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Abstract
This study proposed a deep convolutional neural network (DCNN) aided optimization (DCNNAO) method to improve the 
quality of deposition during the cold spray process which was simulated by molecular dynamics (MD). The idea of the 
DCNNAO is to extract the value of the objective function from the MD simulation snapshots directly by DCNN aided image 
process technique. Considering the huge memory requirement for MD result files, the main superiority of DCNNAO is to 
reduce the memory requirement and improve the efficiency of the optimization process by using a contour image (several 
hundred kilobytes) as the input instead of an MD result file (several hundred gigabytes). To complete this strategy, a Python 
script is written to generate required snapshots from result files automatically. Moreover, three boosted decision trees based 
optimization methods including surrogate optimization and heuristic algorithms are also implemented for comparison study. 
A detailed optimization result demonstrates that all the above methods can obtain an acceptable solution. The comparison 
is also given for an informed selection of them based on the trade-off between efficiency and accuracy.

Keywords Molecular dynamics · Convolutional neural network · Optimization · Cold spray · Boosted decision trees

Introduction

Cold spray is an innovative solid-state material deposition 
process, where high speed particles bonded with the sub-
strate. Compared with thermal spray, the powder remains 
in the solid state during the entire process which can reduce 
oxidation and phase transition. Cold spray has been thus 
used for temperature sensitive (such as nanostructured and 
amorphous) and oxygen sensitive (such as aluminum, cop-
per, titanium, zinc, etc.) materials (Pathak and Saha 2017). 
During the cold spray process, the particles are accelerated 
to the speeds between 300-1200 m/s by propellant gas and 
then impact on the substrate to form the plastic deforma-
tion and bonding connection. Cold spray was developed as 
a coating technology in the 1980s and then became one of 

the popular solid-state processes due to its distinctive fea-
tures in repairing turbine and compressor blades (Yin et al. 
2018). Along the way, many academic studies on cold spray 
have been reported which covering various aspects of the 
process and its applications (Papyrin et al. 2006; Vilardell 
et al. 2015; Assadi et al. 2016; Li et al. 2018; Raoelison 
et al. 2018; Jenkins et al. 2019). Generally, those studies 
can be divided into two categories: mathematical mod-
eling of impact using numerical methods and experimental 
investigations.

As for the mathematical modeling, Finite element method 
(FEM) (Liu and Quek 2013) is one of the wide-used numeri-
cal methods for cold spray and the finite element method 
software ABAQUS Explicit has been used to simulate the 
particle deformation (Guetta et al. 2009; Kumar et al. 2009; 
Yu et al. 2012; Rahmati and Ghaei 2014), bonding features 
and associated mechanisms (Bae et al. 2009; Kumar et al. 
2016; Viscusi et al. 2019; Rahmati and Jodoin 2020) in cold 
spray. These studies are based on Lagrangian formulation. 
A general feature of Lagrangian-based FEM simulations 
is that they can naturally track the interface between parti-
cle and substrate during the process of high speed impact, 
but it cannot reveal the realistic development of the defor-
mation pattern due to the excessive mesh distortion. The 
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Eulerian-based FEM does not have mesh distortion, so it 
offers a more realistic account of the geometrical defor-
mation (Assadi et al. 2016). An Eulerian-based FEM soft-
ware package named CTH, developed by Sandia National 
Laboratories, has thus been used to analyze the interfacing 
bonding in the cold spray process (Grujicic et al. 2003) and 
Sun et al. investigated hard/soft combinations of cold spray-
ing by the Eulerian (Sun et al. 2020). Both Lagrangian and 
Eulerian FEMs are mesh-based methods. There have also 
been some attempts to simulate cold spray using mesh-free 
methods include smoothed particle hydrodynamics (SPH) 
(Liu and Liu 2003) and molecular dynamics (MD). SPH 
is a non-mesh-based numerical method that can avoid the 
problems associated with extreme mesh distortion. Stud-
ies of simulating cold spray using SPH include works by 
Manap et al. (2014), Li et al. (2010) and Gnanasekaran et al. 
(2019). However, the process of bonding and rebounding 
is still cannot be demonstrated by neither FEM nor SPH 
method because the bonding happens at atom scale during 
the cold spray process. Therefore, MD method is considered 
as an ideal tool to simulate the bonding of cold spray but 
there are few studies focused on this. The earlier research is 
relevant to the aerosol deposition which revealed that higher 
impact velocities led to a stronger interface (Daneshian and 
Assadi 2014; Goel et al. 2014). Recently, some scholars and 
researchers have made progress in simulating cold spray pro-
cess by MD method (Rahmati et al. 2020). For instance, Yao 
et al. have simulated collision behavior between nano-scale 
TiO2 particles during cold spray (Yao et al. 2018) and Joshi 
et al. modeled the whole cold spray process in nanometer 
dimension (Joshi and James 2018). These studies investi-
gated the bonding mechanism in cold spray process and 
understood the effect of critical parameters including impact 
velocity, angle and particle size.

