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Abstract
The development of information technology and process technology have been enhanced the rapid changes in high-tech 
products and smart manufacturing, specifications become more sophisticated. Large amount of sensors are installed to 
record equipment condition during the manufacturing process. In particular, the characteristics of sensor data are temporal. 
Most the existing approaches for time series classification are not applicable to adaptively extract the effective feature from 
a large number of sensor data, accurately detect the fault, and provide the assignable cause for fault diagnosis. This study 
aims to propose a multiple time-series convolutional neural network (MTS-CNN) model for fault detection and diagnosis 
in semiconductor manufacturing. This study incorporates data augmentation with sliding window to generate amounts of 
subsequences and thus to enhance the diversity and avoid over-fitting. The key features of equipment sensor can be learned 
automatically through stacked convolution-pooling layers. The importance of each sensor is also identified through the 
diagnostic layer in the proposed MTS-CNN. An empirical study from a wafer fabrication was conducted to validate the 
proposed MTS-CNN and compare the performance among the other multivariate time series classification methods. The 
experimental results demonstrate that the MTS-CNN can accurately detect the fault wafers with high accuracy, recall and 
precision, and outperforms than other existing multivariate time series classification methods. Through the output value of 
the diagnostic layer in MTS-CNN, we can identify the relationship between each fault and different sensors and provider 
valuable information to associate the excursion for fault diagnosis.

Keywords  Fault detection and diagnosis · Time series classification · Deep learning · Convolutional neural network · Smart 
manufacturing

Introduction

Early fault detection and quick diagnosis of faulty wafer 
are important to ensure controlling process operations and 
reduce yield losses in semiconductor manufacturing (Hsu 
et al. 2020). Advanced in sensing and information technol-
ogy have enabled the automatic collection and recording of 
the massive data generated by the production and testing 
equipment during complicated semiconductor manufactur-
ing processes. In a wafer manufacturing factory, changes in 

the equipment status (e.g., temperature, humidity, pressure, 
flow rate, and chemical gas flow) during the manufacturing 
process may adversely affect the process. Equipment sensor 
data are real-time recordings in chronological order which 
are primarily recordings of the signals of machinery condi-
tion. Effective equipment monitoring is crucial to cost reduc-
tion and yield improvement by avoid unexpected downtime 
(Dalpiaz and Rivola 1997; Han and Song 2003).

With the growth of Industry 4.0 and intelligent manufac-
turing, amounts of sensors have been installed in equipment 
and machine and these sensors are used to automatically 
accumulate various time-series information (Oztemel and 
Gursev 2020). To improve production yield, automated pro-
duction has begun to evolve into intelligent production, in 
which machinery and equipment sensor data are analyzed 
to obtain the important data recorded by each sensor and to 
determine the root cause of wafer faults to help the engineers 
adjust the machinery parameters. This multivariate time 
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series data in semiconductor manufacturing are also called 
Fault detection and classification (FDC) data in semiconduc-
tor manufacturing which are consisted of three dimensional 
information including wafer, status variable identification 
(SVID), recorded time. The SVID represents the status of 
equipment or machine such as temperature, pressure, and 
gas flow. Through analyzing FDC data analysis can obtain 
behind important information to detect faults and determine 
the relations between the sensors and faulty wafers (Chien 
et al. 2013). Fault detection involved multivariate statistical 
fault detection methods (Cherry and Qin 2006; Yu 2011; 
Chien et al. 2013; Rostami et al. 2018) and machine learning 
models (He and Wang 2007; Mahadevan and Shah 2009; 
Fan et al. 2016; Wang et al. 2018) were used to analyze 
equipment sensor data and detect the abnormality at early 
stage of wafer processing. In addition, fault diagnosis is to 
identify excursion and to provide critical information for 
analyzing root cause of abnormality (Gertler 1998; Chien 
et al. 2013; Lee et al. 2017b). In practice, the diagnosis of 
excursion is mainly relied on experience of domain expert 
to perform investigation on the sensor data of abnormal sen-
sor. It’s time-consuming and subjective to remove assignable 
causes.

