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Abstract
The paradigm shift toward Industry 4.0 is not solely completed by enabling smart machines in a factory but also by facilitat-
ing human capability. Refinement of work processes and introduction of new training approaches are necessary to support 
efficient human skill development. This study proposes a new skill transfer support model in a manufacturing scenario. The 
proposed model develops two types of deep learning as the backbone: a convolutional neural network (CNN) for action 
recognition and a faster region-based CNN (R-CNN) for object detection. A case study using toy assembly is conducted 
utilizing two cameras with different angles to evaluate the performance of the proposed model. The accuracy for CNN and 
faster R-CNN for the target job reached 94.5% and 99%, respectively. A junior operator can be guided by the proposed model 
given that flexible assembly tasks have been constructed on the basis of a skill representation. In terms of theoretical con-
tribution, this study integrated two deep learning models that can simultaneously recognize the action and detect the object. 
The present study facilitates skill transfer in manufacturing systems by adapting or learning new skills for junior operators.

Keywords  Deep learning · Convolutional neural network · Faster region-based convolutional neural network · Human–
machine interaction · Skill transfer

Introduction

Industry 4.0 presents new types of interactions between 
human and machine. This interaction alters the industrial 
workforce and significantly improves the nature of work to 
accommodate increasing variability and flexibility of pro-
duction (Shin et al. 2017; Oztemel and Gursev 2020). One 
of the key issues in Industry 4.0 is enabling human-centric-
ity capability, which leads to Operator 4.0 (Romero et al. 
2016). Operator 4.0 is characterized using automated sys-
tems to diminish the physical and mental stress of humans. 
In addition, this initiative plays a significant role in ena-
bling humans to exploit and advance their creativity and 

innovativeness and improving job skills without sacrificing 
production objectives.

However, a successful paradigm shift toward Operator 4.0 
is not only achieved by proposing new technologies and/or 
smart machines. Manufacturing companies must increase 
human productivity by enabling technologies, but this situ-
ation also triggers the shifting on hiring patterns and moti-
vates high-skill, high-profit jobs (Jardim-Goncalves et al. 
2016; Kiassat and Safaei 2019). By contrast, the availability 
of highly skilled workers cannot keep up with the human 
resource market. A study showed that 82% of CEOs and 
manufacturing executives investigated in the United States 
revealed that a lack of skilled manpower affects their per-
formance of serving customers (Hill 2017). Junior operators 
must be timely and efficiently trained.

The lack of skilled workers prompts managers to refine 
their work processes and introduce new training/skill trans-
fer approaches. Such training approach should be efficient, 
flexible, and self-organized by machine learning (Liu et al. 
2017). In addition, the possession of transferable skills pro-
vides flexibility and mobility (Lim et al. 2018). The three 
types of human–machine relation (Duan et al. 2012) are as 
follows: relieving human operators by automated devices 
(physical replacement), improving work performance of 
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human operators by machine support (physical support), and 
providing task information to advance the cognition pro-
cess of human operators (informational support and skill 
transfer).

In comparison with traditional machine learning tech-
niques, deep learning has a network structure that involves 
multiple hidden layers to extract the embedded features in 
data and building abstract concepts in a hierarchy procedure 
(LeCun et al. 2015). A recent report showed that deep learn-
ing outperformed human experts while conducting recogni-
tion or strategy-related tasks (Sun et al. 2014). In the domain 
of image recognition, deep learning provides a new approach 
for increasing the recognition accuracy of human motions. 
However, human actions and work objects should be effi-
ciently recognized to facilitate skill transfer. Convolutional 
neural network (CNN) architecture successfully outperforms 
other deep learning models for most image recognition, clas-
sification, and detection tasks (Rawat and Wang 2017).

This study aims to develop a skill transfer support model 
of tasks in a manufacturing scenario. This skill transfer sup-
port model uses the following two types of deep learning as 
the backbone: CNN for action recognition and faster region-
based CNN (RCNN) for object detection. In this model, a 
human operator is guided while performing tasks based on 
a skill representation.

The remainder of this article is organized as follows. “Lit-
erature review” section reviews previous studies related to 
human–machine collaboration and deep learning. “Methods” 
provides the framework and method. “Experiment and dis-
cussion” shows the experiment result. “Conclusion” section 
concludes and discusses future research.

