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Abstract
The amount of electronic waste generated in the world is impressive. The USA alone yearly throw away 9.4 million tons of 
electronic devices: only 12.5% is recycled. One way to reduce this massive impact on the environment is to disassemble these 
devices with the aim of reusing and recycling as many parts as possible. Disassembling end-of-life products is a complex 
industrial process that may pose workers at risk because some parts of the product may contain dangerous materials. It is 
thus crucial to design efficient, sustainable and secure disassembly lines. This paper presents a multi-objective formulation 
of the Disassembly Line Balancing Problem (DLBP) which promotes efficiency and includes a new objective that increases 
the level of safety. The efficiency is guaranteed by balancing the idle times of the workstations, and by maximizing the 
profit and the level of feasibility of a disassembly sequence, which means disassembling the product as much as possible. 
Safety is maximized by extracting each dangerous part with a priority that is higher the more dangerous the part is. The most 
dangerous parts can thus be quickly removed from the product, thereby eliminating the exposure to the greatest risks. The 
disassembly continues with the execution of the tasks that remove the parts that are gradually less dangerous. Along with 
the DLBP formulation, this paper presents a genetic algorithm purposely designed to solve the problem. Two real-world 
case studies are discussed which entail the disassembly of a TV monitor and an air conditioner.

Keywords  Combinatorial optimization · Disassembly line balancing · Electronic waste · Evolutionary computation · 
Genetic algorithm · Metaheuristic · Multi-objective optimization · Product reuse and recycling · Risk · Safety · Selective 
disassembly · Sustainability

Introduction

Technology has made great strides in recent years. This 
has generated an outstanding increase in sales of consumer 
goods which has progressively led to products that quickly 
become obsolescent (Habibi et al. 2014; Riggs et al. 2015; 
Özceylan et al. 2018). It is estimated that the volume of 
waste due to end-of-life (EOL) products will have achieved 
54 million tonnes by 2025: recovering EOL products is thus 
crucial (Huang et al. 2015).

De-manufacturing is the first step to recover EOL prod-
ucts (Colledani et al. 2014) by means of disassembly and 

shredding processes (Colledani and Tolio 2013). Disassem-
bly performs a series of tasks that remove from the product 
the parts that contain materials to reuse and components to 
resell as spare parts. On the other hand, shredding processes 
separate the valuable materials from each other, for reuse 
and recycling (Chern et al. 2015). The choice between dis-
assembly and shredding is generally made on the basis of 
cost–benefit analyses. For example, when products do not 
contain any component to use as a spare part, they typically 
undergo shredding. Instead, an EOL product that contains 
hazardous materials must be disassembled to remove the 
dangerous parts from it: These parts are then properly dis-
posed (McGovern and Gupta 2006a, b).

Hybrid options exist that combine disassembly and shred-
ding. For example, EOL products may be disassembled to 
extract the dangerous parts and the components to resell as 
spare parts; the other components may then be shredded.

When disassembling products, it is possible to carry out 
this process incompletely, and stop it as soon as it achieves 
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the maximum profit (partial disassembly), or when specific 
parts have been removed from the product (selective disas-
sembly). Disassembly processes are generally performed by 
manual and labour-intensive systems equipped with specific 
tools (McGovern and Gupta 2006a, b) that may be assisted 
by smart robots and sensors (Vongbunyong et al. 2013). 
The disassembly line is the best way to organize these sys-
tems when disassembling large volumes of products that 
come from waste collection facilities (McGovern and Gupta 
2006a, b). In order to design efficient lines, there is the need 
to decide the number of workstations to set up, which tasks 
must be performed at each workstation, and in what order, 
so as to satisfy the precedence relationships among the tasks. 
This is the Disassembly Line Balancing Problem (DLBP), an 
NP-hard combinatorial optimization problem, with multiple 
objectives (McGovern and Gupta 2006a, b).

Many recent works that deal with the DLBP in the lit-
erature prove an increasing interest in looking for efficient 
algorithms for EOL disassembly (Kalayci et al. 2016; Mete 
et al. 2016; Liu et al. 2018; Zhang et al. 2017; Özceylan et al. 
2018). The existing works split into single-objective (SO) 
and multi-objective (MO) approaches. The main purpose 
of several SO techniques is profit maximization. For exam-
ple, Bentaha et al. (2014) proposed an exact method based 
on integer programming and Monte Carlo sampling, with 
a factor of uncertainty that affects the quality level of the 
returned parts. Among the SO contributions, the minimiza-
tion of the number of workstations was considered by Mete 
et al. (2016), who used a beam search-based approach. In 
Riggs et al. (2015), the DLBP is instead solved by minimiz-
ing the difference in execution time at the various worksta-
tions, considering EOL products in various wear conditions.

Regarding the MO approaches, the methods that make 
the scalarization of the objectives are popular in the lit-
erature. For example, Tuncel et al. (2014) minimized the 
number of workstations of the disassembly line, while try-
ing to anticipate as much as possible the extraction of the 
hazardous and high-demand components. Among the bio-
inspired techniques, genetic algorithms (GAs) and hybrid 
methods based on GAs have been shown to achieve better 
results compared to other evolutionary counterparts (Pis-
tolesi et al. 2018). Kalayci et al. (2016) proposed a hybrid 
method that combines a variable neighborhood search with 
a GA, in order to minimize the number of workstations, 
balance the disassembly line, and quickly remove from 
the product the hazardous parts and those that are in high 
demand. These objectives had already been considered by 
McGovern and Gupta (2006a, b), along with the minimiza-
tion of the number of changes of direction of the product. 
Ding et al. (2010) developed an ant colony algorithm that 
minimizes three objectives: the number of workstations, a 
measure of balance, and the demand rate. Kalayci and Gupta 
(2013) proposed a particle swarm algorithm that balances 

the disassembly line, while removing from the product the 
hazardous and high-demand components, as soon as possi-
ble. Finally, Pistolesi and Lazzerini (2019) proposed a tenso-
rial memetic algorithm for many-objective disassembly in 
product refurbishment, aimed at maximizing the degree of 
parallelism of the tasks, the level of ergonomics, and how 
the workers’ workload is balanced, while minimizing the 
disassembly time and the number of times the product has 
to be rotated.

