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Abstract
Surrogatemodels have beenwidely studied for optimization tasks in the domain of engineering design. However, the expensive
and time-consuming simulation cycles needed for complex products always result in limited simulation data, which brings
a challenge for building high accuracy surrogate models because of the incomplete information contained in the limited
simulation data. Therefore, a method that builds a surrogate model and conducts design optimization by integrating limited
simulation data and engineering knowledge through Bayesian optimization (BO-DK4DO) is presented. In this method, the
shape engineering knowledge is considered and used as derivative information which is integrated with the limited simulation
data with a Gaussian process (GP). Then the GP is updated sequentially by sampling new simulation data and the optimal
design solutions are found by maximizing the GP. The aim of BO-DK4DO is to significantly reduce the required number of
computer simulations for finding optimal design solutions. The BO-DK4DO is verified by using benchmark functions and an
engineering design problem: hot rod rolling. In all scenarios, the BO-DK4DO shows faster convergence rate than the general
Bayesian optimization without integrating engineering knowledge, which means the required amount of data is decreased.

Keywords Bayesian optimization · Limited simulation data · Engineering knowledge · Surrogate model ·Design optimization

Introduction

Design optimization is very important for complex product
design process, which allows designers to locate optimal
solutions within design space. Recently, the utilization of
optimization has increased dramatically in product design.
The nature of complex products includes complex struc-
ture, intensive technology, long development cycle, etc. The
design proscess involves the integration of multidisciplinary
knowledge and the coordination of multiple professionals,
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which makes the computer simulations of complex prod-
ucts are extremely time-consuming and the optimizations are
quite difficult. Optimization in design has the following char-
acteristics (Forrester et al. 2008; Jones et al. 1998; Shahriari
et al. 2016): High-dimensional, Black-box and Expensive
in terms of computer simulations (HBE). These character-
istics lead to a situation where a huge design space must
be explored, which means that designers must expend con-
siderable time and cost for computer simulations to find an
optimal design solution.

Most engineering designs require a large number of
experiments and/or computer simulations to evaluate design
solutions (Liu et al. 2016; Sahnoun et al. 2016).A single com-
puter simulation of complex product can take many hours,
days, or even months to complete. One of the effective ways
to solve this issue is to build a surrogate model to replace
the computer simulations, and then use this to obtain an
optimal solution. A surrogate model is a low-cost mathe-
matical model used to replace the time-consuming computer
simulation (Vidal and Archer 2016). Surrogate models have
been used for tasks such as optimization, design space explo-
ration, and sensitivity analysis (Gorissen and Dhaene 2010)
due to their low computational expense. When enough sim-
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ulation data are available, surrogate models can be used
to support designers in finding an optimal solution since
building a high-accuracy surrogate model is easy. However,
when only limited simulation data are available, building a
high-accuracy surrogate model is quite difficult. Therefore,
developing new method for building surrogate models and
conductingoptimizationwith limited simulationdata is a crit-
ical and challenging research problem which requires more
research focus.

Integrating engineering knowledge and limited simula-
tion data provides a new way to build a surrogate model
and conducting design optimization when only limited sim-
ulation data are available. Existing hybrid methods try to
extract synergistic rules from domain theory (Monisha and
Peter 2017; Towell and Shavlik 1994) or knowledge from
historical datasets (Yu et al. 2008; Zhang et al. 2019) to opti-
mize the settings of the neural network structure. Although
thesemethods can be used to build surrogatemodels and inte-
grate the extra information, the performances of the surrogate
model are heavily dependent on the algorithmsused to extract
knowledge. For integrating synergistic rules, it also replies
on rules-to-network algorithms. Besides, these methods can-
not integrate the mapping knowledge directly that designers
hold, which contains useful information that is not contained
in the limited simulation data. In this work, we develop a
method which is capable of building surrogate model and
conducting design optimization synchronously by integrat-
ing limited simulation data and shape knowledge, which is a
specific kind of engineering knowledge. Our method realizes
the direct integration of the engineering knowledge owned
by designers. Besides, we use GP as a surrogate model which
requires less data to train comparing with neural networks.

The rest of the paper is structured as follows. In section 2
there is an evaluation of some related research works and
the research gaps are also pointed out. In section three the
details of the proposed method are described. In section four
several experiments are conducted to verify this method. In
section five the empirical results are analyzed and discussed
while in section six there is a summary of this work and some
contributions are presented.

Related work

Optimization in engineering design

The use of optimization techniques in engineering design
has been on the rise steadily as the computational capa-
bilities of the computers are increasing (Liu et al. 2018).
Optimization has a wide range of applications in engineer-
ing design, such as structural design [e.g., pressure vessel
design (Fatemeh et al. 2019), welded beam design (Du et al.
2018)], shape optimization (Daróczy et al. 2018; Fengjie

andLahmer 2018), topology optimization (e.g., airfoil (Bhat-
tacharyya et al. 2019), fluid (Yoshimura et al. 2017), inverse
optimization [Johnson–Cook model (Ning et al. 2018)], pro-
cessing planning (Pratap et al. 2018; Zhang et al. 2018),
product designs (Du et al. 2019), etc. Routine tasks such
as design optimization, sensitivity analysis and design space
exploration usually require thousands or even millions of
simulation evaluations (Sefat et al. 2012). For many engi-
neering design problems, however, a single simulation is
extremely time-consumingwhich is amain obstacle to imple-
ment design optimization.

One way of alleviating this burden is by exploiting surro-
gate models for optimization. Yoshimura et al. (Yoshimura
et al. 2017) proposes a non-gradient-based approach applied
tofluidproblems.This paper uses genetic algorithm for topol-
ogy optimization assisted by the Kriging surrogate model.
Song et al. (Song et al. 2016) conducts a sensitivity analy-
sis and carries out a reliability based design optimization by
taking into account the uncertainties in the TWB configura-
tion. Wang et al. (2017) proposes a novel surrogate-assisted
particle swarm optimization combining uncertainty and per-
formance based criteria for expensive problems.

Among the optimization techniques based on surrogate
models, Bayesian optimization is a state-of-the-art global
optimization method with two attractive advantages. One is
that it can be applied to problems where it is vital to opti-
mize a performance criterion while keeping the number of
evaluations small (Calandra et al. 2016). Another is that it
considers the uncertainty which is ubiquitous in engineering
design in conducting the sampling (updating) process.While
Bayesian optimization is a popular probabilistic approach
when limited data are available, as indicated in Trucano et al.
(2006), the prior surrogate model are often difficult to spec-
ify due to the lack of prior knowledge. Subjectively assigned
prior distributions may yield unstable posterior distributions
(Aughenbaugh and Herrmann 2007), which undermines the
advantage of Bayesian updating. Therefore, our research
focuses on the integration of engineering knowledge and lim-
ited simulation data into the prior surrogatemodel to improve
the accuracy of it. The model itself is refined and its demand
for sampling is further reduced in the updating process,which
is more suitable for limited data problems.

