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Abstract
Many studies have been conducted to improve wafer bin map (WBM) defect classification performance because accurate
WBM classification can provide information about abnormal processes causing a decrease in yield. However, in the actual
manufacturing field, the manual labeling performed by engineers leads to a high level of uncertainty. Label uncertainty has
been a major cause of the reduction in WBM classification system performance. In this paper, we propose a class label
reconstruction method for subdividing a defect class with various patterns into several groups, creating a new class for
defect samples that cannot be categorized into known classes and detecting unknown defects. The proposed method performs
discriminative feature learning of the Siamese network and repeated cross-learning of the class label reconstruction based
on Gaussian means clustering in a learned feature space. We verified the proposed method using a real-world WBM dataset.
In a situation where there the class labels of the training dataset were corrupted, the proposed method could increase the
classification accuracy of the test dataset by enabling the corrupted sample to find its original class label. As a result, the
accuracy of the proposed method was up to 7.8% higher than that of the convolutional neural network (CNN). Furthermore,
through the proposed class label reconstruction, we found a new mixed-type defect class that had not been found until now,
and we detected new types of unknown defects that were not used for learning with an average accuracy of over 73%.

Keywords Wafer bin map · Label uncertainty · Class label reconstruction · Unknown defect detection · Siamese network ·
G-means clustering

Introduction

With the advent of the fourth industrial revolution, semi-
conductors have been applied to various devices, including
mobile and wearable devices. The need for semiconduc-
tor miniaturization has consequently increased. However,
semiconductor miniaturization through enhancement and
elaboration of existing process technologies has reached
its limit. Consequently, new process technologies and 3D
devices, such as extreme ultraviolet processing, fin field-
effect transistors and gate-all-around devices, have been
introduced (Ferain et al. 2011). This change inmanufacturing
technology increases the occurrence rate of defects; thus, it
is essential to maximize yield through rapid defect detection
(Liu and Chien 2013).
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Forming integrated circuits on silicon wafers is a key
objective of the semiconductor process,which is a fabrication
process composed of several hundred to several thousands of
steps. When the fabrication process is completed, electrical
die sorting tests are performed to sort out defective chips
in the wafer. As a result, a two-dimensional image wafer
bin map (WBM), which expresses the defect of each chip
with binary values of 0 and 1, is created (Kim et al. 2018).
Figure 1 shows WBMs with six defect patterns having the
same yield. The chips that pass all tests normally are marked
in gray, and the other chips are marked in black. Figure 1a
shows the normal WBMwith no specific distribution pattern
of the defective chips. Figures 1b–f show defective WBMs
with different labels according to the distribution pattern of
chips. In many cases, the types of abnormal processes that
cause defects determine the defect pattern of the WBM (Wu
et al. 2015). Therefore, it is a core task for yield improvement
to accurately classify WBM defect patterns and take prompt
action to determine the root cause of the defect based on the
classification result.
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Fig. 1 WBM with different defect patterns

The recent increase in semiconductor output according
to the continuously rising semiconductor demand has raised
the need for the automatic classification of WBMs. Many
studies on this topic have been performed (Chang et al.
2012; Kyeong and Kim 2018; Nakazawa and Kulkarni 2018;
Wu et al. 2015). However, WBM class labels in the actual
manufacturing field are often uncertain, and mislabeled data
learning degrades the prediction performance of these clas-
sification models (Nettleton et al. 2010). The uncertainty of
WBM labels is mainly caused by undetailed labeling and
excessive subdivision of similar defect patterns in the man-
ual labeling process performed by engineers (Liu and Chien
2013). Figure 2 shows the various types of mislabeling. In
Fig. 2a, center defects of different sizes were considered a
single label. In Fig. 2c, edge-local defects with different loca-
tions and shapes were considered a single label. In this case,

defects of the same pattern can appear in different locations
and sizes depending on the type of abnormal process. Hence,
the labeling criteria need to be subdivided. Figure 2b shows
excessive subdivision of similar patterns. The local defect
and edge-local defect samples were classified into different
classes, even if they had remarkably similar patterns. In addi-
tion, the error of considering a new defect pattern, resulting
froma change in design and process conditions, as an existing
known class label is a major factor that increases uncertainty
(Adly et al. 2014). For example, WBM8 in Fig. 2c has a
radial-type defect pattern that spreads from the wafer center
to the edge; however, it is considered an edge-local defect.

