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Abstract
In recent years, the growing popularity of artificial neural networks has urged more and more researchers to try introduce 
these methods to the machining field, with some of them actually producing good results. The acquisition of cutting data 
often means higher cost and time, limiting the application of neural network in the machining sector, to a certain extent. In 
this paper, for the task of cutting force prediction, a “transfer network” was established, based on data obtained by simulation, 
combined with the theory and method in the field of transfer learning. Compared to “ordinary network”, that is, traditional 
back-propagation neural network based on experimental samples alone, transfer network exhibits obvious performance 
advantages. On one hand, this means that, using the same experimental samples, the prediction error of transfer network 
will be controlled; while on the other hand, when the same prediction error is achieved, the number of experimental samples 
required by the transfer network will be less.
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Introduction

Since the cutting force in the metal cutting process has many 
influencing factors, it is difficult to establish a perfect cut-
ting force prediction model including all of these factors. 
Fortunately, the development of neural network technology 
provides a good solution to this problem. Neural network 
model can easily determine the implicit relationship between 
a set of input and output parameters, based on the data set, 
while effectively capturing the non-linearity between them, 

which is very important to the good cutting force prediction 
in the machining process. In the case of sufficient cutting 
data, the neural network can be used to predict the cutting 
force, without considering the influence of various factors, 
making this an ideal approach.

The most widely used method of neural network is to 
evolve a comprehensive prediction model between process-
ing information (such as cutting parameters, tool geometry 
etc.) and processing results (such as cutting force, surface 
roughness, etc.) (Sharma et al. 2008; Tandon and El-Mou-
nayri 2001). Radhakrishnan and Nandan (2005) developed 
a regression model to filter out the abnormal samples in 
the experimental data set. The research shows that using 
the filtered samples can significantly improve the predic-
tion accuracy of the neural network model. Jurkovic et al. 
(2018) compared the performance of three machine learning 
methods: neural network, support vector machine and poly-
nomial regression, using the parameters of surface rough-
ness, cutting force and tool life time in high-speed turning. 
The research shows that the three methods have advantages 
and disadvantages, depending on different parameters and 
ranges. Vaishnav et al. (2019) used the data set, generated 
by the mechanistic force model, to train the neural network 
model to predict the instantaneous cutting force in mill-
ing, verifying the effectiveness of the method. In addition, 
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the research on neural network in machining field has led 
to many achievements (Özel and Nadgir 2002; Rao et al. 
2014; Asiltürk and Çunkaş 2011). Yeganefar et al. (2019) 
compared the performance of four methods, in the task of 
prediction and optimization of cutting force and surface 
roughness on aluminum alloy: regression analysis, support 
vector regression, artificial neural network and multi-objec-
tive genetic algorithm. The results show that, in the case of 
sufficient samples, the neural network model will perform 
better than other methods. The above review shows that, 
the application of neural network becomes wider and the 
usage mode more diverse. However, it is worth noting that 
neural networks are not always advantageous. The accu-
racy of the neural network model is mainly dependent on 
the quantity and quality of the training data set, which is 
an important disadvantage of this approach. Salimiasl and 
Özdemir (2016) described the comparative analysis of differ-
ent methods of tool wear online monitoring, during turning 
of SAE4140 steel, which included artificial neural network, 
fuzzy logic and least squares method. According to the 
results, neural network predicted tool wear more precisely, 
excluding the case of limited amount of experimental data, 
where fuzzy logic was more precise. In previous research 
work, training datasets are mostly generated by conduct-
ing machining experiments within the entire range of input 
parameters. Due to the long processing cycle, high material 
cost and expensive machine tool maintenance, involved in 
the actual process, obtaining a large number of data samples 
often means higher financial and time cost, which limits the 
popularity of neural networks in the field of machining.