Actually, the performance of surrogate model depends on
two key factors: (1) the type of surrogate models, such as
neural network, Kriging, response surface model and so on,
and (2) the information contained in training data. When
only limited data are available, it’s challenging to build a
high-accurate surrogate model. The following two subsec-
tions summarize the ways of building surrogate models with
limited data from two perspectives: data augmentation and
knowledge integration.
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Building surrogate models by data augmentation

Limited simulation data brings serious challenges for build-
ing surrogate models in the domain of engineering design
(Dougherty et al. 2015). The main difficulty is that informa-
tion contained in limited data is often insufficient. Currently,
two types of methods from artificial intelligent provide ideas
and ways to build surrogate models with limited simulation
data. One such method is data augmentation, and the other
is knowledge integration.

Data augmentation refers to the generation of new data
records based on existing information. It can be implemented
in many ways, for example, interpolation (Amsallem et al.
2009; Zhao et al. 2017), noise injection (Bella et al. 2007;
Fortuna et al. 2009), data sampling (Gorissen and Dhaene
2010), and virtual sample generation (Kang et al. 2019; Li
et al. 2013, 2018a; Tsai and Li 2008). For these methods, vir-
tual samples can also be generated based on prior knowledge
(Li et al. 2003, 2012). Although these methods can improve
accuracy, they also have limitations. For data augmentation,
new errors will inevitably be introduced. Besides, the infor-
mation contained in new data is still similar with existing
data or knowledge.

Building Surrogate Models by Integrating
Knowledge

Knowledge integration is used to add some restrictions to the
model. There are twoways to be addressed separately, includ-
ing regularization and transfer learning (Min et al. 2017).
For the model regularization, only very simple knowledge
can be integrated when defining regularization terms while
with transfer learning it is difficult to interpret and integrate
different data.

The main way is integrating more complex knowledge
into surrogate models. In this way, currently, there are only a
few related studies about integrating engineering knowledge
and limited simulation data in the domain of engineering
design (Kotlowski and Slowinski 2013). Hence, we also
review papers in the domains of artificial intelligence and
machine learning. The existing methods can be classified
from two perspectives: the types of knowledge studied and
the types of models (Gaussian process, neural network) inte-
grating knowledge and data. Different authors use various
designations for knowledge, such as knowledge (Nagarajan
et al. 2018), prior knowledge (Aguirre and Furtado 2007;
Parrado-Hernández et al. 2012), constraints(Wang andWelch
2018;Wang andBerger 2016), hints (Abu-Mostafa 1990; Sill
1998; Sill and Abu-Mostafa 1997) etc.

Gaussian processes and neural networks are the two main
methods for integrating knowledge. There are many works
for integrating knowledge and data using neural networks.
The main mechanism is usually realized by putting con-

straints on the parameters of a neural network. Abu-Mostafa
(1990) propose a method using neural networks to learn
from hints, as expressed by a set of data. Sill (1998) and
Sill and Abu-Mostafa (1997) further develops this work,
and proposes a general method for incorporating monotonic-
ity information into neural networks. Based on this work,
Daniels and Velikova (2010) presents a monotonic neural
network, and Gupta et al. (2018) presented a neural network
with shape constraints. Different from these methods, our
previous work (Hao et al. 2018) proposes the integration of
limited simulation data and engineering knowledge through
an evolutionary neural network.

Another mechanism builds a hybrid learning network
which use both knowledge and data during learning through
connectionist machine learning. Towell and Shavlik (1994)
describes a hybrid learning system knowledge-based artifi-
cial neural networks (KBANN) which uses both synergistic
rules and classified training examples. An extension of
this approach (Shavlik 1994) initializes an RNN by syn-
ergistic knowledge expressed as a Finite State Automaton
(FSA). Hybrid methods have been used in product design.
Monisha and Peter (2017) uses a knowledge based neural
network (KBNN) for designingof triple bandplanar inverted-
F antenna (PIFA). Prior knowledge is used in the form of
trained radial basis function network (RBFN) in addition
with back propagation network (BPN). Yu et al. (2008) cre-
ates a learning-based hybrid method named KBANN-DT,
which combines knowledge-based artificial neural network
(KBANN) and CART decision tree (DT). The KBANN is
applied to realizing the mapping between customer needs
and product specifications which integrates both two knowl-
edge resources, i.e., domain theory and historical database.
Zhang et al. (2019) proposes a knowledge-based artificial
neural network (ANN) to model the relationship between
customer requirement attributes and product service system
(PSS) base types. The initial structure of ANN is defined by
domain knowledgewhich is extracted from the data of histor-
ical configuration instance data sets using a priori algorithm.

Although, it is possible to integrate the data andknowledge
using the neural network, there are limitations. The first is
that these methods require deliberately specifying the struc-
ture of the neural networks and/or the normalization terms,
which is an experience-based process and is also very diffi-
cult. The second is that neural networks requires more data
to train compared with other models. The third limitation is
that it’s very hard to form a universal method for integrating
different kinds of knowledge into neural networks, which
means for different knowledge totally different structure and
normalization terms must be designed.

Gaussian process (GP) is a popular tool for function
estimation which allows a straightforward combination of
function and derivative observations in a prior model. Wu
and Feb (2017) exploited exact derivative values in GPwhich
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are hard to acquire in real-word problems. Some types of
prior knowledge have been successfully incorporated includ-
ing monotonicity (Riihimäki and Vehtari 2010; Wang and
Welch 2018; Wang and Berger 2016), monotonic convex
or concave (Lenk and Choi 2017; Wang and Berger 2016),
unimodality (Andersen et al. 2017; Jauch and Peña 2016;
Li et al. 2018b). The method of Wang and Welch (2018)
is designed for a dominant function which is composed of
functions with monotonicity constraints. Preliminary work
(Riihimäki and Vehtari 2010) also study Gaussian processes
with monotonicity information, which paves the way for
much following research. For unimodality work, unfortu-
nately, (Andersen et al. 2017) has to resort to approximate
inference to compute intractable posterior distributions and
focused on univariate problems to provide proof of concept.
As the dimensions get larger and larger, the reliability of
Jauch and Peña (2016) will be reduced and it eventually fails.
The method proposed by Li et al. (2018b) is only limited for
the problems of producing something with a target value.
However, for many engineering design problems, the per-
formances of products are supposed to be larger or smaller
as possible. Therefore, we can safely conclude that none of
the existing works solves our problem with multiple knowl-
edge including monotonicity, unimodality, multimodal and
any shape that can be decomposed as severalmonotonic inter-
vals, thus the problem remains open.

The above two methods are used for integrating data and
knowledge. However, they are mainly applied to tuning the
hyperparameters of machine learning models and thus rarely
are used to build surrogate models in the domain of engineer-
ing design. In this paper we develop a method for building
surrogate models and conducting design optimization by
integrating shape engineering knowledge and limited sim-
ulation data through Bayesian optimization (BO-DK4DO).

Method

Limited simulation data and engineering knowledge

(1) Limited simulation data

Limited simulation data means that the data are inade-
quate to describe the design space for building an accurate
surrogate model. This data commonly includes design vari-
ables and their correspondingperformances. For the purposes
of this work, a limited simulation dataset has the following
characteristics:

• The amount of data is limited

If a solution and its performances are regarded as a
piece of data, the dataset only contains a few such pairs.