According to Reference Joshi and James (2018), it is evi-
dent that the quality of deposition is associated with impact 
velocity, angle and particle size, where the quality can be 
measured by the height and the flattening ratio of the bonded 
particle. It can be found that different impact velocities, 
angles and particle sizes result in different flattening ratios 
and heights, so how to construct the objective function by 
the flattening ratio and the height is the key point for this 
optimization process. It is well-known that the MD method 
usually requires huge memory to store result files for a large-
scale model because millions of atoms need to be tracked 
and recorded during the simulation process. Therefore, it is 
more difficult to apply the optimization algorithms to MD 
since the iterative procedure requires numerous sample data 
files that need to be saved. Considering the rapid develop-
ment of deep convolutional neural network (DCNN) and its 
superiority in solving image recognition and classification 
problems during engineering and manufacturing processes 
(Lin et al. 2019; Badmos et al. 2019; Tabernik et al. 2020; 

Kwon et al. 2020), A DCNN aided optimization (DCNNAO) 
method is proposed to improve the quality of deposition 
by extracting the value of objective function from the MD 
contours directly in this study. It means that only several 
hundred kilobytes are needed to store a contour instead of 
spending several hundred gigabytes for an MD result file, 
so the DCNNAO method will largely reduce the memory 
requirement and the computational time of the optimiza-
tion. To complete this strategy, Python scripts are written 
to generate required snapshots from result files automati-
cally and the semantic image segmentation method based on 
DCNN is used to separate the deposition from the substrate. 
Moreover, three popular optimization methods are employed 
to obtain the optimal solution which include efficient global 
optimization (EGO), particle swarm optimization (PSO) 
and differential evolution (DE) algorithms. Furthermore, a 
boosted decision trees (BDTs) model is built to accelerate 
the optimization process.

The rest of this paper is organized as follows. The theory 
of the proposed method is introduced in the section “Meth-
ods”. The result is shown in the section “Results and discus-
sions” and the discussions should be given too. At the last, 
the conclusion is summarized in the section “Conclusion”.

Methods

Framework of DCNNAO method

The DCNNAO method is suggested to improve the quality 
of deposition during the cold spray process. The key point 
is how to construct the objective function for the optimiza-
tion and how to calculate the flattening ratio and the height 
from the MD result file. Figure 1 is the framework of the 
DCNNAO method. The DCNNAO method contains two 
loops: the classic optimization loop and the BDTs assisted 
optimization loop. The classic optimization loop is a general 
process of most optimization methods. Firstly, calculate the 
value of the objective function, then update the design vari-
ables, then calculate the new value of the objective function, 
then repeat this cycle until satisfying the stopping criterion. 
MD and image processing technique are used to calculate 
the value of the objective function in this loop. Consider-
ing the huge memory requirement for MD result files, the 
DCNNAO can reduce the memory requirement and improve 
the efficiency of the optimization process because only MD 
contours are used to calculate the objective function without 
MD result files. In the second loop, BDTs aided optimiza-
tion loop, a meta model of the objective function needs to be 
built by BDTs first. Once the model has been constructed, 
the value can be evaluated from the model instead of forward 
calculation. It can extremely improve the efficiency of clas-
sic optimization. Compared with the classic optimization 
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loop, the only difference is the value of objective function 
should be obtained from BDTs model directly.