Transfer learning is a branch of the machine learning 
field. Pan and Yang (2009) proposed the definition of trans-
fer learning as such: given a source domain DS and learning 
task TS, a target domain DT and learning task TT, transfer 
learning aims to help improve the learning of the target pre-
dictive function fT (·) in DT, using the knowledge in DS and 
TS, where DS≠ DT, or TS≠ TT. In real life scenarios, obtaining 
perfect data samples is an expensive and time-consuming 
operation. In machine learning, transfer learning is an impor-
tant tool for solving the basic problem of insufficient training 
data. In many studies of transfer learning, it is often assumed 
that the target dataset is significantly smaller than the source 
domain dataset. As the popularity of deep learning methods 
increases, more and more researchers use deep neural net-
works for transfer learning, while the related research field is 
called deep transfer learning (Tan et al. 2018). Yosinski et al. 
(2014) took the lead in conducting the study of the transi-
tivity of deep neural networks and proposed the fine-tuning 
method of neural networks. Nowadays,fine-tuning is almost 
the most widely used method in the field of neural network 
transfer. According to this approach, first a neural network 
model is trained, using the source domain data set, while 
considering the trained model as the initial value. Next, 

the model is trained according to the target domain data, 
to obtain a model suitable for the target domain. However, 
the fine-tuning method is not suitable for all transfer tasks. 
When the similarity between the source domain and the tar-
get domain is very low, this method is difficult to achieve sat-
isfactory results. Subsequently, many researchers innovated 
the structure and loss function of neural networks, based 
on the work of Yosinski et al. (2014) and maximum mean 
discrepancy (MMD) (Gretton et al. 2012), thus establishing 
a series of new transfer methods, such as the ones described 
in Ghifary et al. (2014), Tzeng et al. (2014) and Long et al. 
(2015). MMD is almost the most frequently used distance 
measurement method in transfer learning. It is a framework 
for analysis and comparison, in order to determine whether 
two samples are from the same distribution. The MMD was 
first proposed for the two-sample test problem, to compare 
the difference between two data distributions (Borgwardt 
et al. 2006).

Transfer learning provides a possible solution to improve 
the performance of neural network, by applying the knowl-
edge and skills (in the form of parameters), acquired dur-
ing the previous tasks with sufficient training data, to the 
new task with a smaller training data set. On one hand, the 
research of Zhang et al. (2017) has shown that transfer learn-
ing is capable of achieving prominent performance, com-
mensurate with large scale CNNs, using only a small set of 
training data. On the other hand,transfer learning becomes 
possible and promising because the layers of the convolu-
tional stages of the convolutional neural network, trained 
on a large dataset, indeed extract general features of inputs, 
while the layers of the fully connected stages provide more 
specific features, as described by Cao et al. (2018). The limi-
tations encountered by the application of neural network, in 
the field of cutting, are very obvious and well known, while 
it is often very difficult to obtain large amounts of cutting 
data in actual machining conditions. In this paper, the cut-
ting force data is used as a research example, in an effort to 
reduce the dependence of neural network on cutting data, by 
using the method of deep transfer learning. According to the 
definition of transfer learning, two cutting force data sets, 
derived from simulation and its corresponding experimental 
data, are given. The simulation data represent the source 
domain, while the experimental data is the target domain. 
Relevant methods and theories, in the field of transfer learn-
ing, combined with different experimental samples, were 
used to train the neural network, applied to the experimental 
samples and compared to the ordinary network using only 
experimental data. The results show that, in most cases, the 
transfer network is better than the ordinary network.
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Experiment and model

According to the transfer learning theory, there is a differ-
ence between the source and the target domain data, but at 
the same time there is a certain correlation. Finite element 
simulation is often regarded as the prediction and verifica-
tion means of experiments. Although there may be some 
deviation between the simulation results and the actual 
results, this does not prevent the simulation results from 
retaining a certain reference and guidance significance. At 
present, as a commonly used research method, the effect of 
finite element simulation has been confirmed in many stud-
ies, such as the research of Zhang et al. (2014) and Wang 
et al. (2018). Therefore, there may be some differences 
between the cutting force numerical value, as obtained by 
simulation and by experiment, under the same machining 
conditions, but there is still a certain correlation between 
them. Under this premise, based on the relevant methods 
and theories of transfer learning, a method for establishing 
a transfer neural network for cutting force data prediction 
is proposed.