To the best of the authors’ knowledge, most of the contri-
butions model the precedence relationships among the dis-
assembly tasks (sequence feasibility) as a constraint. A few 
works—e.g., those concerning disassembly sequence plan-
ning (DSP) (Zhang et al. 2014)—proposed the maximiza-
tion of the number of precedence relationships as an objec-
tive. Most of these contributions use scalarized approaches. 
For example, Rickli and Camelio (2013) described a GA 
that maximizes the profit and feasibility, while minimizing 
the environmental impact. The feasibility of a disassembly 
sequence is guaranteed by a penalty value in the fitness func-
tion. However, the use of penalty techniques may result in 
the reduction of the decision space, thereby leading to sub-
optimal solutions (Marler and Arora 2004).

The minimization of the risk to which workers are 
exposed in industrial scenarios is another objective to take 
into account. This risk can be minimized by exploiting the 
workers’ sensitivity to risk (Lazzerini and Pistolesi 2014, 
2018a, b), or by increasing the level of safety of the process. 
When disassembling dangerous products, the hazardous 
parts must be removed as soon as possible. This reduces the 
hazards (i.e., the potential sources of harm to workers), the 
exposure to hazardous agents and conditions, and then the 
risks associated with those hazards. This objective was con-
sidered by many researchers (McGovern and Gupta 2006a, 
b; Kalayci and Gupta 2013; Tuncel et al. 2014; Kalayci et al. 
2016). All these contributions use formulations derived from 
that proposed by McGovern and Gupta (2006a, b), and con-
sider the dangerous parts without any distinction. However, 
some parts may be far away more dangerous than others, and 
should thus be given the highest extraction priority. Remov-
ing first these highly dangerous parts from the product, then 
continuing with those that are gradually less dangerous, can 
lead to better safety conditions compared to trying to extract 
all the dangerous parts with the same priority. By using dif-
ferent priorities, the most dangerous parts remain inside 
the product for the shortest possible time, and the workers’ 
safety is considerably increased because the most significant 
components of the global hazard are eliminated as first. The 
risk that remains has an increasingly lower potential to cause 
serious effects.

This paper proposes a new formulation of partial DLBP 
that maximizes four objectives: (1) the level of balancing of 
the idle times; (2) the profit; (3) the level of feasibility; (4) the 
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level of safety. The level of safety of a disassembly sequence 
is a novel objective. It is calculated by assigning each task 
that removes a dangerous part from the product a level of 
danger that depends on the hazardous material that the part 
contains, or is made of. The level of danger is obtained by 
using the UN Recommendations on the transport of danger-
ous goods (United Nations 2009). The second contribution 
is a GA with genetic operators that were designed to increase 
the level of feasibility of the disassembly sequences, thereby 
giving the algorithm the ability to explore a wider region 
of the decision space. Table 1 summarizes the contribu-
tions and differences of this work against the cited refer-
ences. For each reference (row), the table shows the type 
of approach (SO or MO), the objectives, and the resolution 
method in the second, third and fourth columns, respectively. 
The remaining two columns contain the type of approach of 
the proposed work (MO) and the difference w.r.t. the objec-
tives taken into account, where ‘+’ (‘–’) indicates that the 
proposed algorithm considers (neglects) an objective that is 
neglected (considered) in the referenced work.

The paper is organized as follows. Section “Multi-objec-
tive optimization” gives the mathematical background. 
Section “Genetic algorithms” introduces the basic concepts 
of these algorithms. Section “Problem” outlines the formu-
lation of the problem. Section “Algorithm” describes the 
algorithm. Section “Case studies” discusses the experiments. 
Section “Performance evaluation and comparisons” com-
pares the results to those obtained by other algorithms. The 
conclusions are in section “Conclusions”.

Background

Multi‑objective optimization

A multi-objective optimization (MOO) problem entails min-
imizing/maximizing multiple objectives, also satisfying a set 
of constraints (Al_Janabi et al. 2019; Alkaim and Al_Janabi 
2019; Deb 2014; Marler and Arora 2004).

An MOO problem can be formulated as minx∈X � (�) , 
where X =

{

x ∈ ℝ
n ∶ gi(�) ≤ 0, hj(�) = 0,∀i = 1,… ,G,∀j = 1,… ,H

}  is 
the feasible region, and G and H are the number of inequal-
ity and equality constraints that define the feasible region, 
respectively. Vector function �(�) =

(

�1(�),… , �k(�)
)

 con-
tains k objective functions to minimize, where � ∈ X  is a 
feasible solution. For maximization problems, it holds that 
maxx∈X � (�) = minx∈X −� (�).

In general, in MOO problems no solution exists that mini-
mizes all objectives. The concept of Pareto optimality is thus 
introduced. Given two feasible solutions �1, �2 ∈ X  , solu-
tion �1  (Pareto-)dominates solution �2 if �1 is better than �2 
with respect to at least one objective, without being worse 
than �2 with respect to the remaining objectives. A solution 

is Pareto-optimal if there is no solution that dominates it. 
The set of all Pareto optimal solutions forms the so-called 
Pareto set. The image of this set in the objective space is 
called Pareto front.

Genetic algorithms

Genetic algorithms (GAs) are based on biological evolu-
tion (Holland 1975). GAs can solve optimization problems 
where analytic methods fail, due to the high complexity. 
GAs encode solutions as chromosomes (also individuals), 
which contain genes that take real numbers, integers or bits 
as values.

GAs start generating a population of individuals (candi-
date solutions), and a fitness function measures their good-
ness. In maximization problems, the higher the fitness of 
an individual, the better the solution the individual repre-
sents. The individuals with high fitness are more likely to be 
selected for reproduction. Those selected form the mating 
pool and are then chosen (typically in pairs) to be recom-
bined by using a crossover operator. Recombination gener-
ates new individuals that may undergo mutation. A part or 
all of the individuals of the population are replaced with the 
new individuals (offspring). The process iterates until a stop 
condition is satisfied (BoussaïD et al. 2013; Dalle Mura and 
Dini 2017; Dokeroglu et al. 2019).

Problem

Hypotheses

The assumptions considered in this work are as follows:

•	 paced disassembly lines with fixed cycle time;
•	 deterministic execution time of the tasks;
•	 serial line layout, one-sided stations;
•	 workstations with similar equipment;
•	 resell all recovered parts and recyclable materials.

Problem formulation

Consider a product made up of M parts, and consider N dis-
assembly tasks. Each task removes one or more parts from 
the product, or splits the product into subassemblies. Each 
task can only be performed if certain tasks have already been 
performed. These tasks form a set of precedence constraints. 
A series of tasks that satisfies the precedence constraints is 
a disassembly sequence. A sequence performs a complete 
(partial) disassembly of the product if it executes all (part 
of) the tasks.