Because of the massive volume and nonstationary pat-
terns, most of fault detection and diagnosis studies in semi-
conductor manufacturing extract the features from each 
SVID by calculating the summery statistics at each time 
step such as mean, standard deviation, maximum, minimum, 
skewness, and kurtosis (Park et al. 2014; Rato et al. 2017), 
which is defined based on the engineers’ past experience, 
and determine the upper and lower limit specifications for 
analysis. However, considering the variety of products and 
the difficulty in stipulating specifications, handcraft features 
could lose the important information and result in a high 
false alarm rate (Lee et al. 2017b). There are a large num-
ber of measurement variables associated with equipment, 
machinery and complex product combinations. Thousands 
of variables are recorded that are highly correlated with one 
another. As a result, equipment sensory analysis relies on the 
determination of key steps. Constructing the indicators of 
these steps has become complicated and difficult. While the 
statistics of these sensor data indirectly provide information 
on product quality and machinery status, the practical diffi-
culty is to acquire large amounts of engineers’ knowledge to 
facilitate the determination of meaningful steps. Even with 
the determined steps, false detection can also occur as a 
result of delay. The use of conventional FDC methods alone 
can no longer effectively locate important features in sensor 
data and can easily lead to false detection or omissions.

With the development of parallel computing and graphic 
processing unit (GPU) technique, deep learning has gradu-
ally become an effective technique for tasks requiring heavy 
computation and automatically feature extraction from raw 

time series data. In most research related to equipment sen-
sory data, deep learning methods based on convolutional 
neural network (CNN) and autoencoder are primarily used 
for important feature extraction and fault detection (Zheng 
et al. 2014; Yang et al. 2015; Lee et al. 2017a, b). To com-
pare with principal component analysis (PCA), support 
vector machine (SVM), k-nearest neighbor (kNN), decision 
tree-based methods, CNN-based models can perform bet-
ter results of fault detection without handcraft features in 
advance. However, the existing deep-learning fault detection 
models are difficult to determine the correlation between 
faults and the collected equipment sensor variables. When 
a fault occurs, efforts should be made to find the most prob-
able root cause, provide information to help prevent the 
occurrence of wafer faults in advance and make adjustments 
based on the data collected by the sensor that detected the 
fault to avoid unnecessary loss from machinery and equip-
ment shutdown. Moreover, the architectures of existing fault 
detection model by CNN need fixed-length in SVID data 
(Kim et al. 2019). But, the recorded time period of each 
SVID could be different in semiconductor manufacturing.

To bridge the gap of real setting in practice, this paper 
aims to propose a multiple time-series convolution neural 
network (MTS-CNN) model for multivariate time-series 
classification, in which the fault detection and identifica-
tion of the key SVID for root cause analysis are performed 
simultaneously. To maintain the sensor data patterns and 
avoid scale errors, the MTS-CNN model in the first stage 
performs standardization of the original sensor data into 
the same scale with zero mean and unit variance. To differ-
ent wafers collected during the manufacturing process are 
varied in length, this study facilitates the subsequent deter-
mination of the temporal features by sliding window-based 
subsequence extraction. The argumentation of subsequences 
increase the total volume and the diversity of the data for 
training and improve the accuracy of the entire MTS-CNN 
model. The MTS-CNN in the second stage, extract the data 
features of each SVID using a convolutional neural net-
work (CNN) along each subsequence in conjunction with 
a backpropagation algorithm as well as detects product 
faults. Faulty and normal wafers are then identified using 
the MTS-CNN model. In addition, the correlations between 
individual sensors and the faulty wafers are determined 
based on the diagnostic layer to provide reference informa-
tion to the maintenance engineers. To validate the proposed 
MTS-CNN, we conducted an experiments by a real-world 
data collected from a semiconductor manufacturing process. 
The MTS-CNN has better classification performance among 
other multivariate time series classification models.

The contribution of this paper is mainly in three aspects. 
First, slide window is used to split original time-series into 
various subsequence for dealing with variable-length sensor 
data. Second, effective feature are extracted for fault detection 
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via multivariate time series classification through the stacked 
convolution and pooling layers. Third, the related SVIDs to 
faulty wafer can be identified based on the output of diagnostic 
layer after the deep convolutional-pooling layers. While detect 
the abnormality of observed wafers, the MTS-CNN can iden-
tify the correlated SVIDs and provides useful information for 
further root cause diagnosis.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the fundamentals of time series data and 
multivariate time series data classification approaches to be 
used in this paper. Section 3 presents the proposed MTS-CNN 
model for fault detection and diagnosis. In Sect. 4, an empiri-
cal from a semiconductor company was conducted to validate 
our proposed MTS-CNN and compare the performance among 
the other multivariate time series classification approaches. 
Lastly, Sect. 5 concludes the paper by listing its contributions 
and discussing future research directions.

Fundamental

Time series data

There are two primary types of time series analysis. The first 
type directly calculates the degrees of similarity between dif-
ferent series and labels the classified series based on the order 
of degrees of similarity using a k-nearest neighbor (k-NN) 
algorithm. The second type extracts the key features of a time 
series, finds the important features by analyzing the subse-
quences of the time series using an algorithm, and then inputs 
the key features to construct a classification model.