MD simulation for cold spray

Basic theories of MD

In the MD simulation, the system is described by the posi-
tion and momentum of each atom or molecule in the simula-
tion box. The dynamics of atoms obey Newton’s law which 
can be described as the following equation:

where mi and vi are the mass and velocity of atom i respec-
tively, xi means the position of atom i and V(x1, x2, x3,… , xn) 
denotes the inter-atomic potential. A typical example of 
the inter-atomic potential is the Embedded Atom Method 
(EAM) in which an atom should be regarded as the embed-
ded component of a lattice (Daw and Baskes 1983). Spe-
cially, the EAM potential can be written as

(1)
ẋi = vi,

miv̇i = −▿xi
V ,

where Fi means the embedding energy depended on the elec-
tron cloud density �i around the atom i. The electron density 
�i is associated with all the atoms in the system which can 
be calculated by Equation (3). The symbol �ij denotes the 
pairwise potential, which depends on the relative distance 
rij between atom i and its neighbor atom j. Generally, most 
empirical potentials can be written as

where V is a function of the energy of each atom ( Vi ), which 
depends on ui , the displacement of atom i from its refer-
ence position Ri ( ui = xi − Ri ). Usually, atoms do not interact 
directly beyond the cut-off radius rcut , which implies that

(2)U =
∑

i

Fi

(

�i
)

+
1

2

∑

i

∑

j≠i

�ij

(

rij
)

,

(3)�i =
∑
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(
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(4)V =
∑

i

Vi(u1, u2, u3,… , un),

Fig. 1  Framework of the DCNNAO method
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Therefore, the inter-atomic force fi on the atom i can be 
witten as

There are a series of motion equations needs to solving 
during the MD simulation, such as Equation (1). Thus, the 
Velocity-Verlet algorithm is employed as the time integra-
tion algorithm to solve the motion equations with a con-
siderable accuracy. More details about the Velocity-Verlet 
algorithm can be found from the Reference Omelyan et al. 
(2002).

Definition of stress

The definition of stress for an atomic simulation is different 
from the continuum stress concept. A well-known defini-
tion of virial stress suggested by Swenson (1983) is used in 
this study. Atomic scale virial stresses are equivalent to the 
continuum Cauchy stresses (Subramaniyan and Sun 2008). 
The stress contains two parts, potential and kinetic energy 
parts, which is defined as

where mi means the mass of atom i, the subscripts x and y 
denote the Cartesian components and V is the total volume 
of the system. The superscripts i and j are the atom identifi-
cation number, which mean atom i and atom j. The symbols 
r, f and v indicate the relative position, inter-atomic force and 
velocity respectively. Specially, the symbol f ijy  is the y direc-
tion force on atom i induced by atom j, vi

x
 , ri

x
 are the veloci-

ties and relative position of atom i along the x direction. 

(5)▿xi
Vi = 0, ifrij > rcut.

(6)fi = −▿ui
V =

∑

j≠i

fij.

(7)�xy =
1

V

∑

i

[

1

2

N
∑
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(

rj
x
− ri

x

)

f ij
y
− mivi

x
vi
y

]

,

Other symbols are as similar as the above. To roughly cal-
culate the local stress field of the system, the ’atomic stress 
�xy ’ for each atom in the system is used to plot the stress 
contours. Here, the ’atomic stress �xy ’ has the unit of stress×
volume. Then the ’Von Mises stress �̄� ’ can be calculated by

where �x, �y, �z are the normal stresses and �xy, �yz, �zx are 
the tangential stresses.

MD model for cold spray

In this study, a classical molecular dynamics code, named 
Large-scale Atomic Molecular Massively Parallel Simulator 
(LAMMPS) (Plimpton 1995), is used to simulate the cold 
spray process and the atomic visualization of the MD simu-
lation results is processed by an open source software termed 
Open Visualization Tool (OVITO) (Stukowski 2010). This 
study considers the impact between a nanoparticle and a 
metal substrate in three-dimension (3D). The schematic 
of the MD simulation model for the cold spray process is 
shown in Fig. 2, where the substrate should be considered 
to set a fixed boundary layer at the bottom and the nanopar-
ticle should be set an initial velocity v. However, it should 
be pointed out that the MD simulation model is a nanoscale 
model while usually the particle size is micron-sized in 
cold spray. Thus, how to connect MD simulation results on 
nanoscale to the deformation process of micron-sized metal-
lic particle is the essential work. In order to figure out the 
connection between different scales, the experimental result 
(Yu et al. 2012) is used to be compared with the MD result 
in this study, where the experimental result is implemented 
under the macro scale with a 20  mm particle while the 
MD simulation is under the nanoscale. The comparison is 
shown in Fig. 3, where the upper images are cross-sections 

