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Abstract
In production planning, one of the most crucial issues involves cycle time forecasting and distribution. Particularly, the
parameter aids in realizing high delivery reliability. In the production planning process that involves computer component
manufacturing, an estimation of the tasks’ cycle time offers an important basis for dispatching control, material purchase,
and due date assignment. In this study, a big-data approach was proposed and examined to determine how it could be
used to predict cycle time distribution. Also, the research context involved computer components manufacturing systems.
Indeed, the motivation was to determine how the proposed mechanism could improve delivery reliability in manufacturing
systems.Regarding the implementation and design of the CT forecasting system, with the proposed DP-RBFN framework
being a model to be implemented in computer components manufacturing, components of the system constituted three major
parts. The first part, being the basic platform, played the role of Hadoop series software installation. This installation had its
role lie in enabling the parallel computing of big data. Another part of the framework design and implementation involved data
preprocessing. In this case, the role of the data preprocessing procedure lay in the extraction, transformation, and loading of
data to CTF. The third part that followed the basic platform design and data preprocessing procedure involved CT forecasting.
Results demonstrated that the proposed model performs superiorly than the contrast or other comparative methods on both
the computer components manufacturing system dataset and benchmark datasets. From the findings, the proposed framework
(DP-RBFN) exhibited superior performance compared to previous performance outcomes that had been reported relative to
the use of the RBFN algorithm. These findings held for both MAD and SD—relative to the selected datasets.

Keywords DP-RBFN · RBFN · Cycle time (CT) · Computer components manufacturing · CT forecasting · Parallel training

Introduction

To improve manufacturing processes and overcome the
currently rigid planning, key elements that have been pro-
posed involve real-time data analytics methods. In particular,
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these methods fulfill the aforementioned tasks by deriving
measures, detecting patterns, and analyzing historical data,
eventually counteracting the issues (Zhengcai et al. 2012). To
optimize, assist, and improve process flows, the key element
establishes virtual product representations on shop-floors,
emerging in the form of the digital shadow or digital twin
(Gopalakrishnan et al. 2013). To use the collected data, high
data quality is required, pointing to the criticality of develop-
ing measures through which the data’s correctness could be
verified (Gröger et al. 2012). It is also worth noting that digi-
tal manufacturing reflects a new emerging technology whose
evolution has been informed by the need to increase produc-
tivity. In manufacturing firms, shop-floor data is collected
in digital forms via sensor technologies and Manufacturing
Execution Systems (MES) (Hyndman and Khandakar 2008).
The eventuality is that voluminous data is collected at high
velocities and, upon scaling up to a factory level or a produc-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-020-01544-7&domain=pdf
http://orcid.org/0000-0002-4028-2693


1890 Journal of Intelligent Manufacturing (2020) 31:1889–1897

tion system level, it translates into big data (Li et al. 2011;
Roser and Nakano 2015).

Given that most of the data grow exponentially, having
been acquired from the machines, it becomes imperative to
ensure that data science is leveraged in a manner that fosters
the enhancement of manufacturing processes, upon which
decisionmaking processes could be data-driven (Shao 2015).
For these forms of decision making (that are data-driven)
to be realized, the need for companies to adopt informative
analytical algorithms through which fast-moving and high-
volume data could be turned into meaningful insights cannot
be overstated (Subramaniyan et al. 2016; Lee et al. 2013).
The latter trend calls for research about some of the data
analytics responsible for the realization of effective and effi-
cient data extraction (from raw information), uponwhichnew
insights andknowledge could bederived (Michael et al. 2016;
Wuest et al. 2016; Luo et al. 2015; Yang et al. 2016). Further-
more, the data extraction is likely to aid in the introduction of
intelligence into production process control, besides yielding
improvements in themanufacturing enterprises’ system-level
operations (Zhang et al. 2015; Zhong et al. 2015).

In production planning, one of the most crucial issues
involves cycle time forecasting and distribution. Particularly,
the parameter aids in realizing high delivery reliability. In the
production planning process that involves computer compo-
nent manufacturing, an estimation of the tasks’ cycle time
offers an important basis for dispatching control, material
purchase, and due date assignment. This study proposes a big
data-driven approach through which the cycle time distribu-
tion of computer component manufacturing processes could
be predicted, especially that which prompts a delivery reli-
ability of the manufacturing system. The technique comes
in the form of Density Peak based Radial Basis Function
Network (DP-RBFN). Also, the proposed approach involves
parallel computing in which a numerical experiment is con-
ducted for forecasting accuracy and training time of the
technique, eventually evaluating and discussing its perfor-
mance.