However, there is no predetermined threshold value that
determines whether a dataset is limited simulation data or
not, this depends on the accuracy we want to achieve. For a
1-dimension Lipschitz-continuous function, which satisfies

Eq. (1), the amount of data must reach
(
C/

2ε

)2
to get a

model that has the prediction error ε (Brochu et al. 2010).

|| f (x1) − f (x2)||≤ C||x1 − x2|| (1)

If we have a 1-dimension function andwant to get a model
has prediction error 0.05 (assuming C is 1), then we need 100
data records. From the above analysis, it can be said that all
datasets are limited simulation data to some extent, since we
always require higher accuracy.

• The information is incomplete

A dataset must contain information about the mapping
between design solutions and its performances. If a dataset
contains a substantial number of data records that cover the
entire design space, then it contains almost all information
about the mapping. In contrast, if a dataset contains data
records that only cover a portion of the design space, then it
contains incomplete information about the mapping. When
the amount of data is limited, the information contained
is incomplete. When the amount of data is large, but the
information is repeated, it will also lead to incomplete infor-
mation.

In this work, we assume a zero-mean Gaussian process
prior

p( f |X) � N ( f |0, K (X, X)) (2)

where f is a vector of the real performances of a solution X .
Limited simulation data can be regarded as noisy obser-

vations y of the real values f of the performance because a
simulation model will never accurately model all the details.
The relationships between f and y follows a Gaussian dis-
tribution as shown in Eq. (3).

p( y| f ) � N
(
y| f , σ 2 I

)
(3)

where σ is the variance of noise,I is the identity matrix, and
y � f + ϑ , ϑ ∼ N

(
0, σ 2

)
.

(2) Shape engineering knowledge

Engineering knowledge plays a critical role in building
surrogate models, especially when only limited simulation
data are available. The knowledge is assumed to be correct
in this paper, which is summarized by designers in long-
term working. The definition of shape knowledge in this
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Table 1 The definition of
monotonicity and shape
engineering knowledge

Type Monotonicity Shape

Formula y � a × (x − b)2 + c
x ∈ [A,B]
A > bor B < b

x ∈ [A1,B1] ∪ [A2,B2] . . . ∪ [An,Bn]
(n ≥ 1)
For p (1 ≤ p ≤ n) intervals, x conforms to
monotonicity formula

Description ➀ IF x INCREASEs THEN y INCREASEs
➁ IF x INCREASEs THEN y DECREASEs

➀ IF x INCREASEs THEN y INCREASEs
in the domain A2 and B2; Otherwise, IF x
INCREASEs THEN y DECREASEs

➁ IF x INCREASEs THEN y INCREASEs
in the domain A3 and B3; IF x
INCREASEs THEN y DECREASEs in
the domain A1 and B1

➂ IF x INCREASEs THEN y INCREASEs
in the domain A2 and B2; IF x
INCREASEs THEN y DECREASEs in
the domain A1 and B1

Graph

paper is the combination of monotonicity knowledge, which
is monotonic in one or more piecewise domains. Monotonic-
ity knowledge means that f (x) is monotonically decreasing
or increasing against x over a specific range (Sill 1998).
Table 1 showsmore details about themonotonicity and shape
engineering knowledge in formula, description and graph. In
formula, we can see that monotonicity is a special case of
shape when n � 1 and x conforms to monotonicity formula.
In this paper, knowledge can be described in the form of rule.
All the descriptions of monotonicity knowledge are listed in
Table 1.Due to the diversity of shape engineering knowledge,
we only list some of them.

In our experience we have found that shape engineering
knowledge are more common than other kinds in the domain
of engineering design. Also, it is easy for designers to give
this type of knowledge articulately. Thus, this paper focuses
on shape engineering knowledge.

Framework of BO-DK4DO

BO-DK4DO is used to build high accuracy surrogate models
and find the optimal solution when only limited simulation
data are available by integrating engineering knowledge. The
underlying idea of this method is integration while updating
limited simulation data are modeled by a Gaussian process
and used as prior process,while the shape engineering knowl-
edge by another Gaussian process and uses it as a likelihood
process. To calculate the posterior process, the information
fromboth of the prior process and likelihood process are inte-
grated through Bayes rule. The updating is used to guide the
process of collecting new data points automatically, which

means the posterior process determines where to sample a
new data point. The whole framework is shown in Fig. 1.

As shown in Fig. 1, the following steps are contained in
the proposed method.

Step 1: Modeling limited simulation data by a Gaussian
process;
Step 2: Modeling engineering knowledge by a Gaussian
process;
Step 3: Calculating a posterior Gaussian process using
Bayes Rule;
Step 4: Sampling new data from the posterior Gaussian
process;
Step 5: Run computer simulations to obtain the perfor-
mance of the newly sampled data;
Step 6: If conditions (number of iterations or required
maximum value) are meet, go to Step 7 else go to Step 1
for next iteration;
Step 7: Obtain the optimal value based on the posterior
Gaussian process.

The first three steps are to integrate limited simulation data
and engineering knowledge and they are illustrated in “Inte-
grating knowledge and data (integration)” section. The step
4 is the updating process, and it is illustrated in “Sampling
new data point (updating)” section.

Integrating knowledge and data (integration)

To model engineering knowledge and limited simulation
data, we first assume a zero-mean Gaussian process (prior
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Fig. 1 The general framework of
the proposed method
(BO-DK4DO)

GP) GP(
0, K prior

)
and choose a squared exponential (SE)

function as the covariance function [Eq. (4)].

K prior

(
xi , x j

)
� εe

−||xi−x j ||2
2l2 (4)

where ε controls the output variance. l is length scale which
is a free parameter to control the strength of correlation.

Essentially, in engineering design, data and knowledge
can be regarded as the mapping relationships between design
variables and performances. Therefore, surrogate model is
used to reflect this mapping information. Besides, in engi-
neering design, the obtained data often contain noise and
uncertainty. To deal with uncertainty, Gaussian distribution
is commonly used in engineering background because of
simplicity. AGaussian Process is a collection of randomvari-
ables, any finite number of these random variables have joint
Gaussian distribution (Rasmussen et al. 2006). In complex
engineering design, GP do a better job of accurately repre-
senting the portion of the design space that is of interest to
the engineer (Wang et al. 2005). Therefore, we use Gaussian
process to model data and knowledge in this work. Besides,
the mean of the GP does not influence the learning process,
therefore, we set the mean to 0.

Based on the above assumption, singlemonotonicity engi-
neering knowledge is first integrated into the prior GP.
Because the monotonicity engineering knowledge can be
expressed by partial derivatives easily, we build a joint
Gaussian distribution to model the relationship between the
function values and the partial derivatives using the following
steps.

Step 1: a finite number N of locations X are sampled,
and the observation values and function values are indicated
by y and f respectively. D � [

X, y
]
indicates the limited

simulation data.
All function values f follows Gaussian process (GP) P

( f ) � GP(
f , KX,X

)
and the KX,X can be calculated using

Eq. (4).With this model, the function value f 0 of a new point
x0 can be calculated using Eqs. (5) and (6) based onmarginal
distribution when only X, y are known. However, these two
equations do not contain the information from monotonicity
engineering knowledge.