Literature review

Operator 4.0 and human–machine collaboration

Human-centricity concept motivates the development toward 
Operator 4.0 (Frank et al. 2019), which is aided by cyber-
physical system (Ruppert et al. 2018). In the framework of 
Operator 4.0, workers collaborate and are empowered by 
physical and digital systems to produce complex tasks (Peru-
zzini et al. 2020).

Smart machines facilitate human empowerment of their 
abilities in the following three aspects: extending cognitive 
strengths, assisting in complex jobs, and embodying human 
skills to extend physical capabilities (Wilson and Daugherty 
2018). For example, human–robot interaction (HRI) focused 
on physical, cognitive, and social interaction between people 
and robots to broaden and advance human capabilities and 
skills (Vasconez et al. 2019). Such study focuses on design-
ing, recognizing, and evaluating the cooperation between 
humans and robots in communicating and/or sharing in a 

physical space for job purposes. In industrial applications, 
collaborative robotic delivers several advantages, such as 
relieving from dangerous material handling, heavy tool han-
dling, and high-precision tasks (Villani et al. 2018).

Over the past few decades, HRI has become a growing 
research area (Landi et al. 2018) in construction, healthcare 
and assistive robotics, aerospace, edutainment and entertain-
ment, home service, and military and industrial applications 
(Levratti et al. 2016; Adamides et al. 2017; van Dael et al. 
2017; Liu and Wang 2018; Vasconez et al. 2019). In the field 
of production, new methods and strategies in HRI for fast, 
affordable, and flexible automation have been constantly 
identified and developed (Koch et al. 2017; Backhaus and 
Reinhart 2017). An efficient HRI system can recognize the 
intention of human workers and provide assistance during 
an assembly operation (Liu and Wang 2017). The integra-
tion of collaborative robots is one of the pillars for flexible 
automation in the Industry 4.0 era (Koch et al. 2017; Wang 
et al. 2018a, b). Therefore, the initial paradigm for robot 
usage has shifted during the years, originating from an idea 
in which robots work with complete autonomy in a separate 
cell to a scenario where robots and humans simultaneously 
work and interact.

Action recognition

One of the recently investigated aggressive domains in 
computer vision is human activity recognition. Action rec-
ognition is generally implemented in two stages: action 
representation and classification (Idrees et al. 2017). The 
core of video action recognition is action representation, 
which is also denoted as feature extraction. Yao et al. (2019) 
suggested that an effective action representation should be 
discriminative, straightforward, and low dimensional. Dis-
criminative refers to the representations of actions from the 
same class that provides identical information. However, 
the representations of action from several classes provide 
different characteristics. Straightforward is the action rep-
resentation that is easy to compute. In addition, action rep-
resentation should be low cost in terms of classification and 
feature saving.

The taxonomy of action recognition is shown in Fig. 1. 
Action recognition is classified into representation methods 
based on handcrafted and deep learning. Both methods rec-
ognize action classes based on the appearance and motion 
patterns in videos (Shahroudy et al. 2018).

The study of handcrafted representation method was 
started by extracting global features, such as silhouette- 
and optical flow-based features. Subsequently, this method 
demonstrated a milestone in action recognition field (Yao 
et al. 2019). Some important works on improved dense tra-
jectories (Peng et al. 2016) include encryption of extracted 
dense trajectories, trajectory-aligned histograms of oriented 
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gradients, histogram of optical flow, and motion boundary 
histograms with the Fisher vector or hybrid super vector 
(Peng et al. 2016).

By contrast, a deep learning representation method differs 
from handcrafted one in terms of design (Yao et al. 2019). 
The handcrafted method manually designates the feature, 
whereas deep learning representation method can automati-
cally learn the trainable feature from videos. Auto-encoder 
method enables a neural network to automatically learn 
a sparse shift-invariant representation of the local 2D + t 
salient information (Baccouche et al. 2012). Deep belief 
networks learn invariant spatiotemporal features from vid-
eos (Chen et al. 2010). The restricted Boltzmann machine 
catches various human motions based on features of action. 
Veeriah et al. (2015) applied recurrent neural network, which 
is known for constructing long short-term memory, to learn 
and recognize complex dynamics of various actions. Fur-
thermore, an independent subspace analysis method learns 
invariant and robust spatial features of the normalized video 
cubes (Pei et al. 2016).