Methodology

With the proposed model, which reflects a cycle time fore-
casting (CTF) system, this section describes the structure of
themodel, its peak clustering-based learningmethod, and the
training steps aimed at discerning the method’s time com-
plexity. As mentioned earlier, the proposed framework for
CT forecasting entails a DP-RBFN model. In this model,
three layers are established. Having described the proposed
model’s network structure (above), the next step involves
determining the leaning method. In particular, the model
attracts a density peak clustering-based technique. This tech-
nique provides room for the separate learning of the RBFN

model’s output layer and the hidden layer. To achieve rapid
training of the RBFN, a parallel learning method is estab-
lished within the hidden layer. To establish the density peak,
the process involves massive data. Another step involves the
implementation of a least square technique within the out-
put layer, a process whose role lies in the estimation of the
respective hidden unit outputs’ weights.

The aboveprocess culminates into the radial basis function
networks’ parallel training. In particular, the Hadoop plat-
form is employed for DP-RBFN parallel training. Initially,
network coefficients are adjusted relative to the designed
training steps. This process is followed by the training pro-
cedure’s time complexity analysis. In turn, steps that are
deemed the most time-consuming are parallelized with the
help of a MapReduce framework.

Regarding the implementation and design of the CT fore-
casting system, with the proposed DP-RBFN framework
being a model to be implemented in computer components
manufacturing, components of the system constitute three
major parts. The first part, being the basic platform, plays
the role of Hadoop series software installation. This installa-
tion has its role lie in enabling the parallel computing of big
data. In the Hadoop components, the notable, efficient, and
highly effective tool that is selected towards big data analy-
sis, hence CT forecasting, entails MapReduce. Another part
of the framework design and implementation involves data
preprocessing. In this case, the role of the data preprocessing
procedure lies in the extraction, transformation, and loading
of data to CTF. Upon ensuring that the manufacturing exe-
cution system’s raw data is extracted, processes that follow
include the transformation and loading of the raw data into
the forecasting model. Imperative to note is that the process
of transforming the data involves cleaning and formatting
procedures. On the one hand, the role of raw data formatting
constitutes reformatting it to achieve uniform units that are,
in turn, normalized to realize a canonical distribution. On the
other hand, the processing of cleaning the raw data ensures
that any abnormal and missing records are fixed. Indeed,
missing records are predicted to arise from errors linked to
raw dataset collection, transformation, and storage.

The third part that will follow the basic platform design
and data preprocessing procedure involves CT forecasting.
The proposed DP-RBFN model strives to aid in CT predic-
tion in the context of computer components manufacturing
processes involving big data, especially with the need to dis-
cern the effectiveness and efficiency of the framework. The
implementation of the CT forecasting process will involve
the initialization of the model, the training of the network,
and the CT prediction procedure.

Indeed, the experimental setup constituted fourmain parts.
These parts included the parallel CTF model, CMI-based
feature selection, data pre-processing, and the construction
of candidate feature sets. Regarding the section or phase
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constituting candidate feature set constructing, CT as an
experimental parameter was treated as the time that had
elapsed between the last manufacturing cycle process and
the beginning of the first process. As such, this parame-
ter, CT, entailed the waiting time and the processing time.
From the previous literature, the main challenging facing CT
estimation involves the uncertain nature of the waiting time
(Hyndman and Khandakar 2008; Li et al. 2011; Roser and
Nakano 2015; Shao 2015). As such, three major factors were
considered at this phase. These factors included high dimen-
sion, variety, and volume. Whereas volume was treated as
the data amount such as the number of samples in the data
recorders, variety involved the number of types of data (such
as the type of percentage due to machine utilization, the type
of data timedue to the processing time, and the type of numer-
ical due to the size of the manufacturing lots). Lastly, high
dimension as a CT factor constituted the candidate feature
quantity relative to the manufacturing stations and huge pro-
cess.

