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Abstract
Fault diagnosis plays an essential role in rotating machinery manufacturing systems to reduce their maintenance costs. How
to improve diagnosis accuracy remains an open issue. To this end, we develop a novel framework through combined use
of multi-domain vibration feature extraction, feature selection and cost-sensitive learning method. First, we extract time-
domain, frequency-domain, and time-frequency-domain features to make full use of vibration signals. Second, a feature
selection technique is employed to obtain a feature subset with good generalization properties, by simultaneously measuring
the relevance and redundancy of features. Third, a cost-sensitive learning method is designed for a classifier to effectively
learn the discriminating boundaries, with an extremely imbalanced distribution of fault instances. For illustration, a real-
world dataset of rotating machinery collected from an oil refinery in China is utilized. The extensive experiments have
demonstrated that our multi-domain feature extraction and feature selection can significantly improve the diagnosis accuracy.
Meanwhile, our cost-sensitive learning method consistently outperforms the traditional classifiers such as support vector
machine (SVM), gradient boosting decision tree (GBDT), etc., and even better than the classification method calibrated by
six popular imbalanced data resampling algorithms, such as the Synthetic Minority Over-sampling Technique (SMOTE) and
the Adaptive Synthetic sampling method (ADASYN), in terms of decreasing missed alarms and reducing the average cost.
Owing to its high evaluation scores and low average misclassification cost, cost-sensitive GBDT (CS-GBDT) is preferred for
imbalanced fault diagnosis in practice.
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Introduction

The breakthrough development of AI technology and mil-
lions of machineries equipped with smart sensors are accel-
erating the transformation from traditional manufacturing
industry towards smart manufacturing (Dou et al. 2018; Liu
et al. 2018b). Rotating machinery fault diagnosis plays an
indispensable role in smart manufacturing, and the demand
for effective diagnosis of its operation condition is increas-
ing rapidly. With a large number of high quality and reliable
real-time equipment operation data collected, it enables to
construct an automatic monitoring, intelligent diagnosis and
prognosis system of rotating machinery, which can reduce
the maintenance cost significantly (Tao et al. 2018; Wu et al.
2019a; Sánchez et al. 2018).

There are numerous useful data acquisition techniques
adopted in the fault diagnosis of rotating machinery, includ-
ingvibration analysis, oil analysis, acoustic emissionmethod,
temperature monitoring, and microwave flaw detection. In
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practice, vibration analysis is popular for its solid theoreti-
cal foundation and mature measurement tool (Ben Ali et al.
2018; Zhao andLin 2018;Gan et al. 2018).However, the high
frequency dynamic signal of rotating machinery is usually
a superposition of multiple components of different ampli-
tudes, and presents non-stationarity and non-linearity (Zhao
et al. 2019; Amrhein et al. 2016). Thus, it calls for more
effective and robust methods to extract features from vibra-
tion signals.

Apart from feature extraction, designing an irreplaceable
fault diagnosis method is another crucial step in rotating
machinery diagnosis. Fault diagnosis methods can be gener-
ally categorized into two types: mechanism-based methods
and data-driven methods (Ren et al. 2018; Han et al. 2019a).
Mechanism-based methods are employed only when accu-
rate mathematical models of the failure can be built (Wu
et al. 2019b). In fact, they have been greatly limited in the
diagnosis of rotating machinery, owing to the complexity of
their internal structure and the diversity of the external oper-
ating environment. On the other hand, data-driven methods
are especially powerful for the complex industrial processes,
since they directly use condition monitoring data to infer
mechanical failure without any assumption on the underly-
ing failure mechanism (Kang 2018; Tidriri et al. 2016; Wang
et al. 2019). Although data-driven methods are effective in
fault diagnosis, most studies are far from the actual operat-
ing conditions of rotating machinery, because the balanced
datasets they used are too few to get (Santos et al. 2015).

In practical industrial applications, the machinery works
in a normal condition throughout the whole operation cycle,
and there are seldom faults happening in its operating phases
(Jia et al. 2018), which means that fault instances are
seriously insufficient (Han et al. 2019a; Liu et al. 2018a;
Jiang et al. 2019; Sun et al. 2007). The first China Indus-
trial Big Data Innovation Competition in 2017 (http://www.
industrial-bigdata.com) makes them more specific, e.g., the
open access data contains 300,000 instances and the ratio
of fault/normal is about 1/10, which is a typical imbalanced
classification problem. Under the assumption of equal mis-
classification cost or balanced class distribution, traditional
classifiers lose their ability to deal with rare classes (Jia et al.
2018; Zhang et al. 2019; Li et al. 2020). In the fault diagno-
sis of rotating machinery, missing the detection of a failure
condition, a rare class in mechanical operation may cause a
catastrophic accident, whereas misclassifying a normal con-
dition as a failure can be verified by manual checking easily
(Zhang et al. 2018). This reminds us themisclassification cost
differs significantly between two different types of errors.
Much more attention should be paid to missed alarm for its
greater cost of misclassification than false alarm (Kuo et al.
2018; Han et al. 2019b; Zan et al. 2019).

In this paper, we propose a novel data-driven framework
for rotating machinery diagnosis, comprising comprehen-

sively extracting and selecting of a series of features from
collected vibration signals, and effectively diagnosing the
imbalanced operating condition of rotating machinery via
cost-sensitive learning. For this purpose, multiple features
are extracted through the combination of time-domain,
frequency-domain, and time-frequency-domain methods to
discover useful information from vibration signals. Then,
feature selection reduces the extracted feature set to a
more compact one. Additionally, the cost-sensitive learn-
ingmethod takesmisclassification costs into consideration to
calibrate the classification results, which aims to minimize
the average cost. To illustrate the efficacy of our method,
extensive experiments are conducted on a real-world dataset
of rotating machinery collected from an oil refinery in China.
With the same feature selection technique, our multi-domain
feature extraction method is compared with several previ-
ous feature extraction studies and it has been proved that
our method can significantly improve the accuracy of fault
diagnosis. Meanwhile, our cost-sensitive learning shows its
great advantages in reducing average misclassification cost,
compared with the cost-insensitive learning (classifiers treat
each type misclassification cost equally) and the classifi-
cation methods calibrated by imbalanced data resampling.
Moreover, a sensitivity experiment shows that the classifica-
tion performance of our cost-sensitive learning method will
be affected by different cost matrices. It is noteworthy that
CS-GBDT (cost-sensitive gradient boosting decision tree) is
preferred in imbalanced fault diagnosis of rotating machin-
ery, for its relatively high evaluation scores and low average
misclassification cost across different cost matrices.