The DLBP assumes that the disassembly process is per-
formed in a disassembly line with W workstations. Let ti 
be the time a worker takes to perform task i, called task 
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Table 1   Comparison of the proposed work to the cited works of the literature

Reference SO/MO Objectives Method Proposed work

SO/MO Objectives (‘+’ means 
added; ‘–’ means neglected)

Bentaha et al. (2014) SO Max (Profit) Integer programming and 
Monte Carlo sampling

MO + Max (Smoothness)
+ Max (Safety)
+ Max (Feasibility)

Mete et al. (2016) SO Min (number of worksta-
tions)

Beam search MO + Max (Profit)
+ Max (Smoothness)
+ Max (Safety)
+ Max (Feasibility)

Riggs et al. (2015) SO Min (difference in execu-
tion time at the various 
workstations)

Joint precedence graph MO + Max (Profit)
+ Max (Safety)
+ Max (Feasibility)

Tuncel et al. (2014) MO Min (number of worksta-
tions)

Anticipate extraction of 
hazardous components

Anticipate extraction of 
high-demand components

Scalarized Monte-Carlo 
based reinforcement 
learning

MO + Max (Profit)
+ Max (Smoothness)
+ Max (Safety based on level 

of danger of parts)
+ Max (Feasibility)

Kalayci et al. (2016) MO Min (number of worksta-
tions)

Min (difference in execu-
tion time at the various 
workstations)

Anticipate extraction of 
hazardous components

Anticipate extraction of 
high-demand components

GA with variable neighbor-
hood search

MO + Max (Profit)
+ Max (Safety based on level 

of danger of parts)
+ Max (Feasibility)

McGovern and Gupta 
(2006a, b)

MO Min (number of worksta-
tions)

Min (difference in execu-
tion time at the various 
workstations)

Anticipate extraction of 
hazardous components

Anticipate extraction of 
high-demand components

Min (irection changes 
number)

Ant colony MO + Max (Profit)
+ Max (Safety based on level 

of danger of parts)
+ Max (Feasibility)
– Min (no. of direction 

changes)

Ding et al. (2010) MO Min (number of worksta-
tions)

Min (measure of balance)
Min (demand rate)

Ant colony MO + Max (Profit which includes 
Min (demand rate))

+ Max (Safety)
+ Max (Feasibility)

Kalayci and Gupta (2013) MO Min (difference in execu-
tion time at the various 
workstations)

Anticipate extraction of 
hazardous components

Anticipate extraction of 
high-demand components

Particle swarm MO + Max (Profit)
+ Max (Safety based on level 

of danger of parts)
+ Max (Feasibility)

Rickli and Camelio (2013) MO Max (Profit)
Max (Feasibility)
Min (environmental 

impact)

Scalarized GA MO + Max (Smoothness)
+ Max (Safety)
– Min (Environ. impact)

Pistolesi et al. (2018) MO Max (Profit)
Min (no. of workstations)
Max (disassembly depth)

GA + Extremal Optimiza-
tion

MO + Max (Smoothness)
+ Max (Feasibility)
+ Max (Safety)



841Journal of Intelligent Manufacturing (2021) 32:837–854	

1 3

duration. The tasks of a disassembly sequence are assigned 
to the workstations so that the total duration of the tasks at 
each workstation does not exceed a maximum time T, called 
cycle time, which is the same for all workstations.

Let vector � ∈ {0, 1}N×W×N , where i, k ∈ {1,… ,N} and 
j ∈ {1,… ,W} , be a disassembly sequence whose elements 
xijk , in lexicographic order, are such that

Let � =
[

yhi
]

 be an N × N matrix where

The optimization problem can be formulated as follows:

subject to

(1)xijk =

⎧

⎪

⎨

⎪

⎩

1
if task i is the k-th in the sequence

and is assigned to station j

0 otherwise.

(2)yhi =

{

1 if task h must precede task i

0 otherwise.

(3a)Maximize
�

� (�) = [f1(�), f2(�),−f3(�), f4(�)]

(3b)
N
∑

i=1

N
∑

k=1

xijkti ≤ T ∀j = 1,… ,W

(3c)

�

∑N

i=1
ti

T

�

≤ WS ≤ N

(3d)
W
∑

j=1

N
∑

k=1

xijk ≤ 1 ∀i = 1,… ,N

(3e)xijk ≤

j
∑

u=1

N
∑

k=1

xhuk ∀i = {1,… ,N}, ∀h ∶ yhi = 1

Equation (3a) is a vector function, whose elements are 
the level of feasibility f1, the profit f2, the level of balanc-
ing of the idle times of the workstations f3, and the level of 
safety f4.

The level of feasibility is modeled as follows:

i.e., as the ratio of the number of feasible tasks to the total 
number of tasks N.

The profit is obtained as the maximum profit achieved 
after performing the last dangerous task of sequence x, i.e.,

where pi ∈ ℝ is the profit achieved by performing task i, and 
K is the position in the sequence where the last dangerous 
task is performed.

The level of balancing of the idle times (also smoothness) 
of the workstations is calculated as follows:

This objective function also minimizes the number of work-
stations required (McGovern and Gupta 2006a, b). Objective 
function (6) has to be minimized, it is thus inverted in sign 
in (3a).

(3f)
N
∑

i=1

W
∑

j=1

xijk ≤ 1 ∀k = 1,… ,N

(3g)
N
∑

i=1

∑

j�≠j

xij�k = 0 ∀j = 1,… ,W, ∀k = 1,… ,N

(3h)xijk ∈ {0, 1} ∀i, k = 1,… ,N, ∀j = 1,… ,W.

(4)f1(�) =
1

N

N
∑

i=1

W
∑

j=1

N
∑

k=1

xijk

(5)f2(�) =
N

max
k�=K

N
∑

i=1

W
∑

j=1

∑

k≤k�

pixijk

(6)f3(�) =

W
∑

j=1

(T −

N
∑

i=1

N
∑

k=1

ti xijk
)2
.

Table 1   (continued)

Reference SO/MO Objectives Method Proposed work

SO/MO Objectives (‘+’ means 
added; ‘–’ means neglected)

Pistolesi and Lazzerini 
(2019)

MO Max (degree of parallelism)
Max (ergonomics)
Max (workload balancing)
Min (disassembly time)
Min (rotations of the 

product)

Tensorial Memetic Algo-
rithm

MO + Max (Profit)
+ Max (Feasibility)
+ Max (Safety)
– Max (Degree of parallel-

ism)
– Max (Ergonomics)
– Min (rotations of the 

product)
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The last objective is the level of safety of sequence � . In 
the formulation proposed in this paper, the level of safety 
of a disassembly sequence is calculated by first splitting the 
tasks into dangerous and non-dangerous. The dangerous 
tasks are those that remove from the product the parts with 
hazardous materials, i.e., substances, solids, liquids, or gases 
that can harm people, living organisms, or the environment. 
When transported or moved, these materials are a risk to 
health and safety. The UN Recommendations on the Trans-
port of Dangerous Goods (United Nations 2009) classifies 
the hazardous materials into three degrees of danger, i.e.,

•	 Packing Group 1: high danger
•	 Packing Group 2: medium danger
•	 Packing Group 3: low danger

and determines the degree of protective packaging required 
for dangerous goods during transportation.