A time series of FDC data can be defined as follows. 
Assuming that there are M wafers being processed through an 
equipment with K sensors being installed. Thus, the FDC data 
�p for pth wafer are defined as follows:

where xpqt represents the sensor reading value for pth wafer 
of the qth sensor at time t, for p = 1,… ,M , q = 1,… ,K , 
and t = 1,… , np . Here, np denotes the total number of 

(1)�p =

⎡
⎢⎢⎢⎢⎣

xp,1,1 xp,1,2 ⋯ xp,1,np
xp,2,1 xp,2,2 ⋯ xp,2,np
⋮ ⋮ ⋱ ⋮

xp,K,1 xp,K,2 ⋯ xp,K,np

⎤⎥⎥⎥⎥⎦

recorded time points for pth wafer and is usually not equal 
between wafers.

The output �p is one hot label vector �p ∈ [0, 1] , in 
which the �p = 1 if the class of time series �p is belong 
to fault wafer. Otherwise, the �p = 0 . Therefore, the time 
series classification problem is to search a function that can 
map the input �p to a possible �p as well.

The degree of similarity between two time series is 
primarily measured using the Euclidean distance or the 
dynamic time warping (DTW) distance as the distance 
between them (Fig. 1). A 1-nearest neighbor (1-NN) algo-
rithm combined with the Euclidean distance (1-NN-EUC) 
can be employed to classify the time series (Faloutsos et al. 
1994). While the Euclidean distance is simple and fast to 
calculate, the use of the Euclidean distance to calculate the 
degree of similarity between two time series requires the 
assumption that the two time series have the same length. 
The DTW distance can be used to calculate the degree of 
similarity between time series of different lengths. Com-
pared to 1-NN-EUC algorithms, 1-NN algorithms combined 
with the DTW distance (1-NN-DTW) are more widely used 
in time series analyses (Sakoe and Chiba 1978; Xi et al. 
2006). While a k-NN algorithm can directly classify time 
series without training, the calculation of the DTW distance 
is relatively time consuming, rendering the practical applica-
tion of 1-NN-DTW algorithms limited.

Machine learning is often used to extract features of time 
series. Nanopoulos et al. (2001) extracted and classified fea-
tures of time series using a multilayer perceptron (MLP), 
which is a type of artificial neural network (ANN). Kam-
pouraki et al. (2009) used a support vector machine (SVM) 
to classify time-series data and found that the SVM per-
formed better in classifying time-series datasets compared 
to an ANN. To determine the most important time step in 
an original time series, the time series is first decomposed 
into a number of subsequences, and the most important sub-
sequences are located and used as the features of the time 
series. This approach not only maintains the representation 
of the original time series but also can be used to analyze 
time series of various lengths.

Ye and Keogh (2009) first obtained all the subsequences 
of a time series, calculated the distances between the sub-
sequences of each length and other time series, and then 

Fig. 1   Degree of similarity 
between time series
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calculated the information gain of each subsequence. Time 
series subsequences that are maximally representative 
of a type are referred to as shapelets as shown in Fig. 2. 
Shapelet discovery requires the calculation of all the sub-
sequences of each time series, which is often extremely 
time consuming. Rakthanmanon and Keogh (2013) pro-
posed a symbolic aggregate approximation (SAX)–random 
masking-combined approach, which can rapidly discover 
the most important subsequences, then calculate the infor-
mation gains, and classify the time series.

Senin and Malinchik (2013) proposed a SAX–vector 
space model (SAX–VSM) algorithm for time series clas-
sification. First, the time series are standardized. Then, 
all the subsequences of the time series are subjected to 
piecewise aggregate approximation and subsequently 
transformed to SAX symbols using the SAX algorithm 
(Lin et al. 2003). Afterwards, a VSM is constructed. First, 
the SAX symbols that represent all the subsequences of the 
same type are converted to a bag-of-words model based on 
the frequency of occurrence. The term frequency–inverse 
document frequency (TF–IDF) weight is calculated based 
on the bag-of-words model constructed for each type 
(Salton et al. 1975). When predicting the series types, 
the established TF–IDF is used to calculate the degree of 
cosine similarity. The highest degree of cosine similar-
ity is used as the classification type. Figure 3 shows the 
framework of the SAX–VSM algorithm.