E
[
f 0

∣∣∣x0, X, y
]

� K
(
x0, X

)(
K (X, X) + σ 2 I

)−1
y (5)

Var
[
f 0

∣∣∣x0, X, y
]

� K
(
x0, x0

)
− K (x0, X)

× (K (X, X) + σ 2 I)−1K
(
X, x0

)

(6)

Step 2: a finite number M of locations, X̄, where the
function values are samples which are known to be mono-
tonic against the dth variable, and the values and signs of the
partial derivatives are indicated by f ′ and m respectively.

To express the monotonicity, the probit likelihood P(
m| f ′) is assumed to follow a distribution as shown in
Eqs. (7) and (8) based on existing works (Riihimäki and
Vehtari 2010).

P
(
m| f ′) �

M∏
i�1

�

(
f ′
i

v

)
(7)
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�(x) � x∫
−∞

N (t |0, 1)dt (8)

where v controls the strictness of the monotonicity engi-
neering knowledge and it was fixed to v � 10−2 in all
experiments;

Step 3: the f and f ′ are also assumed to follow a joint
GP P

(
f , f ′) � GP(

µ j oint , K joint
)
, where

µ j oint �
[

f
f ′

]
, K joint �

[
KX,X K X,X̄
K X̄,X K X̄,X̄

]
(9)

According to Bayes rule, this joint GP can be updated
using Eq. (10) to derive the joint posterior GP when some
observation values y and the signs of partial derivatives m
are obtained.

P
(
f , f ′| y,m) � P

(
y,m| f , f ′)P(

f , f ′)

P( y,m)

� P( y| f )P(
m| f ′)P(

f , f ′)

P( y,m)

� 1

Z
P

(
f , f ′)P( y| f )P(

m| f ′) (10)

where Z is a normalization term, P
(
f , f ′) is the joint Gaus-

siandistribution, P( y| f ) is the observationmodel introduced
in “Limited simulation data and engineering knowledge” sec-
tion [Eq. (3)].

Since P
(
m| f ′) is not aGP,whichmakes the calculation of

the posterior difficult. Therefore, this work adopts an expec-
tation propagation algorithm to calculate the posterior.

The EP algorithm approximates the posterior distribution
in Eq. (10) with

q
(
f , f ′| y,m) � 1

ZEP
P

(
f , f ′|X, X̄

)
P( y| f )

×
M∏
i�1

ti
(
Z̄i , μ̄i , σ̄

2
i

)
(11)

where ti
(
Z̄i , μ̄i , σ̄

2
i

) � Z̄i N ( f ′
i |μ̄i , σ̄

2
i ) are local likelihood

approximations with site parameters Z̄i , μ̄i and σ̄ 2
i . The

posterior is a product of Gaussian distributions, and can be
simplified to

q
(
f , f ′| y,m) � N (

[
X, X̄

]|µ̂, �̂) (12)

The posterior mean is µ̂ � �̂�−1µ and the covariance

�̂ �
(
K−1

joint + �−1
)−1

, where

µ �
[
y
µ̄

]
, � �

[
σ 2 I 0
0 �̄

]
(13)

µ̄ is the vector of sitemeans μ̄i , and �̄ is a diagonal matrix
with site variances σ̄ 2

i on the diagonal.
With the above model, the function value f 0 of a new

point x0 can be calculated by Eq. (14) and (15) based on the
marginal distribution when X, y, X̄,m are given.

E
[
f 0

∣∣∣x0, X, y, X̄,m
]

� K
(
x0,

[
X, X̄

])(
K joint + σ 2 I

)−1
µ

(14)

Var
[
f 0

∣∣x0, X, y, X̄,m
] � K

(
x0, x0

) − K
(
x0,

[
X, X̄

])

(K joint + σ 2 I)−1K
([
X, X̄

]
, x0

)
(15)

With the above methods, monotonicity engineering
knowledge is represented as derivatives signs and can be
integrated with limited simulation data. However, to inte-
grate shape engineering knowledge, two issues should be
addressed further. The first is how to represent shape engi-
neering knowledge while the second is what mathematical
operations can be adopted for integrating this knowledge.
For the first issue, we divided the original domain of shape
engineering knowledge into piecewise domains and in one
or more domains the shape engineering knowledge is mono-
tonic. Based on that, we randomly sample some data points
from the domain where we know the latent function are
monotonic for different variables. Each point is expressed
as [x,+d], where d represents the dth variable and the +/−
indicates the latent function is positive or negative with the
dth variable. For the second issue, we revise Eqs. (7)–(16)
which takes the variables into consideration.

P
(
m| f ′) �

M∏
i�1

�

(
∂ fi
∂xd

1

v

)
(16)

Sampling new data point (updating)

The joint posteriorGP shown inEq. (10) is a surrogatemodel.
With this surrogate model, the value of each point becomes
a Gaussian distribution, and the mean and variance can be
calculated using Eqs. (14) and (15). Therefore, we need to
balance the mean and variance to find the optimal value for
the next iteration. The mean μ indicates the value that the
objective function is expected to be, while variance σ rep-
resents the uncertainty of the value. The value of this point
may fall in the interval (μ − σ ,μ + σ). When looking for
the maximum value, the latent value of a point with a small
mean (Point B in Fig. 2) but a high uncertainty may be larger
than the point (Point A in Fig. 2) with a larger mean but low
uncertainty (Fig. 2). If we only consider the mean and select
A, we will lose the chance of obtaining a higher value by
using a point B.

To address this issue, an acquisition function is adopted
which can balance the mean and variance. The new sam-
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Fig. 2 One dimensional Gaussian process inference of the posterior
mean (blue line) and posterior deviation (half of the height of the gray
envelope). The latent value of point Bmay be higher than point A (Color
figure online)

ple xn+1 can be determined by maximizing the acquisition
function as shown in Eq. (17)

xn+1 � argmax α(x|Dn) (17)

where Dn represent the limited simulation data at the nth
iteration and α indicates the acquisition function. As shown
in Fig. 1, after xn+1 is determined and the simulation data
is obtained, the data will be further added into the limited
simulation data to form a new dataset Dn+1 for the next iter-
ation. Therefore, we find that the acquisition function plays
a very critical role in the updating process. Currently, sev-
eral different acquisition functions are proposed and selected,
such as the probability of improvement (PI) (Kushner 1964),
Expected Improvement (EI) (Calvin et al. 2012; Srinivas et al.
2010), Gaussian process upper confidence bound (GP-UCB)
(Srinivas et al. 2010), Thompson sampling (Russo and Van
Roy 2014) and entropy search (Hennig and Schuler 2012).
Considering the cost and time of objective function evalu-
ation, we would like to make the convergence rate of the
algorithm fast, which means to get close to the optimum as
quickly as possible. Therefore, we use GP-UCB as the acqui-
sition function in this work, Eq. (18).

αn(x) � μn−1(x) +
√

βnσn−1(x) (18)

whereβn denotes a positive trade-off parameter andwasfixed
to 0.1 in this paper. μn−1(x) is the mean and σn−1(x) is the
variance.