In fact, a product to disassemble that contains hazardous 
materials is a dangerous good that is continuously moved, 
pushed, pulled and rotated by the workers, as it happens 
in transportation. The concept of packing group is used to 
classify the dangerous tasks based on the risk that stems 
from the exposure to the hazardous materials contained in 
the parts. The dangerous tasks are thus diversified based on 
their level of danger. This novelty can help prioritize the exe-
cution of the most dangerous tasks, thereby increasing the 
safety of the line. The new objective is modeled as follows:

where di ∈ {1, 2, 3, 4} is the level of danger of task i. Each 
dangerous task of x is associated with a level of danger in {1, 
2, 3} that corresponds to the packing group of the material 
of the part that the task removes. Non-dangerous tasks are 
assigned a level of danger of 4. According to (7), a sequence 
� is safer, the sooner (low values of k) the dangerous tasks 
are performed, and the higher the number of dangerous tasks 
that are executed in decreasing order of level of danger.

The constraints are as follows: (3b) prevents the cycle 
time from being exceeded at each workstation; (3c) forces 
the number of workstations (WS) to take a value between the 
lowest number and the maximum number of workstations, 
where the latter coincides with the number of tasks; (3d) 
ensures that each task is assigned to at most one worksta-
tion (in the case of partial disassembly, a task may not be 
assigned to any workstation); (3e) prevents each task i from 
being assigned to station j if all the tasks that must be per-
formed before i (according to the precedence constraints) 
are not assigned to either station j, or to one of the previous 

(7)f4(�) = −
∑

i=1,…,N
di≠4

W
∑

j=1

N
∑

k=1

(

kxijk
)di

stations; (3g) makes each task be performed only once; (3h) 
forces binary decision variables.

Algorithm

This section describes the proposed GA, by giving the details 
of the encoding, fitness evaluation and genetic operators.

Encoding

A disassembly sequence is represented as a chromosome 
� ∈ Sym(N), where Sym(N) denotes the symmetric group of 
degree N, whose elements are all the possible permutations 
of the tasks in {1,… ,N}. Each gene of z is a disassembly 
task, and the length of the chromosome corresponds to the 
total number of tasks N. A gene is feasible if the correspond-
ing task is preceded by all the tasks that must be performed 
before it (according to the precedence constraints), other-
wise the gene is infeasible. Figure 1 shows an example of 
chromosome.

Fitness function

The fitness � ∶ Sym(N) → [0, 1] ×ℝ
3 of a chromosome z is:

where F(z) is the level of feasibility, P(z) is the profit, B(z) is 
the level of balancing of the idle times, and S(z) is the level 
of safety. These four objective functions calculate the same 
values as functions (4)–(7), by using the encoding intro-
duced in the previous section.

The level of feasibility F(z) is expressed by the ratio of 
the number NF of feasible tasks of z to the total number of 
tasks N:

(8)� (�) = [F(�), P(�), −B(�), S(�)],

(9)F(�) =
NF

N
.

632 1 78 7 54 9

2 task identifier
position in 

the sequence feasible task

infeasible task

z

Fig. 1   Chromosome that represents a disassembly sequence for a 
product that requires nine tasks to be entirely disassembled
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The profit P(z) is calculated by reorganizing the genes 
of z so that all the feasible genes then come before those 
infeasible, in the same order as they are in z. Let � ∈ Sym(N) 
be the reorganized chromosome. The profit of each subse-
quence of tasks that includes all the dangerous tasks is first 
calculated, i.e., the profits of subsequences 

⟨

r1,… , rK
⟩

 , 
⟨

r1,… , rK+1
⟩

 , and so on until subsequence 
⟨

r1,… , rNF

⟩

 . 
The highest of these profits determines the position k∗ of 
the last task to perform. Formally, the profit of z is obtained 
as follows

where Pk is the profit of task rk , i.e., the task in position k. 
Figure 2 shows an example of how the profit is calculated.

Consider task rk , from now on referred to as k. The profit 
Pk of task k is defined as:

Term Rk [€] in Eq. (11) is the revenue that comes from 
reselling the recyclable materials, calculated as

where M k contains the recyclable materials that are recov-
ered by task k, whereas ρi and wk,i are the unitary revenue 
[€/kg] and weight [kg] of the i-th material recovered, 
respectively.

Term SPk in Eq. (11) is the value [€] of the recoverable 
components removed from the product by task k that are 
resold as spare parts, and is calculated as

(10)P(�) =
NF

max
h=K

h
∑

k=1

Pk,

(11)Pk = Rk + SPk − DCk − Dk − DREST
k

.

(12)Rk =
∑

i∈Mk

�i wk,i,

(13)SPk =
∑

i∈Sk

vi

where Sk is the set of the spare parts recovered by task k, and 
vi is the market value [€] of spare part i.

Term DCk of Eq. (11) is the disassembly cost [€], i.e.,

where tk is the time, in minutes, an operator takes to perform 
task k, and L is the hourly labor cost [€/h].

Term Dk in Eq. (11) is the disposal cost [€] due to the 
non-recoverable parts that are extracted by task k, i.e.,

where set Zk contains the parts disposed, and ci is the cost 
[€] to dispose part i.

Finally, DREST
k

 [€] in Eq. (11) is the disposal cost for the 
rest of the product (the part that is not disassembled), cal-
culated as

The level of balancing B(z) of the idle times of the work-
stations is calculated by first assigning the feasible tasks of 
z (those in ⟨r1,… , rk∗⟩ ) to the workstations so that the total 
duration of the tasks assigned to each workstation does not 
exceed the cycle time T. The procedure is shown in Fig. 3, 
where the feasible tasks are represented as rectangles whose 
lengths are in proportion to the duration of the tasks. The 
workstations are labeled with roman numerals. From an 
operational point of view, the first task of the sequence (task 
2) is assigned to the first workstation. Then, the second task 
is assigned to the second workstation because the task takes 
more time than the idle time that remains in workstation 1 
after allocating task 2. This procedure continues until each 

(14)DCk =
L

60
tk

(15)Dk =
∑

i∈Zk

ci

(16)DREST
k

=

N
∑

h=k+ 1

Dh.