The remainder of this paper proceeds as follows. “Related
works” section briefly reviews some related works. “The
framework” section presents the proposed framework includ-
ing multi-domain feature extraction, feature selection and
cost-sensitive learning method. In “The real-world applica-
tion” section, we apply the novel framework to a real-world
application and illustrate its superiority through extensive
comparisons. “Conclusions” section summarizes and con-
cludes the paper.

Related works

The fault diagnosis procedure can be roughly divided into
two steps: extracting robust features and diagnosing the con-
dition of the machine (Song et al. 2018). In the step of
feature extraction, after the properties of the vibration sig-
nals being well-understood, researchers could employ their
domain knowledge in signal processing to design suitable
features. In the second step, some new classification tech-
niques have been developed to effectively diagnose the fault
type of rotating machinery with imbalanced data.
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Feature extraction from vibration signals

Vibration signals are an important information source for
feature extraction in fault diagnosis because they contain
high frequency and time-varying information. Specifically,
feature extraction from vibration signals can be character-
ized into three domains: time-domain, frequency-domain,
and time-frequency-domain.

First, in the time-domain, different statistical features
are extracted to represent how signal amplitude varies with
respect to time. However, vibration signals produced by
a machine contain many components and are often diffi-
cult to be observed in the time-domain. Therefore, it is
unlikely that a fault will be detected by a simple visual
inspection. Second, frequency-domain analysis is to extract
features in a given frequency band, and fast Fourier trans-
form (FFT) is considered as one of the most commonly
used feature extraction technique (Seera et al. 2014). In
addition, amplitude spectrum (Larsson et al. 2002), power
spectrum (Jiang et al. 2018) and cepstrum (Hwang et al.
2009) are often used in some frequency-domain scenarios
as well. Unfortunately, the transition from time-domain to
frequency-domain is based on the hypothesis of stationarity,
which is often violated in the stage of mechanical failure
(Tao et al. 2018). Third, time-frequency-domain analysis
jointly representing the information from both time-domain
and frequency-domain, is good at dealingwith non-stationary
signals. The two most powerful and extensively used tech-
niques are wavelet transform (WT) (Wang et al. 2017) and
empirical mode decomposition (EMD) (Georgoulas et al.
2013). The remarkablemerit ofWT is that it has a good local-
ization property in both time-domain and frequency-domain.
It can automatically adjust the scale of the frequency compo-
nents, so as to observe and analyze the arbitrary details of the
signals. EDM depicts the oscillation structure and frequency
component of each part of the signals by decomposing the
signal into a set of orthogonal complete intrinsic mode func-
tions (IMFs). However, their common drawback is the lack
of a translation-invariant property in the vibration signal pro-
cessing, thus generating some false components (Ciabattoni
et al. 2018).

Moreover, considering that different domains have their
own advantages and disadvantages, one starts to combine
multiple domain features for effective fault diagnosis. For
example, Zhang et al. (2018) and Ragab et al. (2019) utilize
time-domain and time-frequency-domain features to clas-
sify multiple failure modes of rotating machinery. Zhang
et al. (2012) extracts time-domain and frequency-domain
features to diagnose different failure stages of a wind tur-
bine gearbox. However, the combination only involves two
domains and is relatively subjective without any convincing
explanation (Ben Ali et al. 2018). Seldom literatures extract
features from three domains to make full use of the mean-

ingful information contained in vibration signals (Wu et al.
2019b).

Classification for imbalanced data

According to the different stages of introducing data handling
techniques, the methods for imbalanced data classification
can be grouped into three categories: prior training, during
training, and after training methods.

The first type of methods deal with imbalanced data
though changing the distribution of training sample, such
as manually rebalancing training sample by over-sampling
minority instances or under-sampling majority instances
(Zhang et al. 2019; Xie et al. 2019), and adjusting the train-
ing sample by the misclassification cost of the instances.
These methods are often used to convert the arbitrary
cost-insensitive classifiers into a cost-sensitive equivalence,
withoutmodifying the underlying learning algorithm.Unlike
the first type, the second one directly modifies the learning
procedure to improve the sensitivity of the classifier toward
minority classes (Mathew et al. 2018; Correa Bahnsen et al.
2015). However, this type of methods designing different
algorithms according to different classifiers are neither effi-
cient nor flexible in practice (Lee et al. 2012). The third type
concerns only the estimating membership class probabili-
ties generated by cost-insensitive classifiers, assigning each
instance to its lowest risk class based on Bayes risk theory,
such as MetaCost (Domingos 1999) and Bayes minimum
risk (Khan et al. 2018). Although these methods have been
applied to many classifiers achieving the bias towards the
minority but costly classes, they are restricted and require
the cost-insensitive classifiers that can produce accurate pos-
teriori probability estimations of the training instances (Lee
et al. 2012).

