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Abstract
Defect clusters on the wafer map can provide important clue to identify the process failures so that it is important to accurately
classify the defect patterns into corresponding pattern types. In this research, we present an image-based wafer map defect
pattern classification method. The presented method consists of two main steps: without any specific preprocessing, high-
level features are extracted from convolutional neural network and then the extracted features are fed to combination of
error-correcting output codes and support vector machines for wafer map defect pattern classification. To the best of our
knowledge, no prior work has applied the presented method for wafer map defect pattern classification. Experimental results
tested on 20,000 wafer maps show the superiority of presented method and the overall classification accuracy is up to 98.43%.

Keywords Wafer map · Defect pattern classification · Deep learning · Convolutional neural network · Error-correcting output
codes · Support vector machine · Multi-class classification

Abbreviations
CNN Convolutional neural networks
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CART Classification and regression trees
NB Naive Bayes
kNN k-nearest neighbors
ReLU Rectified linear unit
LDA Linear discriminant analysis
LOGISTIC Logistic regression
CNN-ECOC-X Use CNN features for ECOC classi-

fication where X is used as binary
classifiers

ANOVA Analysis of variance
SVE Soft voting ensemble

Introduction

The semiconductor wafer fabrication is a complex, long
and costly process which involves hundreds of complicated
chemical steps and requires monitoring a great number of
process parameters (Chien et al. 2014). Due to such a com-
plexity, it is nearly impossible to produce wafers without any
defects even operated by well-trained process engineers with
highly automated and precisely positioned equipments in a
nearly particle-free environment (Wang et al. 2006).

Wafer map is a graphical representation of a silicon wafer
at which all the good and defective die are contained. Wafer
map defects are usually formed in clusters (Hansen et al.
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Fig. 1 Typical wafer map
pattern types
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1997) and Fig. 1 illustrates typical defect pattern types. For
example, in the center pattern type, most defective die are
in the center of a wafer map while in the scratch pattern
type, most defective die form a scratch and in the edge-ring
pattern type, most defective die are in the edge-ring region
and so on. These defect cluster patterns can provide clue
to identify the process failures in the semiconductor man-
ufacturing. For example, a uniformity problem during the
chemical-mechanical planarization can cause center pattern,
inappropriate wafer handling or poor shipment can cause
the scratch pattern, a layer-to-layer misalignment during the
storage-node process can cause edge-ring pattern and so on.
Therefore, there is a strong need to accurately classify the
defect patterns to quickly identify the root causes of failures.

In recent years, convolutional neural networks (CNN)
(Krizhevsky et al. 2012) is one of the most popular deep
learning methods which has shown excellent performance
in a wide variety of areas including image classification
(Krizhevsky et al. 2012; Rakhlin et al. 2018), defect pattern
classification (Kim et al. 2019; Lin et al. 2019; Kyeong and
Kim2018;Nakazawa andKulkarni 2018), recommender sys-
tems (Van den Oord et al. 2013), speech recognition (Xiong
et al. 2018), natural language processing (Kim 2014), and
face recognition (Ding and Tao 2018). CNN has several
advantages that it relatively does not need any specific pre-
processing, no prior knowledge and no human effort involved
in feature extraction and it is also a good feature extractor.

Error-correcting output codes (ECOC) (Dietterich and
Bakiri 1995) combining with multiple binary classifiers has
shown high classification accuracy in multi-class classifica-
tion problems. By combining the advantages of CNN and
ECOC, in this research, we present an image-based wafer
map defect pattern classification method. The presented
method consists of two main steps: without any specific pre-
processing, high-level abstraction features are extracted from
CNN and then the extracted CNN features are fed to combi-
nation of ECOC and support vector machines (SVM) (Cortes
and Vapnik 1995) for wafer map defect pattern classification.

The main contributions of this study can be summarized
as follows:

1. CNN, ECOC, SVM as well as all combination of them
are not newmulti-class classification methods. However,
to the best of our knowledge, this is the first time to apply
the presented method for wafer map defect pattern clas-
sification.

2. For performance comparison, CNN and CNN feature-
based SVM (CNN-SVM) classificationmethods are con-
sidered. Six different binary classifiers including SVM
are also used in ECOC. Among them, the presented
method shows the best performance.

The rest of the paper is organized as follows. “Related
work” section discusses the related work of wafer defect
pattern classification and “Method” section presents the
framework of the presentedmethod. The experimental results
tested on 20,000 wafer maps are reported in “Experimental
results” section. Finally, conclusion is given in “Conclusion”
section.

Related work

Wafer map defect pattern classification is a multi-class clas-
sification task. Therefore, in this section, wafer map defect
pattern classification and multi-class classification are dis-
cussed in more detail.

Wafer map defect pattern classification

There are a great number of methods have been proposed for
wafer map defect pattern classification.

In (Fan et al. 2016), Ordering Point to Identify the Cluster
Structure (OPTICS) (Ankerst et al. 1999) is first applied to
remove outlier defects and then the extracted density-based
and geometry-based features are used as input of SVM for
classification. In (Piao et al. 2018), spatial filter (Gonzalez
and Woods 2006) is applied to remove outlier detective die
and the extracted random transform-based features are used
as decision tree ensemble for classification. A set of novel
rotation- and scale-invariant features is used as input of SVM
for classification (Wu et al. 2015). In (Ooi et al. 2013), polar
Fourier Transform and rotational moment invariants features
are used as input of alternating decision tree classifier for
classification. In (Chang et al. 2012), spatial filter is used to
remove outlier detective die and then, linear hough transform
is used to detect line spatial pattern, circular hough transform
is used to identify bull’s-eye and blob spatial patterns, while
zone ratio approach is used to pinpoint ring and edge spatial
pattern. In (Yuan et al. 2010), support vector clustering (Ben-
Hur et al. 2001) is used to remove outlier defective die and
a Bayesian mixture model is proposed to model the defect
cluster distributions where defect cluster patterns with amor-
phous/linear, curvilinear, and ring patterns are modeled by
multivariate normal distribution, principal curve, and spher-
ical shell, respectively. In (Wang 2008), spatial filter is used
to remove outlier detective die and then a hybrid scheme
combining entropy fuzzy c means with spectral clustering
is used to extract the defect clusters. Finally, convexity and
eigenvalue ratio are used to classify the defect pattern type.
ADBSCANWBM framework (Jin et al. 2019) is proposed at
which outliers are detected by applying DBSCANwith opti-
mal parameter values and the detected outliers are removed
differently according to the considered pattern types. Then
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the detected patterns are classified based on discriminative
features of the pattern types.