Fig. 2   Rearrangement (r) of the chromosome (z) of Fig.  1, where 
tasks 2 and 3 are dangerous. The plot above r shows the profit 
achieved by performing each subsequence of adjacent feasible tasks 
(white background) that is made up of the first h tasks of r, e.g., 
subsequence 〈 2 〉 if h = 1, subsequence 〈 2,1 〉 if h = 2, and so on. The 
disassembly stops at h = 4 because the next task would diminish the 
profit

Fig. 3   Assignment of the tasks of a disassembly sequence to the 
workstations of the line
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feasible task is assigned to a workstation. This determines 
the number of workstations required which is equal to 3 in 
this case. Formally, let WS be the number of workstations 
required by z, and let w be the assignment of the feasible 
tasks of z to the workstations, where each element wk of w 
contains, for each feasible task k (where k = 1,…,k*), the 
identifier of the workstation to which task k is assigned. The 
level of balancing is calculated as follows

where the term in brackets is the idle time of workstation j.
Finally, the level of safety S(z) is modeled in accordance 

with (7) as follows:

Feasibility improving crossover

The feasibility improving crossover (FIX) was designed for 
the proposed problem to promote an increase in the level 
of feasibility throughout the evolution. As the problem is 
NP-hard, and is also subject to constraints and extraction 
priorities, FIX was designed to avoid the use of penalty 
functions and further parameters. This helps the algorithm 

(17)B(�) =

WS
∑

j=1

(T −
∑

h ∶w
k
=j

th
)2
,

(18)
S(�) = −

∑

k=1,…,k∗
dk≠4

kdk .

find solutions with diversified levels of feasibility, thereby 
promoting a deep exploration of the decision space to find 
more/better solutions.

Figure 4 considers two parents � and � from the mat-
ing pool (top and bottom of the figure), and shows the 
steps of FIX, by moving to the middle of the figure. 
Let U  be the number of infeasible genes of a, and let 
�

��� ∈ {1,… ,N}U×2 be a matrix with as many rows as 
the infeasible genes of a. In the i-th row ����

�
 of ����, 

element aINF
i,1

 contains the value of the i-th infeasible gene 
of a; element aINF

i,2
 contains the position of that gene in a.

For example, looking at Fig. 4, the first row of ���� is [5 
3] because the value of the first infeasible gene of a corre-
sponds to task 5, and this task is the third in the sequence. 
Starting from parents a and b, FIX generates two offspring 
�
1 and �2 . The left-hand side of Fig. 4 shows how FIX 

generates �1 . First, the feasible genes of a—white back-
ground—are copied to �1 . FIX then considers the position 
in b of the infeasible genes of a. In Fig. 4, genes 5, 6 and 
7 are infeasible in a and come as seventh, sixth and fourth 
in b, respectively. FIX generates the filling sequence, i.e., 
〈7, 6, 5〉, shown in Fig. 4 just under �1 , where gene 7 pre-
cedes gene 6, and gene 6 precedes gene 5. The remaining 
genes of �1 take the values that are in the filling sequence, 
in the order.

Offspring �2 is generated by exchanging the roles of 
parents a and b, as shown on the right-hand side of Fig. 4. 
The pseudocode of FIX to generate �1 is in Algorithm 1.

Fig. 4   Feasibility improving crossover applied to two parents, a (top of the figure) and b (bottom of the figure)
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Mutation

Depending on a mutation probability, the offspring gener-
ated by FIX undergo mutation. The algorithm uses the 
swap mutation, which selects genes in pairs and then 
exchanges them with each other. Swap mutation preserves 
most of the adjacent information, and is widely used in 
combinatorial problems (Sivanandam and Deepa 2007). 
As FIX, swap mutation does not generate duplicates in the 
chromosome, thus meeting constraint (3g).

Pseudocode and flowchart

The pseudocode of the algorithm is summarized in 
Algorithms 2, 3 and 4. In particular, Algorithms 2 and 
3 describe the recombination and the fitness evaluation, 
whereas Algorithm 4 contains the main loop. The flow-
chart of the algorithm is shown in Fig. 5.

Fig. 5   Flowchart of the proposed algorithm
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Case studies

The algorithm was developed in MATLAB® on a virtual 
machine running Linux Debian OS, with 64 GB of RAM 
and four quad-core CPUs at 2.4 GHz.

The algorithm was tested on two case studies that entailed 
the disassembly of a TV monitor and of an air conditioner, 
respectively. These products were chosen as they are in 
high demand in recent years. Also, they contain dangerous 
parts that must be extracted as soon as possible in order to 
limit the exposure to hazardous materials, and then handled 
according to the regulations on hazardous waste disposal.

In both case studies, it was made the assumption of dis-
assembling, in a disassembly line, a large quantity of EOL 
products taken from a collection facility.

Case study 1

This case study considers the disassembly of a TV monitor 
whose exploded view is in Fig. 6.

Dataset and configuration

The TV monitor requires the execution of 25 tasks to be 
entirely disassembled. Table 2 summarizes the information 
about these tasks. Each row i of the table relates to task i, 
whose identifier is in the first column. The second column 
contains the tasks that must be executed before task i. The 
third column contains the time an operator takes to perform 
task i, and the fourth column contains the identifier of the 
part(s) removed by task i. In this column, the parts removed 
all together are within brackets separated by commas. For 
example, task 4 removes a block made up of parts 24 and 25. 

Fig. 6   Exploded view of the TV monitor
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Instead, the parts that a task either removes from the prod-
uct or separates from each other are separated by hyphen. 
For example, task 5 separates parts 24 and 25. The remain-
ing columns contain the profit items DCi, Di, Ri, and SPi 
explained in Sect. “Fitness function”.

The TV monitor has one hazardous part, the LCD panel, 
denoted with 7, in Fig. 4. According to the classification 
based on the packing groups, the level of danger of the LCD 
is low (United Nations 2009). The task that removes the 
LCD panel, i.e., task 18, is thus assigned a level of danger 
equal to 3 (see Sect. “Problem”).

The cycle time of the disassembly line—i.e., the maxi-
mum time that the product spends at each workstation—
is determined on the basis of both the production rate and 
the efficiency of the line when disassembling units with 
similar wear conditions. The production rate was set to 32 
products/h. This value was obtained by considering an exist-
ing industrial context where 64,000 EOL products per year 
are disassembled, in a line that works 50 weeks/year, with 5 
shifts/week and 8 h/shift. An efficiency of 96% was finally 
considered for the disassembly line. The efficiency is the 
ratio of the time during which the line really operates to the 

total time. The total time considers set up times, downtimes 
due to maintenance, faults, and so on. The resulting cycle 
time was thus 1.90 min/product.

