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Abstract
In industrial production, the characteristics of compressor vibration signal change with the production environment and other
external factors. Therefore, to ensure the effectiveness of the model, the vibration signal prediction model needs to be updated
constantly. Due to the complex structure of Long Short TermMemory (LSTM) network, the LSTMmodel is difficult to adapt
to the scene of online update. Therefore, the update model based on LSTM is difficult to respond quickly to data changes,
which affects the accuracy of the model. To solve this problem, the online learning algorithm is introduced into prediction
model, Error-LSTM (E-LSTM) model is proposed in this paper. The main idea of E-LSTMmodel is to improve the accuracy
and efficiency of the model according to test error of the model. First, the hidden layer neurons of LSTM network are divided
into blocks, and only part of the modules are activated at each time step. The number of modules activated is determined
by test error. Thus, the training speed of the model is accelerated and the efficiency of the model is improved. Second, the
E-LSTM model can adaptively adjust the training method according to the data distribution characteristics, so as to improve
the accuracy of updated model. In experimental part, two types of datasets are used to verify the performance of the proposed
model. LSTMmodel is used for comparative experiments, and the results showed that the updating model based on E-LSTM
is better than that based on LSTM in terms of model accuracy and efficiency.

Keywords Vibration signal predicting · LSTM network · Test error · Model update · Online learning

Introduction

In recent years,machine learning technology has beenwidely
used in various fields because it is based on data and does
not need to build mechanism models. In the field of machine
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learning, machine learning algorithm can be divided into
online learning algorithm and offline learning algorithm
(Ozay et al. 2016). Offline learning is to train the data inde-
pendently and use the trained model to predict the task. Most
of machine learning algorithms studied at present are offline
learning algorithm, which have achieved excellent results in
many classification and regression tasks (Ozay et al. 2016).
However, the following disadvantages of offline machine
algorithm limit its application: (1) the training process of
the model is very inefficient, and the model training costs a
lot of time and space. (2) The training process is not adapt-
ing to big data application scenarios. (3) The model cannot
adapt to the dynamic changing environment, and the trained
model cannot adapt to the change of the external data when
the external data changes.

Compared with offline learning, online learning means
that the model receives training data in sequence (Mao et al.
2017), and the current model is updated with each sample
received. Online learning algorithms do not need all the train-
ing data stored in the computer, but can automatically adjust
the model itself according to the change of data distribution.
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These advantagesmakeonline learningmore suitable for pro-
cessing massive data and timely responding to the dynamic
changes in the external environment. Therefore, the study of
online learning algorithms is very hot in recent years. Caval-
cante et al. (2016) discussed the application of online learning
algorithm in the field of computational finance. In the stock
trading system, trading data is generated in high frequency
and real-time, and users have higher requirements for trading
speed. Therefore, the online learning algorithm is very suit-
able for portfolio research in the financial field to deal with
the problemof online portfolio selection.Malaca et al. (2019)
applied online inspection system based on machine learning
to fabric texture classification in the automotive industry. The
application of machine learning online algorithm improves
the real-time performance of inspection system, thus increas-
ing the economic benefit. Song et al. (2016) proposed a
novel large-scale, context-aware recommender system. The
system relies on a novel online learning algorithm which
learns online the item preferences of users based on their
click behavior. Experimental results show that the proposed
algorithmoutperforms the state-of-the-art algorithms by over
20% in terms of click through rates. He et al. (2011) proposed
a general adaptive online learning framework that is capable
of learning from continuous raw data and using such knowl-
edge to improve future learning and prediction performance.

However, online learning algorithms are rarely used in
industrial production, especially in equipment fault diagno-
sis and prediction. In industrial production, as time goes on,
the state of equipment maybe changes. At this time, if the
previous generated model is adopted, there will be a large
error and affect the accuracy of the model. For example, due
to aging of compressor components or changes of production
environment, the normal operating range of vibration signal
changes. At this time, if the previous generated vibration sig-
nal predictionmodel is used, therewill be a considerable error
or even a state misjudgment (Liu et al. 2019; Carino et al.
2018). Therefore, in this paper, the idea of online learning
is introduced into the compressor vibration signal prediction
model to ensure the accuracy of the model. Vibration signal
predictionhavebeenwidely studied in recent years (Fei 2016;
Liu andYang 2018;Wu and Lei 2019), which belongs to time
series paradigm (Chen et al. 2006). Long Short Term Mem-
ory (LSTM) network (Hochreiter and Schmidhuber 1997)
is the most widely used time series prediction model. LSTM
network can not only deal with long time dependence in time
series data (Gers et al. 2000), but also deal with nonlinear and
non-stationary in vibration signal (Tian et al. 2019). Hence,
LSTM network is used as the basic prediction model in this
paper.