Recently, two image-based wafer map defect pattern clas-
sification methods are proposed (Kyeong and Kim 2018;
Nakazawa and Kulkarni 2018). The method (Kyeong and
Kim 2018) is amixed-type pattern detectionmethod at which
each individual classification model is separately built for
each defect pattern type of circle, ring, scratch, and zone. In
(Nakazawa and Kulkarni 2018), CNN is directly applied to
classify twenty-two classes of pattern types and the extracted
image features from fully connected layer are used for wafer
map image retrieval.

Multi-class classification

Multi-class classification is a task of classifying an unknown
object into one of several pre-defined classes. Generally
speaking, multi-class classification methods can be catego-
rized into two groups: The fist group is a direct multi-class
classification method which includes methods such as clas-
sification and regression trees (CART) (Breiman et al. 1984),
ID3 (Quinlan 1986), C4.5 (Quinlan 1993), naiveBayes (NB),
k-nearest neighbors (kNN),multi-class SVM,neural network
(Hagan et al. 1996), CNN (Krizhevsky et al. 2012) and so
on. In contrast, the second group is an indirect method which
decomposes the multi-class problem into a set of binary sub-
problems. According to the commonly used decomposition
strategies, the second group can be further divided into three
broad categories: one-vs-all, one-vs-one and ECOC. In this
research, we focus on ECOC model and interested readers
can see (Lorena et al. 2008) for more review on the combi-
nation of binary classifiers in multi-class problems.

Summary of related work

A great number of publications have shown that ECOC can
improve the classification accuracy (Dietterich and Bakiri
1995; Ali Bagheri et al. 2012; García-Pedrajas and Ortiz-
Boyer 2011; Zheng et al. 2008; Liu 2006; Al-Shargie et al.
2018). However, among many binary classifiers, SVM is a
much more common choice for ECOC (Zheng et al. 2008;
Liu 2006; Al-Shargie et al. 2018; Othman and Rad 2019;
Abd-Ellah et al. 2018; Dorj et al. 2018).

CNN itself can be used formulti-class classification.How-
ever, instead of directly being used for classification, CNN
features are extracted first and then SVM is used for classifi-
cation to improve classification accuracy (Tang 2013). Other
combination of CNN and SVM can also be found in (Huang
and LeCun 2006; Niu and Suen 2012; Xue et al. 2016).

As described above, since CNN can extract good fea-
tures and ECOC with SVM used as binary classifiers can
obtain high classification accuracy, we expect CNN feature-
based ECOC with SVM used as binary classifiers can also
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Fig. 2 Framework

obtain high classification accuracy. This is the right reason
why combination of CNN, ECOC, and SVM are used in this
research for wafer map defect pattern classification. Combi-
nation of CNN, ECOC, and SVM can also be found in some
other domains (Othman andRad 2019;Abd-Ellah et al. 2018;
Dorj et al. 2018).

Method

The main framework of presented method is given in Fig. 2
where

1. wafer map image data is used to train CNN model,
2. CNN features are extracted from fully connected layer of

the trained CNN,
3. extracted features and class labels are fed to ECOC (SVM

used as binary classifiers) and perform 10-fold cross-
validation,

4. final classification accuracy evaluation.

Convolutional neural network

CNN is a class of deep neural networks which has shown to
be particularly effective in image classification, image and
video recognition, object detection, recommender systems,
medical image analysis, natural language processing and so
on. CNN consists of an input layer, an output layer and many
hidden layers between them. The hidden layers are a combi-
nation of convolution layers, normalization layers, pooling
layers and fully connected layers.
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The most important operation on CNN is in the con-
volution layers at which filters and input image carry out
convolution operation and then the output of each convolved
image is used as the input to the next layer. In this way,
CNN combines the lower-level features of earlier layers to
form higher level image features. These higher level image
features are better suited for classification since they are in
greater levels of abstraction (Donahue et al. 2014). In addi-
tion, there is no need to manually extract the useful features
since the features are learned directly by the CNN. These
advantages are the right reason why we use CNN in this
research.

ECOC classification

ECOC (Dietterich and Bakiri 1995) is a powerful tool used
for multi-class classification which can not only improve the
classification accuracy but also reduce both variance and bias
errors (Kong and Dietterich 1995). This is the reason why we
choose ECOC as our classification model.

Themain idea ofECOC is combiningmultiple binary clas-
sifiers for multi-class classification. In this research, SVM
binary classifiers are utilized as ECOC basic classifiers. In
the following, ECOC and SVM are briefly described.

ECOC

ECOC consists of coding and decoding steps.
In the coding step, the code matrixM is defined from data.

M is defined as:

M ∈ {1,−1}C×L (1)

whereC is the number of classes, L is the lengthof codewords
(the number of binary classifiers), each row represents a code-
word of the corresponding class, each column represents the
corresponding binary classifier, the value Mcl = 1(or − 1)
means the samples associated with class c will be treated
as positive (or negative) class for lth binary classifier. Then
each of L binary classifiers is used to train according to the
partition of the classes in the corresponding column of M.