Parameters

The best parameter values were determined by using a two-
step approach. A trial-and-error procedure was first carried 
out on the basis of heuristic considerations about the prob-
lem, and the fact that the mutation probability is generally 
set to values that are one/two orders of magnitude lower than 
the crossover probability. This guarantees a good compro-
mise between exploration and exploitation (Holland 1975). 
The values that produced the best performance were:

•	 200, 250 and 300 individuals;
•	 0.6, 0.7 and 0.8 as crossover rates;
•	 0.06, 0.07 and 0.08 as mutation probabilities.

All possible combinations of these values were tested as 
follows. Consider a combination. The algorithm was run 
30 times and then the hypervolumes (Lebesgue measures) 

Table 2   Dataset of case study 1

Task i Precedence constraints Execution time 
ti (min)

Removed parts Safety level of 
removed parts

DCi (€) Di (€) Ri (€) SPi (€)

1 8 0.80 20 4 0.800 0.008 0.000 0.000
2 – 1.60 27 4 1.600 0.000 0.000 7.000
3 2 0.30 26 4 0.300 0.003 0.004 0.000
4 3 0.40 (24,25) 4 0.400 0.100 0.000 0.000
5 4 0.60 24–25 4 0.600 0.100 0.000 0.000
6 8 0.70 (21,22,23) 4 0.700 0.100 0.000 5.000
7 4,6 1.00 21–22–23 4 1.000 0.100 0.000 5.000
8 9,11,12,14 1.20 19 4 1.200 0.000 0.000 15.000
9 13 0.90 (17,18) 4 0.900 0.000 0.000 20.000
10 9 0.50 17–18 4 0.500 0.000 0.000 20.000
11 13 0.80 12 4 0.800 0.050 0.057 0.000
12 13 1.50 14–15–16 4 1.500 0.075 0.000 0.000
13 17 0.30 13 4 0.300 0.075 0.086 0.000
14 15 0.30 11 4 0.300 0.025 0.000 0.000
15 16 0.30 10 4 0.300 0.025 0.000 0.000
16 17 0.40 9 4 0.400 0.335 1.211 0.000
17 18 0.60 8 4 0.600 0.125 0.143 0.000
18 19,20,21 0.50 7 3 0.500 0.000 0.000 20.000
19 25 0.70 6 4 0.700 0.100 0.000 0.000
20 25 0.70 5 4 0.700 0.025 0.000 0.000
21 25 0.40 4 4 0.400 0.025 0.000 0.000
22 25 0.50 1 4 0.500 0.000 0.000 16.000
23 25 0.40 2 4 0.400 0.035 0.025 0.000
24 25 0.50 1 4 0.500 0.000 0.000 16.000
25 – 0.20 3 4 0.200 0.000 0.000 15.000
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of the resulting Pareto fronts were measured. The average 
of these 30 hypervolumes (mean hypervolume) was finally 
calculated.

The mean hypervolume of each combination was com-
pared to those obtained by the other combinations. The 
results were validated by using Student’s t test with 95% 
confidence, assuming that the difference is due to chance, as 
the null hypothesis. The combination of values that obtained 
the highest number of rejections of the null hypothesis was 
chosen.

Results and discussion

A scatter plot of the Pareto front of case study 1 is shown 
in Fig. 7. Level of feasibility, profit, and smoothness are 
reported on Cartesian axes, whereas the fourth objective 
(level of safety) is represented by color: the cooler, the better.

The front in Fig. 7 was obtained by using 250 individu-
als, a crossover rate of 0.8 and a mutation probability of 
0.08. These values were chosen as explained in the previous 
section.

An expert in the field typically chooses the solution to 
implement based on the product to disassemble, the current 
condition of the manufacturing industry, and the situation 
of the market of the recycled materials and spare parts. For 
example, consider a company whose equipment includes 
a disassembly line with 10 workstations, where managers 
look for solutions that maximize the profit, with the highest 
possible level of safety. One solution that may be selected 
is that enclosed in the red square in Fig. 7. The solution is 
an interesting compromise, as it requires 10 workstations 
and achieves the maximum profit (59.16 Euros) among 
the solutions characterized by the highest level of safety—
the cooler the color, the safer the solution. For the sake of 

simplicity, the cost items such as transport, storage, and gen-
eral expenses, were neglected. The high level of safety of 
the solution stems from performing the dangerous task (task 
18) in the initial part of the sequence. This task is the first 
in station III, and is executed in a bit more than 3 min after 
the beginning, thereby making safe more than two-thirds of 
the disassembly process. Note that this dangerous task is 
performed as soon as possible according to the precedence 
constraints, as tasks 19, 20, and 21 require the preliminary 
execution of task 25 (see Table 2).

As explained in Sect. “Fitness function”, the disassembly 
sequence only considers the feasible part of the chromo-
some, up to the task that achieves the maximum profit. Note 
that the level of feasibility of a sequence is generally higher 
than the number of tasks to perform in order to achieve the 
maximum profit. As Fig. 8 shows, the disassembly sequence 
performs 22 tasks out of 25 as the maximum profit—after 
removing the dangerous part (LCD panel)—is achieved at 
this point of the sequence. The optimal solution thus allows 
to quickly remove the dangerous part and to stop the disas-
sembly process after achieving the maximum profit, without 
removing parts 2, 20, 24 and 25 (carried out by tasks 23, 1 
and 5 respectively). These tasks remove buttons or small 
plastic ferrules and brackets, and mainly generate costs for 
disassembly and disposal (see Table 2).

The partial process carried out by the solution is coherent 
with EOL disassembly, where companies are typically not 
interested in removing all the parts from the product—these 
parts may also be deteriorated—but aim to recover as many 
parts as possible to reuse, and valuable materials.

Case study 2

The second case study concerns the disassembly of the air 
conditioner shown in Fig. 9.

Dataset and configuration

The complete disassembly of the air conditioner requires the 
execution of 64 tasks, whose details are in Table 3.

As can be seen from the table, the product has three 
hazardous parts, i.e., parts 3, 40 and 58, which corre-
spond to a dividing wall, the cabinet, and the compressor, 

Fig. 7   Pareto front obtained in case study 1. The solution inside the 
square is (− 0.88, − 59.16, 16.32, 22), whose elements are level of 
feasibility, profit, smoothness, and safety level, in the order

Fig. 8   Disassembly sequence, and assignment of the tasks to the 
workstations required by the solution inside the square, in Fig. 7
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respectively. Both the dividing wall and the cabinet contain 
asbestos for thermal insulation, whereas the compressor 
contains hydrofluorocarbon (HFC), a refrigerant gas with 
perchloroethylene.