Recently, studies in the visual recognition field have
attempted to reduce the uncertainty of image labeling through
noise relabeling. For example, Veit et al. (2017) and Li et al.
(2017) proposed a method of modifying a noisy sample label
through a cleaning model trained using a clean dataset. They
could maximize the classification performance by reflecting
modified class label information in the image classification
model. However, this method requires manual sorting of
clean data; thus, it is not appropriate for WBM data, which
have many samples that have been mislabeled due to human
error. To overcome this limitation, studies have suggested
methods to find and modify noisy samples automatically in
the classification model training process (Köhler et al. 2019;
Wang et al. 2018). However, these methods can consider a
noisy sample only as an outlier or as belonging to an existing
class.

To overcome this limitation and apply class relabeling to
a WBM dataset, we introduce an extended class label recon-
struction method. The proposed method trains an embedding
model that makes samples with similar patterns closer in a
feature space and performs class label reconstruction based

Fig. 2 Examples of WBMs with
uncertain labels
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on the clustering result in a learned feature space. The class
label reconstruction process not only relabels the class of
a sample but also provides the cluster label of a sample
and information about whether a sample is noisy or clean.
These pieces of information are reflected again in the training
embedding model. In addition to enabling class relabeling,
this repeated training allows the creation of new classes for
samples that cannot be considered to belong to an existing
class and enables the detection of new defect patterns. We
introduce the Siamese network for embedding (Chopra et al.
2005) and propose a new loss function to generate discrimi-
native features by reflecting class label reconstruction results.
The class label reconstruction is based on the result of the
Gaussian means (G-means) clustering algorithm (Hamerly
and Elkan 2004), which assumes that samples in a cluster
are distributed in accordance with a Gaussian distribution
while automatically learning the optimal number of clusters.

We verified the proposed method using WM-811K (Wu
et al. 2015), which is a real-world WBM dataset. For this
experiment, the class labels of some training data were
changed to different random class labels. The experimental
results showed that with training progress, the noisy samples
found their original class labels, and accordingly, the classi-
fication accuracy for the test dataset steadily increased. This
provided a basis for the proposed method to perform better
than existing classification benchmarks in the presence of
labeling uncertainty. In addition, we observed that samples
with different patterns even in the same class were divided
into multiple groups and that mixed-type defect samples,
which were hardly seen with existing classes, had new class
labels. In addition, we performed a classification experiment
after assuming some defect classes of the WBM as unknown
classes, and the proposed method showed a detection rate
higher than 73% on average for unknown class samples that
had not been trained. This shows that the proposed method
can also be used for detecting new defect patterns.

The remaining parts of this paper are organized as follows.
Section “Literature reivew” presents a brief review of exist-
ing studies on WBM defect pattern classification and class
relabeling. Section “Background” introduces the Siamese
network and G-means clustering algorithm, which are base
models for the proposed method. Section “Methodology”
provides a detailed description of the proposed class label
reconstruction method. Section “Experiment” presents the
experimental design and results using WM-811K. Finally,
Section “Conclusion” discusses the results of this paper and
future research directions.

Literature review

With the rising importance of accurate abnormal process
detection and yield maximization issues, many studies have

been conducted to maximize the defect pattern classification
performance of the WBM through machine learning meth-
ods. Past studies on the WBM have focused on extracting
manual features that workers consider important and using
them as inputs of shallow machine learning models for the
classification of defect patterns (Chang et al. 2012; Wang
et al. 2006; Wu et al. 2015). Recently, studies have been con-
ducted on the convolutional neural network (CNN), which
is an image classification model based on deep learning that
learns important features for classification by itself (Kyeong
and Kim 2018; Nakazawa and Kulkarni 2018). However,
existing studies have assumed that the data labels used during
training are correct.