(8)

�̄� =
1
√

2

�

(𝜎x − 𝜎y)2 + (𝜎y − 𝜎z)2 + (𝜎z − 𝜎x)2 + 6(𝜏2
xy
+ 𝜏2

yz
+ 𝜏2

zx
),

Fig. 2  Schematic of MD simu-
lation model of cold spray
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of 20 mm Cu ball impacting on low carbon steel plate (Yu 
et al. 2012) and the lower images are MD simulation results 
of 20 ÅCu cluster impacting on steel substrate. It indicates 
that MD simulated deformation patterns are consistent with 
experimental observations although those results are calcu-
lated under the different scales. It means that the MD method 
can be used to predict the deformation process of micron-
sized cold spray metallic particle.

For the optimization process, an MD model for cold spray 
should be defined as follows. The material of simulation 
is copper (Cu), so both of the nanoparticle and substrate 
consist of Cu atoms. Face-centered cubic (FCC) lattice 
structure is used. Moreover, the schematic of the MD simu-
lation model for the cold spray process is shown in Fig. 2, 
where the size of the substrate is 240Å× 240 Å × 50Å and the 
radius of nanoparticle is range from 10 to 20Å. The constant 
parameter of FCC lattice structure is 3.61Å. More details 
about the parameters of MD simulation are listed in Table 1.

Deep convolutional neural network aided 
optimization

The DCNNAO method is suggested to improve the quality 
of deposition by constructing a specified objective function 
which associates with the flattening ratio � and the height h 
of deposition. The flattening ratio � was defined as a ratio of 
the maximum diameter of deposition (particle after impact) 
to original diameter of the particle before impact in the 

Reference Joshi and James (2018). However, it is difficult to 
define a diameter when the particle impacts to the substrate 
with an angle, because usually the deposition is irregular. 
Therefore, a generalized flattening ratio � is defined as the 
ratio of the area ( Sm ) of the deposition (particle after impact) 
to the area of the particle cross section ( Si ) before impact in 
this study. Specially, the flattening ratio � and the height h 
are used to measure the quality of deposition during the cold 
spray process. Consider an example for cold spray as shown 
in Fig. 2, where the radius of the particle is 15Å, the veloc-
ity is 6Å/ps, the impact angle is 0◦ . Then Fig. 4 shows the 
snapshots of the MD results before and after impact on top 
view, where the contour plot is according to the Z-coordinate 
range from 0 to 10Å.

Optimization formulation

As shown in Fig. 4, once the snapshots of the MD compu-
tational results are obtained, then Si and Sm can be obtained 
from Fig. 4a, b respectively. Then, the flattening ratio � can 
be calculated by

In order to improve the quality of deposition, the height 
of should also be included into the objective function. The 
height of deposition is defined as shown in Fig. 5 which 
can be calculated from MD result files directly. Then the 

(9)� = Sm∕Si.

Fig. 3  Comparison of simulated results by experiment and MD with velocities: a 350 m/s, b 600 m/s, c 750 m/s, d 1000 m/s and e 1450 m/s

Table 1  Some inputs of the 
ELM Material parameters Substrate material Cu (240Å× 240Å× 50Å) Approx. 240,000atoms

Nanoparticle material Cu Sphere (Radius 10–20Å) Approx. 500–2000 atoms
Simulation parameters Temperature 298 K

Potential used Embedded atom method (EAM)
Initial stand-off distance 40Å
Impact velocity 3–12Å/ps (300–1200 m∕s)
Particle size 10–20Å
Angle of impact 0

◦ − 30
◦

Time step 0.001 ps (picoseconds)
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objective function can be defined by the flattening ratio 
and the height as follows.