Over the past few years, the CNN-based method is the 
most researched approach in various fields of computer 
vision, including action recognition, and has shown a con-
siderable achievement (Ciocca et al. 2018; Yao et al. 2019). 
CNN works effectively on image processing and understand-
ing task due to the proximity of its layers and its rich avail-
able information. Moreover, images can be automatically 
extracted to produce rich correlated features (Zhang et al. 
2018). Ciocca et al. (2018) also stated that features learned 
by CNN are analyzed to be more powerful and expressive 
than those of the handcrafted ones. Therefore, CNN is 
applied in this study to perform action recognition. Further 
details on the CNN-based methods are discussed in “Con-
volutional neural network” section.

Object detection

Object detection is a task to estimate the contexts and loca-
tions of existing objects in each image. The problem of 
object detection is determining the location of objects in 

Fig. 1   Taxonomy of action 
recognition (Yao et al. 2019)
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a specific image (object localization) and the classification 
of each object (object classification). Based on this defini-
tion, the traditional models for object detection can be split 
into the following three phases (Zhao et al. 2019): informa-
tive region selection, feature extraction, and classification 
(Table 1). Manually constructing a robust feature descriptor 
to perfectly characterize all types of objects is challenging 
due to the variety of appearances, illumination conditions, 
and background.

The integration of deep neural networks with regions 
with CNN features (R-CNN) has resulted in a higher gain 
in this field compared with that of the traditional approach, 
which uses discriminant local feature descriptors and shal-
low learnable architectures (Zhao et al. 2019). CNN has 
deep architecture with the ability to learn more sophisticated 
features than that of the shallow ones. In addition, the train-
ing algorithm facilitates the learning of informative object 
representations without manually designating the features 
because of its expressiveness and robustness.

After the introduction of the R-CNN, another improve-
ment model has been recommended (Zhao et al. 2019). The 
first improvement model is fast R-CNN, which simultane-
ously binds box regression and classification optimization 
tasks. In addition, faster R-CNN model is developed to 
propose an additional sub-network for generation region 
proposals. The latest developed model is You Only Look 
Once (YOLO), which achieves object detection by using a 
fixed-grid regression (Gu et al. 2018). These models not only 
carry different qualities of detection performance over the 
primary R-CNN but achieve a real-time and accurate object 
detection. Further explanation details on faster R-CNN are 
presented in “Faster regional-convolutional neural network” 
section.

Convolutional neural network

CNN is a variant of multilayer perceptron inspired from 
the biological concept, which is a feedforward artificial 

neural network (Yao et al. 2019). The architectures of 
CNN are multistage and trainable, where every stage con-
tains multiple layers (Bhandare et al. 2016), including an 
input layer, an output layer, and multiple hidden layers. 
These hidden layers are either convolutional, rectified lin-
ear units (ReLU), pooling, or fully connected. The con-
volutional layer conducts a convolution operation and an 
additive bias to the input data, initially passing the result 
via an activation function and then delivering it to the next 
layer. The convolution operation at location (x, y) in the jth 
feature map in the ith layer is defined in Eq. (1) as follows:

where φ is a non-linear activation function, w is the weight 
matrix, P is the height of the kernel, and Q is the width of 
the kernel. The ReLU layer applies a non-saturating non-
linearity function or loss function (Traore et al. 2018):

Non-linear down-sampling forms the pooling layer. Max 
pooling is the most frequently used pooling function, which 
takes over the output with the maximum activation among a 
rectangular neighborhood (Carrio et al. 2017). Finally, after 
going through the convolutional and pooling layer, the high-
level reasoning in the CNN is finalized via fully connected 
layers, in which each neuron is connected to all activations 
in the previous layer (Yao et al. 2019).

The classification task is the major function of output 
layer in CNN architecture. Logistic regression model is 
commonly used as the output layer for a CNN model. 
In addition, for multiclass classification task, the logis-
tic regression model is then established as multinomial 
logistic function, which is mostly termed as softmax func-
tion. For j possible classes, a weighting vector W, and a 
bias b, the probability that vector x is a member of class i 
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Table 1   The phase of traditional object detection models (revised from Zhao et al. 2019)

Phase Explanation

Informative region selection Since different objects may occur in any points of the image and have divergent aspect ratios or sizes, scanning the 
whole image with a multi-scale sliding window is needed. Even though this strategy is able discover all possible 
positions of the objects, yet the weaknesses are also obvious. Because of the large number of candidate windows, 
this strategy is computationally expensive and also generates too many redundant windows. After all, if only a 
fixed number of sliding window templates are covered, unsuitable regions may be produced