To sum up, owing to their flexibility and not limited by
the posterior probability of the classifier, the first type of
methods are more suitable for industrial equipment fault
diagnosis (Zhang et al. 2018). There are two different
strategies for changing the distribution of training sam-
ple: (1) converting the original imbalanced training sample
into a balanced one. The random under-sampling, ran-
dom over-sampling, synthetic minority over-sampling tech-
nique (SMOTE) (Chawla et al. 2002), SMOTE-borderline1,
SMOTE-borderline2 (Mathew et al. 2018; Han et al. 2005)
and the adaptive synthetic sampling method (ADASYN)
(Haibo et al. 2008) are classical resampling methods. How-
ever, these methods do not take into account the unequal
costs imposed by the imbalanced distributions and may have
difficulty in achieving unbiased results (Castro and Braga
2013). (2) Generating new training sample according to the
unequal misclassification costs of instances. Zadrozny et al.
(2003) designs two different sampling methods: sampling-
with-replacement and cost-proportionate rejection sampling.
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However, the proportional sampling-with-replacement pro-
duces duplicated instances in the training process, resulting
in over-fitting in model building. On the contrary, “rejec-
tion sampling” is able to avoid duplication. Despite cost-
proportionate rejection sampling has shown its strength in
product recommendations (Lee et al. 2012), credit card fraud
detection (Correa Bahnsen et al. 2015), and biomedical engi-
neering (Gardner and Xiong 2009), its application is very
rare or absent in the manufacturing domain to the best of our
knowledge.

The framework

The purpose of this paper is to develop a new framework for
fault diagnosis of rotating machinery. As shown in Fig. 1,
the whole framework involves three parts: (1) multi-domain
feature extraction for maximizing the information value of
vibration data, (2) feature selection for eliminating redundant
features and identifying effective ones, and (3) cost-sensitive
learning for minimizing misclassification costs. All of them
play an indispensable role in actual fault diagnosis.

Feature extraction

To make full use of the information in the raw vibration
signals, we decompose the high-frequency dynamic signals
into time-domain, frequency-domain, and time-frequency-
domain features, respectively.

Time-domain feature extraction

Time-domain analysis characterizes the vibration change of
rotating machinery when a fault occurs by directly construct-
ing statistics from the vibration waveform. In this paper,
we produce five widely used statistical features, namely,
mean value (MV), root-mean-square value (RMSV), skew-
ness coefficient (SC), kurtosis coefficient (KC), and shape
factor (SF). The detailed calculations are shown in Table 1,
where z(t) is the signal at time t and Nz is the sample size.

Table 1 Time-domain statistical features

Statistical feature Definition

MV MVz = 1
Nz

∑Nz
t=1 z(t)

RMSV RMSVz =
√

1
Nz

∑Nz
t=1 z

2(t)

SC SCz = 1
RMSV 3

z

∑Nz
t=1 (z(t) − MVz)3

KC KCz = 1
RMSV 4

z

∑Nz
t=1 (z(t) − MVz)4

SF SFz = RMSVz
1
Nz

∑Nz
t=1 |z(t)|

Frequency-domain feature extraction

In frequency-domain analysis, spectrum analysis and enve-
lope spectrum analysis are two widely used methods. Spec-
trum analysis is to transform the vibration signals of rotating
machinery from time-domain to frequency-domain, so that
it can detect the corresponding fault characteristic of fre-
quency components. FFT technique plays an important role
in extracting spectral features, which is defined as

z( f ) =
∫ +∞

−∞
z(t)e− j2π f t dt, (1)

where z(t) denotes time-domain signal at time t , z( f )
denotes frequency-domain signal at frequency f .

Envelope spectrum is a curve formed by connecting the
peak points of amplitudes at different frequencies during a
time period. As acclaimed in Jiang et al. (2016), when the
local damages or defects of the rotating machinery happen,
the process of the load will produce mutational decaying
shock pulse force and high frequency natural vibration. Thus,
the final vibration waveform of rotating machinery is repre-
sented as a complex amplitude modulation wave. Envelope
demodulation can be realized by Hilbert transform (HT) and
then FFT. The HT of a signal is defined as

H [z(t)] = 1

π

∫ +∞

−∞
z(τ )

t − τ
dτ. (2)

We combine z(t) and H [z(t)] to form a new analytic signal

g(t) = z(t) + j H [z(t)]. (3)

The amplitude A(t) of g(t) is then obtained by

A(t) =
√
z(t)2 + H [z(t)]2. (4)

After HT, envelope spectra could be obtained by FFT to
extract the feature of defect frequencies.

Through the above spectrum analysis and envelope spec-
trum analysis, we extract 56 frequency-domain features, such
as root-mean-square frequency (RMSF), root variance fre-
quency (RVF), spectral kurtosis (SK). We do not present all
of them here to save limited space.

Time-frequency-domain feature extraction

In time-frequency-domain, EMD is considered as one of
the most powerful techniques to extract features of rotating
machinery. It decomposes the original non-stationary signals
into a series of stationary signals indicating the natural oscil-
latory mode, which is termed as intrinsic mode functions
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Fig. 1 Framework for fault diagnosis of rotating machinery

(IMFs). The procedure of intrinsic energy feature extraction
from IMFs is described below.

Step 1, identify all local maxima and minima of the signal
z(t) separately, and then connect all the local maxima by
a cubic spline line to form the upper envelope. Repeat the
same procedure for the local minima points to form the lower
envelope.

Step 2, denote the mean of the upper and lower envelope
value as μ1, and calculate the difference between the signal
z(t) and μ1 as

η1(t) = z(t) − μ1. (5)

Step 3, determine whether η1(t) satisfies: (1) the number
of extrema and the number of zero crossings are the same or
at most one difference; and (2) its upper and lower envelopes
are locally symmetric with respect to zero. If the two require-
ments satisfied, η1(t) becomes the first IMF component of
signal z(t) as

I MF1(t) = η1(t). (6)

Otherwise, η1(t) will be regarded as the raw signal z(t), and
return to step 1.

Step 4, calculate the residual r1(t) with the form

r1(t) = z(t) − I MF1(t). (7)

Stop decomposition if r1(t) is a monotone function. Other-
wise, r1(t) is treated as the raw signal z(t).