To solve the problem of degrading classification perfor-
mance caused by uncertain labels of the training data, studies
have often used noisy sample removal (Guan et al. 2011) or
introduced a loss function that reduces the influence of noisy
samples (Patrini et al. 2017; Vahdat 2017). Recently, how-
ever, noise label modification methods have been researched
under the assumption that classification model performance
can be improved bymodifying the label of a noisy sample and
using the modified label information in classification model
training. For example, Veit et al. (2017) proposed a label
cleaningmodel that only trains imageswith clean labels given
by people manually. They modified noise labels through the
model and used the modified label information to train the
CNN classifiers. Li et al. (2017) obtained soft labels by cal-
ibrating the classification results of a model that learned a
clean dataset using knowledge graphs established based on
Wikipedia information. In that study, a soft label was a class
membership probability set that single data were expected
to have, and soft labels were considered in the loss function
of the classification model together with the original data
labels. However, both of those methods require data sorting
by engineers. Kohler et al. (2019) observed that the Soft-
Max score distribution of the CNN is different between noisy
samples and clean samples. Thus, they proposed a method
for detecting noisy samples and modifying their class labels
by adopting the SoftMax score vector threshold. Wang et al.
(2018) determined the class label for a sample and identified
whether it was noisy or not using a Siamese network that
had learned contrastive loss and classification loss simulta-
neously for discriminative feature learning. They calculated
a score that determines whether a sample is noisy or not in a
feature space using the local outlier factor algorithm, which
is a density-based outlier detection algorithm, and adjusted
theweight of the classification loss in total loss when training
the model. The greatest limitation of these existing studies
is that they decreased the extent of reflection when train-
ing the detected noisy samples or relabeled them only with
existing classes. Thus, they failed to consider the subdivi-
sion of groups depending on the differences in the patterns
of the same class, the possibility of existing new classes, and

123



254 Journal of Intelligent Manufacturing (2021) 32:251–263

Fig. 3 The structure of the
Siamese network

the appearance of unknown samples. Therefore, this study
focuses on proposing a newclass label reconstructionmethod
designed to overcome these limitations.

Background

Siamese network

The Siamese network was proposed to learn an embedding
space based on similarities between images (Chopra et al.
2005). In general, the Siamese network learns embedding,
which minimizes the distance between samples if the sam-
ple pair

(
xi,x j

)
belongs to the same class and maximizes it

otherwise. According to this learning purpose, the Siamese
network is composed of two base networks that share net-
work weights, as shown in Fig. 3, and is learned to minimize
the contrastive loss functionCL

(
xi , x j ,Yi j

)
in the following

equation:

CL
(
xi , x j ,Yi j

) � Yi j
1

2
d2i j +

(
1 − Yi j

)1
2
max

{
0, α − di j

}

(1)

where Yi j is a similarity indicator of sample pairs and has a
value of 1 if the sample pairs have the same class and 0 other-
wise; di j is the Euclidean distance of the sample pair

(
xi,x j

)

in the embedding space; and α is the margin of the minimum
distance that the two dissimilar samples must maintain.

Gaussianmeans clustering

Clustering algorithms have been used as a useful tool for data
mining, data compression, and outlier detection. However,
most clustering algorithms have a limitation: the number
of clusters must be set in advance, which is difficult to
know without prior information about data distribution. G-
means clustering is a hierarchical clustering method that
automatically finds the optimal k by repeatedly perform-

ing k-means clustering (MacQueen 1967) while sequentially
increasing the number of clusters k (Hamerly and Elkan
2004). When training the G-means clustering algorithm, the
data that belong to each cluster are converted to scores based
on the characteristics of the data distribution in the clus-
ter. The scores of good clusters are assumed to follow a
Gaussian distribution. The algorithm repeatedly executes k-
means clustering while increasing k until all clusters are
found to be adequate. Let us assume that there are child
centroids c1 and c2 that divide the dataset that belongs to
cluster c into two groups (c1 and c2 can be easily found by
the k-means algorithm with k � 2). Then, v � c1 − c2
is assumed to be a vector that determines the main direc-
tionality of clusterc, and a score si � g

(〈zi , v〉/‖v‖2) is
defined for a feature vector zi ∈ c, where g is the standard
Gaussian normalization function. Finally, the Anderson—
Darling statistical test verifies whether the scores of each
cluster follow the Gaussian distribution (Anderson and Dar-
ling 1952). Let us assume that when the elements of score
set Sc of cluster c are sorted sequentially, the i th element
iss(i), i � 1, 2, . . . , nc, and F is the cumulative distribu-
tion function of the standard Gaussian distribution. Then, the
Anderson–Darling statistic A2(Sc) is calculated by Eq. (2).
If A2(Sc) is smaller than the threshold calculated accord-
ing to significance levelε, cluster c is determined as a good
cluster.