Feature extraction To recognize different objects, one has to extract visual features which can present a semantic and robust represen-
tation. According to Zhao et al. (2019), there are three types of representative features; which are scale invariant 
feature transform, HOG, and Haar-Like. They are representative due to the fact that these features can produce 
representations related with complex cells in human brain

Classification A classifier is essential to distinguish a target object based all the existing categories and to represent with more 
hierarchical, semantic and informative way for visual recognition. Supported vector machine, AdaBoost and 
deformable part-based model are commonly used for classifying the objects
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in softmax function can be defined as follows (Dewa and 
Afiahayati 2018):

CNN has been widely used in some domains of research, 
including the medical field. For example, CNN is applied to 
detect and/or classify breast cancer in breast histopathology 
(Bejnordi et al. 2017). In the manufacturing field, CNN is 
introduced to classify the defect of circuit board (Iwahori 
et al. 2018). The CNN is also adapted to classify the exist-
ing defect in the electronic circuit board into multiple types 
of defect based on its shape. Over the past few years, CNN 
has reached a substantial improvement in image classifica-
tion and object detection. Some CNN architectures, such as 
ZFNet (Zeiler and Fergus 2014), VGG (Zhao et al. 2019), 
GoogLeNet (Szegedy et al. 2015), BN-Inception (Jaderberg 
et al. 2015), and ResNets (He et al. 2016), have been con-
structed. These architectures can produce pre-trained models 
(represented by weights) on large-scale datasets. By contrast, 
an additional training step (transfer learning) is executed to 
fine-tune the pre-trained model of the network for learning 
new dataset with small scale or a new modality (Yao et al. 
2019). Image-based action recognition using CNN was also 
conducted by Qi et al. (2017). They investigated the trans-
fer of CNN from object to action recognition and achieved 
82.2% of mAP. The VGG-16 model makes an improvement 
over AlexNet (Simonyan and Zisserman 2014) and is uti-
lized as the basic model to construct the neural network by 
using a dataset of people playing musical instruments to 
evaluate the proposed method.

Inception v2

AlexNet network has been successfully applied to vari-
ous computer vision tasks, such as object detection, seg-
mentation, human pose estimation, video classification, 
object tracking, and super-resolution (Szegedy et al. 2016). 
AlexNet contained 8 layers; the first five were convolutional 
layers, and the last three were fully connected ones. VGGNet 
and GoogLeNet resulted in similarly high performance in 
the ILSVRC classification challenge. The quality of these 
network architectures is further improved by utilizing deep 
and wide networks. Both network architectures are widely 
utilized in many domains, including proposal generation in 
detection, in which AlexNet cannot compete.

Although VGGNet and GoogLeNet demonstrate high per-
formance, the inception architecture of GoogLeNet is much 
lower than that of VGGNet or its high performing successors 
in terms of computational cost. Inception was designed to 
perform effectively even under limited memory and budget. 
For example, GoogLeNet engaged only 5 million parameters 

(3)P(Y = i�x,W, b) =
eWix+bi

∑
j e

Wjx+bj

while AlexNet used 60 million parameters. Furthermore, 
utilizing this network in big-data scenarios is feasible due 
to the computational cost of inception (Szegedy et al. 2016). 
The layout of Inception v2 network is shown in Table 2.

Faster regional‑convolutional neural network

Faster R-CNN comprises two modules (Ren et al. 2017). 
The first module is a deep fully convolutional network that 
proposes regions. Instead of using a selective search algo-
rithm on the feature map to identify the region proposal, a 
separate network is used to predict such region proposals. 
Meanwhile, the second module is the fast R-CNN detector 
that works with the proposed region. The region proposal 
network (RPN) module instructs the fast R-CNN module 
of the direction.

Ren et al. (2017) stated that an RPN captures an image 
(of any size) because the input and the outputs are a set 
of rectangular object proposals, with each set possessing 
an objectness score. Membership to a set of object classes 
versus background is measured using objectness score. They 
attempted to slide a small network over the convolutional 
feature map, which is the output of the last shared convolu-
tional layer, to generate region proposals. This network then 
captures an n × n spatial window of the input convolutional 
feature map as input. Each sliding window is mapped to a 
low-dimensional feature. Finally, this low-dimensional fea-
ture is supplied into two siblings or fully connected layers, 
which are a box-regression (reg) and a box-classification 
(cls) layer.