Step 5, repeat steps 1 to 4 and obtain all IMFs: I MF1(t),
I MF2(t), . . . , I MFM (t), as well as the final residual rM (t).
In this regard, the raw signal can be expressed as

z(t) =
M∑

j=1

I MFj + rM (t), (8)

where M denotes the number of IMFs.
Step 6, define the intrinsic energy features of rotating

machinery as

E j = 1

L

L∑

i=1

[
I MFj (ti )

]2
, (9)

where L represents the number of instances in each IMF.
In general, the fault information of rotating machinery is

mainly in high frequency band. As a result, the fault charac-
teristic information can be represented by the first few IMF
components. In this paper, we extract the first four IMFs’
energy to represent time-frequency-domain features.

Feature selection

From a practical fault diagnosis point of view, some extracted
features are redundant or non-significant (Ragab et al. 2019).
Directly using all the extracted features in themodelmay lead
to computation inefficiency, over-fitting, high maintenance
workload, and difficulty of model interpretation. To address
these issues, an effective subset that contains informative
features should be selected.

There are quantities of feature selection methods that can
reduce the original feature set to a more compact one. Such
methods can be generally categorized into three types: filter
methods, wrapper methods, and embedded methods (Han
et al. 2019a; Ding and Peng 2005). In this paper, a filter
method called min-redundancy and max-relevance (mRMR)
(Peng et al. 2005) is employed. The advantages of themRMR
over the other feature selection methods can be illustrated
from two aspects. First, as a filtering method, mRMR has
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the advantage of computational efficiency and the ability
to generalize different machine learning models. Out of fil-
ter nature, the motivation to adopt mRMR is that it can
effectively reduce the redundant features while keeping the
relevant features in the model, not perturbing or hiding the
physicalmeaningof the features. Therefore, it keeps the inter-
pretability of the proposed diagnosis model, which is very
important for the decision maker.

Actually, mRMR is a mutual-information-based feature
selectionmethod that simultaneouslymeasures the relevance
and redundancy of features, to obtain a feature subset with
good generalization properties. Themutual information used
to measure the dependency between two discrete random
variables X (1) and X (2), can be expressed as

I (X (1), X (2)) =
∑

i, j

p(x (1)
i , x (2)

j ) log
p(x (1)

i , x (2)
j )

p(x (1)
i )p(x (2)

j )
, (10)

where p(x (1)
i , x (2)

j ) denotes the joint probability density of

two random variables X (1) and X (2). p(x (1)
i ) and p(x (2)

j )

denote the marginal probability density of X (1) and X (2),
respectively.

For features variables, mutual information is used to mea-
sure the level of “similarity” between the extracted features.
The principle of minimum redundancy is to select the fea-
tures so that they are mutually maximally dissimilar. The
minimum redundancy function can be expressed as

minWI = 1

|S|2
∑

(gi ,g j∈S)
I
(
gi , g j

)
, (11)

where S denotes the feature subset we are seeking, |S| is the
number of features in S, gi is the i th feature in S. In addition,
mutual information is also used to measure the discriminant
ability of features to target variable y. I (y, gi ) quantifies the
relevance of gi for classification tasks. Thus the maximum
relevance function can be expressed as

max VI = 1

|S|
∑

(gi∈S)

I (y, gi ) . (12)

In this paper, we adopt the strategy to combine the two
functions into a single criterion one, named the mutual
information quotient (MIQ), which maximizes the func-
tion max (VI /WI ). Based on this criterion, a small subset
is selected from the extracted features using the vibration
signal. As we will see later, the 21 selected features show
better diagnostic performance.

Imbalanced cost-sensitive classification

This subsection designs a cost-sensitive learning method
for fault diagnosis of rotating machinery. It consists of a
cost matrix that defines the cost of misclassification, and
a cost-sensitive classification construction that calibrates
imbalanced classification results.

Cost matrix determination

The effectiveness of cost-sensitive learning method depends
strongly on the given cost matrix. Improperly initializing
costs are not conducive to the learning process (Zhang and
Hu 2014). In other words, too low costs are not enough to
adjust the classification boundary, while too high costs may
lead to poor generalization capacity of the classifier on other
classes. In this paper, a handcrafted cost matrix based on
expert knowledge is recommended to the trade-off.

In practice, the costs caused by misclassification of differ-
ent fault conditions of rotatingmachinery are heterogeneous.
For example, the cost of misclassification of fault condition
into normal condition is much greater than a false alarm.
Moreover, the misclassification faults of different compo-
nents are also different. This usually requires access to
industry expertswhohave the ability to assess themost realis-
tic cost values. The cost of misclassification given by experts
may differ under different fault-tolerant criteria. In order to
popularize our methodology, we abstract two basic rules for
the cost matrix.

Rule 1: all costs are nonnegative. The entry of cost matrix
C is described as

C =
{
Cp,q = 0, p = q
Cp,q ∈ N

+, p �= q
(13)

where Cp,q represents the cost of misclassifying the class p
into the class q. In practice, there are four different situations.

• For Cp,q (p = q), it stands for correct classification. In
this paper, we define Cp,q = 0 (p = q).

• For Cp,q (p = 0, q = 1, 2, . . . k), it represents a false
alarm, which means classifying a normal condition as a
fault condition.

• For Cp,q (p = 1, 2, . . . k, q = 0), it represents a missed
alarm, which means classifying a fault condition as a
normal condition.

• For Cp,q (p �= q, p �= 0, q �= 0), it means classifying
one fault condition as another one.

Rule 2: the cost of misclassification satisfies

C0,q < Cp,q < Cp,0, (14)
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where p �= q �= 0, and the subscript 0 stands for a nor-
mal condition. This rule presents the idea that the costs of
different misclassifications are significantly different from
each other, i.e., the cost of false alarm or type I error (C0,q )
is small, as only a confirmation is required by operator. The
cost of missed alarm or type II error (Cp,0) is large, as it may
lead to serious damage to equipment or even catastrophe. In
addition, misclassifying one fault condition as another one
can alert the operator with a failure signal, but it is difficult
to make an accurate diagnosis. Therefore, Cp,q is between
C0,q and Cp,0.