Multivariate time series classification

Patri et al. (2014) designed a shapelet forests approach based 
on shapelet extraction that can effectively solve multivari-
ate time series classification problems. This approach first 
extracts shapelets from the data collected by different sen-
sors and then, based on these shapelets, calculates the short-
est distances from the subsequences of the time-series data 
collected by the same sensors. A new feature consisting of 
these distances is then formed and used to represent the rela-
tion between the final product and the shapelets. Afterward, 
weight learning and classification can be performed using 
a general machine learning algorithm or a feature selection 
method. The advantage of this approach lies in that it can 
compare the contribution of the sensors to fault detection 
based on their weights.

DCNNs are also widely used in multivariate time series 
analysis. Zheng et  al. (2014) proposed a multi-channel 
DCNN (MC-DCNN) to solve problems involving multiple 
sensors. The MC-DCNN addresses the problem that differ-
ent sensor data have different lengths. Initially, the CNN 
uses one channel to learn the features of the subsequences 
of the data collected by each sensor. Consequently, the entire 
CNN model will learn the features of the different sensors. 
Then, the features extracted by the CNN are combined and 
used, in conjunction with a conventional MLP, to classify 
the time series. Yang et al. (2015) used MC-CNN to iden-
tify human movements. They used the MC-CNN to first 
learn the features from two real datasets and then to clas-
sify actual human movements. Huang et al. (2020) adopted 
multi-domain features in time-domain and fused these fea-
tures into DCNN model for tool wear prediction in dry mill-
ing operations. Similarly, various features in frequency and 
time–frequency domains were used as input for tool condi-
tion monitoring (Cai et al. 2020; Lee et al. 2020).

To effectively analyze multivariate time-series data 
collected by multiple sensors, the general approach is 
to first extract features from the data collected by each 
sensor using a time series analysis method, then find the 
features that subsequently construct a time series classi-
fication model. When a fault occurs in the machinery or 
equipment, it is necessary to understand the importance 
of the sensors to correct the parameters of the machin-
ery to improve production yield. While an MC-CNN 
approach has excellent classification performance, unlike 
the shapelet forests approach, it is incapable of classifying 
time series data while simultaneously determining how 
the sensors affect one another and the contribution of the 
sensors to the source of the fault. Lee et al. (2017b) pro-
pose a FDC-CNN for fault detection, in which a receptive 
field tailored to multivariate sensor signals slides along the 
time axis, to extract fault features. The receptive field and 
the feature map in the first convolutional layer was used Fig. 2   Schematic diagram of a shapelet
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to find the information for fault diagnosis. The features 
maps extracted in the deep convolutional layers are the 
results of highly nonlinear functions of the raw data and 
thus are difficult to interpret. Therefore, only the feature 
maps from the first convolutional layer are considered for 
fault diagnosis (Lee et al. 2017b). However, the informa-
tion and feature map in the first convolutional layer was 
simple because of passing one convolution and feature 
extraction process which is not enough to generate criti-
cal feature for fault detection. To bridge the gap, this study 
proposes an MTS-CNN for fault detection and diagnosis 
in semiconductor manufacturing. An additional diagnostic 
layer is added between the last pooling layer and fully con-
nected layer. The diagnostic layer is used to understand the 

relation among the collected sensor and their importance 
for the faulty wafer.

Proposed Method

The MTS-CNN model for fault detection and diagnosis 
is consisted of feature extraction and fault detection and 
diagnosis as shown in Fig. 4. A multi-channel CNN is used 
whereby each channel is determined by one SVID and the 
important features from the data collected by one sensor are 
extracted through two stacked structures with convolution, 
activation, and pooling layers. Additionally, the relation-
ships between each SVD and faulty wafer is identified by 

Fig. 3   Structure of SAX–VSM
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a diagnostic layer after the process of feature extraction by 
each channel. By observing the diagnostic layer, the sta-
tus of each sensor can be capable of distinguishing faulty 
wafers from normal ones. In the final layer of MTS-CNN, 
fault detection is performed based on the extracted features 
in conjunction with a fully connected neural network.

Data preprocessing

The measurements of different equipment variables (e.g., 
temperature, pressure and humidity) during the manufactur-
ing process are on different numerical scales. To avoid scale 
errors, the original equipment sensor data are standardized. 
The standardization process transforms the equipment sen-
sor data to a distribution with an average value of 0 and a 
standard deviation of 1 (Goldin and Kanellakis 1995).

The subsequences of the entire time series are used as 
the input data. Two methods are employed to perform data 
augmentation to avoid overfitting during training the model. 
First, the dropout technique is used when the convolutional 
network extracts features (Bouthillier et al. 2015). Second, 
the sensor data are decomposed into various subsequences 
using a sliding window, in which are then used as the input 
data whose features are subsequently extracted by the CNN 
(Le Guennec et al. 2016).