Experimental and data processing

The integral carbide end milling cutter with a diameter of 
12 mm is used in both simulation and cutting experiments. 
The material of the workpiece is aluminium alloy 2A14, 
while the processing method is end milling. Aluminum 
alloy material has low processing difficulty, generates less 
heat during cutting and lower tool temperature, limiting tool 
wear. Therefore, cutting parameters can be selected within 
a wide range. The simulation software uses Third Wave 
AdvantEdge. Variable parameters and their varying ranges 
in the experiment are listed in Table 1. The ultimate goal of 
the two groups of experiments is to extract the cutting force 
values of each axis, corresponding to the cutting parameters. 
The simulation experiment includes 467 sets of parameters, 
while the cutting experiment includes 300 sets. The range 
of cutting parameters is shown in Table 1. The experiments 
were performed in a vertical CNC machine centre (DAE-
WOO ACE-V500), while the experimental setup is shown 
in Fig. 1. The signals of milling forces are recorded by a 
dynamometer (Kistler 9257B).

In order to minimize the simulation calculation time, the 
cutting distance of a single group of simulation experiments 

is corresponding to the cutting distance of a tool rotation 
of 100°. The original cutting force data sets, obtained from 
simulation and cutting experiments, are all in the form of 
signals. Prior to developing the neural network model, it 
is necessary to process the original signal and extract the 
cutting force value, according to the unified standard. Fol-
lowing, the X-axis force cutting signal, corresponding to 
the cutting parameters of spindle speed 1500 r/min, feed per 
tool 0.15 mm, radial depth 1.1 mm and axial depth 1.6 mm, 
is considered as an example to describe the flow of data 
processing.

The original cutting force signal, as obtained from 
the cutting experiment, is illustrated in Fig. 1a. First, it 
is necessary to use low-pass filter on the original signal. 
The filter frequency is calculated as: 5 × z × n ÷ 60where 
z represents the number of tool teeth and n represents the 
spindle speed in r/min. The filter frequency, used here, is 
500. As the tool cuts in and out, the cutting force signal 
will fluctuate to a certain extent. Therefore, about one-fifth 
of the total length is cut off from each side of the filtered 
signal, while the remaining part will be segmented, based 
on the time of each tool rotation. The maximum value of 
each numerical point, in each small segment, is consid-
ered, while the average value of all maximum values is 
calculated, which then lead to the cutting force value of the 
X axial force corresponding to the parameter under study.

Figure 2a shows the state at the end of the simulation 
process. The complete simulation process corresponds to 
tool rotation of 100°, with two cutter teeth participating in 
the cutting. The resulting cutting force signal is illustrated 
in Fig. 2b, where one can see that the original force signal 
is very disordered, its value shows great fluctuation with a 
peak value exceeding—500, which is very different from the 
peak value of the cutting force signal, as obtained from the 
experiment. Consequently, the cutting force signal from the 
simulation and the one derived from the experiment cannot 
be processed using the same method. Figure 2c shows the 
filtered cutting force signal with a filtering frequency of 8 * 
n, that is 12,000 as used here. Compared to the original sig-
nal, the filtered signal has greatly improved, while there are 
still large numerical fluctuations. As shown in Fig. 2c, the 
peak value of the trough in the circled area exceeds—100, 
while the average value of the peak section is estimated to 
be about—85. If the peak value is selected directly, the regu-
larity of the extracted cutting force value will be seriously 
weakened. Therefore, the tenth degree polynomial is used 
to fit the filtered signal and the resulting curve is shown in 
Fig. 2d. The extremum of the two troughs is taken from the 
fitted curve, while the average value is taken as the value 
of the X axial force, corresponding to a group of cutting 
parameters. The cutting force values extracted according to 
the above process are listed in Table 2.