Minimize:

Subject to:

Design space:

(10)c(v, r, �) =
1

�h + (1 − �)�
,

(11)ẋi = vi,

(12)miv̇i = −▿xi
V ,

(13)h = f (v, t, �),

(14)� = Sm∕Si,

(15)Si = f (v, r, �),

(16)Sm = f (v, r, �),

where c(v, r, �) is the objective function and � means flat-
tening ration mentioned above. The symbol h is the height 
of deposition. Symbols v, r, � denote the velocity, radius, 
impact angle of particles. Moreover, the cold spray process 
is simulated by MD, so the objective function also obeys to 
the Newton’s law for MD as shown in Eqs. (11) and (12). 
It should be noted that the design variables ( v, r, � ) are 
restricted to appropriate intervals in accordance with the 
practical applications as shown in Eq. (17). Moreover, the 
symbol � is defined as a weight between the flattening ratio 
and the height or the efficiency and quality of cold spray. For 
the efficiency, the weight � should be decreased to enlarge 
the effect of flattening ratio, then the maximum area of depo-
sition can be obtained but it usually comes with craters when 
� is too small. For quality, the weight � should be increased 
to obtain the smooth shape of deposition and reduce the 
craters, but the efficiency of cold spray should be decreased 

(17)
300m∕s ⩽ v ⩽ 1200m∕s,

10Å ⩽ r ⩽ 20Å,

0◦ ⩽ � ⩽ 30◦,

Fig. 4  The snapshots of MD 
computational results on top 
view

(a) before impact (b) after impact

Fig. 5  Snapshot of cross-section 
of MD simulation result
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with the increment of � . Therefore, the value of � should be 
determined by the trade-off between efficiency and quality. 
In this study, � = 0.5 is used for the optimization process.

Image processing technique

As mentioned above, the image processing technique is used 
to separate the cluster or deposition from Fig. 4, but how to 
generate the snapshots automatically is the first step needs 
to be completed. In this study, the open source software 
OVITO is used as the post-processing tool. OVITO is a sci-
entific visualization and analysis software for atomic and 
particle simulation data. Specially, OVITO has a powerful 
Python-based scripting interface which can process and gen-
erate various snapshots automatically. Therefore, a Python 
script is used to process and generate a series of snapshots 
such as Fig. 4. The script can invoke program actions like 
a human user does in the graphical interface and it can run 
from the command line without any user interaction, so the 
snapshots can be generated automatically.

Once the snapshots are generated, the next step is how to 
extract the deposition (particle after impact) from the snap-
shots. Thus, the DCNN based semantic image segmentation 
is implemented. Semantic segmentation with the goal to link 
labels to every pixel in an image is one of the fundamen-
tal topics in computer vision (Long et al. 2015; Girshick 
et al. 2014) and DCNNs show striking performance in high 
level vision tasks including image classification and object 
detection recently. In this study, an improved DCNN based 

semantic segmentation method, DeepLabv3+ (Chen et al. 
2018), was implemented to recognize and label the deposi-
tion parts from MD contours, which was shown in Fig. 6. 
In this work, spatial pyramid pooling module captures rich 
contextual information by pooling features at different reso-
lution and encoder-decoder structure obtains sharp object 
boundaries (Chen et al. 2018).

For this optimization process, 3000 images (1800,600, 
and 600 for the training, validation, and test sets respec-
tively) are used to train the DeepLabv3+ network. The train-
ing progress is shown in Fig. 7.The comparison between 
predicted and labeled images is also given in Fig. 8 to 
show the accuracy of DeepLabv3+ network, where labeled 
images are pre-processing images for network training and 
predicted images are those images predicted and labeled by 
DeepLabv3+ network. It can be found that the DeepLabv3+ 
network can exact the cluster and the deposition from the 
substrate precisely. Figure 9 shows the result predicted by 
DeepLabv3+ network corresponding to Fig. 4.

BDTs assisted optimizations

It is well known that optimization is an iterative process 
and the MD program needs to be evoked again and again, 
so this is a time-consumed process. Thus, BDTs are used 
to accelerate the process by building a meta-model for the 
objective function. Boosted decision trees algorithm is one 
of the popular machine learning algorithms introduced as an 
improved algorithm of decision trees. The boosted decision 

Fig. 6  An illustration of DCNN based semantic image segmentation
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Fig. 7  The training progress of DeepLabv3+

Fig. 8  The comparison between 
predicted and labeled images
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trees algorithm was used as an alternative to artificial neural 
networks by Roe et al. in the last decade (Roe et al. 2005). In 
this study, BDTs are used to forecast the value of the objec-
tive function, so that the optimal solution can be found more 
efficiently than the classic optimization loop. Furthermore, 
in order to forecast the value of the objective function, a set 
of sample data should be used to construct BDTs, then BDTs 
model need to be trained,and finally the trained model can be 
used to forecast the value of objective function.