Assuming the data � is a three-dimensional data matrix 
including M wafers, K sensors, and recorded time np . The 
�q is the qth sensor data as follows:

where np is the sensor data length. When a sliding window 
w is used to acquire the subsequences of the qth sensor data 
�q as shown in Fig. 5, a np − w + 1 number of subsequences 
si ( i = 1,… , np − w + 1 ) are selected from sensor data �q of 
length np using a sliding window of length w.

(2)�q =

⎡
⎢⎢⎢⎢⎣

x1,q,1 x1,q,2 ⋯ x1,q,np
x2,q,1 x2,q,2 ⋯ x2,q,np
⋮ ⋮ ⋱ ⋮

xM,q,1 xM,q,2 ⋯ xM,q,np

⎤⎥⎥⎥⎥⎦

(3)sliding (�q,w) = S, S ∈ {s1, s2,… , snp−w+1}

Fig. 4   The proposed MTS-CNN model

Fig. 5   Sliding window-based subsequence extraction
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Feature extraction

A convolution layer and an activation layer are used to 
extract features from the input time-series data. Subse-
quently, a pooling layer is used to reduce the dimension to 
find the most important information recorded by the sensor, 
which will be used as the basis for fault detection and diag-
nosis. First, in the convolution layer, a number of trained 
convolution kernels kij make convolution with the original 
input data and then obtain the feature maps xl−1

i
 in the previ-

ous layer and add a bias bl
j
 to obtain the convoluted feature 

maps zl
j
 . The convolution operation slides the convolution 

kernels on the data and calculates the new feature obtained 
by the inner product. If sensor data of length np are input into 
the model and the convolution kernels have a length of w , 
sensor data of length np − w + 1 will be obtained after 
convolution.

where the notation of ∗ is a convolution operator. To com-
pare with the existing CNN for fault detection (e.g., FDC-
CNN), we extract the critical feature of each SVID along 
time horizon instead of performing convolution among the 
all SVIDs together. The shortcoming of extract feature from 
all multivariate time-series is difficult to trace the impor-
tance of key SVID after deep convolutions. The nonlinear 
correlation of each SVID to detect abnormality needs more 
stacked convolutions as well.

An activation function f  is used in the activation layer, 
and xl

j
 is obtained by calculating the activation function f  

with the input data zl
j
 of the previous layer. To avoid the 

vanishing gradient problem that can easily occur when per-
forming backpropagation in a deep neural network model, a 
rectified linear unit (ReLU) activation function is used in the 

(4)zl
j
=
∑
i

xl−1
i

∗ kl
ij
+ bl

j

hidden layer. The distinct features of a ReLU are can cause 
a neuron’s partial output to be zero, and can further reduce 
overfitting.

Pooling is also referred to as subsampling. There are two 
primary types of pooling as shown in Fig. 6, i.e., max and 
average pooling. Max pooling returns the maximum map-
ping value for each feature. Average pooling returns the 
average mapping value for each feature. Each feature that 
passes through the convolution and activation layers is 
pooled to become a new feature. A max pooling layer is used 
in the proposed framework, where xl

j
 is the input data; xl+1

j
 is 

the pooling output value; and down(⋅) represents the subsam-
pling value generated by max pooling). By using a number 
of non-overlapped 1 × n kernels and calculating the maxi-
mum or average values with the kernels, the dimension of 
the output sensor data is reduced by n number of folds. For 
example, there are a time series with 8 data (4, 8, 16, 10, 2, 
0, 1, 9). Assuming that a 1 × 2 kernal with stride size is 2 as 
shown in Fig. 6, then the original time series is used to per-
form max pooling and result in (8, 16, 2, 9). If we select 
average pooling and the time series is transformed into (6, 
13, 1, 5).

Fault detection and diagnosis

Fault detection and diagnosis layers are constructed after 
two stacked convolution-pooling layers. There is a one 

(5)xl
j
= f (zl

j
)

(6)ReLU(x) = max(0, x)

(7)xl+1
j

= down(xl
j
)

Fig. 6   Max pooling and average 
pooling
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fully connected neural network, in which one flatten layer 
is assigned after the second pooling layer, one hidden 
layer, and one neuron node. The diagnostic layer can deter-
mine the difference between the sensors and the faulty 
wafers. The ReLU activation function can also be used to 
set a threshold value between faulty and normal products 
for each sensor to represent the important information of 
the entire data set.