For data pre-processing, raw data-sets were transformed
into proper structures or formats through which analyses or
queries could be done. Indeed, raw data containedmillions of
records regarding the computer components manufacturing.
A manufacturing execution system was used to extract this
(raw) data. Some of the specific data that was selected in its
raw form before being transformed into proper structure or
format included the equipment name, hold time, the track
out time, and the track in time, as well as the operation step
number.

Upon completing the pre-processing stage, the next step
involved feature selection. The aim of this step was to estab-
lish the main features. In particular, the interest of the study
was on CT-related features.The aim was to determine how
the proposed model for CT prediction would choose key fea-
tures from a given sample of data sets from the computer
components manufacturing database. Also, the feature selec-
tion process sought to discern how the proposed framework,
compared to other models, would estimate and depict how
the parameter of CT in the manufacturing context would be
affected by the nature of candidate features. It is also notable
that this phase strived to address the difficulty that had been
reported previously regarding how models could preselect
regression functions that are well suited to discern the rela-
tionship between CT and candidate features.

It is also imperative to highlight that the discretization
process was implemented because sets of candidate features
in manufacturing systems tend to have both continuous and
discrete variables. To ensure that the relationship among vari-
ables was measured uniformly, this study implemented a
discretization technique to ensure that all data points were
classified in the form of continuous factors. Hence, all the
features’ data points were divided into different intervals
independent of any prior knowledge. Also, unique values

were used to label the acquired intervals. To ensure that there
was the same number of data points for the respective inter-
vals, the continuous candidates in this study were discretized
using an equal frequency discretization procedure.

To measure the relationship between candidate features
and CT, parameters that were used included MI, conditional
entropy, joint entropy, and basic entropy formulas. In feature
selection, the study applied a CMI feature technique. Specif-
ically, this method of feature selection was used to determine
the efficiency of the proposed model, upon which improve-
ments, if any, could be made to the algorithm.

Results and discussion

To determine the degree to which the proposed model, the
DP-RBFN framework was likely to be effective relative
to CT forecasting (hence system delivery improvements)
in computer components manufacturing, three experiments
were implemented. The experimental procedures included
computer components manufacturing process case study,
standard datasets’ CT forecasting performance experiment,
and an experiment targeting the proposed model’s training
time. Imperatively, the initial experiment that targeted the
DP-RBFN model’s parallel training sought to unearth the
extent towhich the proposedmethodwould save time, should
it be employed in CT prediction among production planning
processes that involve big data. Indeed, the selected datasets
were of different sizes. The motivation was to find out the
parallel training technique’s accelerating ability. Relative to
the second experimental process that aimed at determin-
ing the proposed model’s CT prediction performance, upon
exposure to different computer components manufacturing
scenarios, the selected standard datasets exhibited varying
properties. Indeed, the second experimental process focused
on four standard datasets while the first procedure involved
seven selected datasets,which exhibited varying size. Finally,
the performance of the DP-RBFN framework in relation to
CT forecasting was evaluated based on four major datasets
linked to the computer components manufacturing system.
The process culminated into an examination of the scope
within which the proposed model could function efficiently
and effectively.

Results on the proposed DP-RBFNmodel’s training
time

The parallel DP-RBFN, which was based on MapReduce,
had its efficiency tested relative to the parameter of speedup.
In theory, many scholarly studies affirm that the speedup
should coincide with the time complexity ratio.

The results of the DP-RBFN model’s training time exper-
iment are summarized in the Table 1.
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Table 1 The proposed model’s results regarding the training time experiment

Selected dataset Speedup (ratio of
computing time without
parallelization over
computing time with
parallelization)