In the decoding step, class labels of the test data are pre-
dicted. For a given test sample, each classifier generates a
value 1 or -1 so that a L length output vector can be obtained.
The obtained output vector is compared to each codeword in
the codematrix and the class whose codeword has the closest
distance to the output vector is chosen as the predicted class.

In ECOC, the number of classifiers L depends on what
kind of coding design is used. A coding design can direct
which classes are trained by each binary classifier. There
are many coding designs, however, one-versus-all (Nilsson
1965) and one-versus-one (Hastie and Tibshirani 1998) are
the most widely used coding designs. In one-versus-all, the

number of n classifiers are needed since n-class problem
is converted into n two-class problems and for the i th two-
class problem, class i is separated from the remaining classes.
While in one-versus-one, the number of classifiers n(n−1)/2
are needed since n-class problem is converted into n(n−1)/2
two-class problems, which accounts for all pairs of classes.
In this research, one-versus-one coding design is used.

Support vector machines

SVM (Cortes and Vapnik 1995) was originally introduced
for binary classification. SVM searches for the maximum
marginal hyperplane.

Training data of instance-label pairs can be expressed as:

(x1,y1), (x2,y2), . . . , (xn,yn), xi ∈ Rd , yi ∈ {+1,−1} (2)

where yi is the class label which can take one of two values,
either +1 or -1, n is the number of training samples and d is
the number of dimensions.

If the training dataset can be linearly separable, any sep-
arating hyperplane can be written as:

wT xi + b = 0, i = 1, 2, . . . , n (3)

wherew is d-dimensional weight vector (w = (w1, w2, . . . ,

wd)) and b is a bias term.
Hyperplane considering the side of margin can be written

as:

wT xi + b ≥ 1 ∀yi ∈ 1

wT xi + b ≤ −1 ∀yi ∈ −1
(4)

Combining the two inequalities in Eq. 4 is equivalent to

yi (w
T xi + b) ≥ 1, i = 1, 2, . . . , n (5)

The weight vector w and bias term b need to be learned
from training data to find themaximummarginal hyperplane.
This can be obtained by solving the following minimization
problem for w and b, subject to Eq. 5:

minimize
1

2
‖w‖2 (6)

where ‖w‖ is the Euclidean norm of w, that is
√

w · w =√
w2
1 + w2

2 + . . . + w2
d

Such an optimization problem can be solved by the fol-
lowingLagrange formulation since it ismuch easier to handle
and also can extend to the nonlinear case:

L(w, b, α) = 1

2
‖w‖2 −

n∑
i=1

αi (yi (w
T xi + b) − 1) (7)
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where α = (α1, . . . , αn)
T and αi are the nonnegative

Lagrange multipliers.
Equation 7 needs to be minimized with respect to w and

b. The optimal solution is given by the saddle point and the
solution satisfies the following Karush–Kuhn–Tucker condi-
tions:

∂L(w, b, α)

∂w
= 0 (8)

∂L(w, b, α)

∂b
= 0 (9)

Equations 8 and 9 lead to:

w =
n∑

i=1

αi yi xi (10)

n∑
i=1

αi yi = 0 (11)

Substituting Eqs. 8 and 11 into Eq. 7, we obtain the fol-
lowing dual problem:

maximize L(α) =
n∑

i=1

αi − 1

2

n∑
i, j=1

αiα j yi y j x
T
i x j (12)

subject to
n∑

i=1

αi yi = 0, αi ≥ 0 i = 1, 2, . . . , n (13)

In the solution, training samples with αi > 0 are support
vectors and all the other training samples have αi = 0. Once
the support vectors are found, the class label of a given test
sample can be predictedwith the following decision function:

D(x) =
∑
i∈S

αi yi x
T
i x + b (14)

where S is the set of support vector indices, b is a automat-
ically determined numeric parameters by the optimization
and x is test sample.

However, if the training data is not linearly separable, then
the constraints in Eq. 4 is too strict so that there no hyperplane
exists. In this case, a slack variable can be used to solve
the problems. If the readers interested in nonlinear separable
cases, please see (Cortes and Vapnik 1995) for more details.

Experimental results

Data

Table 1 shows a labeled WM-811K (Wu et al. 2015) dataset
and the used dataset for experiments. TheWM-811K dataset
consists of 811457 real wafer maps and among them, domain

experts are recruited to label the pattern types of 172950
wafer maps. In this labeled WM-811K dataset, there are
9 types of defects (center, donut, edge-loc, edge-ring, loc,
near-full, random, scratch, and none) and its pattern type
distribution is shown in Table 1a. However, near-full pattern
type is excluded from experiments since it can be simply
identified by the defect cover ratiowhose computation cost of
classification is much less than that in the presented method.
Therefore, the remaining eight pattern types are considered
in this research. As can be seen from Table 1a, the number
of wafer maps in each pattern type is highly imbalanced.
The number of wafer maps in each pattern type is fixed as
2500 to make the pattern types balance in our experiments,
In a labeled WM-811K dataset, since the number of wafer
maps in each pattern type of center, edge-loc, edge-ring, loc,
and none pattern is greater than 2500, this quantity of wafer
maps is randomly selected from each of these pattern types.
In contrast, the number of wafer maps in each pattern type of
donut, random, and scratch pattern is less than 2500 so that
synthetic wafer maps are generated for these pattern types.
Each synthetic wafer map is generated from a selected real
wafer map by removing two defective die where this pair of
defective die is randomly selected from all pair combinations
of two different defective die. In this way, four, two, and two
synthetic wafer maps are respectively generated from each
wafer map of 555 donut, 866 random, and 1193 scratch pat-
terns. Therefore, total 2220 (555 * 4), 1732 (866 * 2), and
2386 (1193 * 2) synthetic wafer maps are respectively gen-
erated for donut, random and scratch patterns. Then the lack
number of synthetic 1945 (2500 - 555) donut, 1634 (2500
- 866) random, and 1307 (2500 - 1193) scratch patterns are
randomly selected from each of the generated 2220 donut,
1732 random, and 2386 scratch patterns to fulfill the quantity
requirements. Table 1b shows the pattern type distribution of
used dataset for experiments. Therefore, total 20000 wafer
map images are used for experiments. TheWM-811Kdataset
is in numeric format so that the each numeric wafer map data
need to be converted into grayscale image data. Grayscale
image of size [256 256] is used as CNN input.