Table 1   Cutting parameter range

Name of parameter Range of values

Spindle speed (r/min) 1500–3500
Feed per tooth (mm/r) 0.05–0.25
Radial depth (mm) 0.5–1.7
Axial depth (mm) 0.8–2.4
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The data processing flow and the results of simulation and 
experiment show that there are some differences between 
the cutting force values obtained by simulation and those 
derived by experiment. This deviation is mainly due to the 

difference between the original simulation signal and the 
different data processing methods. The experimental sig-
nal comes from the data measured by the force measuring 
instrument, while the simulation signal is the calculation 

Fig. 1   Signal processing flow of 
experimental cutting force

Each turn time

Select the maximum value 
within the time interval

(a)Original cutting force signal

Divide the whole signal 
according to the same 

time interval

(b) Processed cutting force signal

Filtering

Cut off about 1 / 5 of the 
length on both sides

(c) Signal after local amplification
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result of the simulation software. The original signal curve, 
as illustrated in Figs. 1 and 3, indicates that there are very 
obvious differences between them in the amplitude and 
change rule of the signal. The difference of the original 

signal leads to the fact that it is not appropriate to apply the 
same processing method. It is necessary to filter and fit the 
original signal of the simulation, wherein, to a certain extent, 

(b) Original cutting force signal

(d) Curve obtained by fitting cutting force signal

Take extreme value 
and average value at 

two wave valleys

First tooth

(a) Cutting process of simulation

Second tooth

(c) Processed cutting force signal

Filtering

Numerical fluctuations

Fig. 2   Signal processing flow of simulation cutting force

Table 2   Some examples of data samples

Bold values indicate the cutting force value of the sample used in data processing
The total number of simulation data is 467, while the total number of experimental data is 300

Spindle 
speed (r/
min)

Feed per 
tooth 
(mm)

Radial 
depth 
(mm)

Axial 
depth 
(mm)

Simulation Experiment

X-axis force 
(N)

Y-axis force 
(N)

Z-axis force 
(N)

X-axis force 
(N)

Y-axis force 
(N)

Z-axis force (N)

1500 0.15 1.1 1.6 81.72 92.43 23.80 173.92 191.96 19.998
1500 0.25 1.4 0.8 67.50 60.01 17.24 192.51 190.50 11.53
2000 0.15 1.1 1.2 68.88 72.07 8.08 244.98 172.53 13.46
2000 0.25 1.7 1.2 92.24 94.42 37.39 235.26 225.22 20.46
2500 0.15 0.8 0.8 43.58 43.45 7.29 205.75 125.92 12.198
2500 0.25 0.8 1.2 86.89 72.09 19.88 244.06 176.54 20.26
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the extracted simulation cutting force value is significantly 
lower than the experimental cutting force value.

In this study, the processing method of the simulation 
signal aims to ensure that the extracted value has as strong 
regularity as possible, rather than enhancing the consistency 
between the simulation and experimental cutting force val-
ues. In the related research of transfer learning (Pan and 
Yang 2009; Yosinski et al. 2014; Long et al. 2015), the pro-
cess of transfer is to use the knowledge in the source domain 
to improve the performance of the prediction function in 
the target domain. The laws contained in the data are often 
important representatives of “knowledge”. Therefore, dur-
ing data processing, more attention should be paid to the 
extracted simulation cutting force value, which has more 
robust regularity.

Modeling

Related work

The statistical test method based on MMD refers to the 
following sequence of steps: Based on the two distributed 
samples, by looking for the continuous function f in the 
sample space, the mean value of the function values of the 
samples, from different distributions on f, is obtained. The 
difference between the two values is the mean discrepancy 
of the two distributions, corresponding to f. Looking for an 
f makes this mean discrepancy have a maximum, the MMD. 
Finally, MMD is taken as the test statistic to determine 
whether the two distributions coincide. If the value is low 
enough, the two distributions are considered to be the same, 
otherwise they are considered different. At the same time, 
this value is also used to determine the degree of similar-
ity between the two distributions. Let {X(i)

s
}i = 1,… , ns and 

{X
(j)
t }i = 1,… , nt be data vectors drawn from distributions 

Ds and Dt in the data space χ, where the empirical estimate 
of MMD is:

where �(⋅) : X → H is referred to as the feature space map, 
H represents Reproducing Kernel Hilbert Space (RKHS). 
The most important property is that p is equal to q, when 
MMD = 0 (Salimiasl and Özdemir 2016). By casting Eq. (1) 
into a vector–matrix multiplication form, the kernelized 
equation form of Eq. (1) is as follows:

where 
[
Kx∙∙

]
ij
= �

(
X

(i)
∙
, X

(j)
∙

)
 is the gram-matrix of all pos-

sible kernels in the data space.
The work of Long et al. (2015) adds MMD distance to 

the 7th layer of AlexNet network, to reduce the difference 
between source and target domain. This method is called 
DDC for short and the idea is to add an adaptation layer to the 
7th layer of the network, based on the original AlexNet net-
work. The function of the adaptation layer is to examine the 
network’s ability to distinguish the source domain from the 
target domain separately. If this discrimination ability is very 
poor, it shows that the features learned by the network are not 
enough to distinguish the two areas of data, so it is helpful to 
establish the domain-insensitive feature representation.

Based on DDC, the new Deep Adaptation Network 
(DAN) architecture (Tzeng et  al. 2014) was proposed, 
which offered a good solution to two problems of DDC. 
First, DDC is a single kernel MMD, while a single fixed 
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Fig. 3   Set-up and measurements 
for milling experiments
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kernel may not be optimal. The DAN method replaces 
the single-kernel MMD with a multi-kernel MMD (MK-
MMD), when calculating the distance between the source 
and target domain. The MK-MMD method, proposed in 
Gretton et al. (2012), that is, to construct the total kernel 
with multiple kernels, provides a better effect than the sin-
gle-kernel MMD. Furthermore, DDC only adapts to a layer 
of network, while DAN adapts to the last three layers of the 
network and adds the calculated distribution distance to the 
loss function of the neural network, which can be written as:

where λ is a penalty parameter greater than zero, while the 
specification between the l1 and l2 layer indices is valid. 
Where, l1 and l2 are 6 and 8, respectively, indicating that the 
network adaptation is from layer 6 to layer 8. J(⋅) defines a 
loss function and cross-entropy function is used in DAN. 
Dl

∗
 is the ℓth layer hidden representation for the source and 

target examples, while d2
k

(
Dl

s
,Dl

t

)
 is the MK-MMD between 

the source and target domain, evaluated on the ℓth layer 
representation.
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Cutting force prediction model

In this section, the process of establishing neural network 
for cutting force data prediction is described, according to 
the aforementioned related methods and theories of transfer 
learning. In the established cutting force data set, each sam-
ple contains seven dimensions, including rotational speed, 
feed per tooth, axial depth of cut, radial depth of cut, as 
inputs; x-axis force, y-axis force and z-axis force, as out-
puts. The process of building the neural network is shown 
in Fig. 4.

Since there are not many input and output units in the 
network, a four-layer hidden layer neural network structure 
is adapted. First, a neural network is pre-trained based on 
simulation data, which is used to predict data in simulation 
mode. Subsequently, the hidden layer of the training network 
is used as the initial value of the target domain network, 
while the experimental data is used for training. Experiments 
in Yeganefar et al. (2019) have proved that the method of 
transfer arbitrary layers and fine-tuning can achieve better 
results than ordinary neural networks. In this case, the first 
four layers are transferred and fine-tuned. In the loss function 
of the neural network, the MMD distance of the simulation 

input output

input output

Simulation 
data

Train set

Transfer Fine-tuning

Experimental 
data

Validation 
set

Test set

Validat and
choose model

Test and get the 
results

Take n samples

Fig. 4   Transfer network establishment process. The input units of the network include rotational speed, feed/tooth, axial and radial depth of cut, 
while the output units include X, Y and Z axial forces
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and experimental data are additionally considered. The opti-
mization objectives of the whole network include prediction 
errors in experimental data and discrimination errors in the 
two domains, which can be expressed as:

Where, ŷi and yi represent the real value and the predicted 
value, respectively, MKMMDe

(
Xs, Xt

)
 represents multi-

kernel MMD computing method between source and target 
domain. In this paper, the neural network model, as trained 
by this method, is called a transfer model. The control group 
of the transfer model is the traditional BP neural network, 
trained only by experimental data, which is here considered 
as the ordinary network, while its optimization objective is:

This experiment establishes prediction models, consid-
ering different sample sizes, to explore the effect of trans-
fer learning methods under these variations. The training 
process of transfer network and ordinary network, with “n” 
experimental samples as training sets, is as follows:

(1)	 Establishing a four hidden layer neural network and 
initializing randomly. Training is achieved by a training 
set, consisting of eighty percent of simulation samples, 
while the performance of the network is tested by the 
remaining simulation samples.

(2)	 Constructing a training set by “n” samples, as extracted 
from the experimental samples.

(3)	 The network, trained by simulation data, is considered 
as the initial value, as the training set is used to train 
the network and save the completed training model.

(4)	 The above steps are repeated, by considering different 
values of “n”.

(5)	 Using the validation set to evaluate all the models, 
corresponding to each “n” value; using the established 
model to evaluate error rate on the test set.

Where n ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 
120, 130, 140, 150, 160, 170, 180, 190, 200}. In the training 
process of transfer network, the extraction of experimental 
samples is not completely random.

In addition to the different optimization objectives, 
there are also differences in the training process, between 
the ordinary network and the transfer network. The train-
ing process of ordinary network is relatively simple, as the 
initial network structure will be trained directly accord-
ing to experimental samples. In the process of training, 
the experimental samples and learning rate, iterations and 

(4)min
Θ
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n

n∑

i=1

(
ŷi − yi

)2
+ 𝜆MKMMDe

(
Xs, Xt

)

(5)min
Θ

1

n

n∑

i=1

(
ŷi − yi

)2

other parameters used by the ordinary network and the 
transfer network are identical.

When using n samples to build training data set, the 
selection of samples should follow certain principles. The 
first two hundred samples of all experimental samples are 
used as training set, while the last two hundred samples 
are divided into verification set and test set. Extracting “n” 
samples means selecting the first n samples of train set, 
while all training samples are used, when n is set to 200. 
In the whole training process, the complete data set will be 
divided randomly five times. The initial value of the net-
work often has some effect on the convergence results of 
the network. In order to eliminate the possible influences 
of the initial value of the network, on the experimental 
results, in this work, the transfer network and the ordinary 
network are randomly initialized ten times. Among them, 
transfer network initialization refers to the initialization 
process of pre-trained network. That is to say, the transfer 
and the ordinary network will train 50 models, for each n 
value. Then, the corresponding test set is used to evaluate 
the prediction accuracy of the trained model.

Results and discussion

According to the training process, as described in the pre-
vious section, the performance of the ordinary network 
and the transfer network model is evaluated by a test set. 
According to the number of experimental samples used in 
training, the two models of each group are evaluated on 
the test set and the prediction error is averaged. The influ-
ence of transfer learning method on the prediction accu-
racy of neural network model is tested, according to the 
experimental results. The comparison of the two models 
is illustrated in Figs. 4 and 5.

Fig. 5   X-axis force error. The chart is divided into three stages, 
according to the number of samples, where the numerical value cor-
responds to the average error of the model in the corresponding stage
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Table 3 includes comparative results regarding the pre-
diction accuracy of the transfer network and the ordinary 
network, in the range of different sample numbers.

The experimental results illustrated in Figs. 5 and 6, show 
that the transfer network has different effects in different 
sample stages. When the number of training samples is less 
than or equal to 90, the performance of the transfer network 
exhibits obvious performance advantages, while its average 
error rate is 11.15% lower than that of the ordinary network; 
when the number of training samples is higher than 100, 
there is no significant difference between the performance 
of the transfer network and the ordinary network.