Parallelization-related
computing time in
m/s

Computing time
independent of
parallelization in m/s

Number of selected
records

Number of selected
features

Computer
components
manufacturing data

1.4500 213,510 310,074 1850 78

Winequality-white 1.7300 2,997,219 5,198,205 4800 12

Winequality-red 1.6700 161,791 270,941 1600 12

Imperatively, the ratio between computing time without
and computing time with parallelization led to the realiza-
tion of speedup values relative to the Hadoop platform. From
Table 1, it is evident that the proposed model, which was in
the form of the parallel DP-RBFN framework, proves effec-
tive regarding its capacity to reduce the amount of time spent
on the training process; with particular reference to computer
components manufacturing system datasets. This inference
is informed by the outcomes in which the speedup values that
were achieved were closer to theoretical values, suggesting
that the proposed parallel technique can save more than 50%
of the training time. For big data, the framework’s speedup
was also found to outweigh that of the experiment’s alterna-
tive datasets. From the previous literature, a factor that could
explain this trend or outcome is that when small datasets are
used, the model training’s communication time is unlikely
to be negligible (Guo et al. 2015; Jeschke et al. 2017; Wang
et al. 2018; Shang et al. 2019). On the other hand, the case
of big data holds that communication time is likely to be less
dominant compared to the case of the saving processing time
(Guo et al. 2015). Hence, in this study, it was established that
the proposed DP-RBFN model provides better speedup.

Results on the proposed DP-RBFN’s CT forecasting

The second phase of the experiment involved evaluating
the degree to which the proposed framework would prove
effective regarding CT prediction. To discern possible devi-
ations or greater effectiveness, the outcomes were compared
to those that had been documented by previous investiga-
tions that relied on the standard RBFN model, enabled by
a backpropagation framework. As avowed by many stud-
ies, the latter algorithm has gained application in numerous
evaluations targeting prediction problems (such as CT fore-
casting) and how they could be enhanced (Zhang et al. 2015;
Zhong et al. 2015;Gröger 2016;Guo et al. 2015).Given some
selected datasets for benchmarking, the proposed model’s
capacity towards effective CT forecasting was evaluated
through the examination of standard deviation values, as well
as the mean absolute deviation (MAD). The Table 2 provides

a comparative analysis of the CT forecasting outcomes rela-
tive to the implementation of the RBFN versus the proposed
DP-RBFN framework.

Based on the results presented in Table 2, this study
established that the proposedDP-RBFNmodel exhibits supe-
rior performance compared to the use of RBFN, a standard
algorithm. The inference was informed by how the target
parameters compared. For instance, the case of the CMB
dataset saw the SD and MAD of the proposed DP-RBFN
model merge as much lower compared to the case of the
standard RBFN. Whereas this advantage was weaker when
datasets EE, CCS and ISE were used (from the SD andMAD
points), a consistent trend was that the proposed framework
outperformed the standardRBFNalgorithm. It is also notable
that the case of dataset CCS saw the RBFN algorithm’s
SD prove lower than at of the proposed DP-RBFN model,
implying that RBFN exhibited a more stable performance
compared to the proposed model. Despite the mixed out-
comes, the proposed framework (DP-RBFN) outperformed
the standard algorithm, RBFN.

Focusing on the results for the computer
components manufacturing case scenario

In the third and final phase of the experiment, candidate
factors were evaluated, and the results used to discern the
efficiency of the proposed model of CT prediction. Specific
factors that were assessed included the size of the waiting
queue for the respective stations in the computer components
manufacturing system, the priority of the respective dataset
lots, the exploitation or utilization of various stations, and
the processing time of various operations on their associ-
ated processing routes. As mentioned in the methodology,
the data preprocessing procedure constitutes the transforma-
tion of rawdata into a stat aligned to candidate factor datasets.
Specific processes included key factor selection, formatting,
and cleaning. Specific rawdata thatwas cleaned involved that
with logic, variance, redundancy, and null value. In situation,
where some raw datasets were missing in values, an adjacent
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Table 2 A comparison of CT
forecasting results between the
RBFN and DP-RBFN models

Type of dataset SD SD MAD MAD Number of
records

Number of
featuresRBFN Proposed

DP-RBFN
RBFN Proposed

DP-RBFN

EE 2.8 2.27 3.5700 3.57 768 8

CCS 6.98 9.64 8.7000 8.7 1030 8

ISE 0.0071 0.0065 0.0076 0.0076 536 7

CMB 0.0008 0.0002 0.0003 0.0003 11,934 16

record, having been selected manually, aided in filling the
missing values with their associated attributes.