In order to ensure the continuous validity of the model,
the online learning algorithm is introduced into the LSTM

model. The operational efficiency of the model is an impor-
tant index of online learning model. However, complex
structure and too many parameters of LSTM model lead
to high computational cost (Mohamed 2018). Therefore, if
dataset is large, problems such as too long training time and
not fast enough prediction speedmay occur, so that the online
update requirements cannot be met in the model update pro-
cess. In literature (Prabhavalkar et al. 2016), an improved
Recurrent neural network (RNN) compression model based
on low-rank decomposition and linear projection is proposed
to achieve accelerated training, and the loss of precision can
be ignored. Tang proposed a parallel improved LSTM neural
network to predict Large-Scale Computing Systems Work-
load (Tang 2019). This network improves the efficiency of
the model through the parallel mode and the improved error
back propagation method, which makes it perform well in
the large-scale workload prediction. Rizk and Awad (2019)
proposed a Non-iterative training algorithm to reduce the
training time, mainly on feedforward artificial neural net-
works. The experimental results show that the training speed
of this training algorithm is significantly improved compared
with that of the back propagation training algorithm. How-
ever, the current literatures only consider the training speed
of LSTMmodel in the update process, and does not consider
the model accuracy. To solve this problem, online learning
algorithm is introduced into LSTM model, and an update
model based on Error-LSTM (E-LSTM) is proposed in this
paper. The main idea of E-LSTM model is to improve the
accuracy and efficiency of the model according to the test
error of the model. The contribution of this paper is mainly
in three respects.

(1) Online learning algorithm is introduced into vibration
signal prediction model to solve the problem of model
adaptability when the data distribution changes.

(2) Hidden layer neurons are divided into blocks, and only
part of neurons is calculated at each time, so as to solve
the efficiency problem of LSTM model in update pro-
cess.

(3) Test error is used to determine the number of neurons
updated at each time. The greater the error, the more
neurons will be activated, which ensures the accuracy
of the model.

The organization of this paper is as follows. “Methodol-
ogy” section describes the proposed algorithm and relevant
theoretical knowledge in detail. Then, the validity of the pro-
posed algorithm is verified through different experiments and
the experimental results are analyzed in detail in “Experi-
ments and analysis” section. Finally, the conclusion of the
paper is summarized in “Conclusion” section.
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Fig. 1 The structure of LSTM network

Methodology

Long Short TermMemory (LSTM)

Compressor vibration signals is time series data and has a
strong nonlinear and non-stationary (Tian et al. 2019). LSTM
network is widely used in dealing with nonlinear time series
problems. LSTM network is proposed by Hochreiter and
Schmidhuber (1997) as a special kind of the recurrent neural
networks (RNNs). LSTM network can alleviate the problem
of gradient vanishing encountered by RNN when solving
long time dependence tasks (Hochreiter and Schmidhuber
1997; Gers et al. 2000). Therefore, LSTM network is used as
the based forecastingmodel of vibration signal. The structure
of LSTM network is shown in Fig. 1, such a memory block
consists of a cell, an input gate, an output gate, and a forget
gate. The calculation formula of each gate and the update of
cell state can be expressed as follows:

ft � σ (w f [ht−1, xt ] + b f ) (1)

it � σ (wi [ht−1, xt ] + bi ) (2)

c̃t � tanh(wc[ht−1, xt ] + bc) (3)

ot � σ (wo[ht−1, xt ] + bo) (4)

ct � ft � ct−1 + it � c̃t (5)

ht � ot � tanh(ct ) (6)

where it , f t , ot , ct and ht are outputs of input gate, forget gate,
output gate, cell and memory block at time step t. xt is input
vector of memory block at time step t. ht−1 is output vector
of memory block at time step t − 1. c̃t denotes candidate
information of input gate. σ and tanh denote activation func-
tion. � denotes the dot product of the vectors. Additionally,
wf , wi, wc and wo are the weight to be learned; bf , bi, bc and
bo are the corresponding bias vectors.