The RPN and faster R-CNN are trained independently, 
and their convolutional layers are subsequently modified 
in different approaches. Rather than learning two split net-
works, Ren et al. (2017) proposed a technique for sharing 
convolutional layers between the two networks. A pragmatic 

Table 2   Inception v2 network architecture (Szegedy et al. 2016)

Layer (type) Patch size/stride Input size

Conv 3 × 3/2 299 × 299 × 3
Conv 3 × 3/1 149 × 149 × 32
Conv padded 3 × 3/1 147 × 147 × 32
Pool 3 × 3/2 147 × 147 × 64
Conv 3 × 3/1 73 × 73 × 64
Conv 3 × 3/2 71 × 71 × 80
Conv 3 × 3/1 35 × 35 × 192
3 × Inception 5 × 5 replacement 35 × 35 × 288
5 × Inception n × n factorization 17 × 17 × 768
2 × Inception Coarsest grid 8 × 8×1280
Pool 8 × 8 8 × 8×2048
Linear Logits 1 × 1×2048
Softmax Classifier 1 × 1×1000
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four-step training algorithm is adopted to learn shared fea-
tures via alternating optimization. In the first step, the RPN 
is trained via initialization with an ImageNet pre-trained 
model and fine-tuned end-to-end for the region proposal 
task. In the second step, a separate detection network is 
trained by fast R-CNN by adopting the proposals by RPN. 
The ImageNet pre-trained model is also used for initializa-
tion of the detection network. At this stage, the two networks 
do not share convolutional layers yet. In the third step, the 
detector network is used to initialize the RPN training. How-
ever, the shared convolutional layers are fixed, and only the 
layers unique to RPN are fine-tuned. At this stage, the two 
networks share convolutional layers. Finally, by maintaining 
shared convolutional layers, the unique layers of fast R-CNN 
are fine-tuned. As a result, both networks sharing the same 
convolutional layers comprise a unified network.

Summary

Currently, CNN and faster R-CNN are constructed inde-
pendently, and combining the two as the backbone of skill 
transfer support model is possible. Specifically, CNN can 
be implemented to perform action recognition, while faster 
R-CNN is implemented to perform object detection. Such a 
model can be used as a guide for operators to adopt the new 
skills for assembly operations.

Methods

Research framework

A skill transfer support model framework by CNN and 
faster R-CNN is proposed in the present study. The frame-
work of this research is presented in Fig. 2. In this study, 
human expert operations are recorded using two cameras 
from different angles. The videos are split into images. 
Each image comprises the motion of the operator and the 
parts/tools related to the operator’s task. The image is 
then trained using CNN and faster R-CNN. The context 
of the actions is recognized when action recognition and 
object detection are performed to assist or identify the 
intention of the operator. In addition, this study applies 
a formal skill representation to define alternatives for job 
sequences. In the skill transfer section, this model aids a 
junior operator by advising him/her on what should be 
performed next based on the skill representation.

Skill representation is developed as a precedence dia-
gram to define the standard operation procedure of the 
operator doing the assembly operations. In some circum-
stances, there are several operation procedures of produc-
ing the same product. Therefore, all the possible sequences 
are drawn to guide the operator as needed. Furthermore, 

Human experts’
operations

Sensor 
(two cameras from 

different angle)

Capture data

Video images

Images
(Input Data)

Action 
recognition

Object detection

Faster R-CNN

CNN

Context 
awareness

Informational 
support model

Human novice’s
operations

Skill Transfer

Advice for 
decision making

Send current 
state

Extract video 
into images

Training Step

Skill 
Representation

Data collection

Skill Transfer Support Model Framework

Operators perform assembly 
operations

Camera will be used to record 
operators’ performance

Images from operators’
performance are supplied as 

input for training

Standard operating procedure 
for assembly the product

Action recognition and Object 
detection are used as the 

context awareness based on the 
skill representation

Novice operators perform 
assembly operations

Videos can be obtained as 
raw data

Contains guidance 
information

Fig. 2   The proposed framework of a skill transfer support model
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based on the possible sequences, the skill transfer model 
will aid the operator by advising them regarding the 
sequential operation. This advice is displayed in the form 
of text information of what should be done next based on 
their current state of motions, as well as showing them the 
corresponding tool/object required.

Action recognition based on deep learning approach is 
implemented in this study. CNN is designed to distinguish 
between different action classes in an assembly operation. 
Video action recognition is divided into two tasks: classi-
fication and detection. Classification indicates assigning a 
set of predefined action classes, while detection indicates 
temporally locating predefined action in a video.