In the range of 5–90, the average prediction error of trans-
fer network is lower than that of ordinary network, as well 
as its performance is obviously improved. However, in the 
sample range of 5–20, the error rate of the transfer network 
is still high, which may be unacceptable in actual applica-
tion. Although in this range, the performance improvement 
effect of the transfer network is the most obvious, its aver-
age error is 15.53% lower than that of the ordinary network. 
Therefore, in the range of 5–20, both transfer network and 
ordinary network are difficult to meet the actual use require-
ments. In the range of 30–90 samples, the average error of 
transfer network is 7.38%, while the average error is 24.76% 
and 20.73%, respectively, which is a suitable range for trans-
fer networks.

In the range of 100–200 samples, the difference between 
the prediction error of the transfer network and the ordinary 
network is less than 1%. This shows that, in this range, the 
transfer learning method has no effect on the performance 
of neural network.

In the whole range of samples, the prediction error of 
the transfer network is, in most cases, lower than that of 
the ordinary network, while its performance advantage basi-
cally decreases gradually and finally disappears. This shows 
that, in this experiment, the influence of transfer learning 
method on the performance of neural network will gradu-
ally decrease, as the number of samples increases. When the 
number of samples is higher than 100, the effect of transfer 
learning becomes very weak, while at a number of samples 
higher than 140, the method of transfer learning has no effect 
at all.

Based on the experimental data, in the range of 0–20, the 
prediction errors of transfer network and ordinary network 
are relatively high, while the prediction models, established 
in this range, are not suitable for actual application. In the 
range of 0–90, the performance of the transfer network has 
significantly improved, while its performance has improved 
to a certain extent, compared to the ordinary network. In 
this range, the transfer learning method is generally the most 
suitable. In the range of 100–200, the achievable predic-
tion error of the model has basically reached its limit. Even 
if the training samples continue to increase, it is difficult 
to improve the performance of the model significantly. In 
addition, it is still worth noting that, in different sample 
stages, the transfer network exhibits different performance 
advantages; but in any sample range, the transfer learning 
method will not have a negative impact on the performance 
of the model. In case of uncertainty whether the number of 
samples can improve the performance of neural network, 
before building the model, the transfer learning method is 
a better choice.

Conclusion

In this paper, the transfer network is established by using 
simulation data as the source domain and experiment data 
as the target domain, combined with the related methods 
and theories of transfer learning. Based on the experimen-
tal results, the transfer network shows obvious advantages 
in performance, compared to the ordinary network, which 
proves that the idea and method of transfer learning can be 
applied to the field of cutting process, to solve some practical 
problems, such as the prediction of cutting force. This work 
mainly includes the following two contributions:

Considering the same number of training samples, the 
performance of the transfer network exceeds that of the 
ordinary network. It can also be noted that, the proposed 

Table 3   Performance advantages of transfer network in each stage

Each value in the table represents the error rate of the ordinary net-
work minus the error rate of the transfer network, in the correspond-
ing cutting force and sample number area

Force\sample 
number

5–20 30–90 5–90 100–200

X 16.57 8.84 11.15 0.83
Y 14.49 5.91 8.49 0.60
Mean 15.53 7.38 9.82 0.72

Fig. 6   Y-axis force error. The chart is divided into three stages, 
according to the number of samples, where the numerical value cor-
responds to the average error of the model in the corresponding stage
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established method of transfer network requires the lower 
number of samples in order to provide decent results. To 
some extent, this can relieve the amount of experimental 
data needed to predict cutting force, by using neural net-
work. At the same time, this is also in line with one of 
the problems that transfer learning seeks to solve: the gap 
between data demand and data volume.

The effect of the transfer learning method will gradually 
weaken, as the number of samples increases. When the num-
ber of samples is sufficient, the performance of the transfer 
network is basically consistent with that of the ordinary net-
work. Considering any sample number, the transfer learning 
method will not have a negative impact on the performance 
of the network. However, when it is uncertain whether the 
number of samples is enough to train a neural network model 
of excellent performance, the method of transfer learning is 
a valid option.
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