This function has been studied extensively in the liter-
ature (Schneider 2015; Smola 2012). It was first proposed
and analyzed by Srinivas et al. (2010) in the noisy set-
ting and extended to the noiseless case by Smola (2012).
Srinivas et al. (2010) found that GP-UCB acquisition func-
tion is currently known to has the fastest convergence rate
for GP global optimization. Srinivas theoretically proved

that (1) the asymptotic property of BO with GP-UCB is

to be no-regret
(
limT→∞ RT

T � 0
)
and (2) the cumulative

regret Rt increases sub-linearly with the growth of T rounds(
RT � ∑T

t�1 rt
)
. This work provides the theatrical founda-

tion why we use this acquisition function.

Experiments with BO-DK4DO

The proposed method is verified by two groups of experi-
ments: including benchmark functions and an engineering
problem.

Benchmark functions

In this paper, six commonly used single-objective bench-
mark functions1 are adopted, and they are (1) Matyas, (2)
Rastrigin, (3) Sphere (5 dimensions), (4) Styblinski-Tang (5
dimensions), (5) Sphere (7 dimensions), (6) Styblinski-Tang
(7 dimensions). These functions are named B1, B2, B3, B4,
B5 and B6 in the following sections, and all these functions
have a maximum value. The limited simulation data is sam-
pled by Latin hypercube sampling from these functions and
the engineering knowledge is obtained by analyzing these
functions, as shown in Table 2. In this table, the optimum is
the extreme value of the corresponding function while sam-
ples are the initial number of data points used to build a
surrogate model.

The proposed method (BO-DK4DO) is compared with
general BO (GBO) which does not integrate engineering
knowledge. Each experiment is run 20 times and all empiri-
cal results are the average value of the 20 runs. The empirical
results are shown in “Benchmark functions” section.

Engineering optimization problem

As an engineering material, steel is very popular in industry.
Thematerial processing process is very complex due tomany
variables and constraints must be considered. To meet the
desired properties, many trials are required to get an optimal
solution, which is an expensive and time-consuming process.
Luckily, designers have accumulated some pieces of shape
knowledge through previous trials. Typically, our method is
useful for dealing with such problem. Figure 3 shows the hot
rod rolling (HRR) process for creating a round rod from a lab
of steel, which forms the input material for automotive steel
gear production. The final properties of steel depend heavily
on the microstructure generated after cooling.

Tensile strength (TS) is a key property of steel, which
indicates the resistance to break under the tensile load. In this

1 https://en.wikipedia.org/wiki/Test_functions_for_optimization.
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Table 2 The benchmark
functions and the engineering
knowledge

Domain Optimum Samples Engineering knowledge

B1 x1 ∈ [−3, 3]
x2 ∈ [−5, 0]

16.04 3 ➀ WHEN x2 is EQUAL to 0, IF x1
INCREASEs THEN y
INCREASEs in the domain 0 and
3; IF x1 INCREASEs THEN y
DECREASEs in the domain − 3
and 0

➁ IF x2 INCREASEs THEN y
DECREASEs WHEN x1 is
between 0 and 3

B2 x1, x2 ∈ [−4, 6] 40.50 3 ➀ IF x1 INCREASEs THEN y
INCREASEs in the domain 0 and
5; Otherwise, IF x1 INCREASEs
THEN y DECREASEs

➁ IF x2 INCREASEs THEN y
INCREASEs in the domain 0 and
5; Otherwise,IF x2 INCREASEs
THEN y DECREASE

B3 x1 ∼ x5 ∈ [0, 10] 25.00 6 ➀ IF x1 INCREASEs THEN y
INCREASEs in the domain 5 and
10; IF x1 INCREASEs THEN y
DECREASEs in the domain 0 and 5

➁ IF x1 INCREASEs THEN y
INCREASEs in the domain 5 and
10; IF x1 INCREASEs THEN y
DECREASEs in the domain 0 and 5

➂ IF x1 INCREASEs THEN y
INCREASEs in the domain 5 and
10; IF x1 INCREASEs THEN y
DECREASEs in the domain 0 and 5

B4 x1 ∼ x5 ∈ [−5, 5] 12.50 6 ➀ IF x1 INCREASEs THEN y
INCREASEs in the domain 3 and
5; IF x1 INCREASEs THEN y
DECREASEs in the domain − 5
and − 3

➁ IF x1 INCREASEs THEN y
INCREASEs in the domain 3 and
5; IF x1 INCREASEs THEN y
DECREASEs in the domain − 5
and − 3

➂ IF x1 INCREASEs THEN y
INCREASEs in the domain 3 and
5; IF x1 INCREASEs THEN y
DECREASEs in the domain − 5
and − 3

B5 x1 ∼ x7 ∈ [0, 10] 35 8 ➀ IF x1 INCREASEs THEN y
INCREASEs in the domain 5 and
10; IF x1 INCREASEs THEN y
DECREASEs in the domain 0 and 5

➁ IF x1 INCREASEs THEN y
INCREASEs in the domain 5 and
10; IF x1 INCREASEs THEN y
DECREASEs in the domain 0 and 5

➂ IF x1 INCREASEs THEN y
INCREASEs in the domain 5 and
10; IF x1 INCREASEs THEN y
DECREASEs in the domain 0 and 5
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Table 2 continued
Domain Optimum Samples Engineering knowledge

B6 x1 ∼ x7 ∈ [−5, 5] 17.5 8 ➀ IF x1 INCREASEs THEN y
INCREASEs in the domain 3 and
5; IF x1 INCREASEs THEN y
DECREASEs in the domain − 5
and − 3

➁ IF x1 INCREASEs THEN y
INCREASEs in the domain 3 and
5; IF x1 INCREASEs THEN y
DECREASEs in the domain − 5
and − 3

➂ IF x1 INCREASEs THEN y
INCREASEs in the domain 3 and
5; IF x1 INCREASEs THEN y
DECREASEs in the domain − 5
and − 3

Fig. 3 Hot rod rolling (HRR) process chain

Table 3 The variables and performance for HRR

Type Name Range Symbol

Design variable The composition of Si 0.18–0.3% x1

The composition of N 0.007–0.009% x2

Ferrite grain size (Dα) 8–25 µm x3

The pearlite
interlamellar spacing
(S0)

0.15–0.25 µm x4

The phase fractions of
ferrite (X f )

0.1–0.9 x5

Performance Tensile strength (TS) y1

experiment, we try to build a surrogate model which learns
the mapping between TS and a group of variables, including
the composition of Si ([Si]), the composition of N ([N]),
ferrite grain size (Dα), the pearlite interlamellar spacing (S0)
and the phase fractions of ferrite (X f ). Table 3 shows the
details of the variables and performance while Table 4 shows
the related engineering knowledge. To verify the proposed
method, the HRR problem is run for 20 times. For each run,
we first collect a dataset with 6 data points and the method
iterate 11 times to find an optimal solution.