As can be seen from Fig. 1, to achieve better results than
RNN model, LSTM model need to sets more parameters.
Meanwhile, the LSTM model is slower than the ordinary
RNN model in training, which makes it difficult to adapt to
the application scenario of online updating (Mohamed 2018;
Rizk and Awad 2019). To alleviate the issue, Error-LSTM
model is proposed which speeds up the training speed of
LSTM model and improves its model accuracy in the updat-
ing process.

Updatemodel based on Error-LSTM

In industrial production, the state of compressor will change
with the aging of equipment components, which will lead to
changes in the characteristics of vibration signals collected
(Ye and Dai 2018). Hence, to ensure the effectiveness of
the model, the model needs to be constantly updated. In
order to meet the demand of online updating, the predic-
tion model needs to have higher computational efficiency.
Due to the complex structure of LSTM model, it is difficult
to adapt to the scene of online update. Therefore, E-LSTM
model is proposed to improve the efficiency and accuracy
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Fig. 2 The framework of updating model based on Error-LSTM

Fig. 3 Calculation of the hidden
layer output gate

of the model. The framework of updating model based on
Error-LSTM is demonstrated in Fig. 2. The main idea of this
model is simply to improve the performance of the model
according to the test error. Next, we will show in detail
how E-LSTM improves the efficiency and accuracy of the
model.

Improvement of model efficiency

E-LSTM like LSTM, contains input layer, hidden layer and
output layer. There are forward connections from the input to
hidden layer, and from the hidden to output layer. However,
unlikeLSTM,E-LSTMhidden layer neurons are divided into
g modules of size k (If the number of hidden layer nodes is
m, then m � k * g). To speed up the training of the model,
only part of the module is executed at each time step, and the
other modules retain their output values from the previous

time step. Suppose two modules are activated at time step t,
calculation of the hidden layer output gate is illustrated in
Fig. 3.

The backward pass of the error propagation is similar to
LSTMaswell. Theonlydifference is that the error propagates
only frommodules thatwere executed at time step t. The error
of non-activated modules gets copied back in time (similarly
to copying the activations of nodes not activated at the time
step t during the corresponding forward pass), where it is
added to the back-propagated error.

Thenumber ofmodules activated at each time step is deter-
mined by the test error. The basic idea is that if the model
generated of the previous time period performs well on the
dataset of this time period, it indicates that the dataset of
this time period is similar to the dataset of the previous time
period. Therefore, when the model is updated during this
time period, the number of modules activated can be corre-

123



Journal of Intelligent Manufacturing (2021) 32:37–49 41

spondingly reduced, and vice versa. For clearer expression,
let’s take the update process from time period T1 to T2 as an
example, the algorithm process is described as follows:

It should be noted that since there was no test error in
training model M1, we used the mode in which all neurons
were activated to train the modelM1. It is important to note
that when calculating the number of updatemodules, we con-
sider the error block series Err_mean rather than the single
error series Err. This is because if there are abnormal points
in the data, the error of the model at the abnormal point will
be large. At this time, if only the error at the current moment
is considered, the number of updated modules will be more,
which means that the model will focus on training the abnor-
mal points. It is obviously wrong. However, if the average
error of L time step is considered (the size of L will be tuned
in the experimental section), the influence of abnormal points
will beweakened, so as to improve the accuracy of themodel.

Improvement of model accuracy

As we know, when the data distribution changes, it makes
more sense to update the model (Razavi-Far et al. 2019).
Figure 4 shows the vibration signal data of compressor
running for a long time. The data is divided into three sub-
datasets, which represent different distribution conditions. If
the model is not updated and the model trained in dataset1
is used as the final vibration signal prediction model, the
model may perform poorly in dataset2 and dataset3. The
update model based on LSTM adopts the incremental learn-

ing method to continuously update the model based on new
data. However, the update model based on LSTM does not
consider the influence of data distribution onmodel accuracy,
which leads to low model accuracy when data distribution

changes. Update model based on E-LSTM adopts different
update methods for data with different distribution accord-
ing to test error, so as to improve the accuracy of the updated
model.