A2 (Sc)

� −ρ (nc)

nc

nc∑

i�1

(2i − 1)
[
log

(
F

(
s(i)

))
+ log

(
1 − F

(
s(nc+1−i)

))]

− nc

(2)

Here, ρ(nc) � 1 + 4
nc

− 25
n2c

is a weight applied when the

mean and variance in the score set are estimated from the
data (Stephens 1974).
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Fig. 4 The iterative learning framework for the proposed method

Methodology

In this section, we introduce the proposed uncertain class
label reconstruction method. As shown in Fig. 4, the pro-
posedmethod is composed of discriminative feature learning
using the Siamese network and the class label reconstruction
that uses the G-means clustering result in the learned feature
space. We extend the contrastive loss of the existing Siamese
network to consider not only the class label information but
also the cluster label information. The extended contrastive
loss also considers whether the sample is noisy. Furthermore,
we propose methods of discovering noisy samples through
outlier detection, measuring the impurity level of an indi-
vidual cluster and modifying the class labels of samples that
belong to the cluster based on the G-means clustering result.

Initially, the cluster label of each sample is set the same
as the class label, and discriminative feature learning and
class label reconstruction are performed alternately. The
result of feature learning provides a better feature space
for G-means clustering, thus enabling more sophisticated
class label reconstruction. The class label, cluster label,
and noise/clean information modified through class label
reconstruction enable the learning of strong discriminative
features. The iterative learning process enables the subdivi-
sion of patterns of the same class and the discovery of new
classes. Furthermore, the clustering results and the modi-
fied class label information are used to determine whether
incoming data belong to one of the known classes or there
are unknown defects.

Discriminative feature learning

The Siamese network can learn embedding, whichmakes the
samples of the same class closer and the samples of different

classes farther using class label information. Through this
process, the Siamese network automatically learns the dis-
criminative features that distinguish similar and dissimilar
samples in the feature space, and the discriminative features
can be used to find dissimilar noisy samples (Wang et al.
2018). Furthermore, the network can learn more powerful
discriminative features by removing the noisy samples found
in the middle of learning or reducing the degree of reflect-
ing them during learning. In conclusion, through continuous
repetition of feature learning and noise removal, the Siamese
network can have high-performance noise detection capacity.

However, discriminative feature learning using the con-
trastive loss of existing Siamese networks in Eq. (1) is not
appropriate for a situation where there is uncertainty in the
WBM defect label because the following two cases are not
considered. First, the existing Siamese network can only use
defect label information, and as a result, samples that belong
to the same class but can be considered different patterns
cannot be subdivided into multiple groups. In this case, the
learning of the Siamese network progresses in the direction
of binding groups having different patterns in one group,
which is likely to distort the feature space. Second, failing
to consider or giving a low weight to noisy samples in the
learning process can prevent the noisy samples from forming
a new significant cluster or from being incorporated into a
more appropriate class.

We assume five pair conditions that can occur in an envi-
ronment where class label uncertainty exists, and we propose
a new Siamese network learning loss function that consid-
ers these conditions. We determine the pair conditions by
considering the class label and cluster label and considering
whether the sample is noisy or clean. The five pair condi-
tions and the learning strategy for each pair condition are as
follows (see Fig. 5):
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Fig. 5 The five cases of sample
pairs in a feature space

Case 1 When two samples have the same class label and
cluster label, this pair can be considered to have the
same pattern, and the two samples are learned to
minimize the distance between them.

Case 2 When two samples that belong to different classes
have different cluster labels, this pair is considered
to have different patterns, and the two samples are
learned to maximize the distance between them.

Case 3 When only one of the two samples is noisy, this
pair is considered to have different patterns, and the
two samples are learned to maximize the distance
between them.

Case 4 When two samples that belong to the same class
have different cluster labels, they are not reflected
during learning because it is unclear whether they
have the same pattern or not.

Case 5 When two samples are both noisy, the pair is not
reflected during learning.

We propose a new contrastive loss function, as shown in
Eq. (3), to consider the above five pair cases during Siamese
network learning. Noisy samples are assumed to have dif-
ferent class labels from those of all the other samples. To
additionally consider whether a noisy sample is included in
a pair, we introduce modified class similarity indicator Ui j .
Here, Ui j has a value of 1 if two clean samples have the
same class label and 0 otherwise. Thus, when a noisy sample
is included in a pair, class similarity indicator Ui j is always
zero.

(3)

CL
(
xi , x j ,Ui j ,Ci j , Ii j

)

� Ii j

(
Ui jCi j

1

2
d2i j +

(
1 −Ui j

) 1
2
max

{
0, α − di j

}
)

where Ci j is the cluster similarity indicator of the sample
pair; 1 is assigned if the two samples have the same cluster,
and 0 is assigned otherwise. Ii j is an indicator that is assigned
1 if it includes a clean sample and 0 otherwise.