According to the classification based on the packing 
groups (United Nations 2009), the level of danger of asbes-
tos is medium, so the tasks that remove the dividing wall and 
the cabinet have a level of danger of 2. Instead, the level of 
danger of perchloroethylene is low. The task that extracts the 
compressor has thus a level of danger of 3. The cycle time is 
set to 2.18 min. This value was established by assuming an 
annual collection of 53,000 products that are disassembled 
in a line characterized by the same parameters as those of 
case study 1.

Results and discussion

The Pareto front obtained in this case study is shown in 
Fig. 10. The algorithm was set up with 300 individuals, a 
crossover rate equal to 0.8, and a mutation rate of 0.08.

Let us consider a company with a 16-workstation disas-
sembly line already installed. In this case, decision makers 

look for a solution that maximizes profit and safety, requir-
ing at most 16 workstations. The solution to implement may 
be that in the red square in Fig. 10 and shown in Fig. 11 
along with the assignment of its tasks to the workstations. 
As Fig. 11 shows, this solution requires 16 workstations, 
is characterized by the highest level of safety in the Pareto 
front, and achieves the best level of balancing and the high-
est profit (224.89 Euros).

Figure 11 also shows that the solution removes the dan-
gerous parts of the product without performing a complete 
disassembly.

The level of feasibility is 77.08%: more than three quar-
ters of the product is thus disassembled. As said earlier, in 
EOL dismantling it is generally not worth performing a com-
plete disassembly, as the key goal is to achieve the maximum 
profit from reselling the valuable parts and materials recov-
ered, while ensuring the highest possible level of safety.

As in the previous case study, the solution found by the 
algorithm stops the disassembly process when achieving 
the maximum profit after removing all the dangerous parts. 
These parts are dismounted by tasks 22, 35 and 51, which 
remove the dividing wall, the cabinet, and the compressor, 

Fig. 9   Exploded view of the air conditioner
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Table 3   Dataset of case study 2

Task i Precedence constraints Execution time 
ti (min)

Removed parts Safety level of 
removed parts

DCi(€) Di (€) Ri (€) SPi (€)

1 – 0.90 22 4 0.600 0.020 0.034 0.000
2 – 0.45 20 4 0.300 0.020 0.034 0.000
3 – 0.30 10–11 4 0.200 0.025 0.000 0.000
4 3 0.15 9 4 0.100 0.038 0.056 0.000
5 4 0.30 21 4 0.200 0.003 0.004 0.000
6 4 1.05 23 4 0.700 0.030 0.000 0.000
7 4 0.60 25 4 0.400 0.013 0.014 0.000
8 1,5,6 1.00 8 4 0.667 0.065 0.007 0.000
9 8 0.20 17 4 0.133 0.018 0.029 0.000
10 8 0.30 18 4 0.200 0.018 0.029 0.000
11 2 0.20 16 4 0.133 0.000 0.000 0.000
12 11,13 0.40 15 4 0.267 0.025 0.055 0.000
13 – 0.40 14 4 0.267 0.023 0.038 0.000
14 8 0.80 13 4 0.533 0.000 0.000 7.000
15 14 0.15 12 4 0.100 0.013 0.021 0.000
16 – 1.20 19 4 0.800 0.030 0.018 0.000
17 1 0.60 6–7 4 0.400 0.475 0.798 0.000
18 – 0.30 5 4 0.200 0.000 0.000 18.000
19 18 0.15 4 4 0.100 0.625 0.983 0.000
20 2 0.15 1 4 0.100 0.000 0.000 50.000
21 20 0.20 2 4 0.133 0.015 0.021 0.000
22 12,15,16,19,21 0.15 3 2 0.100 0.625 0.983 0.000
23 – 1.30 42 4 0.867 0.020 0.034 0.000
24 23 0.30 41 4 0.200 0.005 0.006 0.000
25 23 0.15 43 4 0.100 0.003 0.004 0.000
26 – 1.30 38 4 0.867 0.003 0.004 0.000
27 26 0.15 39 4 0.100 0.125 0.000 0.000
28 26 0.30 37 4 0.200 0.005 0.006 0.000
29 – 1.30 35 4 0.867 0.003 0.004 0.000
30 29 0.15 34 4 0.100 0.125 0.000 0.000
31 29 0.30 33 4 0.200 0.005 0.006 0.000
32 – 1.30 29 4 0.867 0.003 0.004 0.000
33 32 0.30 30 4 0.200 0.005 0.006 0.000
34 32 0.15 31 4 0.100 0.125 0.000 0.000
35 23,26,29,32,60 0.25 40 2 0.167 0.200 0.336 0.000
36 35 0.15 36 4 0.100 0.063 0.000 0.000
37 20,33,34 0.40 25 4 0.267 0.013 0.014 0.000
38 37 0.15 26 4 0.100 0.225 0.351 0.000
39 38 0.15 27 4 0.100 0.375 0.000 0.000
40 37 0.15 28 4 0.100 0.000 0.000 20.000
41 35 0.20 51 4 0.133 0.004 0.006 0.000
42 41,50 1.00 50 4 0.667 0.000 0.000 65.000
43 35 1.40 (45,46,47,48,49) 4 0.933 0.308 0.004 65.000
44 50 1.40 44 4 0.933 0.000 0.000 80.000
45 43 0.20 49 4 0.133 0.005 0.000 0.000
46 43 0.30 47 4 0.200 0.003 0.004 0.000
47 45,46 0.25 48 4 0.167 0.000 0.000 15.000
48 46 0.20 46 4 0.133 0.000 0.000 50.000
49 43 0.10 45 4 0.067 0.300 0.000 0.000
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respectively. As can be seen in Fig. 11 with the help of 
Table 3, the algorithm does not consider the tasks that gen-
erate more costs than revenues. For example, tasks 27, 30, 
36 and 58, are not part of the solution. These tasks remove 
low-value parts and take time, thus mainly generating costs. 
More in detail, tasks 27, 30 and 36 simply remove the top, 
side and front bars from the cabinet (parts 39, 34 and 36 in 
Fig. 9) respectively, whereas task 58 only unscrew a com-
pressor fixing screw (part 66 in Fig. 9).