To explain the improvement in model accuracy of the
update model based on E-LSTM, dataset2 is divided into
two parts: dataset21 and dataset22, as shown in Fig. 5. It can
be seen from Fig. 5 that dataset21 has a similar distribution
with dataset1, while dataset22 has a similar distribution with

Fig. 4 Data distribution of the entire dataset
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Fig. 5 Approximate distribution of dataset2

dataset3. The following steps explain why the updatedmodel
based on E-LSTM performs better than the updated model
based on LSTM.

Step 1 LSTM model is used to train model M1 based on
dataset1.
Step 2 Test modelM1 is based on dataset21 and dataset22,
and test error E21 and E22 are obtained.
Step 3 Since dataset21 and dataset1 have similar distribu-
tion, theoretically modelM1 performs better in dataset21,
so E21 is less than E22.
Step 4Hence, the number of update modules for dataset22
is greater than for dataset21. In the training process of
E-LSTM model, dataset22 is mainly trained and finally
model M2 is obtained. In addition, LSTM model is used
to train model M2′ based on dataset2.
Step 5 Model M2 perform better on dataset3 than model
M2′ for two reasons: (1) Dataset22 and dataset3 have
similar distribution, and model M2 focuses on training
dataset22. (2) More importantly, model M2 pays little
attention to dataset21 which is different from dataset3,
which reduces the interference of data with different dis-
tribution to the model. Therefore, the update model based
on E-LSTM can quickly adapt to the changes of data, so
as to avoid large errors.

In “Methodology” section, the proposedmodel and related
theories are introduced in detail. First, because of the supe-
riority of LSTM model in dealing with time series, LSTM
model is adopted as the basic model to forecasting vibra-
tion signal. Second, due to the LSTM model is not suitable
for online update scenarios, E-SLTM model is proposed to
improve the performance of model. Finally, it is proved
theoretically why E-LSTM can improve the accuracy and
efficiency of the model. In next section, experiments will be
conducted to verify effectiveness of the proposed model.

Experiments and analysis

In this section, two different datasets are used to verify the
superiority of the proposed model. First, we construct a set
of test function with changing tendency to verify the validity
of the model. In addition, to verify the application of the
proposed model in industrial production, the vibration signal
of the compressor is used to test the model. Experimental
data were collected from a reciprocating compressor on the
oil production platform in Bohai, China. The speed sensor is
fixed on thewall of themainmotor of the compressor, and the
sampling interval is 1 min. Three commonly used evaluation
indices are employed to evaluate the performance of the E-
LSTM model. They are mean absolute error (MAE), root
mean square error (RMSE) and mean absolute percentage
error (MAPE) that defined as follow:

MAE � 1

N

N∑

i�1

|predictedi − observedi | (7)

RMSE �
√√√√ 1

N

N∑

i�1

(predictedi − observedi )2 (8)

MAPE � 1

N

N∑

i�1

∣∣∣∣
predictedi − observedi

observedi

∣∣∣∣ × 100% (9)

where predictedi and observedi denote the predicted value
and observed value of the i sample respectively. N denotes
sample size. Besides, in order to clearer verify the superiority
of the proposed model, Promoting Percentages of the MAE
(PMAE), Promoting Percentages of the RMSE (PRMSE),
Promoting Percentages of the MAPE (PMAPE) and Pro-
moting percentages of the Time (PTime) are executed in this
paper. The definitions of these evaluation indexes are demon-
strated as follows:

PMAE � (MAE1 − MAE2)/MAE1 (10)

PRMSE � (RMSE1 − RMSE2)/RMSE1 (11)

PMAPE � (MAPE1 − MAPE2)/MAPE1 (12)

PT ime � (T ime1 − T ime2)/T ime1 (13)

It should be noted that all experiments run in the Python
3.6 environment on 2.80 GHz PC with process i5-7440HQ
and 16GRAM. Considering the effect of randomness on per-
formance, all experiments in this paper are run independently
for 10 times, and then averaged to get the final result.
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Fig. 6 The dataset of test function