Class label reconstruction and prediction

Before class label reconstruction, we clusteredWBMs in fea-
ture space using the G-means clustering algorithm. In the
embedding space, closely located data points share simi-
lar latent features. We assume that samples that belong to
the same cluster share the same defect pattern as iterative
learning converges, except for some noise. Based on this
assumption, the clustering result and the class label informa-
tion, we perform class label reconstruction, which consists
of outlier detection, cluster impurity measuring, and class
relabeling.

(1) Outlier detection: The G-means clustering algorithm
might allow the inclusion of some outliers because it
assumes that the distance scores in the cluster follow
the Gaussian distribution, which allows some outliers
with lowprobability. Therefore, sampleswhose distance
from the cluster center is larger than a certain value are
assumed to be outliers and are determined as noise. In
other words, if the Euclidean distance between zi � f
(xi ), where f is the embedding function of the Siamese

123



Journal of Intelligent Manufacturing (2021) 32:251–263 257

network, and sample xi belongs to cluster c and centroid
μc is larger than threshold δ, sample xi is determined to
be an outlier. The outlier samples are treated as noise and
are not considered in the cluster impurity measurement
or class relabeling stage.

(2) Cluster impurity measuring: The impurity level of a
cluster is an important measure when deciding the rela-
beling strategy for the samples that belong to the cluster.
For example, if the impurity is low because a clus-
ter is mostly composed of samples of one class, the
cluster can be considered one group representing the
class. However, if a cluster is composed of samples of
different classes in similar ratios, the cluster cannot rep-
resent the class. For the noisy samples (except outliers)
that belong to one cluster, a new “noise” class label
is assigned temporarily. Let us assume that there is a
class label set ϒc of the samples that belong to clus-
ter c and a composition ratio (prior probability) of class
y samples, Py

c , for y ∈ ϒc. As shown in Eq. (4), we
propose entropy based on prior probability as cluster
impurity measurementImpc. Furthermore, the repre-
sentative class of cluster c is set as R(c) � argmax

y∈ϒc

P y
c .

Impc �
∑

y∈ϒc

(−Py
c × logC+1

(
Py
c
))

(4)

(3) Class relabeling: To divide the clusters into three cate-
gories according to the impurity level, we set the lower
and upper limits of impurity, θ low and θhigh , respec-
tively. For each cluster category, a different relabeling
strategy is adopted, as shown in Fig. 6. For the first cat-
egory, if Impc ≤ θ low, cluster c is assumed to be the
clean group of representative class R(c). In this case, the
samples with a different class from R(c) are considered
initially mislabeled samples, and they are assigned class
label R(c). Second, in the case of θ low < Impc ≤ θhigh ,
we assume cluster c as the noisy group of R(c). In this
case, to minimize the risk of incorrect relabeling, the
samples with a different class from R(c) are treated
as noise (see Fig. 6b). Finally, in the case of clusterc,
where Impc > θhigh , since the reliability of the rep-
resentative class is low, we assign a new class label to
the samples (see Fig. 6c). In this process, a class label
can be assigned to some noisy samples, but subsequent
iterative discriminative feature learning and class label
reconstruction will determine the samples as noisy. In
this case, relabeling can inform the existence of a new
class, such as the multidefect class.

The representative class information of the clusters for
which class label reconstruction has been completed is used
for class prediction of the incoming data. To explain this in
detail, let us assume that centroidμc and representative class

R(c) of cluster c are both decided and reliable. In this case,
if the Euclidean distance between znew � f (xnew) and μc is
smaller than δ, xnew, is considered to belong toc. If znew does
not belong to any cluster, it can be determined to be unknown.
However, because there is a possibility that znew belongs to
multiple clusters, class label y∗ is assigned to incoming data
xnew using the following rule:

y∗ �
⎧
⎨

⎩
R

(
argmin

c∈C
‖znew − μc‖2

)
if min

c∈C ‖znew − μc‖2 ≤ δ

“Unknown” Otherwise
(5)

where C is the cluster label set.

Experiments

Experimental design

The WM-811K dataset used in this study consisted of
811,456 WBMs collected from real-world fabrications (Wu
et al. 2015). The original dataset contained image data of
various sizes, and some data labelswere not recorded. Conse-
quently, this experiment verified the proposed method using
the labeled data of 26×26 size that contained the largest
labeled data. The dataset used in this experiment consisted
of 13,203 normal (nondefect class) data and 837 data in eight
defect classes (center, edge-ring, donut, edge-local, local,
near-full, random, and scratch defects). Hence, the sample
size imbalance between normal and abnormal data was large,
and the amount of data for each defect classwas small. There-
fore, we applied random undersampling to the normal data
and data augmentation using a random rotation of [− 90°,
90°] to the defect image data to make the sample size of each
class in [1000, 2000].