CNN architecture for action recognition

CNN is developed specifically in this study for action recog-
nition. As shown in Figs. 3 and 4, the inputs for this network 
are images with the size of 100 × 100 × 3 from two sets of 
cameras in different angles, whereas the output of this net-
work is the action classification of an operator’s task. CNN 
architecture comprises three convolutional layers, two max 
pooling layers, and two fully connected layers. Three drop-
out layers are also used to maintain the capability of the 
network in demonstrating better generalization performance 
and less overfitting of the training data.

CNN is constructed from an input layer, an output layer, 
and multiple hidden layers, where the hidden layers are 
either convolutional, pooling, or fully connected. The con-
volutional layer operates a convolution operation and an 
additive bias to the input data and passes the result initially 
via an activation function and then to the next layer. The 
convolution operation at location (x, y) in the jth feature map 
in the ith layer of this study is defined in Eq. (4), where φ is 
a non-linear activation function, b is an additive bias, m is 
the number of layers, w is the weight matrix, and P and Q 
are the height and width of the kernel, respectively.

Faster R‑CNN architecture for object detection

The proposed faster R-CNN applies a single yet unified net-
work for object detection as shown in Fig. 5. Faster R-CNN 
has two networks: RPN for generating region proposals and 
a network using these proposals for object detection. The 
images with the size of 299 × 299 × 3 from two cameras with 
different angles are initially provided as an input to a CNN 
that produces a convolutional feature map. On the contrary, 
the output of this network is the image with the boundary 

(4)
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box and classification of the object. The phase of object 
detection applied in this study has different orders with the 
phase of a traditional object detection model. Object detec-
tion starts with the feature extraction using CNN, followed 
by RPN, and finalized with classification. The detailed pro-
cedure of faster R-CNN is shown in Figs. 6 and 7.

RPN carries the output feature maps from the first CNN 
as input. A sliding window with n = 3 is used in this study, 
indicating that it slides 3 × 3 filters over the feature maps to 
create the region proposals. The detailed procedure of the 
RPN is illustrated in Fig. 8. The RPN outputs feed into two 
separate fully connected layers to predict a boundary box 
and two objectness scores. The objectness measures whether 

Input Image:
Camera angle 1 and 2

Convolutional

Max pooling

Dropout

Convolutional

Max pooling

Dropout

Convolutional

Dropout

Fully connected

Output:
Action classification

CNN architecture

Parameter setting:
Batch size, epoch, steps per 

epoch

Optimizer setting: Adam
Loss seting: categorical 

crossentropy

Dropout

Fully connected

Fig. 3   The present CNN framework
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the box contains the object while the classifier has two pos-
sible classes, namely, object or background. The predicted 
region proposals are then reshaped using an RoI pooling 
layer, which is then used to classify the image among the 
proposed regions and predict the offset values for the bound-
ing boxes.

This study conducted a transfer learning strategy for 
training the network. Given that the features generated by 
the preceding layers are more general than those generated 
later in the process, inception v2 adaptation is determined 
because the features become specific to the details of the 
image classes involved in the training dataset. Moreover, 
this strategy can reduce the problem of network overfitting 
because the convolutional layers in the network have been 
trained on a large Microsoft Coco dataset (Lin et al. 2014; 
Microsoft 2019).

The parameters related to the training process of the pro-
posed CNN and faster R-CNN are shown in Table 3. The 
initial learning rate was set to a relatively low value for the 

transferred convolutional and pooling layers (these layers 
have been previously trained on the Coco dataset) to train 
the faster R-CNN network. The overall procedure of the pro-
posed skill transfer support model is shown in Fig. 9.

Skill representation and skill transfer

A job is assumed to be done by one of many task sequences. 
These options offer the flexibility to the operator to facilitate 
the production of the desired product in many approaches, 
which is defined in this research as the skill representation. 
The sequences is based on a skill representation diagram. 
The sequences of tasks (A thru J) based on the skill repre-
sentation diagram are illustrated in Fig. 10.

•	 A–B–D–G–J
•	 A–B–E–H–J
•	 A–C–F–I–J

Fig. 4   The present CNN pro-
cedure

image

Convolutional Layers

RoI pooling

proposals

classifier

Region Proposal Networks

Feature Maps

Object or not object

Boundary box

Object x

Refine boundary box

Fig. 5   The proposed faster R-CNN framework (revised from Ren et al. 2017)
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After independently training the two neuro network mod-
els, they are combined as the backbone of the proposed skill 
transfer support model. The model guides a junior opera-
tor while performing a sequence of assembly operations. In 
addition, the action recognition and object detection model 
can be run simultaneously, and the proposed model is sup-
plied by guidance based on the skill representation.