After implementing the data preprocessing stage, the CT
forecasting capability of the proposed model was assessed.
Similar to the previous phase, the results or performance
of the framework were compared to the standard RBFN
algorithm. From the findings of the experimental outcomes
for the case scenario in a selected computer components
manufacturing system, the proposed framework (DP-RBFN)
exhibited superior performance compared to previous per-
formance outcomes that had been reported relative to the
use of the RBFN algorithm. These findings held for both
MAD and SD—relative to the selected datasets. Whereas
the MAD and SD of the proposed DP-RBFN framework for
the case of the CMD dataset stood at 0.0002 and 0.0003
respectively, the MAD and SD of the standard RBFN algo-
rithm with which the model was compared stood at 0.0008
and 0.004 respectively (also for the case of the CMB dataset
in the case scenario). From the findings collected in rela-
tion to the computer components manufacturing system’s
data, the proposed DP-RBFNmodel was superior to the stan-
dard RBFN algorithm concerning MLR and BPN; with the
MAD and SD values aiding in discerning and establishing
this consistent trend. Overall, the results demonstrated that
the proposed model performs superiorly than the contrast
or other comparative methods on both the computer compo-
nents manufacturing system dataset and benchmark datasets.

From the perspective of comparative analysis, the perfor-
manceof the proposed framework,DP-RBFN,was compared
to that which had been documented for the case of models
such as mRMR_D, DISR, and CMIM. The following fig-
ures summarize the findings that were obtained when the
performance of the model was compared to that of other
frameworks. The specific parameter that was used to deter-
mine how DP-RBFN rated or compared with other models
regarding CT prediction in computer components manufac-
turing included prediction or classification accuracy relative
to feature selection, as well as the number of features. The
decision to use the number of features as an independent
variable and the prediction or classification accuracy as the
dependent variable was to give insight into the extent which
the number of features in the given manufacturing dataset
was likely to affect the performance of DP-RBFN and, if so,

how the variation in the number of features in the dataset
was likely to affect the performance of the proposed model
compared to other frameworksmentioned above (mRMR_D,
DISR, and CMIM) (Zhang et al. 2019). Indeed, the figures
below summarize the comparative analyses and results that
were obtained when the performance of the proposed frame-
work, DP-RBFN, was compared to that of the other three
models—regarding their CT prediction accuracy in relation
to varying numbers of selected features (Figs. 1, 2, 3).

Notably, findings saw the DP–RBFN framework exhibit
superior performance when applied to large- and medium-
scale datasets—relative to CT prediction performance. A
possible explanation for this outcome is that at lower-scale
datasets, the small size would make it too tiny to select and
predictCT-associated features in computer componentsman-
ufacturing processes.However, the prediction accuracy of the
proposed model was observed to improve significantly with
an increase in the size of the manufacturing data. However, it
is also worth contending that in situations where large-scaled
datasets were affected by noise, the CT prediction stability
and accuracy of the proposed framework, DP–RBFN, tended
to be hampered (Wang et al. 2018; Yi et al. 2019; Ren et al.
2017).

Despite the mixed outcomes above, an emerging theme
that this experimental study revealed is that as different
datasets in the computer components manufacturing are pre-
sented, there is likely to be a significant variation in the
CT prediction performance of the DP–RBFN model. Given
that the estimation of relationships among massive data in
the computer components manufacturing is employed in CT
prediction, the eventuality is that the proposed framework
for predicting the CT of manufacturing systems is data-
dependent.

This study established further that in situations where
there is a delicate change to the flow of materials in the com-
puter components manufacturing system, having considered
CT-related features in the entirety, the proposed model is
capable of capturing the impact of these delicate changes on
the projected CT. Apart from being data-dependent, another
emerging theme that was established is that the proposed
framework (DP–RBFN) tends to apply or prove efficient to
large-scale datasets. Compared to the traditional techniques
used to predict the CT parameter, which achieve this objec-
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Fig. 1 Comparing the CT
prediction performance of the
proposed model versus
mRMR_D, DISR, and CMIM
on 16 features

Fig. 2 Comparing the CT
prediction performance of the
proposed model versus
mRMR_D, DISR, and CMIM
on 10 features

Fig. 3 Comparing the CT
prediction performance of the
proposed model versus
mRMR_D, DISR, and CMIM
on 59 features

tive viamanufacturing systemmodeling and analysis, the role
of DP–RBFN model was found to lie ion CT prediction via
the analysis of the interaction and correlation with massive
data. As such, the framework was observed to prove highly
competitive and worth applying for CT prediction in situ-
ations where computer components manufacturing systems
are marked by large-scale complex problems that prove too
difficult to have their CT predictions achieved via traditional
methods (Ren et al. 2019).