The optimal base CNN structure of the Siamese network
was selected through validation. We set 80% of the total
dataset as the validation data for each class and set whether
the Siamese network classified the classes of input pairs cor-
rectly as the performance indicator. It was assumed that all
of the labels of the validation data were correctly assigned.
Consequently, class label reconstruction was not considered
in the validation. In detail, we trained the existing Siamese
network based on 80%of the validation dataset pairs and then
selected a CNN structure that showed a high classification
accuracy for the remaining 20% of the data. For validation,
the contrastive loss of Eq. (1) at α � 1 was applied. If α was
larger than 0.5, it was determined that the classes of the pair
were not the same. We applied a grid search to find the CNN
structure. Tominimize the search range,we set theCNN layer
structure as a convolutional layer-convolutional layer-max
pooling layer-fully connected layer and the optimizer as an
Adam optimizer (Kingma and Ba 2014) in advance. For the
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Fig. 6 The three types of class
label reconstruction based on
impurity level

Table 1 Optimal network parameters from the grid search

Network parameters Grid search result

Learning rate 0.001

Filter size in the 1st convolutional layer 3×3

Filter size in the 2nd convolutional layer 4×4

Number of feature maps in the 1st
convolutional layer

32

Number of feature maps in the 2nd
convolutional layer

64

Number of nodes in the fully connected layer 16

activation function of the convolutional layers, the rectified
linear unit (Nair and Hinton 2010) was used, and the max-
pooling filter size was set to 2×2. In addition, the learning
rate, filter size in the convolutional layers, number of feature
maps in the convolutional layers, and number of nodes in
the fully connected layer were found through a grid search.
Table 1 lists the optimal network parameters as a result of
the search. To obtain optimal hyperparameters δ, θhigh , and
θ low, we executed a grid search on the validation dataset. A
randomly selected 10% of the dataset was corrupted to have
different class labels different from the original labels. The
search ranges for δ, θhigh , and θ low were set as [0.1, 1.0],
[0.7, 1.0], and [0.1, 0.4], respectively. We adjusted θhigh and
θ low at intervals of 0.05 and δ at intervals of 0.1, and we
selected the hyperparameter set that yielded the best valida-
tion accuracy. The selected δ was 0.7, θhigh was 0.9, and θ low

was 0.3.
To verify the proposed method in various ways, we

designed three experiments. The first experiment examined
whether the proposed method can improve the accuracy of
the test dataset by correcting the class labels with the training

progress in a situation where the class labels of some train-
ing data are incorrect. In addition, we examined whether the
class samples with similar patterns are clustered well in the
embedding space by visualizing them in a 2D space. The
second experiment observed the changes in the classification
performances of the proposed method and the benchmark
classificationmodels according to the corruption ratio, which
is the ratio of the incorrect class labels of the training data.
From the experiment, we could demonstrate that the pro-
posed method is robust to the uncertainty of the class labels.
The third experiment examined the performance of the pro-
posed model detecting unknown samples after setting some
random classes as unknown classes. In every experiment,
80% of the data were used as the training dataset, and 20%
of the data were used for the test dataset for each class. In
the third experiment, all data were used as the test dataset for
unknown classes.

Class label reconstruction results

Toverifywhether themislabeled data couldfind their original
class label through the proposed method, we corrupted 10%
of the training data by randomly assigning different class
labels. Then, we performed discriminative feature learning
and class label reconstruction for 10 epochs in total. We
assumed that iterative learning converged if the class label
change rate was less than 0.1% after 10 epochs. Here, dis-
criminative feature learning means 20 epochs of Siamese
network learning. Table 2 shows the test accuracies, noise
rates, class label change rates, number of clusters, and num-
ber of classes in each epoch. All measurements are training
results except for the test accuracies. First, the accuracy
increased as the initial high noise rate sharply decreased,
which demonstrates that the samples initially classified as
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Table 2 Iterative class label
reconstruction results using 10%
of the corrupted training dataset

Epoch Test accuracy Noise rate (%) Class label change
rate (%)