In the diagnostic layer, a set of optimal weights will 
be obtained after the training of the MTS-CNN model is 
completed. The weights represent the relations between 
the sensors. These weights are used in conjunction with a 
ReLU activation layer. Based on the features of a ReLU, 
the sensors with a negative weight are found to have a 
zero output. These sensors with a zero output are relatively 
unimportant. The remaining sensors with a non-zero out-
put will affect the final prediction. By further observing 
the output values of normal and faulty wafers, a threshold 
value can be set to determine which sensor detects the 
highest number of faulty products.

After the diagnostic layer, two hidden layers with fully 
connected networks are used to predict output status (i.e., 
faults or normal). In the output layer, the softmax function 
is used to perform classification prediction as follows:

where C is the number of considered class in the output 
layer.

Training a neural network requires the use of forward 
propagation and backpropagation. An output value will 
be generated by forward propagation. By calculating fault 
detection is a classification problem and using a square 
error function as a loss function to adjust the weight in 
each neuron may be overly smooth, and result in the poor 
convergence of the network, a cross-entropy function (CE) 
is used as the loss function as follow (Bishop 1995; Golik 
et al. 2013):

where CEp is the cross-entropy value of pth wafer and Lr 
is the binary value. Indeed, only the softmax value of true 
label will be calculate and others are 0. Therefore, the cross-
entropy of total sample is

The weight of the entire MTS-CNN model can 
be adjusted based on the loss function CE, using a 

(8)f (z)r =
ezr∑C

r=1
ezr

, r = 1,… ,C

(9)CE = −

M∑
p=1

CEp

(10)CEp = −

C∑
r=1

Lr log2(f (z)r)

backpropagation algorithm and a stochastic gradient 
descent (SGD) algorithm as an optimizer to adjust the 
weight of the entire MTS-CNN model, until the error 
reaches the minimum value and is convergent. Several 
model training techniques can be applied when using 
backpropagation and SGD algorithms to train the neural 
network to increase the convergence speed of the neural 
network and find the optimal parameters, e.g., standard-
izing the input data and randomizing the sequence of the 
training data (LeCun et al. 2012). To consider one con-
volution-pooling networks are constructed to extract fea-
tures from the data collected by each sensor. The full-batch 
learning method would be difficult to find a good combina-
tion of weights in the proposed MTS-CNN model because 
of the large amount of equipment sensor data, resulting in 
overly long training times and heavy computer memory 
requirements. Therefore, the mini-batch method is used 
to train the weights of the MTS-CNN model. The mini-
batch method uses only one batch of data for each training 
epoch and makes weights update by finding the average 
after each epoch (Krizhevsky et al. 2012). This method is 
advantageous because it leads to a more efficient weight 
update of the network within the same training time.

The entire CNN framework contains a large number of 
parameters. To avoid overfitting, the dropout technique is 
used in the diagnostic and FDC layers when training the 
network. The dropout technique randomly allows neurons in 
the hidden layer to disappear at a certain probability p , set 
by the user when correcting the weight during each training 
epoch. As a result, the weight may not be updated for all the 
neurons during the weight update process, thereby prevent-
ing the occurrence of overfitting. The dropout technique is 
not used on the test data. All the neurons with their weights 
multiplied by (1 − p) are used in prediction (Srivastava et al. 
2014).

Empirical study

To validate the proposed MTS-CNN model, an empirical 
data from the chemical vapor deposition (CVD) process in 
semiconductor fabrication was used. The CVD process is 
used to develop thin films on ICs. Total 189 wafers including 
148 normal wafers and 41 abnormal wafers were used for 
empirical analysis and model evaluation. In particular, the 
equipment abnormality results in the peeling issue on wafer 
and yield loss. Total 21 sensors were originally installed 
on the CVD equipment. We remove 4 SVIDs because of 
the constant value and the remaining 17 SVIDs were used 
further analysis. The recorded length of each SVID are from 
199 to 205.

Before MTS-CNN model construction, all the measured 
data from each sensor were performed standardization. 
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Then, the original time-sequence data were selected by a 
moving window. For example, the length of a SVID was 204 
and window size was 149, then total 56 subsequence with 
149 points were selected.

Fault detection

The processes of feature extraction were consisted of two 
convolution-activation-pooling layers. The kernel size and 
number of feature maps are two main hyperparameters in 
convolution layers. In order to extract the slight change in 
each subsequence, the kernel size is 5. The number of fea-
ture maps in first convolution layer is 16 and the number of 
feature maps in second convolution layer is 64. The activa-
tion function in activation layer is used ReLU. In order to 
represent the trend of each subsequence, the pooling method 
is used average-pooling. The kernel size in pooling layer is 
2 and the parameter of stride is 2.