Cost-sensitive learning by cost-proportionate rejection
sampling

Cost-proportionate rejection sampling processes the training
sample through proportional sampling and adjusts the out-
come class distribution of the sampling instances. Then a
cost-insensitive learning algorithm can be directly applied
to the sampled instances. Here we’re just going to give a
brief overview of cost-proportionate rejection sampling, and
the full details about this algorithm are well presented in
Zadrozny et al. (2003).

In cost-sensitive learning phase, the objective is to learn a
classifier s : X → Y to minimize the expected cost,

Ex,y,c∼D[c · I (s(x) �= y)], (15)

where (x, y, c) is the form of given training data, D denotes
the distribution with domain X ×Y ×C , X denotes the input
space, Y denotes the output space, C denotes the misclassi-
fication costs and I (·) is the indicator function.

Assuming that there exists a constant Nc = Ex,y,c∼D�c�,
the goal of minimizing the expected cost can be transformed
into minimizing the ratio of errors under D̂,

Ex,y,c∼D[c · I (s(x) �= y)]
=

∑

x,y,c

D(x, y, c) · c · I (s(x) �= y)

= Nc ·
∑

x,y,c

D̂(x, y, c) · I (s(x) �= y)

= Nc · Ex,y,c∼D̂[I (s(x) �= y)]

, (16)

where D̂(x, y, c) = c
Nc

D(x, y, c). Specifically, the transla-
tion theorem in Eq. (16) indicates that each instance in the
original training sample (S) is drawn independently once,
and accepted into the sample

(
S′) with the probability c/Zc,

where Zc is a predefined constant. In this paper, the con-
stant Zc is chosen as the maximal misclassification cost. To
determine whether to keep an instance, the algorithm first
generates a random number rv from the uniform distribu-
tionU (0, 1), and compares it with the acceptance probability

ci/Zc of the instance under evaluation. The instance i is
accepted when rv doesn’t exceed its acceptance probabil-
ity and rejected otherwise. Eventually, we obtain a new set(
S′) which is generally smaller than (S).
This method is very suitable for industrial practice owing

to its two distinguished advantages: (1) it comes with a theo-
retical guarantee. The use of the sampled set

(
S′) guarantees

a cost-minimizing classifier, assuming the underlying learn-
ing algorithm can achieve an approximate minimization of
classification errors (Zadrozny et al. 2003). (2) It is general
and flexible in practice. Instances are selected from the origi-
nal training sample according to their misclassification costs,
and then used to construct a classifier with an adequate clas-
sification learning technique, which results in cost-sensitive
learning (Lee et al. 2012).

We should note that cost proportionate rejection sampling
is designed especially for binary cost-sensitive classifica-
tion. However, our task is to distinguish multi-class data.
The one-against-rest approach is adopted to solve our multi-
classification problem (Beygelzimer et al. 2005).Meanwhile,
cost-sensitive learning by cost-proportionate rejection sam-
pling only concerns adjusting the distribution of training
sample by misclassification costs, which implies that it fol-
lows the same procedure of training model and fine-tuning
parameters as traditional cost-insensitive learning methods.

As mentioned above, this cost-sensitive learning is a gen-
eral method, which can improve classification performance
through combined use with traditional or cost-insensitive
classifiers. In this paper, we consider five classical classi-
fiers, logistic regression (LR), naive Bayes (NB), support
vector machine (SVM), random forest (RF), and gradient
boost decision tree (GBDT), to identify the operational status
of rotating machinery. Moreover, we combine them with the
cost proportional rejection samplingmethod to construct five
cost-sensitive learning models: cost-sensitive logistic regres-
sion (CS-LR), cost-sensitive naive Bayes (CS-NB), cost-
sensitive support vector machine (CS-SVM), cost-sensitive
random forest (RF), and cost-sensitive gradient boost deci-
sion tree (CS-GBDT).

The real-world application

In this section, we apply the proposed framework to the fault
diagnosis of rotating machinery by using the acquired vibra-
tion data fromanoil refining inChina. Its superiority has been
demonstrated from two aspects. First, our multi-domain fea-
ture extraction has shown its advantages in vibration signal
analysis when compared with some previous works. Second,
the cost-sensitive learning method can effectively reduce the
average cost of misclassification and performs well in fault
diagnosis with imbalanced data. Meanwhile, a sensitivity
analysis is conducted under different misclassification costs,
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Table 2 Description of the fault
type

No. Fault type Number of
fault instances

Imbalanced ratio
(normal/fault)

1 Bearing cage fault 36 8.25

2 Bearing inner race fault 35 8.49

3 Bearing outer race fault 27 11.00

4 Bearing rolling element fault 25 11.88

5 Coupling fault 24 12.38

6 Component loosening 54 5.50

7 Other working conditions with faults (e.g.,
insufficient lubrication, seal leakage, etc.)

35 8.49

and CS-GBDT is recommended for its better performance
and more robust results.

Data description

The raw vibration data used here is collected from an oil
refinery in Zibo, Shandong Province, China. We conduct
feature extraction from vibration signals using time-domain,
frequency-domain and time-frequency-domain analyses, and
obtain 65 features eventually. In monitoring the pump with
vibration signals for up to two years, we have gathered 7
fault types including bearing cage fault, bearing inner race
fault, bearing outer race fault, bearing rolling element fault,
coupling fault, component loosening and other working con-
ditions with faults, as shown in Table 2. The imbalanced ratio
(IR) in Table 2 is defined as the ratio of the number of nor-
mal condition (297) to the number of each fault type. It is
obvious that we have to face a multi-classification problem
with imbalanced data.