Test function dataset

In this section, we generated a set of test function dataset with
a trend change to test the proposed model. The test function
is defined as follow:

h1(t) � 4 sin 40π t (14)

h2(t) � (1 + 0.5 sin 5π t) cos(250π t + 20π t2) (15)

f1(t) � h1(t) + h2(t) t ∈ [0, 1] (16)

f2(t) � h1(t) + h2(t) + 6t t ∈ [0, 1] (17)

f3(t) � h1(t) + h2(t) + 6 t ∈ [0, 1] (18)

Each function of f1(t), f2(t) and f3(t) was sampled 2000
times, and then the three functions were spliced together to
get the final test function, as shown in Fig. 6. We first tune
hyper parameters of model and then compare it with other
forecasting models.

Hyper parameter tuning

There are many hyper parameters in E-LSTM model, which
will greatly affect the prediction performance of the model.
Therefore, to ensure the accuracy of the model, we first fine-
tune the parameters. Since the trial and error method has the
advantages of wide parameter search range and fast search
speed (Elsayed et al. 2015), we adopt the trial and error
method for parameter tuning. Themain parameters that affect
the accuracy of model include the number of hidden layers,
the number of hidden layer neurons, the window size and the
size of error blocks. For these parameters, different values
are set based on some prior knowledge, as shown in Table 1.

Table 1 Setting of experimental parameters

Parameters Parameter values

Number of hidden layers 1 2 5 10 20

Number of neurons 20 60 100 200 –

Window size 500 1000 2000 – –

Error block size 5 10 20 50 –

A. The number of hidden layers

The number of hidden layers of neural network is an
important parameter that affects the performance of the
model. Increasing the number of hidden layers can improve
the accuracy of the model but also increase the complexity
of the model. In this experiment, to verify the effect of differ-
ent number of hidden layers on the model performance, the
number of hidden layers is set as 1, 2, 5, 10 and 20. The other
three key parameters number of neurons, window size and
error block size are 60, 500 and 5. The experiment results are
shown in Table 2.

As can be seen from Table 2, increasing the number of
hidden layers (2, 5 layers) cannot significantly improve the
accuracy of the model, and the calculation time of the model
increases significantly. If the number of hidden layers contin-
ues to increase to 10 and 20 layers, the accuracy of the model
declines instead of improving, because the complexity of the
model is so high that the overfitting problem arises. At the
same time, in the process of model update, the efficiency of
the model is an important index, so the number of hidden
layers is set as 1.

B. The number of hidden layer neurons

The number of hidden layer neurons is an important
parameters of neural network model. Too few neurons will
cause the model to fail to fully learn all the features in data.
However, the excessive number of neurons not only reduce
the efficiency of model, but also may lead to overfitting prob-
lem (Henriquez and Ruz 2018). In this experiment, to verify
the effect of different number of neurons on the model per-
formance, the number of neurons is set as 20, 60, 100 and
200. The other three key parameters number of hidden lay-
ers, window size and error block size are 1, 500 and 5. The
experiment results are shown in Table 3, where the best per-
formance is highlighted in bold.

It can be seen from Table 3 that the model performs best
when the number of hidden layer neurons is 60. As the num-
ber of neurons continues to increase to 100 or even 200,
the performance of model declines instead of getting better,
which indicates that the model may cause overfitting prob-
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Table 2 The effect of number of
hidden layers on the model
performance

Number of hidden layers MAE (mm/s) RMSE (mm/s) MAPE (%) Time (s)

1 0.1197 0.1456 8.6992 6.3530

2 0.0862 0.1146 11.622 12.014

5 0.0762 0.1066 9.3621 26.222

10 2.6153 2.9754 233.48 60.361

20 2.6153 2.9753 233.24 129.35

Table 3 The effect of number of neurons on the model performance

Number of neurons MAE (mm/s) RMSE (mm/s) MAPE (%)

20 0.3189 0.1656 9.6612

60 0.1409 0.0350 2.6313

100 0.1963 0.0640 3.3735

200 0.2023 0.0709 4.5591

Table 4 The effect of window size on the model performance

Window size MAE (mm/s) RMSE (mm/s) MAPE (%)

500 0.2380 0.0921 4.9900

1000 0.0455 0.0042 2.4811

2000 0.0588 0.0070 11.3571

lem. Therefore, the number of hidden layer neurons is set to
60 in subsequent experiments.