Experiment and discussion

Experimental setting

A case study using Lego assembly was conducted to evaluate 
the performance of the proposed model. In the experiment, 
four components must be assembled to produce a desired 
shape, as shown in Fig. 10. In this experiment, action recog-
nition is one of the main issues, as shown in Fig. 12. Several 

options of sequence operations can be performed in terms 
of Lego assembly. The assembly process was recorded by a 
video camera. The video images were processed to recog-
nize the human activities associated with each video frame 
and determine the components correlated with the action 
(Fig. 11).

Illustration on skill representation

Three sequence options can be performed to produce the 
assembled Lego. These options offer the flexibility to the 
operator to facilitate the production of the desired Lego in 
many approaches, which is defined in this research as the 
skill representation. The sequences based on the skill repre-
sentation diagram is listed in Fig. 10.

For example, the operator can start with Component 1 
and then assemble Component 2 to construct the Lego. Sub-
sequently, this shape can be assembled with Components 3 
or 4. If the operator selects to assemble with Component 3, 
then the final step is combining the shape into Component 
4. Otherwise, if the operator selects to assemble with Com-
ponent 4, then the final step is combining the shape into 
Component 3. Nine classes of actions and nine classes of 
objects are available for training the model that fits into the 
scenario (see in “Appendix”).

Model evaluation

Images covering all motions involved in the assembly pro-
cess were obtained prior to taking the video from the two 
cameras to train the CNN and faster R-CNN network for 
human action recognition and assembly object detection. 
The output of the CNN model is the classification of the 
motion of the operator’s task, whereas the output of the 
faster R-CNN model is the detection of the objects that 
appear in the video while performing the assembly tasks. 
The performance of the human operator is slightly different 
while recording the video, thereby reflecting the variability 
of human operator in performing the same task. This vari-
ability is utilized to avoid overfitting in the training.

This experiment was conducted using two cameras, which 
work independently and set in different angles, as shown in 
Fig. 13. The videos were recorded for 10 to 17 s depend-
ing on the operators’ speed of performing the operations. 
The frame width is 540 pixels and the height is 960 pixels. 
The frame rate of the videos is 30 frames/s. Every operator 
completed three trials one per sequence of motion to enrich 
the training dataset.

Among all the images, 80% was used for training the 
networks and 20% were allotted for testing. The learning 
and loss curves of nine CNN classes are shown in Fig. 14a, 
b, respectively. The training accuracy achieved 80% after 
10 epochs. In addition, CNN has a good fit because the 

Input image

CNN
(Inception v2)

Region proposal 
network

ROI pooling

Fully connected 
layers

Fully connected Fully connected

Output: 
Boundary box 

(regressor)

Output: Classes
(softmax)

Feature maps

regions

Parameter setting:
Batch size, Learning 

rate, decay steps, 
optimizer 

Fig. 6   The present faster R-CNN framework
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Fig. 7   The present faster 
R-CNN procedure

Fig. 8   The proposed region 
proposal network (RPN) frame-
work (revised from Ren et al. 
2017)
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plot of training and validation loss decreases to a point 
of stability with a slight difference. For faster R-CNN, 
the loss curve for nine classes is shown in Fig. 12c. The 

loss values converged at 5,000 steps. This model has good 
fit because the plot of the training and validation loss 
decreases to a point of stability with a slight difference. 

Table 3   Settings of parameter related to CNN and Faster R-CNN

Parameters Value

(a) Learning rate of CNN
Batch size 60
Steps per epoch 25
Epoch 25

Layer (type) Output shape Param #

(b) Layer settings of CNN
conv2d_7 (Conv2D) (None, 98, 98, 32) 896
max_pooling2d_5 (MaxPooling2D) (None, 49, 49, 32) 0
dropout_9 (Dropout) (None, 49, 49, 32) 0
conv2_8 (Conv2D) (None, 47, 47, 64) 18,496
max_pooling2d_6 (MaxPooling2D) (None, 23, 23, 64) 0
dropout_10 (Dropout) (None, 23, 23, 64) 0
conv2d_9 (Conv2D) (None, 21, 21, 128) 73,856
dropout_11 (Dropout) (None, 21, 21, 128) 0
flatten_3 (Flatten) (None, 56448) 0
dense_5 (Dense) (None, 128) 7,225,472
dropout_12 (Dropout) (None, 128) 0
dense_6 (Dense) (None, 9) 1161