Multiclass performancemetrics

The main purpose of this paper is to pursue the minimum
cost of misclassification without reducing the classification
performance of minority and majority classes. The widely
used evaluation metrics in binary classification settings are
accuracy, precision, recall, F1-score, and G-mean. Here,
these evaluation metrics should be extended to meet the
multi-classification need. Macro-averaging, generalizes the
concept of these evaluation metrics to multiple dimensions,
by averaging the metric values of each pair of classes (Santos
et al. 2015). The specific metrics are expanded to:

MA-A =
∑k

i=0 True Positive i
∑k

i=0 ( True Positive i + False Positive i )
, (17)

MA-P = 1

k + 1

k∑

i=0

True Positivei
True Positivei + False Positivei

, (18)

MA-R = 1

k + 1

k∑

i=0

True Positivei
True Positivei + False Negativei

,

(19)

MA-F = 2

1/MA-P + 1/MA-R
, (20)

MA-G = k+1

√
√
√
√

k∏

i=0

True Positivei
True Positivei + False Negativei

, (21)

where k + 1 denotes the total number of classes. MA-A,
MA-P, MA-R, MA-F, and MA-G denote macro-averaging
accuracy, precision, recall, F1 and G-mean, respectively.

Although the above five metrics are widely used to evalu-
ate the classification performance, the actual cost of each type
of misclassification is not taken into account. To address this
issue, the average cost (A-cost), joint consideration for the
number and cost of misclassification error in different con-
ditions, is the highlight of imbalanced classification metric
(Zhou and Liu 2006). In general, it is defined as

A-cost = 1

Ns

k∑

p=0

k∑

q=0

Cp,q · Np,q , (22)

where Np,q represents the number ofmisclassifying the class
p into the classq, Ns represents the total number of instances.

Comparison with other feature extractionmethods

To illustrate the effectiveness of our multi-domain feature
extraction, it is necessary to compare the extracted features
with those used in previousworks.We introduce three feature
sets widely used in fault diagnosis of rotating machinery:
feature set 1 (FS1), feature set 2 (FS2), and feature set 3
(FS3), and then compare them with our proposed feature set
(PFS).

(1) FS1: Time-domain and time-frequency-domain fea-
tures.

(2) FS2: Time-domain and frequency-domain features.
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Table 3 The specified subset of
the hyper-parameter space

Model Hyperparameter Search area

LR L2-norm parameter [0.1, 0.2, 0.3, . . . , 0.8, 0.9, 1.0]

NB Smoothing parameter [0, 0.1, 0.2, . . . , 1.8, 1.9, 2.0]

SVM Penalty parameter
[
10−4, 10−3, 10−2, . . . , 102, 103, 104

]

Kernel parameter [0.1, 0.2, 0.3, . . . , 1.8, 1.9, 2.0]

RF Number of estimators [10, 20, 30, . . . , 80, 90, 100]

Maximum depth [None, 2, 4, . . . , 16, 18, 20]

GBDT Number of estimators [20, 30, 40, . . . , 70, 80, 90]

Maximum depth [2, 4, 6, . . . , 12, 14, 16]

Minimum samples in the leaf node [10, 20, 30, . . . , 80, 90, 100]

(3) FS3: Frequency-domain and time-frequency-domain
features.

(4) PFS: Time-domain, frequency-domain, and time-
frequency-domain features.

As mentioned in “Feature selection” section, directly
using each group of all features may lead to over-fitting
and affect its classification performance. To overcome the
interference of redundancy and irrelevant features, we use
mRMR to select important features in each group and feed
them into the five classical classifiers introduced in “Cost-
sensitive learning by cost-proportionate rejection sampling”
section. To better show the role of our feature selection, we
investigate the impact of different numbers of features on
the experimental results. In each group of experiments, the
sample data is randomly partitioned into training set and test
set by 6:4. Based on the training set, the parameters of each
classifier are tuned by five-fold cross-validation (80 % for
training and 20% for testing at each CV iteration) indepen-
dently. We adopt the grid search approach, an exhaustive
searching through a manually specified subset of the hyper-
parameter space of a learning algorithm, to select the optimal
hyper-parameters. The main hyper-parameter search space
for each model is listed in Table 3.

The diagnosis performance results are shown in Fig. 2,
where the x-axis represents the number of important fea-
tures selected using mRMR. It is clear that as the number
of important features increases, the classification perfor-
mance improves significantly in the early stage, and then
tends to be stable. In addition, we should note that when too
many features are added, the performance of some classifiers
begins to decline gradually. For example,when the number of
selected features in PFS exceeds 31, there is an obvious over-
fitting phenomenon in SVM, which verifies the importance
of feature selection. Based on the overall classification per-
formance of each classifier, 21 important features are finally
selected from the extracted features using the vibration sig-
nals for later use.

By comparing four different feature sets, we observe that
all the classifiers have achieved relatively good prediction
performance using PFS in terms of higher scores. In other
words, PFS extracted from three different domains can bet-
ter represent the operational status of rotating machinery.
Meanwhile, GBDT has higher scores on all five metrics of
each feature set and is less likely to be disturbed by noise
or irrelevant features, compared with the other four classi-
cal classifiers. It illustrates the accuracy and robustness of
GBDT in this practical classification.

Comparison with traditional data-drivenmethods

To verify that our proposed cost-sensitive learning method is
superior to the classical cost-insensitive learning and other
imbalanced learning methods in fault diagnosis, two com-
parative experiments are conducted. The important features
selected by mRMR are chosen as input variables, whose
effectiveness has been well demonstrated by the experiments
in “Comparison with other feature extraction methods” sec-
tion.

Comparison with classical cost-insensitive learning
methods

Weinvestigate the classificationperformanceof cost-sensitive
learning based on a given cost matrix. Specifically, we use
the five cost-sensitive models proposed in “Cost-sensitive
learning by cost-proportionate rejection sampling” section,
namely, CS-LR, CS-NB, CS-SVM, CS-RF, and CS-GBDT.
Accordingly, to illustrate the calibration effect of cost-
sensitive learning based on misclassification costs, the five
classical cost-insensitive classification models (LR, NB,
SVM, RF, and GBDT) are selected as a benchmark. Addi-
tionally, based on the determination rules of cost matrix in
“Cost matrix determination” section, we define a cost matrix
with entries

Ci0 = 10w, C0 j = w, and Ci j = 3w for i �= j �= 0, (23)
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Fig. 2 The comparison of classification performance on different feature sets

where w denotes the minimum misclassification cost unit.
This definition indicates that the cost of missed alarm is
ten times higher than that of false alarm, while the cost of
misclassifying one fault as another one is much smaller. It
highlights the dangers and seriousness of missed alarm in
fault diagnosis.