In order to capture the contribution of each sensor, a fully 
connected layer with 256 input nodes and 1 output node 
are used. The benefit of proposed diagnosis structure can 
represent the importance of each sensor while the predic-
tion result is abnormal. The engineer can trace the potential 
correlated sensors. In the fault detection layer, two fully con-
nected layers with 732 nodes were used. To reduce the effect 
of overfitting, a 0.5 dropout rate was used.

To determine the hyperparameter setting in the training 
of deep learning model, a preliminary experiment was used. 
The learning rate representing the rate of updating the con-
nected weights between neurons is used as 0.01. The opti-
mizer is used stochastic gradient descent and the value of 
momentum is 0.9. The batch size is 128, which refers the 
amount of training sample used for updating weights at one 
time. Each deep learning model was trained for each epoch, 
which represents the all training samples have been input 
into the training model. The maximum epoch for each deep 
learning model is 100.

To demonstrate the effectiveness of the proposed frame-
work, the performance of the proposed MTS-CNN was 
compared with the performance of the five time-series 
analysis approaches, including 1NN-DTW (Xi et al. 2006), 
SAX–VSM (Senin and Malinchik 2013), Shapelet Forests 
(Patri et al. 2014), MC-DCNN (Zheng et al. 2014), and 

FDC-CNN (Lee et al. 2017b). 1NN-DTW calculates the 
similarity between two series. SAX–VSM algorithm uses 
SAX to extract the feature into bag-of-words and then build 
the vector space among these bag-of-word. Based on the 
cosine similarity, this algorithm can determine the similar 
class. Shapelet Forests is to select the time interval as shaplet 
which can separate these time series and then decision tree-
based approach was used as classifier. Both MC-DCNN and 
FDC-CNN were deep learning-based approaches.

We perform fivefolds cross-validation to evaluate the per-
formance of proposed model. The 20% of original data was 
used for testing data (39) and remaining data were used for 
model training (150). The data for model training can also 
separate into 80% training data and 20% validation data. 
For example, the data in first fold include 39 testing data 
(20%), 120 training data (150 × 80%) and 30 validation data 
(150 × 20%).

To consider the fault detection in CVD process is a binary 
classification problem, which is to predict the wafer could be 
abnormal or not. Therefore, precision, recall, and F1 score 
were used to measure the performance of proposed MTS-
CNN model. Precision denotes the proportion of classified 
abnormal wafer that are actual abnormal wafers. Recall 
denotes the proportion of actual abnormal wafers that are 
correctly detected. The high value of precision and recall 
indicates that the model is able to detect the abnormal wafers 
well. The related metrics were defined as follows:

where TP is the number of wafer with the predicted label 
and true label being 1. FP is the number of wafer whose 
predicted label is 1, but the true label is 0. FN is the number 
of wafer whose predicted label is 0, but the true label is 1.

After five-folds cross-validation, Table 1 summarized 
the precision, recall, F1, and accuracy in 1NN-DTW, 

(11)Precision (p) =
TP

TP + FP

(12)Recall (r) =
TP

TP + FN

(13)F1 =
2

1∕p + 1∕ r

Table 1   Performance 
comparisons in precision, recall, 
F1, and accuracy

Fivefolds cross-validation Precision Recall F1 Accuracy (%)

1NN-DTW (Xi et al. 2006) 0.3076 0.2694 0.2872 70.88
SAX–VSM (Senin and Malinchik 2013) 0.9320 0.3944 0.5542 85.66
Shapelet forests (Patri et al. 2014) 0.9714 0.7861 0.8690 94.76
MC-DCNN (Zheng et al. 2014) 0.9278 0.9500 0.9388 96.86
FDC-CNN (Lee et al. 2017b) 0.9750 0.9500 0.9617 98.36
MTS-CNN 1.0000 0.9750 0.9873 99.48
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SAX–VSM, Shapelet Forests, MC-DCNN, FDC-CNN, and 
MTS-CNN. In terms of accuracy, Shapelet Forests, MC-
DCNN, FDC-CNN, and MTS-CNN are large than 0.9. 1NN-
DTW is worst among the other approaches. Although the 
precision (0.9320) of SAX–VSM is better than 1NN-DTW, 
but the recall (0.3944) of SAX–VSM is still low. The preci-
sion (0.9714) and recall (0.7861) of Shapelet Forests, which 
is better than that of SAX–VSM. In terms of precision and 
recall, MC-DCNN, FDC-CNN, and the proposed MTS-
CNN have high better solution than 1NN-DTW, SAX–VSM, 
Shapelet Forests. In particular, the proposed MTS-CNN out-
perform than other five approaches with high precision (1.0), 
recall (0.9750), and F1 (0.9617).