Number of clusters Number of classes

1 58.2 18.8 1.4 31 9

2 72.6 5.9 2.4 44 9

3 77.7 1.9 3.7 69 9

4 76.4 0.7 3.4 69 9

5 81.2 0.4 2.3 78 9

6 87.3 0.3 1.3 69 9

7 84.6 0.5 1.6 79 9

8 88.4 0.4 0.8 79 9

9 89.6 0.1 0.5 75 9

10 89.6 0.2 0.1 71 10

noisy found their original class labels well, resulting in
increasing accuracy. Furthermore, from epoch 4, even though
the noise rate decreased negligibly, discriminative feature
learning and class label change drove an increase in accu-
racy. In addition, an increase in the cluster number did not
induce an increase in the class number. This indicates that
even though the groups in the class were subdivided, there
was a low risk of indiscriminate newclass generation. Finally,
a new class was generated in epoch 10; however, therewas no
decrease in accuracy. This suggests that samples thatwere not
classified correctly into existing classes formed a new class.
It seems that too many clusters were generated compared
to the number of classes. A large number of clusters might
not be efficient for engineers to find rood causes. However,
considering that class labels are based on human judgement
and thus are noisy (Liu and Chien 2013), cluster information
can help engineers find root causes by supplementing revised
class information.

Figure 7 shows the visualization of the clustering results of
the training dataset in the feature space in a 2D space through
t-stochastic neighbor embedding (Maaten and Hinton 2008).
Figure 7a shows that with training progress, the initially dis-
persed samples were clustered by class and multiple pattern
clusters were formed, even in the same class. Furthermore,
Fig. 7b shows that the number of noisy samples decreased as
the class labels were corrected, as the noisy samples that had
been dispersed at first were selected as members of specific
clusters according to pattern similarity. In particular, in the
last epoch, a new class was formed between edge-local class
samples and local class samples. As shown in Fig. 8, this
new class clearly had a different pattern compared with the
patterns of the edge-local and local class samples. The newly
generated class is considered a multitype defect that contains
all edge-local and local patterns. This result reveals that the
proposed method generates a new class for samples that are
difficult to explain by the existing known class label only.

Figure 9 shows the clusters that have representative defect
patterns by class among the 71 clusters that were gener-
ated after 10 epochs of iterative learning. The class label
reconstruction results show that the proposed method can
subdivide the same class samples into multiple groups with
different patterns. For example, as shown inFig. 9a, the center
defect class was subdivided into multiple groups accord-
ing to the distribution size of the defect cells at the center.
In addition, Figs. 9b–d reveal that clusters that were con-
sidered to have different patterns were subdivided well for
each class. Using the subdivided cluster label information
obtained through the proposedmethod enables more detailed
abnormal process detection compared to the existing method
of using only class label information, and this can improve
the yield.

Prediction performance comparison results

To verify the performance of the proposed method when the
class label has uncertainty, we compared the results with the
results of the following representative classification models
based on accuracy: CNN, K-nearest neighborhood (KNN)
(Altman 1992), decision tree (Quinlan 1999), random for-
est (Ho 1998), and naive Bayes (Domingos and Pazzani
1997). For the CNN structure, we applied the SoftMax out-
put layer, which has the same structure as that of the base
model of the Siamese network. For the other classification
models,we applied the defaultmodel parameters provided by
the scikit-learn library of the Python programming language
(Pedregosa et al. 2011).

Table 3 shows the accuracies of the proposed method
and the comparison classification models for each corrup-
tion level when the ratio of data with corrupted class labels
was set from 0 to 40%. First, the shallow machine learn-
ing models, except the CNN, were found to be inappropriate
forWBMclassification because their accuracies were clearly
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Fig. 7 2-Dimensional visualization of the clustering results for the corrupted training dataset

Fig. 8 New class generation after the tenth epoch of the class label reconstruction

low for every corruption level. The proposed method showed
an accuracy that was only 1% higher than that of the CNN in
corruption-free situations. However, as the corruption level
increased, the difference between the proposed method and
CNN increased, and the difference increased to 7.8% at a
30% corruption level. The proposed method can classify
unknown classes, unlike other models; thus, there is a signif-
icant difference in accuracy. This difference in classification
performance indicates that when the class label has uncer-
tainty, the class label reconstruction of the proposed method

is effective. However, when the uncertainty is large enough
that the corruption level is 40%, the performance difference
between the compared models is not large. This suggests that
the class label reconstruction works well only to a certain
level of uncertainty.