The solution found by the algorithm also achieves a high 
level of safety. As shown in Fig. 11, the first two dangerous 

tasks that are performed (tasks 22 and 35) remove the most 
hazardous parts: the dividing wall and the cabinet (see 
Table 3). The exposure to asbestos dust is thus more than 
halved. After removing the parts with asbestos, the time that 
remains before completing the disassembly is more than half 
of the total disassembly time. The product no longer contains 
the two parts in asbestos, which are the ones that generate 
the highest risk. During more than half of the disassembly 
process, workers are thus exposed to a low risk, due to part 
58 whose Packing Group is equal to 3, i.e., low danger (see 
Table 3). Moreover, the last dangerous part is extracted just 

Table 3   (continued)

Task i Precedence constraints Execution time 
ti (min)

Removed parts Safety level of 
removed parts

DCi(€) Di (€) Ri (€) SPi (€)

50 35 1.30 52 4 0.867 0.000 0.000 10.000
51 50 1.00 58 3 0.667 0.253 0.438 0.000
52 51 0.15 59 4 0.100 0.000 0.000 0.000
53 52 0.15 60 4 0.100 0.000 0.000 0.000
54 53 0.15 61 4 0.100 0.000 0.000 0.000
55 54 0.15 62 4 0.100 0.000 0.000 0.000
56 51 0.15 63 4 0.100 0.000 0.000 0.000
57 56 0.15 64 4 0.100 0.000 0.000 0.000
58 51 0.15 66 4 0.100 0.000 0.000 0.000
59 58 0.15 65 4 0.100 0.000 0.000 0.000
60 – 1.30 55 4 0.867 0.020 0.034 0.000
61 42,43,44,51 0.15 56 4 0.100 0.005 0.006 0.000
62 42,43,44,51 0.40 53 4 0.267 0.003 0.004 0.000
63 62 0.25 54 4 0.167 0.063 0.105 0.000
64 60,63 0.10 57 4 0.067 0.150 0.252 0.000

Fig. 10   Pareto front for case study 2. The solution in the red square 
is (− 0.7708, − 224.89, 382.98, 436752), whose elements are level of 
feasibility, profit, smoothness, and level of safety, in the order

Fig. 11   Disassembly sequence and assignment of the tasks to the 
workstations required by the solution circled in Fig. 8
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one task after removing the dividing wall: the rest of the 
process (the tasks in workstations XIII, XIV, XV, and XVI 
in Fig. 11) is thus completely safe. Finally, the smoothness 
is low (382.98), the disassembly times are thus balanced.

The solution obtained has thus a high quality as it 
achieves the maximum profit and quickly extracts the dan-
gerous parts in decreasing order of level of danger. Note that 
this solution is the safest way to disassemble the product. 
The extraction of the dangerous parts cannot be anticipated 
because of the precedence constraints (see Table 3).

Performance evaluation and comparisons

The proposed algorithm was compared to MOPSO (Coe-
llo Coello and Lechuga 2002), MOEA/D (Zhang and Li 
2007), SPEA2 (Zitzler et al. 2002), and NSGA-III (Deb and 
Jain 2014). These algorithms were chosen because they are 
among the most recent and efficient algorithms for complex 
MOO problems in the literature.

The performance evaluation was carried out in two steps. 
The results were first compared to those obtained by the 
other algorithms by considering the disassembly of the TV 
monitor. A further evaluation was carried out by consider-
ing the disassembly of the air conditioner. As this second 
product is made up of almost three times more parts than the 
monitor, and is characterized by a larger set of precedence 
constraints. The second part of the performance evalua-
tion thus proved the efficiency of the algorithm in complex 
scenarios.

From an operational point of view, a total of 30 execu-
tions of the proposed algorithm were run. The hypervolume 
of the Pareto front obtained by each execution was measured 
by normalizing the objective functions in [0,1]. The average 
of these hypervolumes was finally calculated. The perfor-
mance of the other algorithms was measured according to 
the same procedure. As problem (3a)–(3h) entails maximiz-
ing the objectives, the wider the hypervolume, the better.

Figures 12 and 13 show the box plots of the hypervol-
umes obtained by the proposed algorithm, and by MOPSO, 
MOEA/D, SPEA2, and NSGA-III for both case studies. As 
the figures show, the proposed algorithm achieved better 
performance than the others, in terms of hypervolume.

On average, the proposed algorithm obtained Pareto 
fronts 25.2% wider than those obtained by the compared 
algorithms in the more complex case study. The algorithm 
thus better explores the solution space and obtains more 
solutions and/or solutions with higher values of the fitness 
function.

A statistical validation of the results was carried out by 
using Student’s t test. Finally, the execution times for both 
case studies are shown in Figs. 14 and 15. As can be seen 
from the figures, the proposed algorithm is characterized by 
an execution time that is similar to those of the algorithms 
used for comparison. As a concluding remark, it is worth 
noticing that, on average, in the more complex case study, 
the proposed algorithm is faster. The algorithm thus main-
tains good performance when increasing the complexity of 
the problem.

Fig. 12   Box plot of the hypervolumes obtained by the proposed algo-
rithm and by the algorithms used for comparison in case study 1

Fig. 13   Box plot of the hypervolumes obtained by the proposed algo-
rithm and by the algorithms used for comparison in case study 2

Fig. 14   Execution times of the 30 runs of all the algorithms executed 
throughout the experiments of the first case study
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Conclusions

This paper has presented a new formulation of DLBP aimed 
at efficiently disassembling EOL products in safety, along 
with a GA designed for the proposed optimization problem.

The efficiency stems from minimizing the number of 
workstations, balancing the idle times, and maximizing the 
profit. The safety is maximized by introducing different pri-
orities based on the level of danger of each dangerous part, 
contrary to the previous formulations that only execute the 
dangerous tasks before the non-dangerous. The proposed 
formulation thus makes it possible to consider the actual risk 
to which workers are exposed while disassembling products, 
task after task, as the extraction priority of each dangerous 
part is increased the longer the part remains in the product 
during the disassembly process, and the more dangerous the 
material of the part is.

The algorithm was tested by considering two case stud-
ies where a TV monitor and an air conditioner were disas-
sembled, respectively. The results showed that the system 
generates efficient and safe configurations to set up a disas-
sembly line. The experiments also showed that considering 
the precedence relationships as an objective—instead of as a 
constraint—allows a wider exploration of the solution space.

The Pareto front returned by the algorithm, with its mul-
tiple optimal solutions, makes it possible for the experts in 
the field to choose the best solution to the problem, by con-
sidering the current situation of the manufacturing industry.

Possible improvements of the proposed algorithm are 
considering non-deterministic disassembly times and aspects 
that deal with current open issues, such as the possible 
presence of destructive operations during the disassembly 
process.
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