Fault diagnosis

To examine the effect of the extracted feature of each sub-
time series by the proposed MTS-CNN, t-SNE (van der. 
Maaten and Hinton 2008) is used to perform a 2-D data 
visualization between normal and fault wafers. The input 
data of t-SNE were the output in diagnosis layer for 17 sen-
sors in different time periods. The perplexity used in the 
t-SNE algorithm is set to 30, the exaggeration is set to 12, 
the learning rate is set to 200, and the number of iteration 
is set to 1000. Figure 7 illustrates the visualization of nor-
mal and faulty wafers generated by using t-SNE for train-
ing dataset and testing dataset in first cross-validation. The 
green points represent the normal wafers and the red points 
denotes faulty wafer. The great merit of data visualization is 
more straightforward for engineers to perform fault detection 
and identify different types of faults. Looking at the Fig. 7a, 
the normal wafers are clustered closely and the faulty wafers 
are clustered into several groups. Figure 7b shows that most 
of normal wafer and faulty wafers in terms of the 2-D t-SNE 
can be separated. Therefore, the 2-D t-SNE map via the 

output value of MTS-CNN could be potential used for pro-
cess monitoring and identifying the abnormality real-time.

After detecting the abnormality, it should be identified 
the cause of the abnormal wafer among these monitoring 
sensors. This information are captured in the weight of diag-
nosis layer in the proposed MTS-CNN. The large output 
weight of each weight represent the large effect for the final 
classification. Figure 8 shows the testing result of the weight 
in 17 sensors of all normal and abnormal wafers. It finds that 
the sensor #7, #13, #15, and #16 have large deviation. This 
information can help engineer identifying critical sensor and 
remove assignable cause quickly.

Figure 9 shows weights of 17 sensors from normal and 
faulty wafers in fivefolds cross validation. We can find that 
the output value in sensors #7 and #15 have large difference 
between normal wafers and faulty wafers. To further check 
the original sensor value in sensors #7 and #15 as shown in 
Figs. 10 and 11, the faulty wafers have abnormal behaviors 
in radio frequency (RF) voltage during the CVD process 
and slightly high temperature in the end of CVD process. 
Therefore, the related causes of faulty wafers can be identi-
fied according to the MTS-CNN effectively.

Conclusion

This paper proposes a MTS-CNN to detect the abnormality 
of observed wafers and identify the correlated SVID with 
useful information for further root cause diagnosis. Data 
argumentation is used for variable-length time-series data, in 
which each sensor were selected by moving window to gen-
erate various subsequences with more diversity of sequen-
tial pattern. Through the short varied intervals which have 
difference between normal and abnormal can be extracted 
through convolution, pooling and learning processes, the 

Fig. 7   t-SNE of normal and faulty wafers
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Fig. 8   Weights of 17 sensors from normal and faulty wafers in fivefolds cross validation

Faulty wafers

Normal wafers

Fig. 9   Weights of 17 sensors from normal and faulty wafers in fivefolds cross validation
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fault can be detected quickly without the full time-series 
of each sensor. In order to identify the contribution of each 
sensor, one diagnosis layer with ReLU function is added 
before fully connected layer. It can not only capture the use-
ful feature to form the nonlinear function but also maintain 

the interpretation of the caused SVID while a faulty wafer 
is detected. Comparing with the existing FDC-CNN, the 
proposed MTS-CNN can use more stacked CNN layers to 
learn the highly nonlinear function and also provide trace-
able information for fault diagnosis.

Fig. 10   Value of sensor #7 (StageHeaterTemperature)

Fig. 11   Value of sensor #15 (RFVdc)
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The empirical results demonstrate that the proposed 
MTS-CNN not only has better prediction performance than 
1NN-DTW, SAX–VSM, Shapelet Forests, MC-DCNN, 
FDC-CNN, but also provides the source of deviation for 
each abnormal wafer and assist engineers for fault diagnosis. 
The proposed MTS-CNN has good interpretation ability in 
differing normal and abnormal wafer among these collected 
sensors.

This study mainly considers the fault detection and diag-
nosis in semiconductor manufacturing. However, in high 
fully automation manufacturing, unexpected equipment 
breakdown results in throughput loss. In order to capture the 
failure or deviation as early as possible, the time-to-failure 
or remaining useful life of each equipment should be pre-
dicted. The further research can be addressed how to apply 
deep learning for the predictive maintenance and anomaly 
detection in smart manufacturing. Additionally, amounts of 
accurately labeled data are usually difficult to obtain in real 
industries. Data argumentation with synthetic noise could 
be considered to enhance the data distribution for model 
training (Li et al. 2020; Luo et al. 2020).
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