Unknown sample detection results

In addition, we verified whether the proposed method can
determine unknown class samples well. We designed three
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Fig. 9 Segmentation results derived with the proposed method

Table 3 Performance comparison results of the proposed method and
benchmarks of WBM classification with different corruption ratios

Method Corruption ratio

0% 10% 20% 30% 40%

Proposed 91.2 89.6 83.7 75.6 64.2

CNN 90.2 84.7 80.2 67.8 63.3

KNN 74.4 72.6 68.7 65.0 58.8

Decision tree 62.7 62.3 61.6 61.3 59.3

Random forest 68.8 65.6 65.3 62.3 61.1

Naive Bayes 62.5 59.5 55.3 59.6 44.6

The best results are shown in bold for each corruption ratio

scenarios, where the unknown class sets are {donut}, {donut,
scratch}, and {donut, scratch, random}. Corruption of the
training dataset class label was not considered in this study.

Table 4 shows the accuracy for each defect pattern accord-
ing to different numbers of unknown classes. Figure 10
shows a visualization of the results of class label recon-
struction in feature space in a situation where there are
three unknown classes in 2D using t-stochastic neighbor
embedding. Figure 10a shows the visualization results of the
training samples, and Figs. 10b and c show the visualization
results of the nine class test samples, including an unknown
class. As shown in Table 4, the proposed method derived a
high accuracy above 85% for known classes used in learn-
ing except for some defect patterns. In the case of the donut
defect, which is one of the unknown classes, the accuracywas
96–97%, until the number of unknown classeswas two. Thus,
the performance did not degrade for known classes as well,
and the accuracy was 87.5% when the number of unknown
classes became three. This high performance is presumably

because the donut defect samples generate clearly differ-
ent features from those of other known classes, as shown in
Fig. 10b.However, the proposedmethod shows lowdetection
ratios of 70.3% and 44.8% for random and scratch defects,
respectively, when three unknown classes exist. This seems
to suggest not only that the two class samples generate fea-
tures similar to the nondefect and edge-local classes but also
that the similarities of features are small between the same
class samples. This result contradicts the formation of fea-
tures, whichwere clearly different from those of other classes
when random and scratch defects were used in training, as
shown in Fig. 7. In other words, for more elaborate and
unknown defect detection, an improvement to distinguish
unknown and known class samples in the embedding space
is required. However, the results showing the possibility of
simultaneous performance of class label reconstruction and
unknown sample detection are encouraging.

Conclusion

This study proposed a class label reconstruction method that
is applicable to situations where the labeling of a WBM is
uncertain. The proposed method is designed to subdivide
one class with multiple patterns into multiple groups to cre-
ate a new class for samples that cannot be classified into
existing classes and to detect unknown class samples. Experi-
ments usingWM-811K, which is a real-worldWBMdataset,
revealed that these functions of the proposed method worked
well. In particular, the findings showed that a new defect
class of a multidefect type could be created. Furthermore,
we showed that the proposed method can maximize the clas-
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Table 4 The class-specific accuracies (%) according to the number of unknown classes

Number of unknown classes Center Edge-ring None Edge-local Local Near-full Random Scratch Donut

1 96.3 98.9 84.1 91.5 86.1 100.0 92.2 62.8 96.3

2 97.5 100.0 76.1 84.5 89.4 100.0 96.7 42.1 97.5

3 97.5 100.0 85.0 88.2 80.9 100.0 70.3 44.8 87.5

The results for unknown classes are shown in bold

Fig. 10 Visualization results on the training dataset and test dataset for the situation where three unknown cases exist

sification accuracy for the test dataset by removing the class
label corruption. This enables the proposed method to per-
form better than the compared classification models when
labeling has uncertainty.

We consider our future research going in two directions.
First, the clustering results of the proposed method divide
the samples of one class into detailed groups, thus enabling
the detection of multiple patterns in the same class. However,
the experimental results showed that the number of clusters
was too large compared to the number of classes. Addition-
ally, there is a possibility that the sample distribution, which
includes the isolated noisy sample and initial clustering result
in the initial embedding space, affects the final class label
reconstruction result. Therefore, methods to more strictly
control the subdivision of patterns and initially isolated noise
should be researched to enable better interpretation of the
clustering results. Second, we showed the possibility of
detecting unknown samples through the proposed method.
However, in the feature space of the Siamese network, some
unknown sampleswere remarkably close to the existing class
area in the feature space. This not only increases the incor-
rect classification ratio for unknown classes but also distorts
the interpretation of the distribution information of unknown
class samples. Therefore, future studies should propose a
method that can detect unknown samples more accurately
by researching an embedding learning method that allows
the unknown samples to be more easily separated from the
existing class area.
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