Table 4 The engineering knowledge of HRR

ID Knowledge

1 IF x1 INCREASEs THEN y1 INCREASEs in the domain 0.23
and 0.3; IF x1 INCREASEs THEN y1 DECREASEs in the
domain 0.18 and 0.23

2 IF x2 INCREASEs THEN y1 INCREASEs

3 IF x3 INCREASEs THEN y1 INCREASEs in the domain 19
and 25

IF x3 INCREASEs THEN y1 DECREASEs in the domain 8
and 16

4 IF x4 INCREASEs THEN y1 INCREASEs

5 IF x5 INCREASEs THEN y1 DECREASEs

Results and discussion

Benchmark functions

The empirical results of benchmark functions are listed in
Table 5. In this table, the iteration indicates the number of
iterations (Step 1 to Step 6 shown in Fig. 1) the algorithms
run, and the corresponding empirical results are obtained at
this stage. This paper compares the proposed BO-DK4DO
and general Bayesian optimization (GBO), and in this table
“BO-DK4DO-N” uses N pieces of engineering knowledge
which are integrated with limited simulation data.
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Table 5 The empirical results of
benchmark functions Optimum Iteration Method Rank-AM AM Rank-SSE SSE

B1 16.04 4 GBO 3 14.35 3 0.39

BO-DK4DO-1 2 15.28 2 0.30

BO-DK4DO-2 1 15.93 1 0.08

8 GBO 1 16.04 1 0.00

BO-DK4DO-1 1 16.04 1 0.00

BO-DK4DO-2 1 16.04 1 0.00

B2 40.50 4 GBO 3 34.25 3 1.18

BO-DK4DO-1 2 38.66 2 0.26

BO-DK4DO-2 1 39.91 1 0.15

8 GBO 3 39.05 3 0.29

BO-DK4DO-1 2 39.70 2 0.23

BO-DK4DO-2 1 40.30 1 0.04

B3 25.00 5 GBO 4 16.78 4 1.02

BO-DK4DO-1 3 24.47 3 0.25

BO-DK4DO-2 1 25.00 1 0.00

BO-DK4DO-3 1 25.00 1 0.00

10 GBO 4 23.00 4 0.64

BO-DK4DO-1 3 24.79 3 0.12

BO-DK4DO-2 1 25.00 1 0.00

BO-DK4DO-3 1 25.00 1 0.00

15 GBO 1 25.00 1 0.00

BO-DK4DO-1 4 24.91 4 0.06

BO-DK4DO-2 1 25.00 1 0.00

BO-DK4DO-3 1 25.00 1 0.00

B4 12.50 5 GBO 4 2.05 3 0.42

BO-DK4DO-1 3 9.40 4 0.44

BO-DK4DO-2 2 10.80 2 0.19

BO-DK4DO-3 1 11.24 1 0.10

10 GBO 4 3.30 4 0.66

BO-DK4DO-1 3 10.73 3 0.25

BO-DK4DO-2 1 11.53 1 0.08

BO-DK4DO-3 2 11.52 1 0.08

15 GBO 4 4.65 4 0.96

BO-DK4DO-1 3 11.58 3 0.14

BO-DK4DO-2 2 11.76 2 0.08

BO-DK4DO-3 1 11.81 1 0.07

B5 35 6 GBO 4 28.00 4 1.50

BO-DK4DO-1 3 34.56 3 0.04

BO-DK4DO-2 2 34.87 2 0.01

BO-DK4DO-3 1 34.95 1 0.00

12 GBO 4 33.57 4 0.65

BO-DK4DO-1 3 34.71 3 0.03

BO-DK4DO-2 2 34.94 1 0.00

BO-DK4DO-3 1 34.96 1 0.00

18 GBO 3 34.88 3 0.02

BO-DK4DO-1 4 34.74 4 0.03

BO-DK4DO-2 2 34.96 1 0.00

BO-DK4DO-3 1 34.98 1 0.00
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Table 5 continued
Optimum Iteration Method Rank-AM AM Rank-SSE SSE

B6 17.5 6 GBO 4 1.21 3 0.30

BO-DK4DO-1 3 9.21 4 1.33

BO-DK4DO-2 2 14.67 2 0.19

BO-DK4DO-3 1 15.30 1 0.11

12 GBO 4 3.23 4 0.98

BO-DK4DO-1 3 12.65 3 0.97

BO-DK4DO-2 2 15.05 2 0.19

BO-DK4DO-3 1 15.58 1 0.10

18 GBO 4 5.33 4 1.31

BO-DK4DO-1 3 13.15 3 0.91

BO-DK4DO-2 2 15.35 2 0.20

BO-DK4DO-3 1 15.90 1 0.09

The bold means where the performance of GBO is better than that of BO-DK4DO-1

After N iterations, the methods can find the maximum
value. This paper adopts the following sixmetrics tomeasure
the performance. All the experiments are run on ThinkPad
E470c with Intel(R) Core(TM) i5-6200U CPU @ 2.3 GHz
2.4 GHz and 8 GB RAM.

(1) The average means (AM) indicates the average current
maximum value of the 20 runs of the experiments for a
certain iteration. A higher AM value indicates a greater
rate of convergence to the real maximum.

AMi � 1

n

n∑
p�1

xpi (19)

where n is the times of experiments. xpi represents the
value of the ith iteration in the pth experiment. Accord-
ingly, AMi is the mean of ith iteration.

(2) The Rank-AM is the order of these methods in terms
of the AM value. If the order is 1, the corresponding
method has the maximal AM.

(3) The scaled standard error (SSE) measures the stability
of the 20 maximums found after N running. A lower
SSE implies a higher stability and robust capability to
find the real maximum.

SSEi �
(

1
n

∑n
p�1

(
xpi − AMi

)2
n

) 1
2

(20)

Similarly, SSEi is the standard error of ith iteration.
The numerator is the standard error formula, which we
scaled for the showing on the figure.

(4) The Rank- SSE is the order of these methods in terms
of the SSE value. If the order is 1, the corresponding
method has the minimal SSE.

(5) The relative difference (RD) is the proximity of real
maximum and AM found at certain iteration. The
smaller the value, the closer of real maximum and AM.
The real maximum is titled as “optimum” in Table 5.

RD � optimum − AM

optimum
(21)

(6) The relative time (RT) indicator calculated by Eq. (22).

RT � T1 − T2
T2

(22)

Where T1 and T2 represent the time of two methods,
respectively.

From Table 5, several results can be seen. The first and
most important finding is that the integration of engineering
knowledge (no matter single or multiple pieces of engineer-
ing knowledge) with limited simulation data brings a higher
AM and a lower SSE. This implies that the integration of
engineering knowledge tends to accelerate the speed of con-
vergence with higher robustness.

The second finding is that when multiple pieces of
engineering knowledge are integrated, the AM is further
increased while the SSE is decreased. We can see from
Table 5 that at last iterationofBO-DK4DO-3has themaximal
AM and minimal SSE, which implies it’s the best method.
BO-DK4DO-2 has a relatively small AM and bigger SSE,
but the performance is obviously better than BO-DK4DO-1
and GBO.

The third finding is that although in many situations the
performance of BO-DK4DO-1 is better than that of GBO,
there are indeed some situations where GBO outperformed
BO-DK4DO-1, which have an outline border in Table 5.
From the corresponding values of AM and SSE, we find the
differences are very small. This finding again tells us that it is
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Fig. 4 The iteration process of GBO and BO-DK4DO on benchmark functions

better to integrate multiple pieces of engineering knowledge
with limited simulation data to obtain an obvious improve-
ment in terms of the performance.