Indeed, a density peak clustering technique aided in the
training of the proposed DP-RBFN model. Given that many
computer components manufacturing systems continue to
collect large data amounts, most of the current literature con-
tends that there is a growing need to embrace data-driven
CT distribution and forecasting. In this investigation, the
proposed CT predictor is big data-driven (Hyndman and
Khandakar 2008; Lee et al. 2013; Michael et al. 2016; Wuest
et al. 2016). The density peak clustering technique was
selected in this study because it had been documented as one
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that could predict the clustered, diversified, and large-scale
manufacturing data’s cycle time accurately. To estimate var-
ious parameters of the system network, the learning method
that was embraced operated by finding the density peaks.
Without necessarily pre-determining the shape and number
of categories, the method would detect data classes in their
entirety and, in turn, pave the way for the proposed DP-
RBFN model to focus on agglomerative data and achieve
better CT prediction performance in relation to computer
components manufacturing systems (Wu et al. 2018, 2019).
To ensure that the DP-RBFN model would be adjusted
quickly, the study employed a parallel training process in the
form of MapReduce-based technique. In turn, the training
procedure’s time complexity was analyzed before ensuring
that training steps that were deemed to be the most time-
consuming were parallelized; with particular reference to the
Hadoop platform.

Therefore, there was a successful presentation and evalu-
ation of the DP-RBFN framework relative to its capacity to
predict the CT of computer components manufacturing sys-
tems. Four major parts through which the objectives of the
study were achieved included parallel CTF or data predic-
tion, CMI-based feature selection or data analysis procedure,
data pre-processing, and data gathering or the procedure
of candidate feature set constructing. The construction of
the proposed model was motivated by the need to handle
big data in computer components manufacturing, especially
after traditional methods had been documented to be lim-
ited relative to CT prediction capacity in situations involving
large-scale datasets. The big data manufacturing context to
which the framework was applied and its results compared
to the performance previously documented for other models
was characterized by high volume, variety, and dimensional-
ity.With themotive of reducing input feature dimensionality,
the proposed model posed improvements to the conditionals
mutual data-based method of feature selection. To determine
the relationship between continuous variables and discrete
variables uniformly, the study implemented a discretization
procedure, which ensured that all data points were classified
in the form of a continuous factor. Given the large number of
the experimental data and the need to deal with the same, the
CT in parallel predictionwas achieved via an implementation
of a parallel CTF framework. Overall results demonstrated
that the DP-RBFNmodel outperforms the other models with
which it was compared regarding CT prediction, should a
computer components manufacturing system contain large-
scale data (Wu et al. 2016, 2018; Jiao et al. 2019).

From the results obtained, the resulting inference is that
the proposed DP-RBFN framework is quantitatively supe-
rior in terms of predicting the cycle time. To compare the
CT prediction performance of the proposed model with
that of other techniques, several metrics were examined.
The metrics included the selected frameworks’ easiness to

use, data required, speed, and accuracy. A factor that was
the easiest of these parameters regarding the comparison
between the CT prediction performance of the proposed
model and that of other frameworks that had been docu-
mented earlier concerned the accuracy dimension. Some of
the quantitative indicators that were available and made the
comparison among models easy (based on the dimension)
included RMSE and MAPE. Compared to previous studies
that had documented the performance of frameworks such as
time-series and statistical, MFLC, analytical, AI, and hybrid
model analyses (Jiao et al. 2019; Cai et al. 2019).