C. The window size

In the process of model updating, the proper of selection
of window size is significant to the improvement of model
accuracy. The window size is too small, resulting in insuf-
ficient sample size and insufficient model training. On the
contrary, too large window size leads to information redun-
dancy during model training, which affects the accuracy of
the model (Youn et al. 2018). In this experiment, to evaluate
the effect of window size on themodel performance, the win-
dow size is set as 500, 1000 and 2000. The number of hidden
layers is 1, the number of neurons is 60 and the error block
size is still 5. The experiment results are shown in Table 4.

It can be seen from Table 4 that the model error is the
smallest when the window size is 1000. Hence, a window
size of 1000 is an ideal value for this dataset.

D. The size of error blocks

Similarly, to evaluate the effect of error blocks size on
the model performance, the error blocks size is set as 5, 10,
20 and 50. The number of hidden layers is 1, the number of
neurons is 60 and the window size is 1000. The experiment
results are shown in Table 5.

Table 5 The effect of error blocks size on the model performance

Error blocks size MAE (mm/s) RMSE (mm/s) MAPE (%)

5 0.0693 0.0088 1.6250

10 0.0658 0.0079 4.4054

20 0.0630 0.0080 3.0983

50 0.0680 0.0082 4.0015

Fig. 7 Learning curve for E-LSTM model

Table 6 The parameters of models

Parameters Values

Number of hidden neurons 60

Number of modules (for E-LSTM) 4

Window size 1000

Error blocks size (for E-LSTM) 20

Batch size 256

Learning rate 0.01

Iteration 100

Optimizer adam

As can be seen from Table 5, the model performs best
when error block size is 20. In the other words, information
at current time step ismost relevant to information at previous
20 times step. As the error block size continues to increase
to 50, the performance of model declines, which indicates
that the current time step information will be interfered if the
associated information is too long.
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Fig. 8 The forecasting results of different models on test function dataset a RMSE; bMAE; c MAPE; d time

Table 7 The promoting percentages of different models on test function
dataset

Data block PRMSE (%) PMAE (%) PMAPE (%) PTime (%)

0 5.0612 8.4556 94.3037 21.8112

1 17.4217 10.9704 35.7535 20.6479

2 31.5793 31.9168 46.5334 16.4906

3 0.7201 2.0238 15.9967 22.9710

4 4.1023 − 1.4028 − 1.2051 21.6143

Average (%) 11.7769 10.3928 38.2765 20.7071

Based on the above experimental results, after tuning the
key parameters of model, the number of hidden layers is 1,
the number of neurons is 60, the window size is 1000 and
the error blocks size is 20. It should be pointed out that for a

new dataset, it is necessary to use the trial and error method
to search for parameters again. In the following section, we
will verify the validity of E-LSTM model based on these
optimized parameters.

Checking overfitting for the model

In order to prevent the model may fit well in the training
dataset, but cannot be generalized to new examples (Bouk-
tif et al. 2018). It is necessary to plot learning curve that
shows the model performance on training and testing data.
RMSE for both the training and testing datasets for optimized
E-LSTM model (i.e., after hyper parameter optimization)
decrease with the increase of iteration times and converge
at similar values, which shows that our model is not overfit-
ting, as shown in Fig. 7.
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Fig. 9 The dataset of vibration signal

Comparison and analysis

In this experiment, we will verify the superiority of E-LSTM
model in algorithm efficiency and model accuracy. LSTM
model is used for comparison. For a fair comparison, the
parameters of models are the same as shown in Table 6.