CNN configurations

Fig. 3 shows theCNNarchitecture used in this research. CNN
architecture is composed of input layer, 7 convolution related
layers, fully connected layer and softmax layer, and output
layer. In each of 7 convolution related layers, there are con-
volutional layer, batch normalization layer, ReLU (Rectified
Linear Unit) layer and max pooling layer.

In each convolutional layer, a filter of size [3 3] and zero
padding of size 1 is applied. The filter size [3 3] is applied
since it is the smallest filter size which can capture the space
of left/right, up/down, and center. Defects in edge-ring and
edge-loc patterns are located in the wafer map edges. Zero
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Table 1 Labeled WM-811K
dataset and used dataset for
experiments

Type Count

(a) Labeled WM-811K

Center 4294

Donut 555

Edge-loc 5189

Edge-ring 9680

Loc 3593

Near-full 149

Random 866

Scratch 1193

None 147431

Total 172950

(b) Used dataset

Center 2500

Donut 2500

Edge-loc 2500

Edge-ring 2500

Loc 2500

Random 2500

Scratch 2500

None 2500

Total 20000

padding is applied since it can prevent the convolution opera-
tion from losing such edge information. Batch normalization
layer is used to normalize the activations and gradients propa-
gating through a network, making network training an easier
optimization problem. Batch normalization layers between
convolutional layers andReLU layers can be used to speed up
network training and reduce the sensitivity to network initial-
ization.After each batch normalization layer, themostwidely
used activation function ReLU is applied. After each ReLU
layer, the max pooling layer is used to reduce the feature map
size and remove redundant spatial information. Such kind of
reduction can make it possible to increase the number of fil-
ters in deeper convolutional layers without requiring large
amount of computation per layer. Therefore, as can be seen
fromFig. 3, the only difference between7 convolution related
layers is the number of filters. In eachmax pooling layer, pool
size [2 2] and stride size [2 2] are applied not to make the
pooling regions overlap. A fully connected layer is a layer at
which each neuron has full connections to all the neurons in
the preceding layer and it combines the features to classify
the images. The number of outputs in fully connected layer is
equal to the number of classes. Softmax layer normalizes the
output of the fully connected layer. The stochastic gradient
descent with momentum is used to applied for CNN training.
Deeper layers contain higher-level features which are con-
structed based on the lower-level features of earlier layers.
Therefore, fully connected layer right before the classifica-

tion layer is used to extract theCNNfeatures forCNN-feature
based classification.

Classification accuracy

Classifications methods of CNN and CNN-SVM are used
for comparison. ECOC can be combined with any binary
classifiers. For comparison, six different binary classifiers
of NB, linear discriminant analysis (LDA), CART, kNN,
logistic regression (LOGISTIC), and SVM are also applied
in CNN feature-based ECOC (CNN-ECOC) classification.
Therefore, in this subsection, experiment results of total
eight classificationmethods are presented. The 10-fold cross-
validation is applied to all eight classification methods. Due
to randomweight initialization in CNN and random partition
of samples in 10-fold cross-validation, each of eight classifi-
cation methods is run ten times to see the accuracy variances.
Classification results of CNN, CNN-SVM and CNN-ECOC
are respectively shown in Tables 2, 3 and 4. For convenience,
the used six classificationmethods in Table 4 are shortened to
CNN-ECOC-NB, CNN-ECOC-LDA, CNN-ECOC-CART,
CNN-ECOC-kNN, CNN-ECOC-LOGISTIC, CNN-ECOC-
SVM and the corresponding classification results are respec-
tively shown in Table 4a–f. Among them, the presented
method in this research is CNN-ECOC-SVM.

LIBSVM (Chang and Lin 2011) is used for CNN-SVM,
while all the other programs are implemented with MAT-
LAB 2018b (Matlab 2018). Except in CNN classification,
the extracted CNN features are first standardized and the
one-vs-one decomposition strategy is applied in all remain-
ing seven classification methods. Linear SVM is applied
both in CNN-SVM and CNN-ECOC-SVM. The default tem-
plate function of ’templateNaiveBayes’, ’templateDiscrimi-
nant’, ’templateTree’, ’templateKNN’ and ’templateSVM’
are respectively used for binary classifier of NB, LDA,
CART, kNN and SVM. The template function ’templateLin-
ear’ is used for LOGISTIC binary classifier where the learner
is specified with ’logistic’. In these template functions, all
input parameters are usedwith the default values during train-
ing except the learner option ’logistic’ in the ’templateLinear’
function. The default values used in each of these template
functions can be found in MATLAB 2018b (Matlab 2018).

In Tables 2, 3, and each table in Table 4, the first ’Iter’ col-
umn shows the iteration number, the rightmost ’Avg’ column
shows the average classification accuracy of each iteration,
and the bottom two rows respectively show the average clas-
sification accuracy and standard deviation of each pattern
type over 10 iterations.

