty. A CPMS was assumed to be composed 
of four interdependent subsystems—manufacturing pro-
cess, computing and actuation systems, and sensors. In the 
two-level DBN, the higher level captures the dependence 
between the individual subsystems while the lower level 
DBN captures the interactions between various computing 
nodes in a computing subsystem, and its communication 
with sensors and the actuation subsystem. The uncertainty 
sources associated with the computing subsystem include 
the communication between several computing nodes, and 
with the sensors and the actuation system, and hardware 
resource availability. The uncertainty associated with the 
sensors include the sensor measurement uncertainty. The 
manufacturing process is associated with uncertainty in 
the process models, which can be physics-based or data-
driven. The actuation system implements the control input, 

Fig. 10   Comparison of output diameter profiles with and without 
real-time control

Fig. 11   Comparison of the computed and the actual tool wear com-
pensation

Fig. 12   Completion of tool wear compensation and calibration anal-
yses due to availability of computational resources and successful 
communication between sensors, computational and actuation sys-
tems

Fig. 13   Diameter profiles of parts considering aleatory and epistemic 
uncertainty from cyber-physical turning analysis
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which can be different from the calculated control due to 
machine imperfections.

When the model parameters used to predict the system 
quantity of interest (QoI) are unknown, they are estimated in 
real-time using the sensor data. As the number of unknown 
parameters increases, the computational complexity of the 
calibration process increases. In such cases, variance-based 
sensitivity analysis is used for dimension reduction. The pro-
posed methods are demonstrated for a cyber-physical turning 
process, where online monitoring and control are performed 
in real time while a part is being produced. The output diam-
eter measurement is used to estimate the tool wear and an 
appropriate tool wear compensation is provided to reduce 
the deviations of the output part from the desired values.

This paper demonstrated the proposed control framework 
for a single manufacturing process. Future work should con-
sider application of the proposed methods to a network of 
CPMS and the Industrial Internet-of-Things (IIoT) systems. 
Moreover, advanced computing paradigms such as fog and 
edge computing need to be considered for efficient comput-
ing, along with machine-to-machine interactions to mini-
mize the product quality losses. Since human operators are 
involved on the production floor, their interactions with the 
CPMS, forming a Human-in-the-loop CPMS or H-CPMS, 
also need to be investigated.
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