Since the dataset has 6000 data and the window size is
1000, the dataset can be divided into 6 data blocks. The pur-
pose of the experiment is to compare the test error and the
training time of different models on each data block. Consid-
ering that the first data block has no test error, we only study
the performance of the model on the remaining 5 data blocks
(labeled 0–4). The forecasting result of different models is
shown in Fig. 8 and Table 7. From Fig. 8 and Table 7, the
following conclusions can be drawn:

Fig. 10 The forecasting results of different models on vibration signal dataset a RMSE; bMAE; c MAPE; d time
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(1) It can be seen from Fig. 8a–c that three error indicators
RMSE, MAE and MAPE have similar trends. In almost
all data blocks, E-LSTM model has smaller errors than
LSTM model. When the data distribution changes, E-
LSTMmodel can quickly adapt to this change, so as not
to produce large errors. However, LSTMmodel does not
consider the influence of data distribution, which leads
to large errors. From Table 7, the RMSE, MAE, MAPE
average promoting percentages of the LSTM model
by the E-LSTM model are 11.78%, 10.39%, 38.28%,
respectively.

(2) It can be seen from Fig. 8d that E-LSTM model has a
faster training speed than LSTM model.
From Table 7, the Time average promoting percentages
of the LSTM model by the E-LSTM model is 20.71%.

(3) Compared with LSTM model, E-LSTM model has
obvious improvements in both model accuracy and
efficiency, which indicates that the proposed model is
effective.

The data block corresponds to the data block in Fig. 8.

Vibration signal dataset

To further verify the application of the proposed model in
actual production scenarios. In this section, vibration signal
generatedby compressor is used to test the performanceof the
model. In order to better verify the performance of themodel,
the dataset with obvious change are selected. As is shown in
Fig. 9. The dataset contains 30,000 data and sampling interval
is 1 min.

Similarly, the four parameters the number of hidden lay-
ers, the number of hidden layer neurons, window size and
error block size are respectively tuned. Due to limited space,
the tuning process is in “Appendix”. Finally, the number of
hidden layers is 1, the number of hidden layer neurons is 60,
the window size is 1000 and the error blocks size is 20. We
verify the performance of the E-LSTM model by comparing
it with the LSTM model. Similarly, considering that the first
data block has no test error, we only study the performance
of the model on the remaining 29 data blocks (labeled 0–28).
The forecasting result of different models is shown in Fig. 10
and Table 8.

The following conclusions can be drawn from Fig. 10 and
Table 8:

(1) It can be seen from Fig. 10a–c that three error indicators
RMSE, MAE and MAPE have similar trends. In almost
all data blocks, E-LSTM model has smaller errors than
LSTM model. From Table 8, the RMSE, MAE, MAPE
average promoting percentages of the LSTM model
by the E-LSTM model are 16.26%, 16.12%, 16.25%,
respectively.

Table 8 The promoting percentages of different models on vibration
signal dataset

Data block PRMSE (%) PMAE (%) PMAPE (%) PTime (%)

0 18.1022 17.4560 17.5061 0.0414

1 12.3281 12.2781 12.1838 10.7870

2 12.5256 11.4455 11.2222 − 0.8997

3 15.4784 27.8617 28.7010 2.0308

4 − 1.8485 − 5.1545 − 3.3587 4.9045

5 14.2124 14.7331 14.2960 2.6140

6 17.3441 17.1429 16.9138 5.7607

7 5.5278 5.2044 4.8024 − 0.2152

8 38.8382 41.8928 41.7395 9.4970

9 37.5743 38.9434 38.8093 14.9506

10 16.0256 15.4096 15.6611 15.5261

11 14.8479 12.9633 12.8547 18.4984

11 20.2022 19.9564 19.6563 27.1014

13 18.1322 16.6123 16.8345 10.0356

14 14.9080 15.7561 15.9037 15.1329

15 5.7633 5.8031 5.4720 11.4853

16 14.9865 14.9789 15.3314 2.1941

17 18.2557 13.5779 13.1227 28.1403

18 1.8295 0.1456 − 0.1497 7.6955

19 14.8284 14.5797 14.7582 20.7034

20 10.7783 10.5079 10.4542 0.7270

21 1.2924 − 0.1711 0.2090 9.3865

22 14.7075 12.2206 12.5293 8.9462

23 22.3074 19.3715 19.3192 12.0720

24 27.6731 29.4214 30.1427 2.3563

25 24.1114 25.5974 25.8030 2.8431

26 19.9788 18.9470 19.4344 − 4.4197

27 20.4637 21.6379 22.4896 − 3.0815

28 20.3948 18.4627 18.6411 2.3811

Average (%) 16.2611 16.1235 16.2512 8.1792

(2) It can be seen from Fig. 10d that E-LSTM model has
a faster training speed than LSTM model in most data
blocks. In some data blocks with large test error, duo to
the large number of updated modules, the training time
of E-LSTMmodel is similar to LSTMmodel. However,
for whole dataset, E-LSTM model still has advantages
over LSTM model in model efficiency. From Table 8,
the Time average promoting percentages of the LSTM
model by the E-LSTM model is 8.18%.