From Tables 2 and 3, it can be seen that CNN-SVM sig-
nificantly outperforms CNN since
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1. even the lowest average classification accuracy of 10 iter-
ations 97.40% in CNN-SVM is much higher than the
highest that 90.90% in CNN classification,

2. average classification accuracy of each pattern type in
CNN-SVM is higher than that of each corresponding pat-
tern type in CNN classification, and

3. the standard deviation of each pattern type in CNN-
SVM is much lower than that of each corresponding
pattern type in CNN classification. Although there is a
slight increase in overall standard deviation, the overall
average classification accuracy is improved 7.42 (97.92–
90.50)%.

The only difference between these two methods is in their
objectives. Softmax layer used in CNN is used to minimize
cross-entropy or maximizes the log-likelihood, while SVM
is used to simply find the maximum margin between data
samples of different classes. Such a significant improvement
is mainly due to better generalization ability of SVM than
that of softmax.

In terms of classification accuracy, among all eight classi-
ficationmethods,CNN-ECOC-SVMwith98.43% inTable4f
obtains the highest overall classification accuracy and CNN-
SVMwith 97.92% in Table 3 obtains the 2nd highest overall
classification accuracy:

1. In terms of average classification accuracy in each iter-
ation: Even the lowest average classification accuracy
in CNN-ECOC-SVM, 98.26% is higher than the highest
that in each of all compared classificationmethods except
CNN-SVM. Compared with CNN-SVM in Table 3,
98.26% is lower only in two iterations, 5th iteration of
98.29% and 6th iteration of 98.35%.

2. In terms of average classification accuracy in each pattern
type over 10 iterations: CNN-ECOC-SVM could not win
all comparedmethods in all eight pattern types. However,
CNN-ECOC-SVMobtains the highest average classifica-
tion accuracy in each of four center, edge-loc, edge-ring,
and loc pattern types; in donut pattern type, only CNN-
SVM(99.98%) andCNN-ECOC-kNN(100%) are higher
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Table 2 CNN classification
accuracy (%) (CNN)

Iter Center Donut Edge-loc Edge-ring Loc Random Scratch None Avg

1 95.00 99.30 80.90 93.60 78.00 98.90 87.40 92.00 90.64

2 95.50 99.10 78.80 94.80 76.60 98.30 90.00 92.80 90.74

3 95.30 99.30 79.60 95.30 76.20 98.60 87.60 92.10 90.50

4 94.60 99.10 79.00 94.50 76.40 98.60 87.20 93.10 90.31

5 94.30 99.10 79.60 94.00 77.40 98.40 88.30 93.70 90.60

6 95.20 99.40 80.90 94.70 77.60 98.50 87.20 93.70 90.90

7 94.60 99.40 80.00 94.50 77.50 98.40 86.90 93.40 90.59

8 94.40 98.30 78.70 94.60 76.60 98.80 88.50 93.10 90.38

9 94.20 98.90 77.70 93.60 75.60 98.00 88.00 93.30 89.91

10 94.70 99.30 78.70 94.00 78.60 98.20 87.80 92.20 90.44

Avg 94.78 99.12 79.39 94.36 77.05 98.47 87.89 92.94 90.50

Std 0.45 0.33 1.02 0.55 0.92 0.27 0.90 0.64 0.27

Table 3 CNN feature-based
SVM classification accuracy
(%) (CNN-SVM)

Iter Center Donut Edge-loc Edge-ring Loc Random Scratch None Avg

1 99.10 100.00 93.80 98.10 94.40 99.80 98.20 97.70 97.64

2 99.00 100.00 95.30 98.60 94.90 99.80 98.40 97.70 97.96

3 99.20 99.80 93.00 98.30 93.30 99.80 98.40 97.40 97.40

4 99.10 100.00 94.60 98.80 93.80 99.60 98.20 97.70 97.73

5 99.20 100.00 95.70 99.10 95.00 100.00 99.10 98.20 98.29

6 99.20 100.00 96.30 99.20 95.40 99.80 98.60 98.30 98.35

7 99.10 100.00 95.40 98.70 94.10 99.80 97.00 97.90 97.75

8 98.90 100.00 95.30 99.30 94.30 100.00 98.20 97.80 97.98

9 99.00 100.00 95.10 98.50 95.10 99.90 98.00 97.70 97.91

10 99.10 100.00 95.00 99.20 95.40 99.70 98.70 98.60 98.21

Avg 99.09 99.98 94.95 98.78 94.57 99.82 98.28 97.90 97.92

Std 0.10 0.06 0.95 0.41 0.71 0.12 0.55 0.36 0.30

than that in CNN-ECOC-SVM (99.95%); in random pat-
tern type, only CNN-ECOC-kNN (99.96%) is higher
than that in CNN-ECOC-SVM (99.87%); in scratch pat-
tern type, only CNN-ECOC-kNN (99.09%) is higher
than that in CNN-ECOC-SVM (98.69%); in none pattern
type, onlyCNN-ECOC-LDA(99.51%) is higher than that
in CNN-ECOC-SVM (98.39%). Compared with CNN-
SVM,CNN-ECOC-SVMwins in all pattern types except
in donut pattern type. In donut pattern type, CNN-SVM
obtains average classification of 99.98% while CNN-
ECOC-SVM obtains 99.95%.

3. In terms of standard deviation in each pattern type over 10
iterations: Compared with CNN-SVM, in CNN-ECOC-
SVM only the standard deviation in center and donut
pattern types are respectively higher than that in each cor-
responding pattern type. However, in center pattern type,
CNN-ECOC-SVM with 99.28% obtains higher average
classification accuracy than that 99.09% in CNN-SVM.
Although as described above, in donut pattern type,
CNN-ECOC-SVM obtains lower average classification

99.95% than that 99.98% in CNN-SVM, the overall stan-
dard deviation in CNN-ECOC-SVM, 0.19 is lower than
that 0.30 in CNN-SVM.