In this experiment, the sample data is randomly divided
into training set and test set by 6:4. Based on training set,
grid search and five-fold cross-validation are used for each
model to select the optimal hyper-parameters. The specific
hyper-parameter spaces of each model are listed in Table 3.
The average results with standard deviations in parentheses
on test set across 50 independent experiments are listed in
Table 4.

From the results in Table 4, some interesting findings
emerge. First, cost-sensitive learning method outperforms
cost-insensitive learning one, which validates the need for
cost-sensitive learning in fault diagnosis. Taking LR for
example, cost-sensitive learningmethod increases theMA-A
metric from 0.8326 to 0.8458, the MA-Rmetric from 0.6736
to 0.7602, the MA-F metric from 0.6959 to 0.7321, and the
MA-Gmetric from0.8063 to 0.8618.Meanwhile, the average
misclassification cost (A-cost) is halved. Second, CS-GBDT
is superior to the other cost-sensitive methods in terms of

highest gains and lowest loss. As for A-cost, CS-GBDT
reduces it to 0.0266, which is only 1/17 to 1/3 of those results
from CS-LR, CS-NB, CS-SVM, and CS-RF. Third, we find
that GBDT without cost-sensitive learning calibration also
performs much better than CS-LR, CS-NB, CS-SVM and
CS-RF.

The results show that the fault diagnosis with imbalanced
data are not only highly dependent on cost-sensitive learn-
ing, but also vary with different classifiers. Thus, it calls for a
framework with flexibility and strong generalization ability,
to choose the best cost-sensitive model from different classi-
fiers in practical applications.Our designed frameworkmeets
the demand quite well, since it is convenient for operators of
industrial equipment diagnosis to calibrate the classification
results given on a cost matrix, without spending a lot of time
and resources in reconstructing the training and fine-tuning
procedures of classifiers.

In addition to reporting the average misclassification cost
across 50 experiments in Table 4, we further test the signifi-
cant improvement in prediction ability of each model under
cost-sensitive calibration. To this end, we use the Diebold-
Mariano (DM) test (Diebold and Mariano 1995) to compare
the averagemisclassification cost of cost-insensitive learning
(model 1) with cost-sensitive learning (model 2). It is note-
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Table 4 Experimental results of cost-insensitive learning and cost-sensitive learning

Metrics Cost-insensitive Cost-sensitive

LR NB SVM RF GBDT CS-LR CS-NB CS-SVM CS-RF CS-GBDT

MA-A 0.8326 0.9672 0.8541 0.9378 0.9901 0.8458 0.9677 0.8505 0.9695 0.9921

(.0230) (.0138) (.0223) (.0242) (.0087) (.0206) (.0131) (.0220) (.0168) (.0090)

MA-P 0.7756 0.9536 0.8021 0.9056 0.9965 0.7394 0.9600 0.7578 0.9649 0.9907

(.0502) (.0206) (.0280) (.0366) (.0040) (.0362) (.0120) (.0378) (.0237) (.0108)

MA-R 0.6736 0.9375 0.7069 0.8840 0.9791 0.7602 0.9412 0.7467 0.9433 0.9837

(.0420) (.0251) (.0405) (.0459) (.0170) (.0334) (.0243) (.0378) (.0318) (.0172)

MA-F 0.6959 0.9423 0.7175 0.8869 0.9868 0.7321 0.9437 0.7271 0.9511 0.9860

(.0405) (.0231) (.0389) (.0436) (.0109) (.0344) (.0217) (.0380) (.0278) (.0152)

MA-G 0.8063 0.9655 0.8309 0.9352 0.9881 0.8618 0.9680 0.8546 0.9682 0.9912

(.0270) (.0140) (.0254) (.0261) (.0098) (.0200) (.0133) (.0230) (.0180) (.0093)

A-cost 1.0412 0.1508 0.5720 0.2610 0.0932 0.4863 0.0908 0.4566 0.1746 0.0266

(.2000) (.0725) (.1311) (.1270) (.0848) (.0852) (.0399) (.0788) (.1139) (.0337)

Boldface indicates the performance of cost-sensitive learning over the corresponding cost-insensitive learning, i.e., LR versus CS-LR, NB versus
CS-NB, SVM versus CS-SVM, RF versus CS-RF, GBDT versus CS-GBDT

Table 5 DM significance test of misclassification cost (A-cost)

Model comparison DM test

(Model 2 vs. model 1) Statistic p-value

CS-LR versus LR 15.6150 2.2e−16***

CS-NB versus NB 6.4440 4.823e−08***

CS-SVM versus SVM 5.7616 5.44e−07***

CS-RF versus RF 3.0786 0.0034***

CS-GBDT versus GBDT 4.7952 1.556e−05***

***Statistical significance at the 1% level

worthy that the argument ‘alternative’ in R function ‘dm.test’
is set to be ‘two.sided’. In otherwords, the alternative hypoth-
esis is that the average misclassification cost of model 1 is
not equivalent to that of model 2. If p-value is less than 1%,
we accept the alternative hypothesis and deem that model
2 is statistically superior to model 1 when the DM statistic
is positive, while model 1 is statistically superior to model
2 when the DM statistic is negative. Otherwise, we have to
accept the null hypothesis that there is no difference between
model 1 and model 2.

We report in Table 5 the DM test results and find that
all statistics are positive and significant at the level of 1%.
This confirms that the feasibility of our cost-sensitivemethod
to reducing the misclassification cost in fault diagnosis of
rotating machinery.