Results and discussions

Several popular optimization algorithms including KRG-
EGO, PSO, DE are tested and some comparisons are made 
in this section, where the EGO is started with 20 sample 
points while PSO and DE is started with 20 particles. All 
the program is executed under the Linux system and the 
MD simulation is calculated by parallel LAMMPS with 24 
MPI processors. The image processing is realized by Python 
script and the optimization algorithms are running in Matlab 
R2019a. In order to show the improvement of the DCNNAO 
results, several typical MD results were given to explain the 
difference between good and bad results which was shown 
in Fig. 10. Obviously, the medium one is the best result of 

them. The left one is the fair good one because the particle 
wasn’t combined with the substrate thoroughly. The right 
one is the bad result that should be avoided because the cra-
ter was formed.

Results of classic optimization methods

As shown in Fig. 1, the DCNNAO is used to improve the 
quality of deposition by finding the optimal design param-
eters and both classic and BDTs assisted optimization meth-
ods are included and compared in this study. For classic 
optimization methods, the convergence curves of the objec-
tive function in the optimization procedure are shown in 
Fig. 11. It can be found that all of these classic optimization 
methods can obtain an available solution and behaves great 
convergent tendency. Specially, EGO is a surrogate opti-
mization method while other two are heuristic algorithms. 
Thus, the computational cost of EGO is much lower than 
other two methods. Moreover, it is obvious that the PSO 
method obtained a better solution than other two methods 
and converged faster than DE. In a word, the heuristic algo-
rithms (PSO, DE) can obtain a better solution than surro-
gate optimization methods (EGO) in this problem, but the 
EGO method is much more efficient than other two methods. 
The optimal solution of the above three methods is listed 

Fig. 9  Separating the deposition 
from the snapshot before impact
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in Table 2, where 1Å∕ps = 100m∕s . Comparisons of the 
MD simulation results after impacting between above three 
methods are shown in Fig. 12, where the contour plot is 
according to the Z-coordinate range from 0 to 10Å. Fur-
thermore, the Von Mises stress contour for the optimal 
solution obtained by the PSO method is shown in Fig. 13. 
Compared with the result in Fig. 10, it is obvious that the 
DCNNAO obtains the good result and the minimum value 
of the objective function. Therefore, the input parameters 
with v = 4.15Å∕ps, r = 14Å, � = 18.65◦ are suggested for 
cold spray process in this study.

Results of BDTs assisted optimization methods

As mentioned above, BDTs are used to accelerate the pro-
cess of optimization by building a meta-model for the objec-
tive function in this study. Thus, 1000 samples are obtained 
to train BDTs model. After that, another 1000 samples 
should be used to test the performance of the BDTs model. 
The regression of the trained model is shown in Fig. 14. 
Moreover, it is well-known that Kriging models are widely 
used to build meta-models for the simulator in Design and 
Analysis of Computer Experiments (DACE) (Santner et al. 
2003). Therefore, a Kriging model was also built to be com-
pared with the BDTs model. Sequentially, 1000 samples 
are used to test the performance of the Kriging model. The 
regression of the Kriging model is shown in Fig. 15 and the 
error plots of the BDTs and Kriging models are shown in 

c = 0.215)(a) Fair good ( (b) Good (c = 0.189) (c) Bad (c = 0.242)

Fig. 10  Typical examples of good and bad MD results for cold spray (where c means the value of objective function)

Fig. 11  Convergence curve of the objective function in the optimiza-
tion procedure by different methods

Table 2  Optimal solution of the classic optimization methods

Optimization Design variables Objective function

v(Å∕ps) r(Å) �(◦)

EGO 3.95 10.00 9.47 0.1644
PSO 4.15 14.00 18.65 0.1495
DE 4.32 13.35 16.21 0.1529
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Fig. 16. It can be found that the error of both the BDTs and 
Kriging models is under 4% and the BDTs model behaves 
better than the Kriging model by comparing with regres-
sion plots. Therefore, the performance of the BDTs model 
is acceptable in this study.