From Tables 2, 3, and each table in Table 4, a summary of
accuracy comparison is presented in Table 5 where each row
is taken from the row of average classification accuracy and
overall standard deviation in each corresponding method. In
Table 5, the best value in each column is marked in bold.

Among all eight classification methods, the statistical
analysis of ANOVA is applied to determine whether 10
iterations of each method has a common average classifica-
tion accuracy. The mean difference is significant at the 0.05
level. The corresponding result is given in Table 6 where the
columns of ’Source’, ’SS’, ’df’, ’MS’, ’F’, ’Prob>F’ respec-
tively indicate the source of the variability, the sumof squares
due to each source, the degrees of freedom associated with
each source, themean squares for each source, F-statistic and
p value. In Table 6, the small p value 2.8599e−54 indicates
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Table 4 CNN feature-based
ECOC classification accuracy
(%)

Iter Center Donut Edge-loc Edge-ring Loc Random Scratch None Avg

(a) NB as binary classifiers (CNN-ECOC-NB)

1 93.50 98.90 88.40 93.60 68.30 97.40 94.00 95.30 91.18

2 92.30 97.80 88.90 90.10 63.00 97.70 92.70 95.60 89.76

3 94.50 99.20 90.50 93.30 72.70 98.80 94.90 96.40 92.54

4 95.50 99.40 89.60 92.50 78.90 98.70 95.10 97.00 93.34

5 92.90 99.30 88.20 93.60 68.90 97.20 93.50 96.20 91.23

6 94.40 98.60 90.00 93.20 71.10 98.50 95.40 95.90 92.14

7 97.10 98.60 90.40 94.50 76.40 98.60 94.80 95.60 93.25

8 94.00 97.00 88.10 95.40 65.40 97.70 94.80 96.60 91.13

9 93.60 98.60 87.20 92.10 71.90 94.60 95.10 96.90 91.25

10 93.60 98.70 88.60 93.30 65.00 98.80 96.40 97.40 91.48

Avg 94.14 98.61 88.99 93.16 70.16 97.80 94.67 96.29 91.73

Std 1.36 0.73 1.09 1.42 5.07 1.28 1.04 0.69 1.10

(b) LDA as binary classifiers (CNN-ECOC-LDA)

1 95.30 98.20 84.40 94.20 84.80 100.00 94.10 99.20 93.78

2 94.20 97.60 84.00 92.20 83.00 99.70 90.40 99.50 92.58

3 95.20 98.10 83.10 93.50 84.00 99.90 94.80 99.70 93.54

4 94.80 98.30 85.80 92.40 86.60 99.30 91.50 99.40 93.51

5 94.60 96.40 84.90 93.10 85.20 99.70 90.00 99.60 92.94

6 95.70 97.10 85.60 93.40 86.90 99.60 92.70 99.60 93.83

7 94.40 97.70 85.20 95.60 82.20 99.40 95.90 99.40 93.73

8 93.60 97.00 81.90 92.60 85.00 100.00 92.60 99.70 92.80

9 95.70 98.00 88.10 91.80 86.50 99.40 91.90 99.90 93.91

10 94.20 98.50 85.20 95.40 83.40 99.90 92.80 99.10 93.56

Avg 94.77 97.69 84.82 93.42 84.76 99.69 92.67 99.51 93.42

Std 0.70 0.67 1.67 1.30 1.61 0.26 1.86 0.24 0.47

(c) CART as binary classifiers (CNN-ECOC-CART)

1 98.40 99.80 91.90 97.80 92.80 98.90 97.80 96.30 96.71

2 98.70 99.80 94.10 98.90 94.00 99.60 98.40 96.50 97.50

3 98.50 99.60 93.60 98.30 93.20 99.20 97.20 96.60 97.03

4 98.20 99.50 91.70 98.00 90.90 99.20 97.60 97.40 96.56

5 98.60 99.80 93.10 98.20 93.30 99.60 97.40 97.00 97.13

6 98.80 99.90 93.10 98.80 94.60 99.20 98.10 96.90 97.43

7 97.90 99.60 91.00 97.80 91.50 99.40 97.40 95.90 96.31

8 97.90 99.20 90.00 97.80 90.10 99.20 97.00 96.60 95.98

9 98.80 99.70 93.80 98.20 94.10 99.60 97.40 96.60 97.28

10 98.70 99.60 92.80 98.30 92.70 99.60 97.30 96.30 96.91

Avg 98.45 99.65 92.51 98.21 92.72 99.35 97.56 96.61 96.88

Std 0.34 0.20 1.32 0.39 1.46 0.25 0.43 0.42 0.49

that average classification accuracy of 10 iterations in eight
methods are not the same.

In addition, the result of pairwise comparisons for one-
way ANOVA also is presented in Table 7. In Table 7, the first
two column show the pair of compared methods, ’Lower
confidence’ column contains the lower confidence interval,
’Upper confidence’ column contains the upper confidence
interval and the ’p value’ column contains the p value for

the hypothesis test that the corresponding mean difference
is not equal to 0. The two compared methods in each row
of 1-10th, 14-22th, 24th, 25th and 27th row are significantly
different since the confidence intervals does not include zero
and p value is smaller than 0.05. In contrast, the twomethods
in each rowof 11-13th, 23th, 26th and 28th row are not signif-
icantly different. From13th, and 28th rows, it can be seen that
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Table 4 continued Iter Center Donut Edge-loc Edge-ring Loc Random Scratch None Avg

(d) kNN as binary classifiers (CNN-ECOC-kNN)