Figure 4 shows the AM and SSE for every iteration, from
which we obtain another observation. This observation can
be expressed as the most obvious difference between GBO
and BO-DK4DO occurs in the first few iterations, where
BO-DK4DO has obvious advantages. When many iterations
(more than 10) are finished, the performances ofBO-DK4DO
and GBO tend become closer. Because most computer simu-
lations are expensive and time-consuming, the performance
in the first few iterations influence the applicability of the

methods significantly. From this point of view, the proposed
BO-DK4DO is far better than GBO.

To further discuss the efficiency of our method quanti-
tatively, we use RD to compare BO-DK4DO-N with GBO
shown in Table 6. Meanwhile, due to the time required for
each iteration is almost the same, we show and compare the
total time of a run in Table 7. The RT shown in the table is
also the average RT of each iteration.

Table 6 indicates that BO-DK4DO has a better perfor-
mance in terms of convergence when the initial samples are
relatively small (3, 6 and 8 shown in Table 2). As the com-
plexity of the problem increases, BO-DK4DObecomesmore
competitive in terms of RD. The RD of GBO can be reduced
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Table 6 Comparative results between GBO and BO-DK4DO-N of
benchmark functions

Optimum Iteration Method AM RD (%)

B1 16.04 4 GBO 14.35 10.56

BO-DK4DO-1 15.28 4.74

BO-DK4DO-2 15.93 0.69

8 GBO 16.04 0

BO-DK4DO-1 16.04 0

BO-DK4DO-2 16.04 0

B2 40.50 4 GBO 34.25 15.42

BO-DK4DO-1 38.66 4.54

BO-DK4DO-2 39.91 1.45

8 GBO 39.05 3.60

BO-DK4DO-1 39.70 1.97

BO-DK4DO-2 40.30 0.50

B3 25.00 5 GBO 16.78 32.87

BO-DK4DO-1 24.47 2.12

BO-DK4DO-2 25.00 0.01

BO-DK4DO-3 25.00 0

10 GBO 23.00 8.03

BO-DK4DO-1 24.79 0.86

BO-DK4DO-2 25.00 0.01

BO-DK4DO-3 25.00 0

15 GBO 25.00 0.02

BO-DK4DO-1 24.91 0.37

BO-DK4DO-2 25.00 0

BO-DK4DO-3 25.00 0

B4 12.50 5 GBO 2.05 83.59

BO-DK4DO-1 9.40 24.80

BO-DK4DO-2 10.80 13.63

BO-DK4DO-3 11.24 10.09

10 GBO 3.30 73.58

BO-DK4DO-1 10.73 14.17

BO-DK4DO-2 11.53 7.79

BO-DK4DO-3 11.52 7.84

15 GBO 4.65 62.83

BO-DK4DO-1 11.58 7.38

BO-DK4DO-2 11.76 5.92

BO-DK4DO-3 11.81 5.51

B5 35 6 GBO 28.00 20.02

BO-DK4DO-1 34.56 1.25

BO-DK4DO-2 34.87 0.37

BO-DK4DO-3 34.95 0.13

12 GBO 33.57 4.10

BO-DK4DO-1 34.71 0.82

BO-DK4DO-2 34.94 0.18

BO-DK4DO-3 34.96 0.10

Table 6 continued

Optimum Iteration Method AM RD (%)

18 GBO 34.88 0.33

BO-DK4DO-1 34.74 0.75

BO-DK4DO-2 34.96 0.11

BO-DK4DO-3 34.98 0.07

B6 17.5 6 GBO 1.21 93.11

BO-DK4DO-1 9.21 47.37

BO-DK4DO-2 14.67 16.13

BO-DK4DO-3 15.30 12.58

12 GBO 3.23 81.57

BO-DK4DO-1 12.65 27.73

BO-DK4DO-2 15.05 13.98

BO-DK4DO-3 15.58 10.99

18 GBO 5.33 69.56

BO-DK4DO-1 13.15 24.84

BO-DK4DO-2 15.35 12.30

BO-DK4DO-3 15.90 9.16

Table 7 Comparison of relative program run time of GBO and BO-
DK4DO for benchmark functions

Method Total time (s) RT

B1 GBO 20.36 0

BO-DK4DO-1 74.47 2.66

BO-DK4DO-2 83.68 3.11

B2 GBO 20.13 0

BO-DK4DO-1 82.07 3.08

BO-DK4DO-2 98.18 3.88

B3 GBO 44.58 0

BO-DK4DO-1 190.46 3.27

BO-DK4DO-2 222.27 3.99

BO-DK4DO-3 291.30 5.53

B4 GBO 42.26 0

BO-DK4DO-1 163.07 2.86

BO-DK4DO-2 182.28 3.31

BO-DK4DO-3 203.65 3.82

B5 GBO 59.67 0

BO-DK4DO-1 287.78 3.82

BO-DK4DO-2 525.52 7.81

BO-DK4DO-3 1051.26 16.62

B6 GBO 55.80 0

BO-DK4DO-1 236.03 3.23

BO-DK4DO-2 289.76 4.19

BO-DK4DO-3 382.70 5.86
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by increasing the number of iterations. However, it is not
guaranteed to achieve the performance of BO-DK4DO.

There are two phenomena need to be addressed. The first
is that for B3, the RD of BO-DK4DO-1 is higher than GBO
in the last two iterations, with a final difference of 0.35%.
However, in the tenth iteration, BO-DK4DO-1 has already
reached 0.86%, while GBO is still up to 8.03%. The second
is that for B5, the RD of BO-DK4DO-1 is higher than GBO
in the last two iterations, with a final difference of 0.42%.
However, in the twelfth iteration, BO-DK4DO-1 has already
reached 0.82%, while GBO is still up to 4.10%. The above
analysis implies that the proposed method is able of reducing
the interactions without sacrificing of the solution.

As shown in Table 7, we can see that when more pieces
of engineering knowledge are integrated, the computational
time also increases. Meanwhile, the convergence speed is
also increasing rapidly inferred fromTable 6. TakeB4 andB6
as examples, GBO’s RD on B4 is 83.59% in the 5th iteration
andGBO’sRDonB6 is 93.11% in the 6th iteration, while our
method is only 24.80%, 13.63%, 10.09% for B4 and 47.37%,
16.13%, 12.58% for B6 respectively. Considering here are
situations where the time required for a single simulation
is often hours, days or even more, our proposed method is
effective which is often cheaper than performing additional
costly simulations of the unknown function.

For the functions B3 and B5 with errors highlighted in
Table 5 Line Rank-AM, correspondingly, compared with B4
and B6 shown in Table 7, the RT increases faster as multiple
knowledge integrated. To be noted, in the 5th iteration, for B3
and B5, the RD for GBO is 32.87% and 20.02%, while our
method is only 2.12%, 0.01%, 0% for B3 and 1.25%, 0.37%,
0.13% for B5. To meet the same requirements for optimal
solution, our method is able to save up many iterations.