As for results of BDTs assisted optimizations, the conver-
gence curves of the objective function in the optimization 
procedure is shown in Fig. 17. It can be found that both of 
these methods are available. Moreover, it is obvious that the 
BDTs assisted DE method obtained a better solution than 
other two methods and converged fast. The optimal solution 

(a) EGO (b) PSO (c) DE

Fig. 12  The comparison of the MD simulation results after impact between classic optimizations

ps .5ps(a) 2 (b) 2 (c) 5ps

Fig. 13  The Von Mises stress contour plots for the optimal solution (PSO)

Fig. 14  Regression of the BDTs 
model
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of the above three methods is listed in Table 3, where 
1Å∕ps = 100m∕s . The comparison of the MD simulation 
results after impact between BDTs assisted optimizations 
are shown in Fig. 18, where the contour plot is according 
to the Z-coordinate range from 0Å to 10Å . Moreover, the 
Von Mises stress contour for the optimal solution which 
obtained by BDTs assisted DE method is shown in Fig. 19. 
Compared with the result in Fig. 10, it can be found that 

results of BDTs assisted optimizations are between good 
and fair good. Considering the high efficiency of BDTs 
assisted optimization methods, these results could also be 
acceptable for the cold spray process. The detail analysis 
between efficiency and accuracy will be discussed in the 
section “Discussions about classic optimizations and BDTs 
assisted optimizations”.

Discussions about classic optimizations and BDTs 
assisted optimizations

From the above results, it can be found that the performance 
of BDTs assisted optimizations extremely depends on the 
accuracy of the BDTs model, so usually the classic optimi-
zations can obtain a better solution than the BDTs assisted 
optimization methods, but the results of both two kinds of 
optimization methods are available. Moreover, the com-
putational cost of all the optimization methods is listed as 
Table 4, where tp means the computational time for just one 
sample point by MD simulation. Obviously, EGO is the most 
efficient method for this problem, but PSO and DE obtain a 
better solution than EGO. Furthermore, it can be found that 
the BDTs is not suitable for surrogate optimization (EGO) 
while it did reduce the computational cost of heuristic algo-
rithms (PSO, DE). Besides, another superiority of the BDTs 
assisted optimization is the portability, it means once the 
BDTs model has been constructed it can be easily applied 
to any kind of optimization methods. Therefore, which kind 
of optimization methods should be utilized is determined by 
the trade-off between efficiency and accuracy.

Fig. 15  Regression of the Kriging model

(a) BDTs model (b) Kriging model

Fig. 16  Error plots of the BDTs and Kriging models
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Conclusion

In this study, a deep convolutional neural network aided 
optimization (DCNNAO) method is proposed to improve 
the quality of deposition during the cold spray process. 
The main idea of DCNNAO method is to construct a close 
loop image optimization which can obtain the value of 
objective function from the MD contours directly. For cold 
spray process, a specific objective function is constructed 
to optimize the quality of the deposition which combined 
with the flattening ratio and the height of deposition. In 
order to obtain the flattening ratio from the snapshots 
directly, the DCNN based image processing technique is 
used to generate the required images automatically and 
calculate the flattening ratio. Moreover, several optimi-
zation methods including surrogate optimization (EGO) 
and heuristic algorithms (PSO, DE) are used to find the 
optimal solution and the results demonstrated that the PSO 
method got the best solution while the EGO is the most 
efficient method. Furthermore, the BDTs is used to accel-
erate the process of optimization by building a meta-model 
for objective function and the results shows that the BDTs 
did improve the efficiency of PSO and DE but it seems not 
suitable for EGO. In a word, every method has different 
superiority in efficiency or accuracy, the selection of them 
should be determined by the trade-off between efficiency 
and accuracy.

Fig. 17  Convergence curve of the objective function in the BDTs 
assisted optimization procedures

Table 3  Optimal solution of BDTs assisted optimization methods

Optimization Design variables Objective function

v(Å∕ps) r(Å) �(◦)

BDTs-EGO 3.00 19.05 14.22 0.1993
BDTs-PSO 3.10 19.89 4.35 0.1959
BDTs-DE 3.10 19.08 3.97 0.1953

(a) BDTs-EGO (b) BDTs-PSO (c) BDTs-DE

Fig. 18  The comparison of MD simulation results after impact between BDTs assisted optimizations
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