1 98.30 100.00 92.90 98.30 93.60 100.00 99.00 96.80 97.36

2 98.60 100.00 93.90 98.60 94.40 100.00 99.00 97.80 97.79

3 98.60 100.00 94.10 98.50 93.70 100.00 99.30 97.60 97.73

4 98.70 100.00 93.90 97.70 94.00 99.90 99.10 96.80 97.51

5 98.70 100.00 92.60 98.00 93.60 100.00 98.80 96.30 97.25

6 98.70 100.00 92.70 97.30 93.60 100.00 99.20 96.70 97.28

7 98.10 100.00 92.30 97.80 90.50 99.80 99.10 97.00 96.83

8 98.80 100.00 93.20 97.80 94.20 99.90 99.30 97.10 97.54

9 97.90 100.00 93.30 98.20 92.00 100.00 99.10 97.40 97.24

10 98.40 100.00 92.20 97.90 90.60 100.00 99.00 97.40 96.94

Avg 98.48 100.00 93.11 98.01 93.02 99.96 99.09 97.09 97.35

Std 0.30 0.00 0.69 0.40 1.45 0.07 0.15 0.46 0.31

(e) LOGISTIC as binary classifiers (CNN-ECOC-LOGISTIC)

1 99.30 100.00 94.80 98.30 95.00 99.90 98.50 98.40 98.03

2 99.00 99.80 96.20 98.80 95.60 99.80 98.20 98.10 98.19

3 99.20 100.00 94.70 98.80 94.70 99.80 98.70 97.80 97.96

4 98.90 100.00 95.40 98.30 94.80 99.70 98.50 98.40 98.00

5 99.00 100.00 94.90 98.50 93.60 99.80 98.30 98.40 97.81

6 98.80 100.00 93.40 97.90 93.00 99.60 97.60 97.60 97.24

7 99.10 100.00 96.00 98.70 95.00 99.60 98.40 98.60 98.18

8 99.00 100.00 95.10 97.70 93.90 99.00 98.50 98.30 97.69

9 99.20 99.80 94.50 98.40 94.30 99.80 98.70 98.30 97.88

10 99.10 99.80 94.30 98.40 93.70 99.30 97.10 98.00 97.46

Avg 99.06 99.94 94.93 98.38 94.36 99.63 98.25 98.19 97.84

Std 0.15 0.10 0.82 0.36 0.80 0.28 0.51 0.31 0.31

(f) SVM as binary classifiers (CNN-ECOC-SVM)

1 99.40 100.00 97.10 99.20 97.30 99.80 99.10 98.40 98.79

2 99.00 99.90 95.40 98.80 96.20 100.00 99.00 98.10 98.30

3 99.20 100.00 96.50 98.80 96.70 99.80 98.70 97.80 98.44

4 99.40 100.00 95.20 99.00 95.50 99.90 98.50 98.60 98.26

5 99.50 99.80 96.10 98.90 95.80 99.80 98.40 98.80 98.39

6 99.40 100.00 95.90 99.30 96.00 99.90 98.40 98.40 98.41

7 99.20 99.90 95.40 98.90 96.40 99.90 98.20 98.50 98.30

8 99.10 99.90 96.60 99.10 95.40 99.80 98.70 98.70 98.41

9 99.20 100.00 95.70 98.50 95.90 99.80 98.80 98.20 98.26

10 99.40 100.00 97.20 98.30 97.50 100.00 99.10 98.40 98.74

Avg 99.28 99.95 96.11 98.88 96.27 99.87 98.69 98.39 98.43

Std 0.16 0.07 0.72 0.30 0.71 0.08 0.31 0.30 0.19

the presented method CNN-ECOC-SVM is not significantly
different from CNN-SVM and CNN-ECOC-LOGISTIC.

Except the classification accuracy, other classification
performancemeasures of precision, recall, specificity, and F-
measures are also considered, and the comparison results are
shown in Table 5. For each classification method in Table 8,
the iteration with the highest average classification accuracy
over 10 iterations is selected for comparison. The selected

iteration number for each corresponding method is shown
in ’Iteration no.’ column. In Table 8, the best value in each
performance measure is marked in bold. It can be seen from
Table 8 that CNN-ECOC-SVM respectively shows the high-
est accuracy, precision, recall, and F-measure of 98.79%,
98.79%, 98.79%, 99.83%, and 98.79%.

Extensive experimental results have proved our original
expectation and the main reasons why CNN-ECOC-SVM
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Table 5 A summary comparison of classification accuracy

Method Pattern type (%) Overall
Center Donut Edge-loc Edge-ring Loc Random Scratch None Accuracy (%) Std