In this section, we use two types of datasets to verify the
performance of the model. Experimental results show that
E-LSTM model has better performance than LSTM model
in terms of model efficiency and accuracy. Therefore, E-
LSTMmodel can ensure that the accuracy of themodel is not
affected when the data distribution changes. Furthermore, E-
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LSTM model provides a new solution for industrial big data
mining.

Conclusion

In industrial big data, the equipment will accumulate a large
amount of data in a certain period of time. Meanwhile, with
the change of time, the distribution of datawill change, result-
ing in that the previously generated model does not meet the
current moment. Therefore, the model needs to be constantly
updated to meet the current data distribution. To solve the
problem, the online learning algorithm is introduced into the
prediction model, a new vibration signal prediction model
Error-LSTM (E-LSTM) is proposed in this paper. Based on
LSTM model, E-LSTM model improves the accuracy and
efficiency of the model. First, the hidden layer neurons are
divided into blocks, and only part of the modules are counted
at each moment. Thus, the training speed of the model is
accelerated and the efficiency of the model is improved. Sec-
ond, for the different data distribution in dataset, E-LSTM
model can adopt different training methods according to the
test error. In other words, E-LSTMmodel can focus on train-
ing data with similar distribution, and reduce the interference
of data with different distribution, so as to improve the accu-
racy of the model.

In the experimental part, we used two different datasets
to test the model. LSTM model is compared with E-LSTM
model. In order to better demonstrate the superiority of the
E-LSTMmodel, the improvement effect of themodel is quan-
tified. In summary, compared with LSTM model, E-LSTM
model has advantages in both model accuracy and efficiency,
which indicates that the proposed model is effective.

In conclusion, this paper is proposed against the back-
ground that the accuracy of vibration signal predictionmodel
decreases when the data distribution changes. Therefore,
the application scenario of E-LSTM model is to predict the
time series data containing the change of data distribution.
However, if the time series data runs smoothly and the data
distribution does not change, the accuracy of E-LSTMmodel
is not necessarily higher than that of LSTM model, but the
efficiency is still higher than that of LSTM model. In addi-
tion, the research object of this paper is the field of industrial
big data. In the future, the idea of E-LSTMmodel can also be
applied to other fields, such as financial big data and medical
big data.
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Appendix

See Tables 9, 10, 11 and 12.

Table 9 The effect of number of hidden layers on the model perfor-
mance

Number of
hidden layers

MAE
(mm/s)

RMSE
(mm/s)

MAPE (%) Time (s)

1 0.2079 0.2667 2.6185 122.2584

2 0.2178 0.2805 2.7377 196.7627

5 0.2360 0.3041 2.9516 446.821

10 0.2574 0.3215 3.2813 942.013

20 0.3285 0.3882 4.1932 2105.93

Table 10 The effect of number of neurons on the model performance

Number of neurons MAE (mm/s) RMSE (mm/s) MAPE (%)

20 0.2923 0.1440 3.6839

60 0.2672 0.1255 3.3413

100 0.2659 0.1276 3.3670

200 0.2743 0.1314 3.4556

Table 11 The effect of window size on the model performance

Window size MAE (mm/s) RMSE (mm/s) MAPE (%)

500 0.2849 0.1196 3.6441

1000 0.2361 0.1080 2.9761

2000 0.2770 0.1337 3.4890

5000 0.3254 0.1697 4.1020

Table 12 The effect of error blocks size on the model performance

Error blocks size MAE (mm/s) RMSE (mm/s) MAPE (%)

5 0.2787 0.1356 3.5088

10 0.2750 0.1326 3.4603

20 0.2721 0.1288 3.4239

50 0.2751 0.1323 3.4615
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