Comparison with other imbalanced learning methods

We have proved the advantages of cost-sensitive learn-
ing methods in fault diagnosis over the traditional cost-

insensitive classification methods through the above exper-
iments. In order to further verify the superiority of our
cost-sensitive method in dealing with imbalanced data, we
conduct another experiment by comparing our cost-sensitive
method with a series of rebalancing methods. To this end, we
select six commonly used rebalancing methods, including
random under-sampling, random over-sampling, SMOTE,
SMOTE-borderline1, SMOTE-borderline2, and ADASYN.
They are applied to convert an imbalanced data into a
balanced one, which will be used to train the five basic clas-
sifiers. For fair comparisons, each classifier takes the same
procedure using grid search and five-fold cross-validation
to select the optimal hyper-parameters, and repeats 50 inde-
pendent experiments. The specific hyper-parameter spaces
of each classifier are listed in Table 3.

We use the cost-sensitive learning method as the bench-
mark and report in Table 6 the classification results of each
classifier with different rebalancing methods. The results
show that the overall performance of each classifier based
on cost-sensitive calibration is better than the six rebalanc-
ing methods, except for only a few metrics. For example,
SVM with Random over-sampling can obtain the maxi-
mum average precision. Taking a closer look at the results
of SMOTE-borderline2, we find that each classifier trained
using the synthesized data has poor performance, especially
forNB. The possible reason is that the generation of synthetic
instances in SMOTE-borderline2 will be hampered by the
skewed distribution of the “danger instance”.Meanwhile, the
poor performance of random under-sampling may be caused
by losing quantities of instances information.
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Fig. 3 The comparison of
cost-sensitive classification
performance on different cost
matrices

Sensitivity analysis of cost-sensitive learning with different
cost matrices

In this subsection, we do sensitivity analysis of our cost-
sensitive learning method in fault diagnosis. To this end, we
consider three groups of cost matrices:

Group 1: Ci0 = 10w, C0 j = w, and Ci j = 3w for i �=
0, j �= 0, and i �= j .

Group 2: Ci0 = 15w, C0 j = w, and Ci j = 2w for i �=
0, j �= 0, and i �= j .

Group 3: Ci0 = 7w, C0 j = w, and Ci j = 4w for i �=
0, j �= 0, and i �= j .

The details of group 1 have been covered in “Comparison
with classical cost-insensitive learning methods” section and
serves as a benchmark. In group 2, we increase the cost of
missed alarm and reduce the cost of misjudging one fault for
another one. In contrast, the cost ofmissed alarm in group 3 is
reduced, whereas the cost of misjudging one fault as another
one is increased. Taking the same procedure as “Compari-
sonwith classical cost-insensitive learningmethods” section,
we show the experimental results for three groups in Fig. 3,
where the error bars represent the standard deviations.

From the results in Fig. 3, an intuitive conclusion is that
different misclassification costs will lead to different classifi-
cation performances of each model. First, by comparing the
sensitivity of classification performance in different groups,
there are certain fluctuations in CS-GBDT and CS-NB. Con-
versely, CS-SVM fluctuates significantly with the change of
misclassification costs. Second, by comparing the sensitivity
of classification performance in the same group, the stan-

dard deviation of CS-RF classification performance in 50
independent experiments is greater than those of CS-GBDT
and CS-NB.

Apart from the above two points, we also notice that the
higher evaluation scores are not necessarily accompanied by
lower misclassification costs. For example, in terms of eval-
uation scores, CS-NB, CS-RF and CS-GBDT are superior
to CS-LR and CS-SVM for all cost settings, while the aver-
age misclassification cost of CS-RF is greater than that of
CS-SVM in group 2. This result validates the necessity of
introducing A-cost metric, which is also one of the distinc-
tive contributions in this paper. Fortunately, CS-GBDT can
achieve better performance and more robust results than the
other four models in terms of higher evaluation scores and
lower misclassification costs across different cost matrices.
Thus, we recommend it as a suitable method for practical
use.

Conclusions

The purpose of this paper is to develop a novel frame-
work to diagnose the imbalanced operation condition of
rotating machinery through combined use of multi-domain
feature extraction, feature selection and cost-sensitive learn-
ingmethod.We first extract 65 features from the perspectives
of time-domain, frequency-domain and time-frequency-
domain. The multi-domain features can comprehensively
reflect the operational status of a rotatingmachinery. Second,
the mRMR feature selection technique is used to reduce the
entire feature set to amore compact one. Third, we design the
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cost-sensitive learningmethod to improve the performance of
fault diagnosis with imbalanced data. This is done by impos-
ing differentmisclassification costs on false alarmandmissed
alarm respectively.

Our framework is evaluated on the acquired vibration
data of rotating machinery from an oil refinery in Zibo,
Shandong Province, China. From extensive experimental
comparisons, the results illustrate that our multi-domain fea-
ture extraction is valuable and the extracted features have
the ability to achieve a higher classification performance
than previous works. By comparison with traditional cost-
insensitive methods as well as other imbalanced learning
methods, our cost-sensitive learning method performs better
in imbalanced fault classification. Meanwhile, a sensitiv-
ity experiment demonstrates that different misclassification
costs will lead to different classification performance. How-
ever, it is worth mentioning that CS-GBDT is more robust
and is preferred for its high evaluation scores and low average
misclassification cost.

In the future, this research can be further promoted in two
directions. First, we can consider multi-source data fusion in
fault diagnosis.Owing to the limitation of the data acquired in
this paper, the features are only extracted from the vibration
signals, while the effects of other signals, such as electrical
signals and temperature, on the diagnostic results of rotating
machinery are ignored. With the new paradigm of Indus-
try 4.0, more and more multimode sensors make it possible
to fuse multi-source data and conduct more comprehensive
fault diagnosis. Second, we could consider the severity of
each fault condition. We have roughly set the cost matrix for
different fault conditions without considering the severity of
each fault condition. It is very useful to divide different levels
of severity and specify the cost accordingly. In this regard,
the cost-sensitive learning method can play a greater role in
fault diagnose and produce more accurate results for scien-
tific decision-making.We leave this topic for future research.
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