CNN 94.78 99.12 79.39 94.36 77.05 98.47 87.89 92.94 90.50 0.27

CNN-SVM 99.09 99.98 94.95 98.78 94.57 99.82 98.28 97.90 97.92 0.30

CNN-ECOC-NB 94.14 98.61 88.99 93.16 70.16 97.80 94.67 96.29 91.73 1.10

CNN-ECOC-LDA 94.77 97.69 84.82 93.42 84.76 99.69 92.67 99.51 93.42 0.47

CNN-ECOC-CART 98.45 99.65 92.51 98.21 92.72 99.35 97.56 96.61 96.88 0.49

CNN-ECOC-kNN 98.48 100.00 93.11 98.01 93.02 99.96 99.09 97.09 97.35 0.31

CNN-ECOC-LOGISTIC 99.06 99.94 94.93 98.38 94.36 99.63 98.25 98.19 97.84 0.31

CNN-ECOC-SVM 99.28 99.95 96.11 98.88 96.27 99.87 98.69 98.39 98.43 0.19

Table 6 ANOVA result Source SS df MS F Prob>F

Between groups 688.091 7 98.2987 382.17 2.8599e−54

Within groups 18.519 72 0.2572 – –

Total 706.610 79 – – –

Table 7 Pairwise comparison test

Index Method 1 Method 2 Lower confidence Upper confidence p value

1 CNN CNN-SVM − 8.1291 − 6.7129 0.0000

2 CNN CNN-ECOC-NB − 1.9371 − 0.5209 0.0000

3 CNN CNN-ECOC-LDA − 3.6251 − 2.2089 0.0000

4 CNN CNN-ECOC-CART − 7.0911 − 5.6749 0.0000

5 CNN CNN-ECOC-kNN − 7.5541 − 6.1379 0.0000

6 CNN CNN-ECOC-LOGISTIC − 8.0511 − 6.6349 0.0000

7 CNN CNN-ECOC-SVM − 8.6371 − 7.2209 0.0000

8 CNN-SVM CNN-ECOC-NB 5.4839 6.9001 0.0000

9 CNN-SVM CNN-ECOC-LDA 3.7959 5.2121 0.0000

10 CNN-SVM CNN-ECOC-CART 0.3299 1.7461 0.0005

11 CNN-SVM CNN-ECOC-kNN − 0.1331 1.2831 0.1978

12 CNN-SVM CNN-ECOC-LOGISTIC − 0.6301 0.7861 1.0000

13 CNN-SVM CNN-ECOC-SVM − 1.2161 0.2001 0.3412

14 CNN-ECOC-NB CNN-ECOC-LDA − 2.3961 − 0.9799 0.0000

15 CNN-ECOC-NB CNN-ECOC-CART − 5.8621 − 4.4459 0.0000

16 CNN-ECOC-NB CNN-ECOC-kNN − 6.3251 − 4.9089 0.0000

17 CNN-ECOC-NB CNN-ECOC-LOGISTIC − 6.8221 − 5.4059 0.0000

18 CNN-ECOC-NB CNN-ECOC-SVM − 7.4081 − 5.9919 0.0000

19 CNN-ECOC-LDA CNN-ECOC-CART − 4.1741 − 2.7579 0.0000

20 CNN-ECOC-LDA CNN-ECOC-kNN − 4.6371 − 3.2209 0.0000

21 CNN-ECOC-LDA CNN-ECOC-LOGISTIC − 5.1341 − 3.7179 0.0000

22 CNN-ECOC-LDA CNN-ECOC-SVM − 5.7201 − 4.3039 0.0000

23 CNN-ECOC-CART CNN-ECOC-kNN − 1.1711 0.2451 0.4622

24 CNN-ECOC-CART CNN-ECOC-LOGISTIC − 1.6681 − 0.2519 0.0017

25 CNN-ECOC-CART CNN-ECOC-SVM − 2.2541 − 0.8379 0.0000

26 CNN-ECOC-kNN CNN-ECOC-LOGISTIC − 1.2051 0.2111 0.3693

27 CNN-ECOC-kNN CNN-ECOC-SVM − 1.7911 − 0.3749 0.0002

28 CNN-ECOC-LOGISTIC CNN-ECOC-SVM − 1.2941 0.1221 0.1790
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Table 8 A comparison of performance measures

Method Iteration number Accuracy Precision Recall Specificity F-measure

CNN 6th in Table 2 90.90 90.90 90.90 98.70 90.84

CNN-SVM 6th in Table 3 98.35 98.35 98.35 99.77 98.36

CNN-ECOC-NB 4th in Table 4a 93.34 93.45 93.34 99.05 93.28

CNN-ECOC-LDA 9th in Table 4b 93.91 94.61 93.91 99.13 94.01

CNN-ECOC-CART 2nd in Table 4c 97.50 97.50 97.50 99.64 97.50

CNN-ECOC-kNN 2nd in Table 4d 97.79 97.79 97.79 99.69 97.80

CNN-ECOC-LOGISTIC 2nd in Table 4e 98.19 98.19 98.19 99.74 98.19

CNN-ECOC-SVM 1st in Table 4f 98.79 98.79 98.79 99.83 98.79

could obtain such a good performance are that CNN can
extract the most discriminative features and combination of
ECOC and SVM can improve the classification accuracy.

An interesting observation can be found that each of
all eight classification method shows the highest two stan-
dard deviation values in edge-loc and loc pattern types. We
carefully guess that this phenomenon may come from lack
of significant differences between these two defect pattern
types. However, we leave the deep research on explanations
for our future work.

The WM-811K (Wu et al. 2015) dataset is widely applied
in SVM-based method (Wu et al. 2015), OPTICS-SVM (Fan
et al. 2016), JLNDA-FD (Yu and Lu 2016), decision tree
ensemble learning-based method (Piao et al. 2018), and soft
voting ensemble (SVE) (Saqlain et al. 2019) for wafer map
defect pattern classification. Since the used dataset in each of
them are not completely identical and also different from that
used in this research, it is impossible to perform a direct com-
parison. However, for rough comparison with CNN-ECOC-
SVM, only the overall classification accuracies are pro-
vided: SVM-based method 94.63%, OPTICS-SVM 94.30%,
JLNDA -FD 90.50%, decision tree ensemble learning-based
method 90.50%, and SVE 95.87%. Obviously, the overall
classification accuracy of CNN-ECOC-SVM is much higher
than that of the state-of-the-art methods.

Conclusions

In this research, we present an image-basedwafermap defect
pattern classificationmethod. The presentedmethod consists
of mainly two steps: feature extraction and classification. In
the feature extraction step, high-level features are extracted
from CNN and in the classification step, the extracted CNN
features are used to train ECOC model for wafer map defect
pattern classification. In the ECOCmodel, SVM binary clas-
sifiers are employed.

Experimental results conducted on 20000 wafer maps
show that the presented method achieves the best classifi-

cation accuracy up to 98.43% in comparison to other wafer
map defect pattern classification methods.

There are a lot of work need to be done for future work.
In this research, only the one-vs-one decomposition strategy
is applied. However, to improve the classification accuracy,
other decomposition strategies and other binary classifiers
also need to be considered.
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