As shown in Table 7, For B4 and B6 (Their name is
Styblinski-Tang), as the dimension increases, the RT of all
methods only increase slightly, which means if we have a big
number of design variables, the RT will not increase obvi-
ous. Therefore, the proposed method is capable for complex
product designs with many variables.

Engineering optimization problems

In this paper, we use BO-DK4DO and GBO to maximize the
tensile strength of the rolling steel. Four methods are com-
pared including GBO, BO-DK4DO-1, BO-DK4DO-3 and
BO-DK4DO-5. The empirical results are shown in Table 8.

From Table 8, we have similar findings with the bench-
mark experiments and the control system experiments. The
first is that the BO-DK4DO is efficient of integrating engi-
neering knowledge with limited simulation data and this
integration is helpful for finding the optimal solution effi-
ciently. The second is that the integration of engineering
knowledge decreases the SSE, which implies that it increases

Table 8 The empirical results of HRR

Methods Iterations AM SSE

GBO 5 748.34 2.57

BO-DK4DO-1 723.67 11.13

BO-DK4DO-3 755.72 3.42

BO-DK4DO-5 763.73 1.40

GBO 7 752.70 2.22

BO-DK4DO-1 732.31 9.95

BO-DK4DO-3 762.35 2.09

BO-DK4DO-5 767.76 0.97

GBO 11 760.82 1.72

BO-DK4DO-1 756.09 2.37

BO-DK4DO-3 765.16 1.55

BO-DK4DO-5 770.16 0.00

Fig. 5 The predicted values of the last iteration of the 20 runs

the robustness of the methods. In other words, BO-DK4DO
is less affected by the distribution of the initial points. It can
be seen more clearly in Fig. 5, we take the last iteration of
20 runs as an example.

In this experiment, one thing is different from the bench-
mark experiments where the performance is increasing as
long as engineering knowledge is integrated. When adding
the first piece of engineering knowledge, GBO has a better
performance compare with BO-DK4DO-1, and this can be
seen more specific in Fig. 6. However, when adding more
than one (three or five) pieces of engineering knowledge, the
method gains obvious advantages compare with GBO. This
phenomenon occurs because GP with engineering knowl-
edge tends to favor smooth functions, but the real function is
not smooth. Figure 7 shows the range of the function within
the domain 0.18 to 0.3, which is also the domain of the first
piece of engineering knowledge. The fixed value of x2, x3,
x4 and x5 are 0.009, 8, 0.25 and 0.1 respectively.
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Fig. 6 The iteration process of GBO and BO-DK4DO on HRR

Fig. 7 The relationship between x1 and y1 of the HRR

To compare the efficiency of these methods, Table 9 show
the average runtime at each iteration. The computational time
of each iteration in both methods is nearly the same.

As shown in Table 8, though the latent function of HRR
is non-smooth, both BO-DK4DO-3 and BO-DK4DO-5 do
better thanGBO,with 765.16MPa and 770.16MPa in the last
iteration, while BO-DK4DO-1 is 756.09 finally. Meanwhile,
form Table 10, as the RT of GBO is set to 0, the RT of BO-
DK4DO-1, BO-DK4DO-3, BO-DK4DO-5 for the HRR are
2.61, 3.64 and 4.83.

Note that the reduction of the number of experiments is
also significant, as shown inFig. 6Weonly show the available
value against iteration in this figure, the difference of real cost
is much larger. In this case, the target value is over 755 MPa.
BO-DK4DO-5 and BO-DK4DO-3 takes 3 and 5 iterations
respectively to reach the target while the BO-DK4DO-1 and
GBO takes 11 and 8 iterations. To apply the method to real-
world problems, the computation time should include not
only the program run time which is consumed to find the
optimal solution but also the simulation time used for sam-

Table 9 The average program run time at each iteration for the HRR

Iterations Methods

GBO BO-DK4DO-
1

BO-DK4DO-
3

BO-DK4DO-
5

1 4.78 17.33 22.88 28.78

2 4.60 17.39 22.34 28.14

3 4.80 17.96 22.43 28.14

4 4.62 16.82 22.78 28.72

5 4.86 17.20 22.10 28.07

6 4.49 17.29 22.15 26.78

7 4.62 17.64 22.54 28.15

8 5.33 18.33 22.59 28.67

9 5.04 16.71 22.90 28.51

10 5.19 18.22 22.82 28.45

11 4.95 17.43 22.10 28.32

Table 10 Comparison of relative program run time (11 iterations) for
the HRR

Methods Program run time (s) RT

GBO 53.29 0

BO-DK4DO-1 192.34 2.61

BO-DK4DO-3 247.63 3.64

BO-DK4DO-5 310.74 4.83

pling. Therefore, the total computation time is defined as
follows in this paper.

T � Tp + Ts (23)

where Tp is the program run time to obtain the target value
and Ts is the simulation time.

In the HRR problem, the average sampling time for gen-
erating a data point in the simulation is about 3.5 h (12600 s),
which is at least 2 orders of magnitude larger than the total
program run time for all methods.

Figure 8 show the Tp and Ts for all methods. Mapping to
the real time, BO-DK4DO-3 and BO-DK4DO-5 are able to
save up to 37.41% and 62.43% of total computation time T ,
which firmly establishes the utility of using multiple engi-
neering knowledge through our proposed method. Actually,
we can ignore the Tp in Eq. (23) due to the huge magni-
tude difference. For many complex engineering problems,
the computation time is the equivalent of the simulation time.

Closure

Surrogate models are widely used in simulation-based
design, and many engineering problems are solved with
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Fig. 8 Comparison of Tp and Ts
of GBO and BO-DK4DO for the
HRR
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the support of surrogate models. However, enough data are
required to build a highly accurate surrogate model, which
are not available for many real-world engineering problems.
Therefore, developing methods for building high-accuracy
surrogate models and implement optimization designs are
still a challenge. In this paper, we present a method to
integrate limited simulation data and shape engineering
knowledge to build surrogate models and conduct design
optimizations based on Bayesian optimization, which is
called BO-DK4DO. The proposed method is verified using 6
benchmark functions and HRR problem. By the analysis of
the empirical results,wefind (1) the proposedmethod is capa-
ble of integrating shape engineering knowledge and limited
simulation data efficiently; (2) the integration of engineering
knowledge brings satisfactory improvement in terms of find-
ing optimum values; (3) when more pieces of engineering
knowledge are integrated, the performance of the methods
are further improved.

By this paper, three-fold contributions are made. The
first is that the notion of integration engineering knowl-
edge and available limited data to build surrogate models
and implementing design optimization. The notion expands
the application of surrogate models to scenarios where only
limited simulation data are available. The second is the adop-
tion of Bayesian optimization and a probabilistic model
(Gaussian process) to model the engineering knowledge and
limited simulation data. This natural adoption of uncertainty
of the proposed method provides a new way and tools for
further research about the uncertainty of engineering knowl-
edge and limited simulation data. The last contribution is
that a computational method to accomplish the above idea
is implemented, and the proposed method is demonstrated
through 6 benchmark functions and a real-world engineering

design problem. We suggest that this method is foundational
for further development.
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