Parameters Value

(c) Learning rate of faster R-CNN
Batch size 25
Initial learning rate 0.0002
Decay steps 900,000
Global steps 120,000
SGD momentum optimizer value 0.90

Fig. 9   Procedure of the pro-
posed skill transfer support 
model
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The training accuracy for CNN and faster R-CNN is 
96.16% and 98.46% in nine classes, respectively. Moreo-
ver, the F1-score is employed as a performance indicator 
of the proposed model. The F1-score reflects better the 
confusion matrix and presents a weighted compromise 
between precision and recall. F1 score is calculated using 
Eq. (5). Faster R-CNN implemented for the present model 
achieves 94.47%. Once the training was completed, the two networks were 

used to process the video images. From the available frames, 
200 frames were randomly selected and used for testing the 

(5)F1 = 2 ⋅
precision ⋅ recall

precision + recall

A

C

D

E

F

G

H

I

J

B

T=1 T=2 T=3 T=4 T=5

Fig. 10   Skill representation diagram

Fig. 11   A case study: compo-
nents and assembled lego

Component 1 Component 2 Assembled Lego

Component 3 Component 4

Fig. 12   Examples of human 
action images

Fig. 13   Two cameras angle setting
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networks. For each test frame, the action recognition model 
and object detection were applied to respectively recognize 
the motion and object associated with the frame. Among 
the 200 test frames, 11 frames were misclassified in action 
recognition model, leading to a classification accuracy 
of 94.5%. Meanwhile, in the object detection model, two 
objects were misclassified, leading to a classification accu-
racy of 99%. Most misclassifications occurred during the 
transitions among human motions, which caused uncertainty 
in classifying these transition motions into a predefined 
category.

Illustration on skill transfer support

In the proposed scenario, the three sequences are considered 
options to construct the same finished good. After detecting 
the motion of the operator, the model guides the operator 
by giving instructions of their subsequent task, as shown in 
Fig. 15. This model can sequentially detect the motion of 
each class. Therefore, the operator is guided successively 
based on the currently selected operation.

Fig. 14   CNN and faster R-CNN training performances
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Fig. 15   Skill transfer support 
model: an illustration

(a) Illustration of 1st sequence

(b) Illustration of 2 nd sequence
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Conclusion

This study developed a skill transfer support model for skill 
transfer of assembly tasks in a manufacturing scenario. This 
model used two types of deep learning as the backbone: 
CNN for action recognition and Faster R-CNN for object 
detection. Inside this model, the human operator is guided 
by the model based on its skill representation during per-
formance of assembly tasks. The proposed CNN obtained 
94.5% accuracy in action recognition. The object detection 
model achieved 99% accuracy. Faster R-CNN implemented 
also achieves 94.47%. Subsequently, these models are inte-
grated and run simultaneously to advise the junior operator 
in terms of the assembly tasks.

In terms of practical contribution, the proposed model 
enables the following functions:

•	 To help junior operators in performing complex tasks.
•	 To guide the operator on the subsequent task on the basis 

of a skill representation and recommend the tools or part 
related to a particular task.

•	 To propose a new training method for new jobs.

In terms of theoretical contribution, this study achieves 
the following goals:

•	 To integrate two deep learning models, namely, CNN and 
faster R-CNN, to offer a new skill-transferring method 
from senior to junior operators.

•	 To perform effectively in terms of accuracy and F1-score.
•	 To simultaneously recognize the action of a worker and 

detect objects.

Some challenges in the future study include the 
following:

•	 The grasp prediction model can be further studied to 
empower machine recognition to humans to realize high 
performance in HRI. Such a model will be informative 
for robot action planning to assist the operator by hand-
ing over parts or tools related to the tasks.

•	 Additional learning modules, such as single-shot detec-
tor or YOLO as the comparison of the currently used 
module, can be developed and used for object detection.

•	 Complicated operations that involve assembly and split 
motions and small parts or tools can be experimented to 
test the robustness of the proposed model.

Acknowledgements  The authors gratefully acknowledge the com-
ments and suggestions of the editor and the anonymous referees. 
This work is partially supported by Ministry of Science and Technol-
ogy of the Republic of China (Taiwan) under the Grant No. MOST 
107-2221-E-011-101-MY3.

(c) Illustration of 3rd sequence

Fig. 15   (continued)
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Appendix: Object and action classes
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