For the case of PS analysis, it is worth indicating that the
framework calls for constantly updated and large databases.
On the other hand, hybrid model analyses required teams of
experts whose role would lie in the fuzzy interval correct
assessment, especially if a fuzzy logic is adopted (Subra-
maniyan et al. 2016; Lee et al. 2013; Michael et al. 2016).
As such, the two families of frameworks, compared to the
proposed model, were found to be the most demanding rela-
tive to the issue of the required data. For the case of statistical
methods and AI, most of the previous literature contends that
the techniques are causal and would only gain application to
the samedata types, includingWIP level-related information,
as well as fab utilization rates and the length of the queues.
In relation to the case of analytical methods, which were
also compared regarding what the previous literature had
reported about their prediction performance (and how they
would compared with the proposed model in this study), the
methods (analytical) are seen to consider the manufacturing
machine utilization rate andother parameters but donot prove
efficient when applied to scenarios of single-job specific lev-
els. As mentioned earlier, the proposed model’s performance
was compared to the case of time-series techniques that have
been observed to gain application in manufacturing systems’
CT prediction. Indeed, the time-series techniques apply to
the previous CT themselves and other high-level data, but
prove the cheapest to be developed (Hyndman and Khan-
dakar 2008).

Away from the dimension of accuracy, another attribute
through which the proposed model’s CT prediction per-
formance was compared with the performance of other
frameworks involved easiness-to-use. On this parameter,
most of the previous scholarly findings contend that the most
difficult approaches to use for CT prediction in manufac-
turing systems include hybrid approaches, followed by AI
frameworks. Indeed, the case of AI models is more pro-
nounced is they are applied to situations involving a fuzzy
logic (Hyndman and Khandakar 2008; Li et al. 2011; Roser
and Nakano 2015; Shao 2015). Whereas the proposed model
proved easier to use compared to the aforementioned CT
prediction frameworks, a technique that was also found to be
easier to use wasMFLC. However, when manufacturing sce-
narios involve uncomplicated fabs, an ideal technique, based
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on the comparative analysis, was found to involve analytical
methods.

It is also notable that this study contributes to and extends
the work of several previous scholarly studies. For instance,
Lou (2018) developed a data-driven approach for the dis-
cernment of customer requirements and concluded that due
to its ability to manage vagueness via the use of intuitionist
fuzzy sets, the model is feasible. In another investigation, Ji
et al. (2019) focused on the enriched Distribution Process
Planning and proposed a bug data analytics based opti-
mization technique for determining machining conditions,
selecting cutting tools, and selecting machine tools. In the
results, the study established that the proposed algorithm
optimizes machining processes and also enhances the origi-
nal DPP functionality. It is also worth noting that the current
study extended the work of Wang (2018), who proposed a
data-driven approach for fault detection. In the results, the
proposedmodelwas found to reducemanufacturing costs and
also improve system reliability, having outperformed other
methods of fault detection—on benchmark datasets.

Another study with which this study’s findings concur
in relation to the area of big data is that which was con-
ducted by Wang (2007). In the latter study, the proposed
method involved a novel approach of fusing Game Theory
and data mining. Based on the results obtained after testing
the model on real-world manufacturing datasets, it was con-
cluded that the proposed approach is superior and that it could
be applied to complex engineering system analysis. Lastly,
the current study’s findings extend the work of Choudhary
et al. (2009). In the latter investigation, the objective was to
determine the efficacy of using data mining applications in
manufacturing systems. Indeed, the investigation culminated
into the implementation of a novel text mining technique,
with the conclusion demonstrating that inmanufacturing sys-
tems, which constitute big data, data mining applications,
especially through the proposed novel text mining technique,
improved efficiency in terms of detecting faults. Therefore,
this study extended the work of the aforementioned studies’
results and is poised to lay a foundation for steering improve-
ments in the context of computer componentsmanufacturing.

Conclusion

Despite the informative nature of the results, which indi-
cated that the proposed model performs superiorly than the
contrast or other comparative methods on both the computer
components manufacturing system dataset and benchmark
datasets, the study was prone to a few limitations. For
instance, the study assumed the existence of a perfect sit-
uation in the target computer components manufacturing
system. This limitation pointed to the need for future schol-
arly investigations to consider how the proposedmodel of big

data-driven CT prediction could perform (when compared to
the standard RBFN) in situations marked by manufacturing
system damages. Another limitation of the study was that
the investigation concentrated on the computer components
manufacturing system’s attribute of production planning,
failing to give insight into how the proposed DP-RBFN
framework could perform if implemented on a manufac-
turing system in the entirety. Despite these limitations, the
proposed DP-RBFN model was found to be better placed to
determine how real-time could be reduced in computer com-
ponents manufacturing systems; hence, system efficiency.
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